1
|
Ding C, Chen Q, Shi Y, Liu J, Huang L, Wei W, Chen F, He H, Wu J, Gao Y, Yu Y. Impact of CD4+ T cell and TCR repertoires on SARS-CoV-2-Specific antibody responses in PLWH following COVID-19 vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae040. [PMID: 40235093 DOI: 10.1093/jimmun/vkae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/02/2024] [Indexed: 04/17/2025]
Abstract
In people living with human immunodeficiency virus (HIV, PLWH), the coronavirus disease 2019 (COVID-19) vaccine often results in a limited humoral immune response. While a reduced absolute CD4+ T cell count is a known factor, other determinants remain unclear. To investigate variables influencing the differential antibody response to the COVID-19 vaccine in PLWH, 43 HIV-1/AIDS patients receiving antiretroviral therapy (ART) and 2 doses of the COVID-19 vaccine were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G (IgG) levels and neutralizing antibody (NAb) titers. A retrospective analysis was also performed, examining immune reconstitution and epidemiological history, including annual CD4+ T-cell counts and the duration of HIV-1 infection. To further elucidate the role of CD4+ T cells in the antibody response to the COVID-19 vaccine, next-generation sequencing was used to analyze the T cell receptor (TCR) profiles of CD4+ T cells from twelve representative individuals. The results showed that the SARS-CoV-2-specific antibody response in PLWH was not solely determined by the current CD4+ T cell count, the progression of immune reconstitution and the TCR profile of CD4+ T cells also played significant roles. These findings provide critical insights into the multifaceted roles of CD4+ T cells in SARS-CoV-2-specific antibody responses in PLWH following COVID-19 vaccination.
Collapse
Affiliation(s)
- Chengchao Ding
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qianqian Chen
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yu Shi
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jiamin Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lina Huang
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wei Wei
- Department of HIV Prevention and Control, Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Fang Chen
- Department of HIV Prevention and Control, Yingzhou District Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Hongliang He
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianjun Wu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Yong Gao
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yue Yu
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
2
|
Molina-García L, Colinas-Fischer S, Benavides-Laconcha S, Lin L, Clark E, Treloar NJ, García-Minaur-Ortíz B, Butts M, Barnes CP, Barrios A. Conflict during learning reconfigures the neural representation of positive valence and approach behavior. Curr Biol 2024; 34:5470-5483.e7. [PMID: 39547234 DOI: 10.1016/j.cub.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Punishing and rewarding experiences can change the valence of sensory stimuli and guide animal behavior in opposite directions, resulting in avoidance or approach. Often, however, a stimulus is encountered with both positive and negative experiences. How is such conflicting information represented in the brain and resolved into a behavioral decision? We address this question by dissecting a circuit for sexual conditioning in C. elegans. In this learning paradigm, an odor is conditioned with both a punishment (starvation) and a reward (mates), resulting in odor approach. We find that negative and positive experiences are both encoded by the neuropeptide pigment dispersing factor 1 (PDF-1) being released from, and acting on, different neurons. Each experience creates a distinct memory in the circuit for odor processing. This results in the sensorimotor representation of the odor being different in naive and sexually conditioned animals, despite both displaying approach. Our results reveal that the positive valence of a stimulus is not represented in the activity of any single neuron class but flexibly represented within the circuit according to the experiences and predictions associated with the stimulus.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | - Susana Colinas-Fischer
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Lucy Lin
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Emma Clark
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Neythen J Treloar
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Milly Butts
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Cowen MH, Haskell D, Zoga K, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. Nat Commun 2024; 15:9301. [PMID: 39468047 PMCID: PMC11519495 DOI: 10.1038/s41467-024-53590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA
| | - Dustin Haskell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristi Zoga
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirthi C Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA
| | | | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Hallacy T, Yonar A, Ringstad N, Ramanathan S. Compressed sensing based approach identifies modular neural circuitry driving learned pathogen avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588911. [PMID: 39464156 PMCID: PMC11507717 DOI: 10.1101/2024.04.10.588911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An animal's survival hinges on its ability to integrate past information to modify future behavior. The nematode C. elegans adapts its behavior based on prior experiences with pathogen exposure, transitioning from attraction to avoidance of the pathogen. A systematic screen for the neural circuits that integrate the information of previous pathogen exposure to modify behavior has not been feasible because of the lack of tools for neuron type specific perturbations. We overcame this challenge using methods based on compressed sensing to efficiently determine the roles of individual neuron types in learned avoidance behavior. Our screen revealed that distinct sets of neurons drive exit from lawns of pathogenic bacteria and prevent lawn re-entry. Using calcium imaging of freely behaving animals and optogenetic perturbations, we determined the neural dynamics that regulate one key behavioral transition after infection: stalled re-entry into bacterial lawns. We find that key neuron types govern pathogen lawn specific stalling but allow the animal to enter nonpathogenic E. coli lawns. Our study shows that learned pathogen avoidance requires coordinated transitions in discrete neural circuits and reveals the modular structure of this complex adaptive behavioral response to infection.
Collapse
Affiliation(s)
| | - Abdullah Yonar
- Departments of Molecular and Cellular Biology, and of Stem Cell and Regenerative Biology, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sharad Ramanathan
- Departments of Molecular and Cellular Biology, and of Stem Cell and Regenerative Biology, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Lead contact
| |
Collapse
|
5
|
Oram TB, Tenzer A, Saraf-Sinik I, Yizhar O, Ahissar E. Co-coding of head and whisker movements by both VPM and POm thalamic neurons. Nat Commun 2024; 15:5883. [PMID: 39003286 PMCID: PMC11246487 DOI: 10.1038/s41467-024-50039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Rodents continuously move their heads and whiskers in a coordinated manner while perceiving objects through whisker-touch. Studies in head-fixed rodents showed that the ventroposterior medial (VPM) and posterior medial (POm) thalamic nuclei code for whisker kinematics, with POm involvement reduced in awake animals. To examine VPM and POm involvement in coding head and whisker kinematics in awake, head-free conditions, we recorded thalamic neuronal activity and tracked head and whisker movements in male mice exploring an open arena. Using optogenetic tagging, we found that in freely moving mice, both nuclei equally coded whisker kinematics and robustly coded head kinematics. The fraction of neurons coding head kinematics increased after whisker trimming, ruling out whisker-mediated coding. Optogenetic activation of thalamic neurons evoked overt kinematic changes and increased the fraction of neurons leading changes in head kinematics. Our data suggest that VPM and POm integrate head and whisker information and can influence head kinematics during tactile perception.
Collapse
Affiliation(s)
- Tess Baker Oram
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Tenzer
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Ahissar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Marquina-Solis J, Feng L, Vandewyer E, Beets I, Hawk J, Colón-Ramos DA, Yu J, Fox BW, Schroeder FC, Bargmann CI. Antagonism between neuropeptides and monoamines in a distributed circuit for pathogen avoidance. Cell Rep 2024; 43:114042. [PMID: 38573858 PMCID: PMC11063628 DOI: 10.1016/j.celrep.2024.114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
Pathogenic infection elicits behaviors that promote recovery and survival of the host. After exposure to the pathogenic bacterium Pseudomonas aeruginosa PA14, the nematode Caenorhabditis elegans modifies its sensory preferences to avoid the pathogen. Here, we identify antagonistic neuromodulators that shape this acquired avoidance behavior. Using an unbiased cell-directed neuropeptide screen, we show that AVK neurons upregulate and release RF/RYamide FLP-1 neuropeptides during infection to drive pathogen avoidance. Manipulations that increase or decrease AVK activity accelerate or delay pathogen avoidance, respectively, implicating AVK in the dynamics of avoidance behavior. FLP-1 neuropeptides drive pathogen avoidance through the G protein-coupled receptor DMSR-7, as well as other receptors. DMSR-7 in turn acts in multiple neurons, including tyraminergic/octopaminergic neurons that receive convergent avoidance signals from the cytokine DAF-7/transforming growth factor β. Neuromodulators shape pathogen avoidance through multiple mechanisms and targets, in agreement with the distributed neuromodulatory connectome of C. elegans.
