1
|
Talukdar PD, Pramanik K, Gatti P, Mukherjee P, Ghosh D, Roy H, Germain M, Chatterji U. Precise targeting of transcriptional co-activators YAP/TAZ annihilates chemoresistant brCSCs by alteration of their mitochondrial homeostasis. Signal Transduct Target Ther 2025; 10:61. [PMID: 39979255 PMCID: PMC11842803 DOI: 10.1038/s41392-025-02133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Persistence of drug-resistant breast cancer stem cells (brCSCs) after a chemotherapeutic regime correlates with disease recurrence and elevated mortality. Therefore, deciphering mechanisms that dictate their drug-resistant phenotype is imperative for designing targeted and more effective therapeutic strategies. The transcription factor SOX2 has been recognized as a protagonist in brCSC maintenance, and previous studies have confirmed that inhibition of SOX2 purportedly eliminated these brCSCs. However, pharmacological targeting of transcription factors like SOX2 is challenging due to their structural incongruities and intrinsic disorders in their binding interfaces. Therefore, transcriptional co-activators may serve as a feasible alternative for effectively targeting the brCSCs. Incidentally, transcriptional co-activators YAP/TAZ were found to be upregulated in CD44+/CD24-/ALDH+ cells isolated from patient breast tumors and CSC-enriched mammospheres. Interestingly, it was observed that YAP/TAZ exhibited direct physical interaction with SOX2 and silencing YAP/TAZ attenuated SOX2 expression in mammospheres, leading to significantly reduced sphere forming efficiency and cell viability. YAP/TAZ additionally manipulated redox homeostasis and regulated mitochondrial dynamics by restraining the expression of the mitochondrial fission marker, DRP1. Furthermore, YAP/TAZ inhibition induced DRP1 expression and impaired OXPHOS, consequently inducing apoptosis in mammospheres. In order to enhance clinical relevance of the study, an FDA-approved drug verteporfin (VP), was used for pharmacological inhibition of YAP/TAZ. Surprisingly, VP administration was found to reduce tumor-initiating capacity of the mammospheres, concomitant with disrupted mitochondrial homeostasis and significantly reduced brCSC population. Therefore, VP holds immense potential for repurposing and decisively eliminating the chemoresistant brCSCs, offering a potent strategy for managing tumor recurrence effectively.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Kunal Pramanik
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Priya Gatti
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Pritha Mukherjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Himansu Roy
- Department of Surgery, Medical College, Kolkata, India
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Chen H, Zhao S. Research progress of RNA pseudouridine modification in nervous system. Int J Neurosci 2024:1-11. [PMID: 38407188 DOI: 10.1080/00207454.2024.2315483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Recent advances of pseudouridine (Ψ, 5-ribosyluracil) modification highlight its crucial role as a post-transcriptional regulator in gene expression and its impact on various RNA processes. Ψ synthase (PUS), a category of RNA-modifying enzymes, orchestrates the pseudouridylation reaction. It can specifically recognize conserved sequences or structural motifs within substrates, thereby regulating the biological function of various RNA molecules accurately. Our comprehensive review underscored the close association of PUS1, PUS3, PUS7, PUS10, and dyskerin PUS1 with various nervous system disorders, including neurodevelopmental disorders, nervous system tumors, mitochondrial myopathy, lactic acidosis and sideroblastic anaemia (MLASA) syndrome, peripheral nervous system disorders, and type II myotonic dystrophy. In light of these findings, this study elucidated how Ψ strengthened RNA structures and contributed to RNA function, thereby providing valuable insights into the intricate molecular mechanisms underlying nervous system diseases. However, the detailed effects and mechanisms of PUS on neuron remain elusive. This lack of mechanistic understanding poses a substantial obstacle to the development of therapeutic approaches for various neurological disorders based on Ψ modification.
Collapse
Affiliation(s)
- Hui Chen
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Shuang Zhao
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
3
|
Belli V, Maiello D, Di Lorenzo C, Furia M, Vicidomini R, Turano M. New Insights into Dyskerin-CypA Interaction: Implications for X-Linked Dyskeratosis Congenita and Beyond. Genes (Basel) 2023; 14:1766. [PMID: 37761906 PMCID: PMC10531313 DOI: 10.3390/genes14091766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The highly conserved family of cyclophilins comprises multifunctional chaperones that interact with proteins and RNAs, facilitating the dynamic assembly of multimolecular complexes involved in various cellular processes. Cyclophilin A (CypA), the predominant member of this family, exhibits peptidyl-prolyl cis-trans isomerase activity. This enzymatic function aids with the folding and activation of protein structures and often serves as a molecular regulatory switch for large multimolecular complexes, ensuring appropriate inter- and intra-molecular interactions. Here, we investigated the involvement of CypA in the nucleus, where it plays a crucial role in supporting the assembly and trafficking of heterogeneous ribonucleoproteins (RNPs). We reveal that CypA is enriched in the nucleolus, where it colocalizes with the pseudouridine synthase dyskerin, the catalytic component of the multifunctional H/ACA RNPs involved in the modification of cellular RNAs and telomere stability. We show that dyskerin, whose mutations cause the X-linked dyskeratosis (X-DC) and the Hoyeraal-Hreidarsson congenital ribosomopathies, can directly interact with CypA. These findings, together with the remark that substitution of four dyskerin prolines are known to cause X-DC pathogenic mutations, lead us to indicate this protein as a CypA client. The data presented here suggest that this chaperone can modulate dyskerin activity influencing all its partecipated RNPs.
Collapse
Affiliation(s)
- Valentina Belli
- Istituto Nazionale Tumori—IRCSS—Fondazione G. Pascale, 80131 Naples, Italy;
| | - Daniela Maiello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| | - Concetta Di Lorenzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Furia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| |
Collapse
|
4
|
Yin J, Qi TF, Yang YY, Vera-Colón M, Zur Nieden NI, Wang Y. Temporal Profiling of Epitranscriptomic Modulators during Osteogenic Differentiation of Human Embryonic Stem Cells. J Proteome Res 2023; 22:2179-2185. [PMID: 37348120 PMCID: PMC10330632 DOI: 10.1021/acs.jproteome.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Osteogenesis is modulated by multiple regulatory networks. Recent studies showed that RNA modifications and their reader, writer, and eraser (RWE) proteins are involved in regulating various biological processes. Few studies, however, were conducted to investigate the functions of RNA modifications and their RWE proteins in osteogenesis. By using LC-MS/MS in parallel-reaction monitoring (PRM) mode, we performed a comprehensive quantitative assessment of 154 epitranscriptomic RWE proteins throughout the entire time course of osteogenic differentiation in H9 human embryonic stem cells (ESCs). We found that approximately half of the 127 detected RWE proteins were down-regulated during osteogenic differentiation, and they included mainly proteins involved in RNA methylation and pseudouridylation. Protein-protein interaction (PPI) network analysis unveiled significant associations between the down-regulated epitranscriptomic RWE proteins and osteogenesis-related proteins. Gene set enrichment analysis (GSEA) of publicly available RNA-seq data obtained from osteogenesis imperfecta patients suggested a potential role of METTL1 in osteogenesis through the cytokine network. Together, this is the first targeted profiling of epitranscriptomic RWE proteins during osteogenic differentiation of human ESCs, and our work unveiled potential regulatory roles of these proteins in osteogenesis. LC-MS/MS data were deposited on ProteomeXchange (PXD039249).
Collapse
Affiliation(s)
- Jiekai Yin
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
| | - Tianyu F Qi
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
| | - Yen-Yu Yang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Madeline Vera-Colón
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
| | - Nicole I Zur Nieden
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
5
|
Wu X, Li JH, Xu L, Li YX, Zhu XX, Wang XY, Wu X, Zhao W, Ni X, Yin XY. SUMO specific peptidase 3 halts pancreatic ductal adenocarcinoma metastasis via deSUMOylating DKC1. Cell Death Differ 2023:10.1038/s41418-023-01175-4. [PMID: 37188742 DOI: 10.1038/s41418-023-01175-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
In the past few decades, advances in the outcomes of patients suffering from pancreatic ductal adenocarcinoma (PDAC) have lagged behind these gained in the treatment of many other malignancies. Although the pivotal role of the SUMO pathway in PDAC has been illustrated, the underlying molecule drivers have yet to be fully elucidated. In the present study, we identified SENP3 as a potential suppressor of PDAC progression through an in vivo metastatic model. Further studies revealed that SENP3 inhibited PDAC invasion in a SUMO system dependent fashion. Mechanistically, SENP3 interacted with DKC1 and, as such, catalyzed the deSUMOylation of DKC1, which accepted SUMO3 modifiers at three lysine residues. SENP3-mediated deSUMOylation caused DKC1 instability and disruption of the interaction between snoRNP proteins, which contributed to the impaired migration ability of PDAC. Indeed, overexpression of DKC1 abated the anti-metastasis effect of SENP3, and DKC1 was elevated in PDAC specimens and associated with a poor prognosis in PDAC patients. Collectively, our findings shed light on the essential role of SENP3/DKC1 axis in the progression of PDAC.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Long Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ya-Xiong Li
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xingmei Wu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xuhao Ni
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Choi EB, Vodnala M, Saini P, Anugula S, Zerbato M, Ho JJ, Wang J, Ho Sui SJ, Yoon J, Roels M, Inouye C, Fong YW. Transcription factor SOX15 regulates stem cell pluripotency and promotes neural fate during differentiation by activating the neurogenic gene Hes5. J Biol Chem 2023; 299:102996. [PMID: 36764520 PMCID: PMC10023989 DOI: 10.1016/j.jbc.2023.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
SOX2 and SOX15 are Sox family transcription factors enriched in embryonic stem cells (ESCs). The role of SOX2 in activating gene expression programs essential for stem cell self-renewal and acquisition of pluripotency during somatic cell reprogramming is well-documented. However, the contribution of SOX15 to these processes is unclear and often presumed redundant with SOX2 largely because overexpression of SOX15 can partially restore self-renewal in SOX2-deficient ESCs. Here, we show that SOX15 contributes to stem cell maintenance by cooperating with ESC-enriched transcriptional coactivators to ensure optimal expression of pluripotency-associated genes. We demonstrate that SOX15 depletion compromises reprogramming of fibroblasts to pluripotency which cannot be compensated by SOX2. Ectopic expression of SOX15 promotes the reversion of a postimplantation, epiblast stem cell state back to a preimplantation, ESC-like identity even though SOX2 is expressed in both cell states. We also uncover a role of SOX15 in lineage specification, by showing that loss of SOX15 leads to defects in commitment of ESCs to neural fates. SOX15 promotes neural differentiation by binding to and activating a previously uncharacterized distal enhancer of a key neurogenic regulator, Hes5. Together, these findings identify a multifaceted role of SOX15 in induction and maintenance of pluripotency and neural differentiation.
Collapse
Affiliation(s)
- Eun-Bee Choi
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Munender Vodnala
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Prince Saini
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Sharath Anugula
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Madeleine Zerbato
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Jaclyn J Ho
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, California, USA; Howard Hughes Medical Institute, Berkeley, California, USA
| | - Jianing Wang
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joon Yoon
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marielle Roels
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA
| | - Carla Inouye
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, California, USA; Howard Hughes Medical Institute, Berkeley, California, USA
| | - Yick W Fong
- Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.
| |
Collapse
|
7
|
Salloum-Asfar S, Abdulla SA, Taha RZ, Thompson IR, Emara MM. Combined Noncoding RNA-mRNA Regulomics Signature in Reprogramming and Pluripotency in iPSCs. Cells 2022; 11:cells11233833. [PMID: 36497092 PMCID: PMC9737797 DOI: 10.3390/cells11233833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Somatic cells are reprogrammed with reprogramming factors to generate induced pluripotent stem cells (iPSCs), offering a promising future for disease modeling and treatment by overcoming the limitations of embryonic stem cells. However, this process remains inefficient since only a small percentage of transfected cells can undergo full reprogramming. Introducing miRNAs, such as miR-294 and miR302/3667, with reprogramming factors, has shown to increase iPSC colony formation. Previously, we identified five transcription factors, GBX2, NANOGP8, SP8, PEG3, and ZIC1, which may boost iPSC generation. In this study, we performed quantitative miRNAome and small RNA-seq sequencing and applied our previously identified transcriptome to identify the potential miRNA-mRNA regulomics and regulatory network of other ncRNAs. From each fibroblast (N = 4), three iPSC clones were examined (N = 12). iPSCs and original fibroblasts expressed miRNA clusters differently and miRNA clusters were compared to mRNA hits. Moreover, miRNA, piRNA, and snoRNAs expression profiles in iPSCs and original fibroblasts were assessed to identify the potential role of ncRNAs in enhancing iPSC generation, pluripotency, and differentiation. Decreased levels of let-7a-5p showed an increase of SP8 as described previously. Remarkably, the targets of identifier miRNAs were grouped into pluripotency canonical pathways, on stemness, cellular development, growth and proliferation, cellular assembly, and organization of iPSCs.
Collapse
Affiliation(s)
- Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: (S.S.-A.); (S.A.A.)
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: (S.S.-A.); (S.A.A.)