Collapse
Affiliation(s)
- Javier Marquina-Solis
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Likui Feng
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | | - Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Josh Hawk
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Instituto de Neurobiología José del Castillo, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan, PR 00901, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
7
|
Cowen MH, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570116. [PMID: 38106124 PMCID: PMC10723370 DOI: 10.1101/2023.12.05.570116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Aggregation induced by circuit activation is also dependent on nrx-1. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H. Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| | - Kirthi C. Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA
| | | | - Michael P. Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
8
|
Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor SR, Weinreb A, Bentley BL, Hammarlund M, Miller DM, Hobert O, Beets I, Vértes PE, Schafer WR. The neuropeptidergic connectome of C. elegans. Neuron 2023; 111:3570-3589.e5. [PMID: 37935195 PMCID: PMC7615469 DOI: 10.1016/j.neuron.2023.09.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.
Collapse
Affiliation(s)
- Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Psychiatry, Cambridge University, Cambridge, UK
| | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, Belgium
| | - HaoSheng Sun
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Fernandez
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexis Weinreb
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
| | - Marc Hammarlund
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Oliver Hobert
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Petra E Vértes
- Department of Psychiatry, Cambridge University, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Pu L, Nilsson L, Chen C, Wang J. Iterative editing of multiple genes using CRISPR/Cas9 in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000898. [PMID: 38033425 PMCID: PMC10685264 DOI: 10.17912/micropub.biology.000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/22/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Certain sets of genes are derived from gene duplication and share substantial sequence similarity in C. elegans , presenting a significant challenge in determining the specific roles of each gene and their collective impact on cellular processes. Here, we show that a collection of genes can be disrupted in a single animal via multiple rounds of CRISPR/Cas9 mediated genome editing. We found that up to three genes can be simultaneously disrupted in a single editing event with high efficiency. Our approach offers an opportunity to explore the genetic interaction and molecular underpinning of gene clusters with redundant function.
Collapse
Affiliation(s)
- Longjun Pu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lars Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Jing Wang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
11
|
Pu L, Zhao L, Lu Q, Chen C. Hypoxia induces food leaving in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000776. [PMID: 37033703 PMCID: PMC10077061 DOI: 10.17912/micropub.biology.000776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023]
Abstract
Hypoxia alters eating behavior in different animals. In C. elegans , hypoxia induces a strong food leaving response. We found that this behavior was independent of the known O 2 response mechanisms including acute O 2 sensation and HIF-1 signaling of chronic hypoxia response. Mutating egl-3 and egl-21 , encoding the neuropeptide pro-protein convertase and carboxypeptidase, led to defects in hypoxia induced food leaving, suggesting that neuropeptidergic signaling was required for this response. However, we failed to identify any neuropeptide mutants that were severely defective in hypoxia induced food leaving, suggesting that multiple neuropeptides act redundantly to modulate this behavior.
Collapse
Affiliation(s)
- Longjun Pu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lina Zhao
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Qiongxuan Lu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Changchun Chen
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Busack I, Bringmann H. A sleep-active neuron can promote survival while sleep behavior is disturbed. PLoS Genet 2023; 19:e1010665. [PMID: 36917595 PMCID: PMC10038310 DOI: 10.1371/journal.pgen.1010665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
Sleep is controlled by neurons that induce behavioral quiescence and physiological restoration. It is not known, however, how sleep neurons link sleep behavior and survival. In Caenorhabditis elegans, the sleep-active RIS neuron induces sleep behavior and is required for survival of starvation and wounding. Sleep-active neurons such as RIS might hypothetically promote survival primarily by causing sleep behavior and associated conservation of energy. Alternatively, RIS might provide a survival benefit that does not depend on behavioral sleep. To probe these hypotheses, we tested how activity of the sleep-active RIS neuron in Caenorhabditis elegans controls sleep behavior and survival during larval starvation. To manipulate the activity of RIS, we expressed constitutively active potassium channel (twk-18gf and egl-23gf) or sodium channel (unc-58gf) mutant alleles in this neuron. Low levels of unc-58gf expression in RIS increased RIS calcium transients and sleep. High levels of unc-58gf expression in RIS elevated baseline calcium activity and inhibited calcium activation transients, thus locking RIS activity at a high but constant level. This manipulation caused a nearly complete loss of sleep behavior but increased survival. Long-term optogenetic activation also caused constantly elevated RIS activity and a small trend towards increased survival. Disturbing sleep by lethal blue-light stimulation also overactivated RIS, which again increased survival. FLP-11 neuropeptides were important for both, induction of sleep behavior and starvation survival, suggesting that FLP-11 might have divergent roles downstream of RIS. These results indicate that promotion of sleep behavior and survival are separable functions of RIS. These two functions may normally be coupled but can be uncoupled during conditions of strong RIS activation or when sleep behavior is impaired. Through this uncoupling, RIS can provide survival benefits under conditions when behavioral sleep is disturbed. Promoting survival in the face of impaired sleep might be a general function of sleep neurons.
Collapse
Affiliation(s)
- Inka Busack
- BIOTEC, Technical University Dresden, Dresden, Germany
| | | |
Collapse
|
13
|
ROS and cGMP signaling modulate persistent escape from hypoxia in Caenorhabditis elegans. PLoS Biol 2022; 20:e3001684. [PMID: 35727855 PMCID: PMC9249223 DOI: 10.1371/journal.pbio.3001684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/01/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
The ability to detect and respond to acute oxygen (O2) shortages is indispensable to aerobic life. The molecular mechanisms and circuits underlying this capacity are poorly understood. Here, we characterize the behavioral responses of feeding Caenorhabditis elegans to approximately 1% O2. Acute hypoxia triggers a bout of turning maneuvers followed by a persistent switch to rapid forward movement as animals seek to avoid and escape hypoxia. While the behavioral responses to 1% O2 closely resemble those evoked by 21% O2, they have distinct molecular and circuit underpinnings. Disrupting phosphodiesterases (PDEs), specific G proteins, or BBSome function inhibits escape from 1% O2 due to increased cGMP signaling. A primary source of cGMP is GCY-28, the ortholog of the atrial natriuretic peptide (ANP) receptor. cGMP activates the protein kinase G EGL-4 and enhances neuroendocrine secretion to inhibit acute responses to 1% O2. Triggering a rise in cGMP optogenetically in multiple neurons, including AIA interneurons, rapidly and reversibly inhibits escape from 1% O2. Ca2+ imaging reveals that a 7% to 1% O2 stimulus evokes a Ca2+ decrease in several neurons. Defects in mitochondrial complex I (MCI) and mitochondrial complex I (MCIII), which lead to persistently high reactive oxygen species (ROS), abrogate acute hypoxia responses. In particular, repressing the expression of isp-1, which encodes the iron sulfur protein of MCIII, inhibits escape from 1% O2 without affecting responses to 21% O2. Both genetic and pharmacological up-regulation of mitochondrial ROS increase cGMP levels, which contribute to the reduced hypoxia responses. Our results implicate ROS and precise regulation of intracellular cGMP in the modulation of acute responses to hypoxia by C. elegans. The ability to detect and respond to acute oxygen shortages is indispensable to aerobic life, but the molecular mechanisms underlying this capacity are poorly understood. This study reveals that high levels of cGMP and reactive oxygen species (ROS) prevent the nematode Caenorhabditis elegans from escaping hypoxia.
Collapse
|
14
|
Valperga G, de Bono M. Impairing one sensory modality enhances another by reconfiguring peptidergic signalling in Caenorhabditis elegans. eLife 2022; 11:68040. [PMID: 35201977 PMCID: PMC8871372 DOI: 10.7554/elife.68040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
Animals that lose one sensory modality often show augmented responses to other sensory inputs. The mechanisms underpinning this cross-modal plasticity are poorly understood. We probe such mechanisms by performing a forward genetic screen for mutants with enhanced O2 perception in Caenorhabditis elegans. Multiple mutants exhibiting increased O2 responsiveness concomitantly show defects in other sensory responses. One mutant, qui-1, defective in a conserved NACHT/WD40 protein, abolishes pheromone-evoked Ca2+ responses in the ADL pheromone-sensing neurons. At the same time, ADL responsiveness to pre-synaptic input from O2-sensing neurons is heightened in qui-1, and other sensory defective mutants, resulting in enhanced neurosecretion although not increased Ca2+ responses. Expressing qui-1 selectively in ADL rescues both the qui-1 ADL neurosecretory phenotype and enhanced escape from 21% O2. Profiling ADL neurons in qui-1 mutants highlights extensive changes in gene expression, notably of many neuropeptide receptors. We show that elevated ADL expression of the conserved neuropeptide receptor NPR-22 is necessary for enhanced ADL neurosecretion in qui-1 mutants, and is sufficient to confer increased ADL neurosecretion in control animals. Sensory loss can thus confer cross-modal plasticity by changing the peptidergic connectome.
Collapse
Affiliation(s)
- Giulio Valperga
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Mario de Bono
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
15
|
Vuong-Brender TT, Flynn S, Vallis Y, Sönmez SE, de Bono M. Neuronal calmodulin levels are controlled by CAMTA transcription factors. eLife 2021; 10:e68238. [PMID: 34499028 PMCID: PMC8428840 DOI: 10.7554/elife.68238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/28/2021] [Indexed: 01/18/2023] Open
Abstract
The ubiquitous Ca2+ sensor calmodulin (CaM) binds and regulates many proteins, including ion channels, CaM kinases, and calcineurin, according to Ca2+-CaM levels. What regulates neuronal CaM levels, is, however, unclear. CaM-binding transcription activators (CAMTAs) are ancient proteins expressed broadly in nervous systems and whose loss confers pleiotropic behavioral defects in flies, mice, and humans. Using Caenorhabditis elegans and Drosophila, we show that CAMTAs control neuronal CaM levels. The behavioral and neuronal Ca2+ signaling defects in mutants lacking camt-1, the sole C. elegans CAMTA, can be rescued by supplementing neuronal CaM. CAMT-1 binds multiple sites in the CaM promoter and deleting these sites phenocopies camt-1. Our data suggest CAMTAs mediate a conserved and general mechanism that controls neuronal CaM levels, thereby regulating Ca2+ signaling, physiology, and behavior.
Collapse
Affiliation(s)
- Thanh Thi Vuong-Brender
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Sean Flynn
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Yvonne Vallis
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Saliha E Sönmez
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Mario de Bono
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
16
|
Emmons SW, Yemini E, Zimmer M. Methods for analyzing neuronal structure and activity in Caenorhabditis elegans. Genetics 2021; 218:6303616. [PMID: 34151952 DOI: 10.1093/genetics/iyab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
The model research animal Caenorhabditis elegans has unique properties making it particularly advantageous for studies of the nervous system. The nervous system is composed of a stereotyped complement of neurons connected in a consistent manner. Here, we describe methods for studying nervous system structure and function. The transparency of the animal makes it possible to visualize and identify neurons in living animals with fluorescent probes. These methods have been recently enhanced for the efficient use of neuron-specific reporter genes. Because of its simple structure, for a number of years, C. elegans has been at the forefront of connectomic studies defining synaptic connectivity by electron microscopy. This field is burgeoning with new, more powerful techniques, and recommended up-to-date methods are here described that encourage the possibility of new work in C. elegans. Fluorescent probes for single synapses and synaptic connections have allowed verification of the EM reconstructions and for experimental approaches to synapse formation. Advances in microscopy and in fluorescent reporters sensitive to Ca2+ levels have opened the way to observing activity within single neurons across the entire nervous system.
Collapse
Affiliation(s)
- Scott W Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 1041, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria and.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
17
|
Li Q, Marcu DC, Palazzo O, Turner F, King D, Spires-Jones TL, Stefan MI, Busch KE. High neural activity accelerates the decline of cognitive plasticity with age in Caenorhabditis elegans. eLife 2020; 9:59711. [PMID: 33228848 PMCID: PMC7685709 DOI: 10.7554/elife.59711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to learn progressively declines with age. Neural hyperactivity has been implicated in impairing cognitive plasticity with age, but the molecular mechanisms remain elusive. Here, we show that chronic excitation of the Caenorhabditis elegans O2-sensing neurons during ageing causes a rapid decline of experience-dependent plasticity in response to environmental O2 concentration, whereas sustaining lower activity of O2-sensing neurons retains plasticity with age. We demonstrate that neural activity alters the ageing trajectory in the transcriptome of O2-sensing neurons, and our data suggest that high-activity neurons redirect resources from maintaining plasticity to sustaining continuous firing. Sustaining plasticity with age requires the K+-dependent Na+/Ca2+ (NCKX) exchanger, whereas the decline of plasticity with age in high-activity neurons acts through calmodulin and the scaffold protein Kidins220. Our findings demonstrate directly that the activity of neurons alters neuronal homeostasis to govern the age-related decline of neural plasticity and throw light on the mechanisms involved.
Collapse
Affiliation(s)
- Qiaochu Li
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel-Cosmin Marcu
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ottavia Palazzo
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Frances Turner
- Edinburgh Genomics (Genome Science), Ashworth Laboratories, The University of Edinburgh, Edinburgh, United Kingdom
| | - Declan King
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melanie I Stefan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,ZJU-UoE Institute, Zhejiang University, Haining, China
| | - Karl Emanuel Busch
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Abstract
For the first 25 years after the landmark 1974 paper that launched the field, most C. elegans biologists were content to think of their subjects as solitary creatures. C. elegans presented no shortage of fascinating biological problems, but some of the features that led Brenner to settle on this species-in particular, its free-living, self-fertilizing lifestyle-also seemed to reduce its potential for interesting social behavior. That perspective soon changed, with the last two decades bringing remarkable progress in identifying and understanding the complex interactions between worms. The growing appreciation that C. elegans behavior can only be meaningfully understood in the context of its ecology and evolution ensures that the coming years will see similarly exciting progress.
Collapse
Affiliation(s)
- Douglas S Portman
- Departments of Biomedical Genetics, Neuroscience, and Biology, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Abstract
Caenorhabditis elegans' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Young-Jai You
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| |
Collapse
|
20
|
Wang Y, Zhang X, Xin Q, Hung W, Florman J, Huo J, Xu T, Xie Y, Alkema MJ, Zhen M, Wen Q. Flexible motor sequence generation during stereotyped escape responses. eLife 2020; 9:e56942. [PMID: 32501216 PMCID: PMC7338056 DOI: 10.7554/elife.56942] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/05/2020] [Indexed: 01/15/2023] Open
Abstract
Complex animal behaviors arise from a flexible combination of stereotyped motor primitives. Here we use the escape responses of the nematode Caenorhabditis elegans to study how a nervous system dynamically explores the action space. The initiation of the escape responses is predictable: the animal moves away from a potential threat, a mechanical or thermal stimulus. But the motor sequence and the timing that follow are variable. We report that a feedforward excitation between neurons encoding distinct motor states underlies robust motor sequence generation, while mutual inhibition between these neurons controls the flexibility of timing in a motor sequence. Electrical synapses contribute to feedforward coupling whereas glutamatergic synapses contribute to inhibition. We conclude that C. elegans generates robust and flexible motor sequences by combining an excitatory coupling and a winner-take-all operation via mutual inhibition between motor modules.
Collapse
Affiliation(s)
- Yuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of ChinaHefeiChina
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseHefeiChina
| | - Xiaoqian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of ChinaHefeiChina
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseHefeiChina
| | - Qi Xin
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of ChinaHefeiChina
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseHefeiChina
| | - Wesley Hung
- Samuel Lunenfeld Research Institute, Mount Sinai HospitalTorontoCanada
- University of TorontoTorontoCanada
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jing Huo
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of ChinaHefeiChina
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseHefeiChina
| | - Tianqi Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of ChinaHefeiChina
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseHefeiChina
| | - Yu Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of ChinaHefeiChina
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Mei Zhen
- Samuel Lunenfeld Research Institute, Mount Sinai HospitalTorontoCanada
- University of TorontoTorontoCanada
| | - Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, School of Life Sciences, University of Science and Technology of ChinaHefeiChina
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseHefeiChina
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
21
|
Flynn SM, Chen C, Artan M, Barratt S, Crisp A, Nelson GM, Peak-Chew SY, Begum F, Skehel M, de Bono M. MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity. Nat Commun 2020; 11:2099. [PMID: 32350248 PMCID: PMC7190641 DOI: 10.1038/s41467-020-15872-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/26/2020] [Indexed: 12/27/2022] Open
Abstract
Besides pro-inflammatory roles, the ancient cytokine interleukin-17 (IL-17) modulates neural circuit function. We investigate IL-17 signaling in neurons, and the extent it can alter organismal phenotypes. We combine immunoprecipitation and mass spectrometry to biochemically characterize endogenous signaling complexes that function downstream of IL-17 receptors in C. elegans neurons. We identify the paracaspase MALT-1 as a critical output of the pathway. MALT1 mediates signaling from many immune receptors in mammals, but was not previously implicated in IL-17 signaling or nervous system function. C. elegans MALT-1 forms a complex with homologs of Act1 and IRAK and appears to function both as a scaffold and a protease. MALT-1 is expressed broadly in the C. elegans nervous system, and neuronal IL-17-MALT-1 signaling regulates multiple phenotypes, including escape behavior, associative learning, immunity and longevity. Our data suggest MALT1 has an ancient role modulating neural circuit function downstream of IL-17 to remodel physiology and behavior.