| | - Rowaida Z. Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - I. Richard Thompson
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
8
|
Xie L, Fletcher RB, Bhatia D, Shah D, Phipps J, Deshmukh S, Zhang H, Ye J, Lee S, Le L, Newman M, Chen H, Sura A, Gupta S, Sanman LE, Yang F, Meng W, Baribault H, Vanhove GF, Yeh WC, Li Y, Lu C. Robust Colonic Epithelial Regeneration and Amelioration of Colitis via FZD-Specific Activation of Wnt Signaling. Cell Mol Gastroenterol Hepatol 2022; 14:435-464. [PMID: 35569814 PMCID: PMC9305022 DOI: 10.1016/j.jcmgh.2022.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Current management of inflammatory bowel disease leaves a clear unmet need to treat the severe epithelial damage. Modulation of Wnt signaling might present an opportunity to achieve histological remission and mucosal healing when treating IBD. Exogenous R-spondin, which amplifies Wnt signals by maintaining cell surface expression of Frizzled (Fzd) and low-density lipoprotein receptor-related protein receptors, not only helps repair intestine epithelial damage, but also induces hyperplasia of normal epithelium. Wnt signaling may also be modulated with the recently developed Wnt mimetics, recombinant antibody-based molecules mimicking endogenous Wnts. METHODS We first compared the epithelial healing effects of RSPO2 and a Wnt mimetic with broad Fzd specificity in an acute dextran sulfate sodium mouse colitis model. Guided by Fzd expression patterns in the colon epithelium, we also examined the effects of Wnt mimetics with subfamily Fzd specificities. RESULTS In the DSS model, Wnt mimetics repaired damaged colon epithelium and reduced disease activity and inflammation and had no apparent effect on uninjured tissue. We further identified that the FZD5/8 and LRP6 receptor-specific Wnt mimetic, SZN-1326-p, was associated with the robust repair effect. Through a range of approaches including single-cell transcriptome analyses, we demonstrated that SZN-1326-p directly impacted epithelial cells, driving transient expansion of stem and progenitor cells, promoting differentiation of epithelial cells, histologically restoring the damaged epithelium, and secondarily to epithelial repair, reducing inflammation. CONCLUSIONS It is feasible to design Wnt mimetics such as SZN-1326-p that impact damaged intestine epithelium specifically and restore its physiological functions, an approach that holds promise for treating epithelial damage in inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chenggang Lu
- Correspondence Address correspondence to: Chenggang Lu, PhD, Surrozen, Inc., 171 Oyster Point Boulevard, Suite 400, South San Francisco, CA 94080.
| |
Collapse
|
9
|
Han C, Sun LY, Luo XQ, Pan Q, Sun YM, Zeng ZC, Chen TQ, Huang W, Fang K, Wang WT, Chen YQ. Chromatin-associated orphan snoRNA regulates DNA damage-mediated differentiation via a non-canonical complex. Cell Rep 2022; 38:110421. [PMID: 35354054 DOI: 10.1016/j.celrep.2022.110421] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are commonly acknowledged as a class of homogeneous non-coding RNAs that guide ribosomal RNA modifications. However, snoRNAs referred to as orphans have largely unknown functions. Here, we systematically profile chromatin-associated snoRNAs (casnoRNAs) in mammalian cells and identify a subgroup of orphan casnoRNAs responding to DNA damage stress, among which SNORA73 shows the most marked reduction in chromatin enrichment. Downregulated SNORA73 maintains cancer genome stability and differentiation block in hematopoietic malignancy. Mechanistically, casnoRNA the 5' end non-canonical structure of SNORA73 is critical for its function and binding to poly (ADP-ribose) polymerase 1 (PARP1). SNORA73 inhibits PARP1 auto-PARylation to affect cancer genome stability by forming a small nucleolar ribonucleoprotein (snoRNP) with PARP1 and canonical H/ACA proteins DKC1/NHP2. Our findings reveal the role of an orphan snoRNA serving as casnoRNA and highlights a link between non-canonical structure of snoRNA and their functional diversity.
Collapse
Affiliation(s)
- Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xue-Qun Luo
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qi Pan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
10
|
Huang Y, Duan X, Wang Z, Sun Y, Guan Q, Kang L, Zhang Q, Fang L, Li J, Wong J. An acetylation-enhanced interaction between transcription factor Sox2 and the steroid receptor coactivators facilitates Sox2 transcriptional activity and function. J Biol Chem 2021; 297:101389. [PMID: 34762910 PMCID: PMC8668987 DOI: 10.1016/j.jbc.2021.101389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
SRY-box 2 (Sox2) is a transcription factor with critical roles in maintaining embryonic stem (ES) cell and adult stem cell functions and in tumorigenesis. However, how Sox2 exerts its transcriptional function remains unclear. Here, we used an in vitro protein–protein interaction assay to discover transcriptional regulators for ES cell core transcription factors (Oct4, Sox2, Klf4, and c-Myc) and identified members of the steroid receptor coactivators (SRCs) as Sox2-specific interacting proteins. The SRC family coactivators have broad roles in transcriptional regulation, but it is unknown whether they also serve as Sox2 coactivators. We demonstrated that these proteins facilitate Sox2 transcriptional activity and act synergistically with p300. Furthermore, we uncovered an acetylation-enhanced interaction between Sox2 and SRC-2/3, but not SRC-1, demonstrating it is Sox2 acetylation that promotes the interaction. We identified putative Sox2 acetylation sites required for acetylation-enhanced interaction between Sox2 and SRC-3 and demonstrated that acetylation on these sites contributes to Sox2 transcriptional activity and recruitment of SRC-3. We showed that activation domains 1 and 2 of SRC-3 both display a preferential binding to acetylated Sox2. Finally, functional analyses in mouse ES cells demonstrated that knockdown of SRC-2/3 but not SRC-1 in mouse ES cells significantly downregulates the transcriptional activities of various Sox2 target genes and impairs ES cell stemness. Taken together, we identify specific SRC family proteins as novel Sox2 coactivators and uncover the role of Sox2 acetylation in promoting coactivator recruitment and Sox2 transcriptional function.
Collapse
Affiliation(s)
- Yuanyong Huang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaoya Duan
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yimei Sun
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qingqing Guan
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Li Kang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lan Fang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Joint Center for Translational Medicine, Fengxian District Central Hospital, Shanghai, China.
| |
Collapse
|
11
|
Choi EB, Vodnala M, Zerbato M, Wang J, Ho JJ, Inouye C, Ding L, Fong YW. ATP-binding cassette protein ABCF1 couples transcription and genome surveillance in embryonic stem cells through low-complexity domain. SCIENCE ADVANCES 2021; 7:eabk2775. [PMID: 34714667 PMCID: PMC8555894 DOI: 10.1126/sciadv.abk2775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
OCT4 and SOX2 confer pluripotency by recruiting coactivators to activate stem cell–specific transcription. However, the composition of coactivator complexes and their roles in maintaining stem cell fidelity remain unclear. Here, we report the ATP-binding cassette subfamily F member 1 (ABCF1) as a coactivator for OCT4/SOX2 critical for stem cell self-renewal. The intrinsically disordered low-complexity domain (LCD) of ABCF1 contributes to phase separation in vitro and transcriptional activation of pluripotency genes by mediating multivalent interactions with SOX2 and co-dependent coactivators XPC and DKC1. These LCD-driven transcription factor–coactivator interactions critical for pluripotency gene expression are disrupted by DNA damage, likely due to LCD-dependent binding of ABCF1 to damage-generated intracellular DNA fragments instead of SOX2. This study identifies a transcriptional coactivator that uses its LCD to form selective multivalent interactions to regulate stem cell self-renewal and exit from pluripotency when genome integrity is compromised.
Collapse
Affiliation(s)
- Eun-Bee Choi
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Munender Vodnala
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Madeleine Zerbato
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jianing Wang
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jaclyn J. Ho
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, Berkeley, CA, USA
| | - Carla Inouye
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, Berkeley, CA, USA
| | - Lai Ding
- Department of Neurology, Program for Interdisciplinary Neuroscience, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yick W. Fong
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Șelaru A, Costache M, Dinescu S. Epitranscriptomic signatures in stem cell differentiation to the neuronal lineage. RNA Biol 2021; 18:51-60. [PMID: 34582322 PMCID: PMC8677044 DOI: 10.1080/15476286.2021.1985348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Considered to be a field that is continuously growing, epitranscriptomics analyzes the modifications that occur in RNA transcripts and their downstream effects. As epigenetic modifications found in DNA and histones exhibit specific roles on various biological processes, also epitranscriptomic marks control gene expression patterns that are crucial for proper cell proliferation, differentiation and tissue development. Thus, various epitranscriptomic signatures have been identified to play specific roles during stem cell differentiation towards the neuronal and glial lineages, axonal guidance, synaptic plasticity, thus leading to the development of the mature brain tissue. Here we describe in-depth molecular mechanism underlying the most important RNA modifications with emerging roles in the nervous system.
Collapse
Affiliation(s)
- Aida Șelaru
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
13
|
Vodnala M, Choi EB, Fong YW. Low complexity domains, condensates, and stem cell pluripotency. World J Stem Cells 2021; 13:416-438. [PMID: 34136073 PMCID: PMC8176841 DOI: 10.4252/wjsc.v13.i5.416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Biological reactions require self-assembly of factors in the complex cellular milieu. Recent evidence indicates that intrinsically disordered, low-complexity sequence domains (LCDs) found in regulatory factors mediate diverse cellular processes from gene expression to DNA repair to signal transduction, by enriching specific biomolecules in membraneless compartments or hubs that may undergo liquid-liquid phase separation (LLPS). In this review, we discuss how embryonic stem cells take advantage of LCD-driven interactions to promote cell-specific transcription, DNA damage response, and DNA repair. We propose that LCD-mediated interactions play key roles in stem cell maintenance and safeguarding genome integrity.
Collapse
Affiliation(s)
- Munender Vodnala
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Eun-Bee Choi
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yick W Fong
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Harvard Stem Cell Institute, Cambridge, MA 02138, United States.
| |
Collapse
|
14
|
Kan G, Wang Z, Sheng C, Chen G, Yao C, Mao Y, Chen S. Dual Inhibition of DKC1 and MEK1/2 Synergistically Restrains the Growth of Colorectal Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004344. [PMID: 34026451 PMCID: PMC8132060 DOI: 10.1002/advs.202004344] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Indexed: 05/09/2023]
Abstract
Colorectal cancer, one of the most commonly diagnosed cancers worldwide, is often accompanied by uncontrolled proliferation of tumor cells. Dyskerin pseudouridine synthase 1 (DKC1), screened using the genome-wide RNAi strategy, is a previously unidentified key regulator that promotes colorectal cancer cell proliferation. Enforced expression of DKC1, but not its catalytically inactive mutant D125A, accelerates cell growth in vitro and in vivo. DKC1 knockdown or its inhibitor pyrazofurin attenuates cell proliferation. Proteomics, RNA immunoprecipitation (RIP)-seq, and RNA decay analyses reveal that DKC1 binds to and stabilizes the mRNA of several ribosomal proteins (RPs), including RPL10A, RPL22L1, RPL34, and RPS3. DKC1 depletion significantly accelerates mRNA decay of these RPs, which mediates the oncogenic function of DKC1. Interestingly, these DKC1-regulated RPs also interact with HRAS and suppress the RAS/RAF/MEK/ERK pathway. Pyrazofurin and trametinib combination synergistically restrains colorectal cancer cell growth in vitro and in vivo. Furthermore, DKC1 is markedly upregulated in colorectal cancer tissues compared to adjacent normal tissues. Colorectal cancer patients with higher DKC1 expression has consistently poorer overall survival and progression-free survival outcomes. Taken together, these data suggest that DKC1 is an essential gene and candidate therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Guangyan Kan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Ziyang Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Gong Chen
- Department of Colorectal SurgeryState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Chen Yao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yizhi Mao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Shuai Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| |
Collapse
|
15
|
Elsharawy KA, Mohammed OJ, Aleskandarany MA, Hyder A, El-Gammal HL, Abou-Dobara MI, Green AR, Dalton LW, Rakha EA. The nucleolar-related protein Dyskerin pseudouridine synthase 1 (DKC1) predicts poor prognosis in breast cancer. Br J Cancer 2020; 123:1543-1552. [PMID: 32868896 PMCID: PMC7653035 DOI: 10.1038/s41416-020-01045-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypertrophy of the nucleolus is a distinctive cytological feature of malignant cells and corresponds to aggressive behaviour. This study aimed to identify the key gene associated with nucleolar prominence (NP) in breast cancer (BC) and determine its prognostic significance. METHODS From The Cancer Genome Atlas (TCGA) cohort, digital whole slide images identified cancers having NP served as label and an information theory algorithm was applied to find which mRNA gene best explained NP. Dyskerin Pseudouridine Synthase 1 (DKC1) was identified. DKC1 expression was assessed using mRNA data of Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1980) and TCGA (n = 855). DKC1 protein expression was assessed using immunohistochemistry in Nottingham BC cohort (n = 943). RESULTS Nuclear and nucleolar expressions of DKC1 protein were significantly associated with higher tumour grade (p < 0.0001), high nucleolar score (p < 0.001) and poor Nottingham Prognostic Index (p < 0.0001). High DKC1 expression was associated with shorter BC-specific survival (BCSS). In multivariate analysis, DKC1 mRNA and protein expressions were independent risk factors for BCSS (p < 0.01). CONCLUSION DKC1 expression is strongly correlated with NP and its overexpression in BC is associated with unfavourable clinicopathological characteristics and poor outcome. This has been a detailed example in the correlation of phenotype with genotype.
Collapse
Affiliation(s)
- Khloud A Elsharawy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Faculty of Science, Damietta University, Damietta, Egypt
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Ayman Hyder
- Faculty of Science, Damietta University, Damietta, Egypt
| | | | | | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Leslie W Dalton
- Department of Histopathology, South Austin Hospital, Austin, TX, USA
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK.
| |
Collapse
|
16
|
McCann KL, Kavari SL, Burkholder AB, Phillips BT, Hall TMT. H/ACA snoRNA levels are regulated during stem cell differentiation. Nucleic Acids Res 2020; 48:8686-8703. [PMID: 32710630 DOI: 10.1093/nar/gkaa612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
H/ACA small nucleolar RNAs (snoRNAs) guide pseudouridylation as part of a small nucleolar ribonucleoprotein complex (snoRNP). Disruption of H/ACA snoRNA levels in stem cells impairs pluripotency, yet it remains unclear how H/ACA snoRNAs contribute to differentiation. To determine if H/ACA snoRNA levels are dynamic during differentiation, we comprehensively profiled H/ACA snoRNA abundance in multiple murine cell types and during differentiation in three cellular models, including mouse embryonic stem cells and mouse myoblasts. We determined that the profiles of H/ACA snoRNA abundance are cell-type specific, and we identified a subset of snoRNAs that are specifically regulated during differentiation. Additionally, we demonstrated that a decrease in Snora27 abundance upon differentiation corresponds to a decrease in pseudouridylation of its target site within the E-site transfer RNA (tRNA) binding region of the 28S ribosomal RNA (rRNA) in the large ribosomal subunit. Together, these data point toward a potential model in which H/ACA snoRNAs are specifically regulated during differentiation to alter pseudouridylation and fine tune ribosome function.