Collapse
Affiliation(s)
- Sean M Flynn
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Changchun Chen
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Umeå Center for Molecular Medicine, Wallenberg Center for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Murat Artan
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Stephen Barratt
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Alastair Crisp
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Geoffrey M Nelson
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sew-Yeu Peak-Chew
- Biological Mass Spectrometry and Proteomics, Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Farida Begum
- Biological Mass Spectrometry and Proteomics, Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Mark Skehel
- Biological Mass Spectrometry and Proteomics, Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Mario de Bono
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
22
|
Kaplan HS, Zimmer M. Brain-wide representations of ongoing behavior: a universal principle? Curr Opin Neurobiol 2020; 64:60-69. [PMID: 32203874 DOI: 10.1016/j.conb.2020.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Recent neuronal activity recordings of unprecedented breadth and depth in worms, flies, and mice have uncovered a surprising common feature: brain-wide behavior-related signals. These signals pervade, and even dominate, neuronal populations thought to function primarily in sensory processing. Such convergent findings across organisms suggest that brain-wide representations of behavior might be a universal neuroscientific principle. What purpose(s) do these representations serve? Here we review these findings along with suggested functions, including sensory prediction, context-dependent sensory processing, and, perhaps most speculatively, distributed motor command generation. It appears that a large proportion of the brain's energy and coding capacity is used to represent ongoing behavior; understanding the function of these representations should therefore be a major goal in neuroscience research.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
23
|
Cebul ER, McLachlan IG, Heiman MG. Dendrites with specialized glial attachments develop by retrograde extension using SAX-7 and GRDN-1. Development 2020; 147:dev.180448. [PMID: 31988188 DOI: 10.1242/dev.180448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
Dendrites develop elaborate morphologies in concert with surrounding glia, but the molecules that coordinate dendrite and glial morphogenesis are mostly unknown. C. elegans offers a powerful model for identifying such factors. Previous work in this system examined dendrites and glia that develop within epithelia, similar to mammalian sense organs. Here, we focus on the neurons BAG and URX, which are not part of an epithelium but instead form membranous attachments to a single glial cell at the nose, reminiscent of dendrite-glia contacts in the mammalian brain. We show that these dendrites develop by retrograde extension, in which the nascent dendrite endings anchor to the presumptive nose and then extend by stretching during embryo elongation. Using forward genetic screens, we find that dendrite development requires the adhesion protein SAX-7/L1CAM and the cytoplasmic protein GRDN-1/CCDC88C to anchor dendrite endings at the nose. SAX-7 acts in neurons and glia, while GRDN-1 acts in glia to non-autonomously promote dendrite extension. Thus, this work shows how glial factors can help to shape dendrites, and identifies a novel molecular mechanism for dendrite growth by retrograde extension.
Collapse
Affiliation(s)
- Elizabeth R Cebul
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Ian G McLachlan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
24
|
Robinson KJ, Bosch OJ, Levkowitz G, Busch KE, Jarman AP, Ludwig M. Social creatures: Model animal systems for studying the neuroendocrine mechanisms of social behaviour. J Neuroendocrinol 2019; 31:e12807. [PMID: 31679160 PMCID: PMC6916380 DOI: 10.1111/jne.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The interaction of animals with conspecifics, termed social behaviour, has a major impact on the survival of many vertebrate species. Neuropeptide hormones modulate the underlying physiology that governs social interactions, and many findings concerning the neuroendocrine mechanisms of social behaviours have been extrapolated from animal models to humans. Neurones expressing neuropeptides show similar distribution patterns within the hypothalamic nucleus, even when evolutionarily distant species are compared. During evolution, hypothalamic neuropeptides and releasing hormones have retained not only their structures, but also their biological functions, including their effects on behaviour. Here, we review the current understanding of the mechanisms of social behaviours in several classes of animals, such as worms, insects and fish, as well as laboratory, wild and domesticated mammals.
Collapse
Affiliation(s)
- Kelly J. Robinson
- Sea Mammal Research UnitScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular NeurobiologyUniversity of RegensburgRegensburgGermany
| | - Gil Levkowitz
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Andrew P. Jarman
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Mike Ludwig
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for NeuroendocrinologyDepartment of ImmunologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
25
|
Kaplan HS, Salazar Thula O, Khoss N, Zimmer M. Nested Neuronal Dynamics Orchestrate a Behavioral Hierarchy across Timescales. Neuron 2019; 105:562-576.e9. [PMID: 31786012 PMCID: PMC7014571 DOI: 10.1016/j.neuron.2019.10.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/19/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Classical and modern ethological studies suggest that animal behavior is organized hierarchically across timescales, such that longer-timescale behaviors are composed of specific shorter-timescale actions. Despite progress relating neuronal dynamics to single-timescale behavior, it remains unclear how different timescale dynamics interact to give rise to such higher-order behavioral organization. Here, we show, in the nematode Caenorhabditis elegans, that a behavioral hierarchy spanning three timescales is implemented by nested neuronal dynamics. At the uppermost hierarchical level, slow neuronal population dynamics spanning brain and motor periphery control two faster motor neuron oscillations, toggling them between different activity states and functional roles. At lower hierarchical levels, these faster oscillations are further nested in a manner that enables flexible behavioral control in an otherwise rigid hierarchical framework. Our findings establish nested neuronal activity patterns as a repeated dynamical motif of the C. elegans nervous system, which together implement a controllable hierarchical organization of behavior. Slow dynamics across brain and motor circuits drive upper-hierarchy motor states Fast dynamics in motor circuits drive lower-hierarchy movements within these states Slower dynamics tightly constrain the state and function of faster ones This rigid hierarchy nevertheless enables flexible behavioral control
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Oriana Salazar Thula
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Niklas Khoss
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Manuel Zimmer
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria.
| |
Collapse
|
26
|
Beets I, Zhang G, Fenk LA, Chen C, Nelson GM, Félix MA, de Bono M. Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression. Neuron 2019; 105:106-121.e10. [PMID: 31757604 PMCID: PMC6953435 DOI: 10.1016/j.neuron.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/18/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022]
Abstract
The extent to which behavior is shaped by experience varies between individuals. Genetic differences contribute to this variation, but the neural mechanisms are not understood. Here, we dissect natural variation in the behavioral flexibility of two Caenorhabditis elegans wild strains. In one strain, a memory of exposure to 21% O2 suppresses CO2-evoked locomotory arousal; in the other, CO2 evokes arousal regardless of previous O2 experience. We map that variation to a polymorphic dendritic scaffold protein, ARCP-1, expressed in sensory neurons. ARCP-1 binds the Ca2+-dependent phosphodiesterase PDE-1 and co-localizes PDE-1 with molecular sensors for CO2 at dendritic ends. Reducing ARCP-1 or PDE-1 activity promotes CO2 escape by altering neuropeptide expression in the BAG CO2 sensors. Variation in ARCP-1 alters behavioral plasticity in multiple paradigms. Our findings are reminiscent of genetic accommodation, an evolutionary process by which phenotypic flexibility in response to environmental variation is reset by genetic change. Behavioral flexibility varies across Caenorhabditis and C. elegans wild isolates A natural polymorphism in ARCP-1 underpins inter-individual variation in plasticity ARCP-1 is a dendritic scaffold protein localizing cGMP signaling machinery to cilia Disrupting ARCP-1 alters behavioral plasticity by changing neuropeptide expression
Collapse
Affiliation(s)
- Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gaotian Zhang
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris 75005, France
| | - Lorenz A Fenk
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Changchun Chen
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Geoffrey M Nelson
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris 75005, France.
| | - Mario de Bono
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
27
|
Dobosiewicz M, Liu Q, Bargmann CI. Reliability of an interneuron response depends on an integrated sensory state. eLife 2019; 8:e50566. [PMID: 31718773 PMCID: PMC6894930 DOI: 10.7554/elife.50566] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
The central nervous system transforms sensory information into representations that are salient to the animal. Here we define the logic of this transformation in a Caenorhabditis elegans integrating interneuron. AIA interneurons receive input from multiple chemosensory neurons that detect attractive odors. We show that reliable AIA responses require the coincidence of two sensory inputs: activation of AWA olfactory neurons that are activated by attractive odors, and inhibition of one or more chemosensory neurons that are inhibited by attractive odors. AWA activates AIA through an electrical synapse, while the disinhibitory pathway acts through glutamatergic chemical synapses. AIA interneurons have bistable electrophysiological properties consistent with their calcium dynamics, suggesting that AIA activation is a stereotyped response to an integrated stimulus. Our results indicate that AIA interneurons combine sensory information using AND-gate logic, requiring coordinated activity from multiple chemosensory neurons. We propose that AIA encodes positive valence based on an integrated sensory state.