Collapse
Affiliation(s)
- Kathleen L McCann
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sanam L Kavari
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Adam B Burkholder
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Bart T Phillips
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
17
|
Hou P, Shi P, Jiang T, Yin H, Chu S, Shi M, Bai J, Song J. DKC1 enhances angiogenesis by promoting HIF-1α transcription and facilitates metastasis in colorectal cancer. Br J Cancer 2020; 122:668-679. [PMID: 31857720 PMCID: PMC7054532 DOI: 10.1038/s41416-019-0695-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita 1 (DKC1) is dysregulated in several cancers. However, the expression and function of DKC1 in colorectal cancer (CRC) is rarely reported. METHODS Tissue microarrays (TAMs) including 411 cases of CRC tissues and corresponding paracancerous tissues were used to examine the DKC1 expression. The correlations between the DKC1 expression and clinicopathological or survival characters were further analysed. The functions and molecular mechanism of DKC1 in CRC were investigated through a series of in vitro and in vivo experiments. RESULTS The result showed that DKC1 expression was increased in CRC tissues. Increased DKC1 expression was associated with high grade of TNM stage, additional lymph node metastasis, and poor prognosis of patients with CRC. Multivariate COX analysis indicated that DKC1 can act as an independent prognostic factor for patients with CRC. DKC1 also facilitated the CRC angiogenesis and metastasis by increasing HIF-1α and VEGF expression levels. Chromatin immunoprecipitation assay demonstrated that DKC1 facilitated HIF-1α expression by regulating HIF-1α promoter activity. CONCLUSION DKC1 appears to regulate CRC angiogenesis and metastasis through directly activating HIF-1α transcription. DKC1 can serve as an accurate indicator in predicting the prognosis of patients with CRC and act as a potential therapeutic target for CRC.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Cell Movement/physiology
- Colorectal Neoplasms/blood supply
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Female
- HCT116 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Immunohistochemistry
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Prognosis
- Promoter Regions, Genetic
- Tissue Array Analysis
- Transcription, Genetic
Collapse
Affiliation(s)
- Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peicong Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hang Yin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jun Song
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
18
|
Ribosome and Translational Control in Stem Cells. Cells 2020; 9:cells9020497. [PMID: 32098201 PMCID: PMC7072746 DOI: 10.3390/cells9020497] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic programs, which are dynamically orchestrated at different steps of gene expression, including chromatin remodeling, mRNA transcription, processing, and stability. In addition to maintaining stem cell homeostasis, these molecular processes need to be rapidly rewired to coordinate complex physiological modifications required to redirect cell fate in response to environmental clues, such as differentiation signals or tissue injuries. Although chromatin remodeling and mRNA expression have been extensively studied in stem cells, accumulating evidence suggests that stem cell transcriptomes and proteomes are poorly correlated and that stem cell properties require finely tuned protein synthesis. In addition, many studies have shown that the biogenesis of the translation machinery, the ribosome, is decisive for sustaining ESC and ASC properties. Therefore, these observations emphasize the importance of translational control in stem cell homeostasis and fate decisions. In this review, we will provide the most recent literature describing how ribosome biogenesis and translational control regulate stem cell functions and are crucial for accommodating proteome remodeling in response to changes in stem cell fate.
Collapse
|
19
|
Chua BA, Van Der Werf I, Jamieson C, Signer RAJ. Post-Transcriptional Regulation of Homeostatic, Stressed, and Malignant Stem Cells. Cell Stem Cell 2020; 26:138-159. [PMID: 32032524 PMCID: PMC7158223 DOI: 10.1016/j.stem.2020.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular identity is not driven by differences in genomic content but rather by epigenomic, transcriptomic, and proteomic heterogeneity. Although regulation of the epigenome plays a key role in shaping stem cell hierarchies, differential expression of transcripts only partially explains protein abundance. The epitranscriptome, translational control, and protein degradation have emerged as fundamental regulators of proteome complexity that regulate stem cell identity and function. Here, we discuss how post-transcriptional mechanisms enable stem cell homeostasis and responsiveness to developmental cues and environmental stressors by rapidly shaping the content of their proteome and how these processes are disrupted in pre-malignant and malignant states.
Collapse
Affiliation(s)
- Bernadette A Chua
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
| | - Inge Van Der Werf
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA; Sanford Stem Cell Clinical Center, La Jolla, CA 92037, USA
| | - Catriona Jamieson
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA; Sanford Stem Cell Clinical Center, La Jolla, CA 92037, USA.
| | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA.
| |
Collapse
|
20
|
Dyskerin Mutations Present in Dyskeratosis Congenita Patients Increase Oxidative Stress and DNA Damage Signalling in Dictyostelium Discoideum. Cells 2019; 8:cells8111406. [PMID: 31717312 PMCID: PMC6912284 DOI: 10.3390/cells8111406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Dyskerin is a protein involved in the formation of small nucleolar and small Cajal body ribonucleoproteins. These complexes participate in RNA pseudouridylation and are also components of the telomerase complex required for telomere elongation. Dyskerin mutations cause a rare disease, X-linked dyskeratosis congenita, with no curative treatment. The social amoeba Dictyostelium discoideum contains a gene coding for a dyskerin homologous protein. In this article D. discoideum mutant strains that have mutations corresponding to mutations found in dyskeratosis congenita patients are described. The phenotype of the mutant strains has been studied and no alterations were observed in pseudouridylation activity and telomere structure. Mutant strains showed increased proliferation on liquid culture but reduced growth feeding on bacteria. The results obtained indicated the existence of increased DNA damage response and reactive oxygen species, as also reported in human Dyskeratosis congenita cells and some other disease models. These data, together with the haploid character of D. discoideum vegetative cells, that resemble the genomic structure of the human dyskerin gene, located in the X chromosome, support the conclusion that D. discoideum can be a good model system for the study of this disease.
Collapse
|
21
|
Morena F, Argentati C, Bazzucchi M, Emiliani C, Martino S. Above the Epitranscriptome: RNA Modifications and Stem Cell Identity. Genes (Basel) 2018; 9:E329. [PMID: 29958477 PMCID: PMC6070936 DOI: 10.3390/genes9070329] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Sequence databases and transcriptome-wide mapping have revealed different reversible and dynamic chemical modifications of the nitrogen bases of RNA molecules. Modifications occur in coding RNAs and noncoding-RNAs post-transcriptionally and they can influence the RNA structure, metabolism, and function. The result is the expansion of the variety of the transcriptome. In fact, depending on the type of modification, RNA molecules enter into a specific program exerting the role of the player or/and the target in biological and pathological processes. Many research groups are exploring the role of RNA modifications (alias epitranscriptome) in cell proliferation, survival, and in more specialized activities. More recently, the role of RNA modifications has been also explored in stem cell biology. Our understanding in this context is still in its infancy. Available evidence addresses the role of RNA modifications in self-renewal, commitment, and differentiation processes of stem cells. In this review, we will focus on five epitranscriptomic marks: N6-methyladenosine, N1-methyladenosine, 5-methylcytosine, Pseudouridine (Ψ) and Adenosine-to-Inosine editing. We will provide insights into the function and the distribution of these chemical modifications in coding RNAs and noncoding-RNAs. Mainly, we will emphasize the role of epitranscriptomic mechanisms in the biology of naïve, primed, embryonic, adult, and cancer stem cells.