Collapse
Affiliation(s)
- May Dobosiewicz
- Lulu and Anthony Wang Laboratory of Neural Circuits and BehaviorThe Rockefeller UniversityNew YorkUnited States
| | - Qiang Liu
- Lulu and Anthony Wang Laboratory of Neural Circuits and BehaviorThe Rockefeller UniversityNew YorkUnited States
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and BehaviorThe Rockefeller UniversityNew YorkUnited States
- Chan Zuckerberg InitiativePalo AltoUnited States
| |
Collapse
|
28
|
Soto R, Goetting DL, Van Buskirk C. NPR-1 Modulates Plasticity in C. elegans Stress-Induced Sleep. iScience 2019; 19:1037-1047. [PMID: 31522115 PMCID: PMC6745490 DOI: 10.1016/j.isci.2019.08.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Sleep is beneficial yet antagonistic to critical functions such as foraging and escape, and we aim to understand how these competing drives are functionally integrated. C. elegans, which lives in reduced oxygen environments, engages in developmentally timed sleep (DTS) during larval stage transitions and engages in stress-induced sleep (SIS) during recovery from damaging conditions. Although DTS and SIS use distinct mechanisms to coordinate multiple sleep-associated behaviors, we show that movement quiescence in these sleep states is similarly integrated with the competing drive to avoid oxygen. Furthermore, by manipulating oxygen to deprive animals of SIS, we observe sleep rebound in a wild C. elegans isolate, indicating that sleep debt accrues during oxygen-induced SIS deprivation. Our work suggests that multiple sleep states adopt a common, highly plastic effector of movement quiescence that is suppressed by aversive stimuli and responsive to homeostatic sleep pressure, providing a limited window of opportunity for escape.
Collapse
Affiliation(s)
- Rony Soto
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | - Desiree L Goetting
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | - Cheryl Van Buskirk
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA.
| |
Collapse
|
29
|
Kargbo-Hill SE, Kauffman KJ, Krout M, Richmond JE, Melia TJ, Colón-Ramos DA. Maturation and Clearance of Autophagosomes in Neurons Depends on a Specific Cysteine Protease Isoform, ATG-4.2. Dev Cell 2019; 49:251-266.e8. [PMID: 30880001 PMCID: PMC6482087 DOI: 10.1016/j.devcel.2019.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 12/17/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Abstract
In neurons, defects in autophagosome clearance have been associated with neurodegenerative disease. Yet, the mechanisms that coordinate trafficking and clearance of synaptic autophagosomes are poorly understood. Here, we use genetic screens and in vivo imaging in single neurons of C. elegans to identify mechanisms necessary for clearance of synaptic autophagosomes. We observed that autophagy at the synapse can be modulated in vivo by the state of neuronal activity, that autophagosomes undergo UNC-16/JIP3-mediated retrograde transport, and that autophagosomes containing synaptic material mature in the cell body. Through forward genetic screens, we then determined that autophagosome maturation in the cell body depends on the protease ATG-4.2, but not the related ATG-4.1, and that ATG-4.2 can cleave LGG-1/Atg8/GABARAP from membranes. Our studies revealed that ATG-4.2 is specifically necessary for the maturation and clearance of autophagosomes and that defects in transport and ATG-4.2-mediated maturation genetically interact to enhance abnormal accumulation of autophagosomes in neurons.
Collapse
Affiliation(s)
- Sarah E Kargbo-Hill
- Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Karlina J Kauffman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Thomas J Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel A Colón-Ramos
- Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Blvd del Valle, San Juan 00901, Puerto Rico.
| |
Collapse
|
30
|
Lee JB, Yonar A, Hallacy T, Shen CH, Milloz J, Srinivasan J, Kocabas A, Ramanathan S. A compressed sensing framework for efficient dissection of neural circuits. Nat Methods 2018; 16:126-133. [PMID: 30573831 PMCID: PMC6335042 DOI: 10.1038/s41592-018-0233-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/31/2018] [Indexed: 01/12/2023]
Abstract
A fundamental question in neuroscience is how neural networks generate behavior. The lack of genetic tools and unique promoters to functionally manipulate specific neuronal subtypes makes it challenging to determine the roles of individual subtypes in behavior. We describe a compressed sensing-based framework in combination with non-specific genetic tools to infer candidate neurons controlling behaviors with fewer measurements than previously thought possible. We tested this framework by inferring interneuron subtypes regulating the speed of locomotion of the nematode Caenorhabditis elegans. We developed a real-time stabilization microscope for accurate long-term, high-magnification imaging and targeted perturbation of neural activity in freely moving animals to validate our inferences. We show that a circuit of three interconnected interneuron subtypes, RMG, AVB and SIA control different aspects of locomotion speed as the animal navigates its environment. Our work suggests that compressed sensing approaches can be used to identify key nodes in complex biological networks.
Collapse
Affiliation(s)
- Jeffrey B Lee
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Abdullah Yonar
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | | | - Ching-Han Shen
- FAS Quantitative Biology Initiative, Center for Brain Science, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Josselin Milloz
- FAS Quantitative Biology Initiative, Center for Brain Science, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jagan Srinivasan
- Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Askin Kocabas
- FAS Quantitative Biology Initiative, Center for Brain Science, Harvard University, Cambridge, MA, USA.,Department of Physics, Koç University, Sarıyer, Istanbul, Turkey
| | - Sharad Ramanathan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. .,Biophysics Program, Harvard University, Cambridge, MA, USA. .,FAS Quantitative Biology Initiative, Center for Brain Science, Harvard University, Cambridge, MA, USA. .,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA. .,Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
31
|
Zhao Y, Long L, Xu W, Campbell RF, Large EE, Greene JS, McGrath PT. Changes to social feeding behaviors are not sufficient for fitness gains of the Caenorhabditis elegans N2 reference strain. eLife 2018; 7:38675. [PMID: 30328811 PMCID: PMC6224195 DOI: 10.7554/elife.38675] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022] Open
Abstract
The standard reference Caenorhabditis elegans strain, N2, has evolved marked behavioral changes in social feeding behavior since its isolation from the wild. We show that the causal, laboratory-derived mutations in two genes, npr-1 and glb-5, confer large fitness advantages in standard laboratory conditions. Using environmental manipulations that suppress social/solitary behavior differences, we show the fitness advantages of the derived alleles remained unchanged, suggesting selection on these alleles acted through pleiotropic traits. Transcriptomics, developmental timing, and food consumption assays showed that N2 animals mature faster, produce more sperm, and consume more food than a strain containing ancestral alleles of these genes regardless of behavioral strategies. Our data suggest that the pleiotropic effects of glb-5 and npr-1 are a consequence of changes to O2 -sensing neurons that regulate both aerotaxis and energy homeostasis. Our results demonstrate how pleiotropy can lead to profound behavioral changes in a popular laboratory model. Why do humans walk on two feet? And what makes us smarter than our ape ancestors? The answers to these questions, and countless others about the particular traits of any number of species, is often said to be natural selection – a process where genes that ensure the survival of a species are favored of others. But it is not always the answer. Other evolutionary forces, such as random changes to the frequency of certain gene variants, restrictions on the development of a certain trait and pleiotropy (where one gene influences other, seemingly unrelated traits) can also cause differences between species. Designing experiments to test whether a trait difference is due to natural selection or other factors is notoriously difficult. However, the humble nematode worm, Caenorhabditis elegans, has proven to be particularly useful in this respect. One subtype or strain of C. elegans with certain changes to its genes is used internationally as a ‘reference strain’, to ensure results between labs are comparable. This strain, N2, has been bred in the laboratory for hundreds of generations, isolated from its wild counterparts. N2 shows several differences in behavior from the wildtype, including its feeding habits. Wild C. elegans tend to feed together socially, whereas N2 prefers to feed alone. In 1998 and 2009, researchers – including some involved in the current study – have identified the genetic modifications responsible for this change in behavior. Now, Zhao et al. set out to determine whether this was due to natural selection, and if so, was there a benefit to solitary feeding in laboratory conditions that was driving this genetic change? Zhao et al. found that the genetic changes in the N2 strain gave the worms a considerable advantage in the artificial environment. However, experiments to modify the conditions the animals grew in revealed that the solitary feeding habits were not necessary for the fitness advantage. In other words, the changes in feeding habits were a symptom of the genetic changes that gave N2 a selective advantage, but they were not the cause. In other words, the changes in feeding behavior were not a result of natural selection, but rather of pleiotropy. The findings highlight that not every change in a trait is down to natural selection and must therefore be put to the test. With declining costs of DNA sequencing, researchers can now easily identify genes and regions of DNA that are likely to be under selection. However, they must be careful before leaping to the conclusion that behavioral differences linked to genetic changes are adaptive. In addition, the findings show that the laboratories relying on N2 as a model organism should be aware that the strain has evolved fundamental differences in its brain connections compared with the wildtype.
Collapse
Affiliation(s)
- Yuehui Zhao
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
| | - Lijiang Long
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
| | - Wen Xu
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
| | - Richard F Campbell
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
| | - Edward E Large
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
| | | | - Patrick T McGrath
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, United States.,Department of Physics, Georgia Institute of Technology, Atlanta, United States.,Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, United States
| |
Collapse
|
32
|
Chew YL, Tanizawa Y, Cho Y, Zhao B, Yu AJ, Ardiel EL, Rabinowitch I, Bai J, Rankin CH, Lu H, Beets I, Schafer WR. An Afferent Neuropeptide System Transmits Mechanosensory Signals Triggering Sensitization and Arousal in C. elegans. Neuron 2018; 99:1233-1246.e6. [PMID: 30146306 PMCID: PMC6162336 DOI: 10.1016/j.neuron.2018.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
Abstract
Sensitization is a simple form of behavioral plasticity by which an initial stimulus, often signaling danger, leads to increased responsiveness to subsequent stimuli. Cross-modal sensitization is an important feature of arousal in many organisms, yet its molecular and neural mechanisms are incompletely understood. Here we show that in C. elegans, aversive mechanical stimuli lead to both enhanced locomotor activity and sensitization of aversive chemosensory pathways. Both locomotor arousal and cross-modal sensitization depend on the release of FLP-20 neuropeptides from primary mechanosensory neurons and on their receptor FRPR-3. Surprisingly, the critical site of action of FRPR-3 for both sensory and locomotor arousal is RID, a single neuroendocrine cell specialized for the release of neuropeptides that responds to mechanical stimuli in a FLP-20-dependent manner. Thus, FLP-20 peptides function as an afferent arousal signal that conveys mechanosensory information to central neurons that modulate arousal and other behavioral states.
Collapse
Affiliation(s)
- Yee Lian Chew
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yoshinori Tanizawa
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yongmin Cho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Buyun Zhao
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Alex J Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Evan L Ardiel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Ithai Rabinowitch
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada; Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK; Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.
| |
Collapse
|
33
|
Kaplan HS, Nichols ALA, Zimmer M. Sensorimotor integration in Caenorhabditis elegans: a reappraisal towards dynamic and distributed computations. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170371. [PMID: 30201836 PMCID: PMC6158224 DOI: 10.1098/rstb.2017.0371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/03/2022] Open
Abstract
The nematode Caenorhabditis elegans is a tractable model system to study locomotion, sensory navigation and decision-making. In its natural habitat, it is thought to navigate complex multisensory environments in order to find food and mating partners, while avoiding threats like predators or toxic environments. While research in past decades has shed much light on the functions and mechanisms of selected sensory neurons, we are just at the brink of understanding how sensory information is integrated by interneuron circuits for action selection in the worm. Recent technological advances have enabled whole-brain Ca2+ imaging and Ca2+ imaging of neuronal activity in freely moving worms. A common principle emerging across multiple studies is that most interneuron activities are tightly coupled to the worm's instantaneous behaviour; notably, these observations encompass neurons receiving direct sensory neuron inputs. The new findings suggest that in the C. elegans brain, sensory and motor representations are integrated already at the uppermost sensory processing layers. Moreover, these results challenge a perhaps more intuitive view of sequential feed-forward sensory pathways that converge onto premotor interneurons and motor neurons. We propose that sensorimotor integration occurs rather in a distributed dynamical fashion. In this perspective article, we will explore this view, discuss the challenges and implications of these discoveries on the interpretation and design of neural activity experiments, and discuss possible functions. Furthermore, we will discuss the broader context of similar findings in fruit flies and rodents, which suggest generalizable principles that can be learnt from this amenable nematode model organism.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Harris S Kaplan
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Annika L A Nichols
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
34
|
Mirzakhalili E, Epureanu BI, Gourgou E. A mathematical and computational model of the calcium dynamics in Caenorhabditis elegans ASH sensory neuron. PLoS One 2018; 13:e0201302. [PMID: 30048509 PMCID: PMC6062085 DOI: 10.1371/journal.pone.0201302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
We propose a mathematical and computational model that captures the stimulus-generated Ca2+ transients in the C. elegans ASH sensory neuron. The rationale is to develop a tool that will enable a cross-talk between modeling and experiments, using modeling results to guide targeted experimental efforts. The model is built based on biophysical events and molecular cascades known to unfold as part of neurons' Ca2+ homeostasis mechanism, as well as on Ca2+ signaling events. The state of ion channels is described by their probability of being activated or inactivated, and the remaining molecular states are based on biochemically defined kinetic equations or known biochemical motifs. We estimate the parameters of the model using experimental data of hyperosmotic stimulus-evoked Ca2+ transients detected with a FRET sensor in young and aged worms, unstressed and exposed to oxidative stress. We use a hybrid optimization method composed of a multi-objective genetic algorithm and nonlinear least-squares to estimate the model parameters. We first obtain the model parameters for young unstressed worms. Next, we use these values of the parameters as a starting point to identify the model parameters for stressed and aged worms. We show that the model, in combination with experimental data, corroborates literature results. In addition, we demonstrate that our model can be used to predict ASH response to complex combinations of stimulation pulses. The proposed model includes for the first time the ASH Ca2+ dynamics observed during both "on" and "off" responses. This mathematical and computational effort is the first to propose a dynamic model of the Ca2+ transients' mechanism in C. elegans neurons, based on biochemical pathways of the cell's Ca2+ homeostasis machinery. We believe that the proposed model can be used to further elucidate the Ca2+ dynamics of a key C. elegans neuron, to guide future experiments on C. elegans neurobiology, and to pave the way for the development of more mathematical models for neuronal Ca2+ dynamics.
Collapse
Affiliation(s)
- Ehsan Mirzakhalili
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bogdan I. Epureanu
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eleni Gourgou
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Geriatrics, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
35
|
Genetic dissection of neuropeptide cell biology at high and low activity in a defined sensory neuron. Proc Natl Acad Sci U S A 2018; 115:E6890-E6899. [PMID: 29959203 PMCID: PMC6055185 DOI: 10.1073/pnas.1714610115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Whereas local recycling of synaptic vesicles has been investigated intensively, there are few studies on recycling of DCV proteins. We set up a paradigm to study DCVs in a neuron whose activity we can control. We validate our model by confirming many previous observations on DCV cell biology. We identify a set of genes involved in recycling of DCV proteins. We also find evidence that different mechanisms of DCV priming and exocytosis may operate at high and low neural activity. Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Unlike synaptic vesicles, which can be recycled and refilled close to release sites, DCVs must be replenished by de novo synthesis in the cell body. Here, we dissect DCV cell biology in vivo in a Caenorhabditis elegans sensory neuron whose tonic activity we can control using a natural stimulus. We express fluorescently tagged neuropeptides in the neuron and define parameters that describe their subcellular distribution. We measure these parameters at high and low neural activity in 187 mutants defective in proteins implicated in membrane traffic, neuroendocrine secretion, and neuronal or synaptic activity. Using unsupervised hierarchical clustering methods, we analyze these data and identify 62 groups of genes with similar mutant phenotypes. We explore the function of a subset of these groups. We recapitulate many previous findings, validating our paradigm. We uncover a large battery of proteins involved in recycling DCV membrane proteins, something hitherto poorly explored. We show that the unfolded protein response promotes DCV production, which may contribute to intertissue communication of stress. We also find evidence that different mechanisms of priming and exocytosis may operate at high and low neural activity. Our work provides a defined framework to study DCV biology at different neural activity levels.