Collapse
Affiliation(s)
- Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
- CEMIN, Center of Excellence of Nanostructured Innovative Materials, University of Perugia, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
- CEMIN, Center of Excellence of Nanostructured Innovative Materials, University of Perugia, 06126 Perugia, Italy.
| |
Collapse
|
22
|
Sánchez-Vásquez E, Alata Jimenez N, Vázquez NA, Strobl-Mazzulla PH. Emerging role of dynamic RNA modifications during animal development. Mech Dev 2018; 154:24-32. [PMID: 29654887 DOI: 10.1016/j.mod.2018.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/07/2018] [Accepted: 04/07/2018] [Indexed: 01/09/2023]
Abstract
The central dogma of molecular biology statically says that the information flows from DNA to messenger RNA to protein. But the recent advances in mass spectrometry and high throughput technology have helped the scientists to view RNA as little more than a courier of genetic information encoded in the DNA. The dynamics of RNA modifications in coding and non-coding RNAs are just emerging as a carrier of non-genetic information, uncovering a new layer of complexity in the regulation of gene expression and protein translation. In this review, we summarize about the current knowledge of N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine (Ψ) modifications in RNA, and described how these RNA modifications are implicated in early animal development and in several human diseases.
Collapse
Affiliation(s)
- Estefanía Sánchez-Vásquez
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int. Marino 8200, Chascomús 7130, Argentina
| | - Nagif Alata Jimenez
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int. Marino 8200, Chascomús 7130, Argentina
| | - Nicolás A Vázquez
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int. Marino 8200, Chascomús 7130, Argentina
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int. Marino 8200, Chascomús 7130, Argentina.
| |
Collapse
|
23
|
Guzzi N, Cieśla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, Pimková K, Sommarin MNE, Munita R, Lubas M, Lim Y, Okuyama K, Soneji S, Karlsson G, Hansson J, Jönsson G, Lund AH, Sigvardsson M, Hellström-Lindberg E, Hsieh AC, Bellodi C. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells. Cell 2018; 173:1204-1216.e26. [PMID: 29628141 DOI: 10.1016/j.cell.2018.03.008] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/19/2018] [Accepted: 03/01/2018] [Indexed: 12/27/2022]
Abstract
Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease.
Collapse
Affiliation(s)
- Nicola Guzzi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maciej Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Stefan Lang
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Marios Dimitriou
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kristyna Pimková
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Mikael N E Sommarin
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Michal Lubas
- Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Yiting Lim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kazuki Okuyama
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anders H Lund
- Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
24
|
Fu Q, Liu CJ, Zhai ZS, Zhang X, Qin T, Zhang HW. Single-Cell Non-coding RNA in Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:19-32. [DOI: 10.1007/978-981-13-0502-3_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
|
26
|
Huang C, Shi J, Guo Y, Huang W, Huang S, Ming S, Wu X, Zhang R, Ding J, Zhao W, Jia J, Huang X, Xiang AP, Shi Y, Yao C. A snoRNA modulates mRNA 3' end processing and regulates the expression of a subset of mRNAs. Nucleic Acids Res 2017; 45:8647-8660. [PMID: 28911119 PMCID: PMC5587809 DOI: 10.1093/nar/gkx651] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/15/2017] [Indexed: 01/08/2023] Open
Abstract
mRNA 3′ end processing is an essential step in gene expression. It is well established that canonical eukaryotic pre-mRNA 3′ processing is carried out within a macromolecular machinery consisting of dozens of trans-acting proteins. However, it is unknown whether RNAs play any role in this process. Unexpectedly, we found that a subset of small nucleolar RNAs (snoRNAs) are associated with the mammalian mRNA 3′ processing complex. These snoRNAs primarily interact with Fip1, a component of cleavage and polyadenylation specificity factor (CPSF). We have functionally characterized one of these snoRNAs and our results demonstrated that the U/A-rich SNORD50A inhibits mRNA 3′ processing by blocking the Fip1-poly(A) site (PAS) interaction. Consistently, SNORD50A depletion altered the Fip1–RNA interaction landscape and changed the alternative polyadenylation (APA) profiles and/or transcript levels of a subset of genes. Taken together, our data revealed a novel function for snoRNAs and provided the first evidence that non-coding RNAs may play an important role in regulating mRNA 3′ processing.
Collapse
Affiliation(s)
- Chunliu Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Junjie Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yibin Guo
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Siqi Ming
- Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xingui Wu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Rui Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junjun Ding
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jie Jia
- Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Huang
- Institute of Tuberculosis Control, Key laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
27
|
RNA Pseudouridylation in Physiology and Medicine: For Better and for Worse. Genes (Basel) 2017; 8:genes8110301. [PMID: 29104216 PMCID: PMC5704214 DOI: 10.3390/genes8110301] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
Pseudouridine is the most abundant modification found in RNA. Today, thanks to next-generation sequencing techniques used in the detection of RNA modifications, pseudouridylation sites have been described in most eukaryotic RNA classes. In the present review, we will first consider the available information on the functional roles of pseudouridine(s) in different RNA species. We will then focus on how alterations in the pseudouridylation process may be connected with a series of human pathologies, including inherited disorders, cancer, diabetes, and viral infections. Finally, we will discuss how the availability of novel technical approaches are likely to increase the knowledge in this field.
Collapse
|
28
|
Di Maio N, Vicidomini R, Angrisani A, Belli V, Furia M, Turano M. A new role for human dyskerin in vesicular trafficking. FEBS Open Bio 2017; 7:1453-1468. [PMID: 28979836 PMCID: PMC5623704 DOI: 10.1002/2211-5463.12307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 11/11/2022] Open
Abstract
Dyskerin is an essential, conserved, multifunctional protein found in the nucleolus, whose loss of function causes the rare genetic diseases X‐linked dyskeratosis congenita and Hoyeraal‐Hreidarsson syndrome. To further investigate the wide range of dyskerin's biological roles, we set up stable cell lines able to trigger inducible protein knockdown and allow a detailed analysis of the cascade of events occurring within a short time frame. We report that dyskerin depletion quickly induces cytoskeleton remodeling and significant alterations in endocytic Ras‐related protein Rab‐5A/Rab11 trafficking. These effects arise in different cell lines well before the onset of telomere shortening, which is widely considered the main cause of dyskerin‐related diseases. Given that vesicular trafficking affects many homeostatic and differentiative processes, these findings add novel insights into the molecular mechanisms underlining the pleiotropic manifestation of the dyskerin loss‐of‐function phenotype.