Collapse
|
36
|
McLachlan IG, Beets I, de Bono M, Heiman MG. A neuronal MAP kinase constrains growth of a Caenorhabditis elegans sensory dendrite throughout the life of the organism. PLoS Genet 2018; 14:e1007435. [PMID: 29879119 PMCID: PMC6007932 DOI: 10.1371/journal.pgen.1007435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/19/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurons develop elaborate morphologies that provide a model for understanding cellular architecture. By studying C. elegans sensory dendrites, we previously identified genes that act to promote the extension of ciliated sensory dendrites during embryogenesis. Interestingly, the nonciliated dendrite of the oxygen-sensing neuron URX is not affected by these genes, suggesting it develops through a distinct mechanism. Here, we use a visual forward genetic screen to identify mutants that affect URX dendrite morphogenesis. We find that disruption of the MAP kinase MAPK-15 or the βH-spectrin SMA-1 causes a phenotype opposite to what we had seen before: dendrites extend normally during embryogenesis but begin to overgrow as the animals reach adulthood, ultimately extending up to 150% of their normal length. SMA-1 is broadly expressed and acts non-cell-autonomously, while MAPK-15 is expressed in many sensory neurons including URX and acts cell-autonomously. MAPK-15 acts at the time of overgrowth, localizes at the dendrite ending, and requires its kinase activity, suggesting it acts locally in time and space to constrain dendrite growth. Finally, we find that the oxygen-sensing guanylate cyclase GCY-35, which normally localizes at the dendrite ending, is localized throughout the overgrown region, and that overgrowth can be suppressed by overexpressing GCY-35 or by genetically mimicking elevated cGMP signaling. These results suggest that overgrowth may correspond to expansion of a sensory compartment at the dendrite ending, reminiscent of the remodeling of sensory cilia or dendritic spines. Thus, in contrast to established pathways that promote dendrite growth during early development, our results reveal a distinct mechanism that constrains dendrite growth throughout the life of the animal, possibly by controlling the size of a sensory compartment at the dendrite ending.
Collapse
Affiliation(s)
- Ian G McLachlan
- Department of Genetics, Harvard Medical School and Boston Children's Hospital, Boston MA, United States of America
| | - Isabel Beets
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mario de Bono
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Maxwell G Heiman
- Department of Genetics, Harvard Medical School and Boston Children's Hospital, Boston MA, United States of America
| |
Collapse
|
37
|
Xu T, Huo J, Shao S, Po M, Kawano T, Lu Y, Wu M, Zhen M, Wen Q. Descending pathway facilitates undulatory wave propagation in Caenorhabditis elegans through gap junctions. Proc Natl Acad Sci U S A 2018; 115:E4493-E4502. [PMID: 29686107 PMCID: PMC5948959 DOI: 10.1073/pnas.1717022115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Descending signals from the brain play critical roles in controlling and modulating locomotion kinematics. In the Caenorhabditis elegans nervous system, descending AVB premotor interneurons exclusively form gap junctions with the B-type motor neurons that execute forward locomotion. We combined genetic analysis, optogenetic manipulation, calcium imaging, and computational modeling to elucidate the function of AVB-B gap junctions during forward locomotion. First, we found that some B-type motor neurons generate rhythmic activity, constituting distributed oscillators. Second, AVB premotor interneurons use their electric inputs to drive bifurcation of B-type motor neuron dynamics, triggering their transition from stationary to oscillatory activity. Third, proprioceptive couplings between neighboring B-type motor neurons entrain the frequency of body oscillators, forcing coherent bending wave propagation. Despite substantial anatomical differences between the motor circuits of C. elegans and higher model organisms, converging principles govern coordinated locomotion.
Collapse
Affiliation(s)
- Tianqi Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Jing Huo
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Shuai Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Michelle Po
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Taizo Kawano
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Yangning Lu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Min Wu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China;
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
38
|
Thapliyal S, Babu K. C. elegans Locomotion: Finding Balance in Imbalance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:185-196. [PMID: 30637699 DOI: 10.1007/978-981-13-3065-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The excitation-inhibition (E-I) imbalance in neural circuits represents a hallmark of several neuropsychiatric disorders. The tiny nematode Caenorhabditis elegans has emerged as an excellent system to study the molecular mechanisms underlying this imbalance in neuronal circuits. The C. elegans body wall muscles receive inputs from both excitatory cholinergic and inhibitory GABAergic motor neurons at neuromuscular junctions (NMJ), making it an excellent model for studying the genetic and molecular mechanisms required for maintaining E-I balance at the NMJ. The cholinergic neurons form dyadic synapses wherein they synapse onto ipsilateral body wall muscles allowing for muscle contraction as well as onto GABAergic motor neurons that in turn synapse on the contralateral body wall muscles causing muscle relaxation. An alternating wave of contraction and relaxation mediated by excitatory and inhibitory signals maintains locomotion in C. elegans. This locomotory behavior requires an intricate balance between the excitatory cholinergic signaling and the inhibitory GABAergic signaling mechanisms.Studies on the C. elegans NMJ have provided insights into several molecular mechanisms that could regulate this balance in neural circuits. This review provides a discussion on multiple genetic factors including neuropeptides and their receptors, cell adhesion molecules, and other molecular pathways that have been associated with maintaining E-I balance in C. elegans motor circuits. Further, it also discusses the implications of these studies that could help us in understanding the role of E-I balance in mammalian neural circuits and how changes in this balance could give rise to brain disorders.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| | - Kavita Babu
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| |
Collapse
|
39
|
Tool-Driven Advances in Neuropeptide Research from a Nematode Parasite Perspective. Trends Parasitol 2017; 33:986-1002. [DOI: 10.1016/j.pt.2017.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 01/21/2023]
|
40
|
Abstract
IL-17 is a cytokine known primarily for its role in inflammation. In a recent issue of Nature, Chen et al. (2017) demonstrate that IL-17 plays a neuromodulatory role in Caenorhabditis elegans by acting directly on neurons to amplify neuronal responses to stimuli and produce changes in animal behavior.
Collapse
Affiliation(s)
- Noah J Silverstein
- Division of Infectious Diseases and Immunology and Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jun R Huh
- Division of Infectious Diseases and Immunology and Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
41
|
Abstract
How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the Caenorhabditis elegans brain is predisposed to global quiescence, characterized by systemic down-regulation of neuronal activity. Only a few specific neurons are exempt from this effect. In the absence of external arousing cues, this quiescent brain state arises by the convergence of neuronal activities toward a fixed-point attractor embedded in an otherwise dynamic neural state space. We observed efficient spontaneous and sensory-evoked exits from quiescence. Our data support the hypothesis that during global states such as sleep, neuronal networks are drawn to a baseline mode and can be effectively reactivated by signaling from arousing circuits.
Collapse
Affiliation(s)
- Annika L A Nichols
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Tomáš Eichler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Richard Latham
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
42
|
Modulation of sensory information processing by a neuroglobin in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:E4658-E4665. [PMID: 28536200 DOI: 10.1073/pnas.1614596114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sensory receptor neurons match their dynamic range to ecologically relevant stimulus intensities. How this tuning is achieved is poorly understood in most receptors. The roundworm Caenorhabditis elegans avoids 21% O2 and hypoxia and prefers intermediate O2 concentrations. We show how this O2 preference is sculpted by the antagonistic action of a neuroglobin and an O2-binding soluble guanylate cyclase. These putative molecular O2 sensors confer a sigmoidal O2 response curve in the URX neurons that has highest slope between 15 and 19% O2 and approaches saturation when O2 reaches 21%. In the absence of the neuroglobin, the response curve is shifted to lower O2 values and approaches saturation at 14% O2 In behavioral terms, neuroglobin signaling broadens the O2 preference of Caenorhabditis elegans while maintaining avoidance of 21% O2 A computational model of aerotaxis suggests the relationship between GLB-5-modulated URX responses and reversal behavior is sufficient to broaden O2 preference. In summary, we show that a neuroglobin can shift neural information coding leading to altered behavior. Antagonistically acting molecular sensors may represent a common mechanism to sharpen tuning of sensory neurons.
Collapse
|
43
|
Memory of recent oxygen experience switches pheromone valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:4195-4200. [PMID: 28373553 DOI: 10.1073/pnas.1618934114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals adjust their behavioral priorities according to momentary needs and prior experience. We show that Caenorhabditis elegans changes how it processes sensory information according to the oxygen environment it experienced recently. C. elegans acclimated to 7% O2 are aroused by CO2 and repelled by pheromones that attract animals acclimated to 21% O2 This behavioral plasticity arises from prolonged activity differences in a circuit that continuously signals O2 levels. A sustained change in the activity of O2-sensing neurons reprograms the properties of their postsynaptic partners, the RMG hub interneurons. RMG is gap-junctionally coupled to the ASK and ADL pheromone sensors that respectively drive pheromone attraction and repulsion. Prior O2 experience has opposite effects on the pheromone responsiveness of these neurons. These circuit changes provide a physiological correlate of altered pheromone valence. Our results suggest C. elegans stores a memory of recent O2 experience in the RMG circuit and illustrate how a circuit is flexibly sculpted to guide behavioral decisions in a context-dependent manner.
Collapse
|
44
|
Banerjee N, Bhattacharya R, Gorczyca M, Collins KM, Francis MM. Local neuropeptide signaling modulates serotonergic transmission to shape the temporal organization of C. elegans egg-laying behavior. PLoS Genet 2017; 13:e1006697. [PMID: 28384151 PMCID: PMC5398689 DOI: 10.1371/journal.pgen.1006697] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 03/15/2017] [Indexed: 11/18/2022] Open
Abstract
Animal behaviors are often composed of distinct alternating behavioral states. Neuromodulatory signals are thought to be critical for establishing stable behavioral states and for orchestrating transitions between them. However, we have only a limited understanding of how neuromodulatory systems act in vivo to alter circuit performance and shape behavior. To address these questions, we have investigated neuromodulatory signaling in the context of Caenorhabditis elegans egg-laying. Egg-laying activity cycles between discrete states-short bursts of egg deposition (active phases) that alternate with prolonged quiescent periods (inactive phases). Here using genetic, pharmacological and optogenetic approaches for cell-specific activation and inhibition, we show that a group of neurosecretory cells (uv1) located in close spatial proximity to the egg-laying neuromusculature direct the temporal organization of egg-laying by prolonging the duration of inactive phases. We demonstrate that the modulatory effects of the uv1 cells are mediated by peptides encoded by the nlp-7 and flp-11 genes that act locally to inhibit circuit activity, primarily by inhibiting vesicular release of serotonin from HSN motor neurons. This peptidergic inhibition is achieved, at least in part, by reducing synaptic vesicle abundance in the HSN motor neurons. By linking the in vivo actions of specific neuropeptide signaling systems with the generation of stable behavioral outcomes, our study reveals how cycles of neuromodulation emanating from non-neuronal cells can fundamentally shape the organization of a behavioral program.
Collapse
Affiliation(s)
- Navonil Banerjee
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Raja Bhattacharya
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Michael Gorczyca
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Kevin M. Collins
- Department of Biology, University of Miami, Coral Gables, FL United States of America
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| |
Collapse
|
45
|
Schröter M, Paulsen O, Bullmore ET. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nat Rev Neurosci 2017; 18:131-146. [PMID: 28148956 DOI: 10.1038/nrn.2016.182] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.
Collapse
Affiliation(s)
- Manuel Schröter
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,Department of Biosystems Science and Engineering, Bio Engineering Laboratory, ETH Zurich, Mattenstrasse 26, Basel CH-4058, Switzerland
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Edward T Bullmore
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,ImmunoPsychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge Road, Fulbourn, Cambridge CB21 5HH, UK
| |
Collapse
|
46
|
Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:E1263-E1272. [PMID: 28143932 DOI: 10.1073/pnas.1621274114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9-containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9-based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits.
Collapse
|
47
|
Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans. Sci Rep 2017; 7:38734. [PMID: 28139692 PMCID: PMC5282578 DOI: 10.1038/srep38734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. elegans, CO2 sensing is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. elegans to avoid high CO2. Here we show that cGMP regulation by GCY-9 and the PDE-1 phosphodiesterase controls BAG expression of a FMRFamide-related neuropeptide FLP-19 reporter (flp-19::GFP). This regulation is specific for CO2-sensing function of the BAG neurons, as loss of oxygen sensing function does not affect flp-19::GFP expression. We also found that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability to sense changes in carbon dioxide and CREB transcription factor. Such regulation may be required in particular environmental conditions to enable sophisticated behavioral decisions to be performed.
Collapse
|
48
|
Chen C, Itakura E, Nelson GM, Sheng M, Laurent P, Fenk LA, Butcher RA, Hegde RS, de Bono M. IL-17 is a neuromodulator of Caenorhabditis elegans sensory responses. Nature 2017; 542:43-48. [PMID: 28099418 DOI: 10.1038/nature20818] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
Abstract
Interleukin-17 (IL-17) is a major pro-inflammatory cytokine: it mediates responses to pathogens or tissue damage, and drives autoimmune diseases. Little is known about its role in the nervous system. Here we show that IL-17 has neuromodulator-like properties in Caenorhabditis elegans. IL-17 can act directly on neurons to alter their response properties and contribution to behaviour. Using unbiased genetic screens, we delineate an IL-17 signalling pathway and show that it acts in the RMG hub interneurons. Disrupting IL-17 signalling reduces RMG responsiveness to input from oxygen sensors, and renders sustained escape from 21% oxygen transient and contingent on additional stimuli. Over-activating IL-17 receptors abnormally heightens responses to 21% oxygen in RMG neurons and whole animals. IL-17 deficiency can be bypassed by optogenetic stimulation of RMG. Inducing IL-17 expression in adults can rescue mutant defects within 6 h. These findings reveal a non-immunological role of IL-17 modulating circuit function and behaviour.
Collapse
Affiliation(s)
- Changchun Chen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Eisuke Itakura
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Geoffrey M Nelson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ming Sheng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Patrick Laurent
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lorenz A Fenk
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mario de Bono
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
49
|
Olfactory circuits and behaviors of nematodes. Curr Opin Neurobiol 2016; 41:136-148. [PMID: 27668755 DOI: 10.1016/j.conb.2016.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/19/2016] [Accepted: 09/05/2016] [Indexed: 12/29/2022]
Abstract
Over one billion people worldwide are infected with parasitic nematodes. Many parasitic nematodes actively search for hosts to infect using volatile chemical cues, so understanding the olfactory signals that drive host seeking may elucidate new pathways for preventing infections. The free-living nematode Caenorhabditis elegans is a powerful model for parasitic nematodes: because sensory neuroanatomy is conserved across nematode species, an understanding of the microcircuits that mediate olfaction in C. elegans may inform studies of olfaction in parasitic nematodes. Here we review circuit mechanisms that allow C. elegans to respond to odorants, gases, and pheromones. We also highlight work on the olfactory behaviors of parasitic nematodes that lays the groundwork for future studies of their olfactory microcircuits.
Collapse
|
50
|
Fang-Yen C, Alkema MJ, Samuel ADT. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140212. [PMID: 26240427 DOI: 10.1098/rstb.2014.0212] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of optogenetics, a family of methods for using light to control neural activity via light-sensitive proteins, has provided a powerful new set of tools for neurobiology. These techniques have been particularly fruitful for dissecting neural circuits and behaviour in the compact and transparent roundworm Caenorhabditis elegans. Researchers have used optogenetic reagents to manipulate numerous excitable cell types in the worm, from sensory neurons, to interneurons, to motor neurons and muscles. Here, we show how optogenetics applied to this transparent roundworm has contributed to our understanding of neural circuits.
Collapse
Affiliation(s)
- Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|