Collapse
Affiliation(s)
- Nunzia Di Maio
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly
| | - Rosario Vicidomini
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly.,Present address: NICHD (National Institute of Child Health and Human Development)- Section on Metabolic Regulation -NIH-35 Convent DRBethesdaMDUSA
| | | | - Valentina Belli
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly.,Present address: Medical OncologyDepartment of Clinical and Experimental Medicine "F. Magrassi"Universitá degli Studi della Campania "Luigi Vanvitelli"NaplesItaly
| | - Maria Furia
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly
| | - Mimmo Turano
- Department of BiologyUniversity of Naples 'Federico II'NapoliItaly
| |
Collapse
|
29
|
Drosophila dyskerin is required for somatic stem cell homeostasis. Sci Rep 2017; 7:347. [PMID: 28337032 PMCID: PMC5428438 DOI: 10.1038/s41598-017-00446-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023] Open
Abstract
Drosophila represents an excellent model to dissect the roles played by the evolutionary conserved family of eukaryotic dyskerins. These multifunctional proteins are involved in the formation of H/ACA snoRNP and telomerase complexes, both involved in essential cellular tasks. Since fly telomere integrity is guaranteed by a different mechanism, we used this organism to investigate the specific role played by dyskerin in somatic stem cell maintenance. To this aim, we focussed on Drosophila midgut, a hierarchically organized and well characterized model for stemness analysis. Surprisingly, the ubiquitous loss of the protein uniquely affects the formation of the larval stem cell niches, without altering other midgut cell types. The number of adult midgut precursor stem cells is dramatically reduced, and this effect is not caused by premature differentiation and is cell-autonomous. Moreover, a few dispersed precursors found in the depleted midguts can maintain stem identity and the ability to divide asymmetrically, nor show cell-growth defects or undergo apoptosis. Instead, their loss is mainly specifically dependent on defective amplification. These studies establish a strict link between dyskerin and somatic stem cell maintenance in a telomerase-lacking organism, indicating that loss of stemness can be regarded as a conserved, telomerase-independent effect of dyskerin dysfunction.
Collapse
|
30
|
Xu J, Khincha PP, Giri N, Alter BP, Savage SA, Wong JM. Investigation of chromosome X inactivation and clinical phenotypes in female carriers of DKC1 mutations. Am J Hematol 2016; 91:1215-1220. [PMID: 27570172 DOI: 10.1002/ajh.24545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/25/2016] [Accepted: 08/25/2016] [Indexed: 12/15/2022]
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer susceptibility syndrome caused by germline mutations in telomere biology genes. Germline mutations in DKC1, which encodes the protein dyskerin, cause X-linked recessive DC. Because of skewed X-chromosome inactivation, female DKC1 mutation carriers do not typically develop clinical features of DC. This study evaluated female DKC1 mutation carriers with DC-associated phenotypes to elucidate the molecular features of their mutations, in comparison with unaffected carriers and mutation-negative female controls. All female DKC1 mutation carriers had normal leukocyte subset telomere lengths and similarly skewed X-inactivation in multiple tissue types, regardless of phenotype. We observed dyskerin expression, telomerase RNA accumulation, and pseudouridylation present in all mutation carriers at levels comparable to healthy wild-type controls. Our study suggests that mechanisms in addition to X chromosome inactivation, such as germline mosaicism or epigenetics, may contribute to DC-like phenotypes present in female DKC1 mutation carriers. Future studies are warranted to understand the molecular mechanisms associated with the phenotypic variability in female DKC1 mutation carriers, and to identify those at risk of disease. Am. J. Hematol. 91:1215-1220, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jialin Xu
- Molecular and Cellular Pharmacology Group, Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouver BC Canada
| | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, National Institutes of HealthRockville Maryland
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, National Institutes of HealthRockville Maryland
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, National Institutes of HealthRockville Maryland
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, National Institutes of HealthRockville Maryland
| | - Judy M.Y. Wong
- Molecular and Cellular Pharmacology Group, Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouver BC Canada
| |
Collapse
|
31
|
Abstract
Cells adapt to their environment by linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. Among these, mechanisms that couple environmental cues to the regulation of protein translation are not well understood. Chemical modifications of RNA allow rapid cellular responses to external stimuli by modulating a wide range of fundamental biochemical properties and processes, including the stability, splicing and translation of messenger RNA. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in RNA, and describe how these RNA modifications are implicated in regulating pluripotency, stem cell self-renewal and fate specification. Both post-transcriptional modifications and the enzymes that catalyse them modulate stem cell differentiation pathways and are essential for normal development.
Collapse
Affiliation(s)
- Michaela Frye
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sandra Blanco
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, Derio, Bizkaia 48160, Spain
| |
Collapse
|
32
|
Ko CI, Fan Y, de Gannes M, Wang Q, Xia Y, Puga A. Repression of the Aryl Hydrocarbon Receptor Is Required to Maintain Mitotic Progression and Prevent Loss of Pluripotency of Embryonic Stem Cells. Stem Cells 2016; 34:2825-2839. [DOI: 10.1002/stem.2456] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Chia-I Ko
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Matthew de Gannes
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Qin Wang
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Ying Xia
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| |
Collapse
|
33
|
Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol 2016; 13:707-19. [PMID: 26786236 DOI: 10.1080/15476286.2015.1134413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation.
Collapse
Affiliation(s)
- Jonathan H Teichroeb
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Joohwan Kim
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Dean H Betts
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada.,b Children's Health Research Institute, Lawson Health Research Institute , London , Ontario , Canada
| |
Collapse
|
34
|
Coleman RA, Liu Z, Darzacq X, Tjian R, Singer RH, Lionnet T. Imaging Transcription: Past, Present, and Future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:1-8. [PMID: 26763984 DOI: 10.1101/sqb.2015.80.027201] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription, the first step of gene expression, is exquisitely regulated in higher eukaryotes to ensure correct development and homeostasis. Traditional biochemical, genetic, and genomic approaches have proved successful at identifying factors, regulatory sequences, and potential pathways that modulate transcription. However, they typically only provide snapshots or population averages of the highly dynamic, stochastic biochemical processes involved in transcriptional regulation. Single-molecule live-cell imaging has, therefore, emerged as a complementary approach capable of circumventing these limitations. By observing sequences of molecular events in real time as they occur in their native context, imaging has the power to derive cause-and-effect relationships and quantitative kinetics to build predictive models of transcription. Ongoing progress in fluorescence imaging technology has brought new microscopes and labeling technologies that now make it possible to visualize and quantify the transcription process with single-molecule resolution in living cells and animals. Here we provide an overview of the evolution and current state of transcription imaging technologies. We discuss some of the important concepts they uncovered and present possible future developments that might solve long-standing questions in transcriptional regulation.
Collapse
Affiliation(s)
- Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Zhe Liu
- HHMI Janelia Research Campus, Ashburn, Virginia 20147
| | - Xavier Darzacq
- HHMI Janelia Research Campus, Ashburn, Virginia 20147 Department of MCB, LKS Biomedical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, California 94720
| | - Robert Tjian
- HHMI Janelia Research Campus, Ashburn, Virginia 20147 Department of MCB, LKS Biomedical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, California 94720
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461 HHMI Janelia Research Campus, Ashburn, Virginia 20147
| | | |
Collapse
|
35
|
Anwar MA, Yesudhas D, Shah M, Choi S. Structural and conformational insights into SOX2/OCT4-bound enhancer DNA: a computational perspective. RSC Adv 2016. [DOI: 10.1039/c6ra15176k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The roles of SOX2 and OCT4 are critical in stem cell maintenance either in the context of iPSCs generation or cancer stem cell growth; therefore, it is imperative to study their cooperative binding and SOX2/OCT4-induced DNA conformational switching.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Dhanusha Yesudhas
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Masaud Shah
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| |
Collapse
|
36
|
Lin P, Mobasher ME, Hakakian Y, Kakarla V, Naseem AF, Ziai H, Alawi F. Differential requirements for H/ACA ribonucleoprotein components in cell proliferation and response to DNA damage. Histochem Cell Biol 2015; 144:543-58. [PMID: 26265134 DOI: 10.1007/s00418-015-1359-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
Abstract
H/ACA ribonucleoproteins (RNPs) are comprised of four conserved proteins, dyskerin, NHP2, NOP10, and GAR1, and a function-specifying, noncoding H/ACA RNA. H/ACA RNPs contribute to telomerase assembly and stabilization, and posttranscriptional processing of nascent ribosomal RNA and spliceosomal RNA. However, very little is known about the coordinated action of the four proteins in other biologic processes. As described herein, we observed a differential requirement for the proteins in cell proliferation and identified a possible reliance for these factors in regulation of specific DNA damage biomarkers. In particular, GAR1 expression was upregulated following exposure to all forms of genotoxic stress tested. In contrast, levels of the other proteins were either reduced or unaffected. Only GAR1 showed an altered subcellular localization with a shift from the nucleolus to the nucleoplasm after ultraviolet-C irradiation and doxorubicin treatments. Transient siRNA-mediated depletion of GAR1 and dyskerin arrested cell proliferation, whereas loss of either NHP2 or NOP10 had no effect. Finally, loss of dyskerin, GAR1, NHP2, and NOP10, respectively, limited the accumulation of DNA damage biomarkers. However, the individual responses were dependent upon the specific type of damage incurred. In general, loss of GAR1 had the most suppressive effect on the biomarkers tested. Since the specific responses to genotoxic stress, the contribution of each protein to cell proliferation, and the activation of DNA damage biomarkers were not equivalent, this suggests the possibility that at least some of the proteins, most notably GAR1, may potentially function independently of their respective roles within H/ACA RNP complexes.
Collapse
Affiliation(s)
- Ping Lin
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Maral E Mobasher
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Yasaman Hakakian
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Veena Kakarla
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Anum F Naseem
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Heliya Ziai
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA
| | - Faizan Alawi
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Levy Building - Room 328B, Philadelphia, PA, 19104, USA.
| |
Collapse
|
37
|
Ding J, Huang X, Shao N, Zhou H, Lee DF, Faiola F, Fidalgo M, Guallar D, Saunders A, Shliaha PV, Wang H, Waghray A, Papatsenko D, Sánchez-Priego C, Li D, Yuan Y, Lemischka IR, Shen L, Kelley K, Deng H, Shen X, Wang J. Tex10 Coordinates Epigenetic Control of Super-Enhancer Activity in Pluripotency and Reprogramming. Cell Stem Cell 2015; 16:653-68. [PMID: 25936917 PMCID: PMC4458159 DOI: 10.1016/j.stem.2015.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
Abstract
Super-enhancers (SEs) are large clusters of transcriptional enhancers that are co-occupied by multiple lineage-specific transcription factors driving expression of genes that define cell identity. In embryonic stem cells (ESCs), SEs are highly enriched for the core pluripotency factors Oct4, Sox2, and Nanog. In this study, we sought to dissect the molecular control mechanism of SE activity in pluripotency and reprogramming. Starting from a protein interaction network surrounding Sox2, we identified Tex10 as a key pluripotency factor that plays a functionally significant role in ESC self-renewal, early embryo development, and reprogramming. Tex10 is enriched at SEs in a Sox2-dependent manner and coordinates histone acetylation and DNA demethylation at SEs. Tex10 activity is also important for pluripotency and reprogramming in human cells. Our study therefore highlights Tex10 as a core component of the pluripotency network and sheds light on its role in epigenetic control of SE activity for cell fate determination.
Collapse
Affiliation(s)
- Junjun Ding
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ningyi Shao
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Hongwei Zhou
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dung-Fang Lee
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arven Saunders
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pavel V Shliaha
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB21QR, UK
| | - Hailong Wang
- Organ Transplantation Institute, Xiamen University, Xiamen City, Fujian Province 361102, China
| | - Avinash Waghray
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dmitri Papatsenko
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Sánchez-Priego
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Li
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ye Yuan
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ihor R Lemischka
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kevin Kelley
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haiteng Deng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
38
|
Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells. Proc Natl Acad Sci U S A 2015; 112:E2317-26. [PMID: 25901318 DOI: 10.1073/pnas.1505569112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The embryonic stem cell (ESC) state is transcriptionally controlled by OCT4, SOX2, and NANOG with cofactors, chromatin regulators, noncoding RNAs, and other effectors of signaling pathways. Uncovering components of these regulatory circuits and their interplay provides the knowledge base to deploy ESCs and induced pluripotent stem cells. We recently identified the DNA-repair complex xeroderma pigmentosum C (XPC)-RAD23B-CETN2 as a stem cell coactivator (SCC) required for OCT4/SOX2 transcriptional activation. Here we investigate the role of SCC genome-wide in murine ESCs by mapping regions bound by RAD23B and analyzing transcriptional profiles of SCC-depleted ESCs. We establish OCT4 and SOX2 as the primary transcription factors recruiting SCC to regulatory regions of pluripotency genes and identify the XPC subunit as essential for interaction with the two proteins. The present study reveals new mechanistic and functional aspects of SCC transcriptional activity, and thus underscores the diversified functions of this regulatory complex.
Collapse
|
39
|
Potential role for snoRNAs in PKR activation during metabolic stress. Proc Natl Acad Sci U S A 2015; 112:5023-8. [PMID: 25848059 DOI: 10.1073/pnas.1424044112] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein kinase RNA-activated (PKR) has long been known to be activated by viral double-stranded RNA (dsRNA) as part of the mammalian immune response. However, in mice PKR is also activated by metabolic stress in the absence of viral infection, and this requires a functional kinase domain, as well as a functional dsRNA-binding domain. The endogenous cellular RNA that potentially leads to PKR activation during metabolic stress is unknown. We investigated this question using mouse embryonic fibroblast cells expressing wild-type PKR (PKRWT) or PKR with a point mutation in each dsRNA-binding motif (PKRRM). Using this system, we identified endogenous RNA that interacts with PKR after induction of metabolic stress by palmitic acid (PA) treatment. Specifically, RIP-Seq analyses showed that the majority of enriched RNAs that interacted with WT PKR (≥twofold, false discovery rate ≤ 5%) were small nucleolar RNAs (snoRNAs). Immunoprecipitation of PKR in extracts of UV-cross-linked cells, followed by RT-qPCR, confirmed that snoRNAs were enriched in PKRWT samples after PA treatment, but not in the PKRRM samples. We also demonstrated that a subset of identified snoRNAs bind and activate PKR in vitro; the presence of a 5'-triphosphate enhanced PKR activity compared with the activity with a 5'-monophosphate, for some, but not all, snoRNAs. Finally, we demonstrated PKR activation in cells upon snoRNA transfection, supporting our hypothesis that endogenous snoRNAs can activate PKR. Our results suggest an unprecedented and unexpected model whereby snoRNAs play a role in the activation of PKR under metabolic stress.
Collapse
|