1
|
Yi Q, Xiong L. From sensory organs to internal pathways: A comprehensive review of amino acid sensing in Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2025; 303:111828. [PMID: 39983896 DOI: 10.1016/j.cbpa.2025.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Organisms require various nutrients to provide energy, support growth, and maintain metabolic balance. Amino acid is among the most basic nutrients, serving as fundamental building blocks for protein synthesis while playing vital roles in growth, development, and reproduction. Understanding the mechanisms by which organisms perceive amino acids is key to unraveling how they select appropriate food sources and adapt to environmental challenges. The fruit fly, Drosophila melanogaster, serves as a powerful model for understanding fundamental genetic and physiological processes. This review focuses on recent advances in amino acid sensing mechanisms in Drosophila melanogaster and their relevance to feeding behavior, nutrient homeostasis, and adaptive responses, and integrates insights into peripheral sensory systems, such as the legs and proboscis, as well as internal regulatory mechanisms within the gut, fat body, and brain. It highlights key molecular players, including ionotropic receptors, gut-derived hormones, neuropeptides, and the microbiome-gut-brain axis. Additionally, the manuscript identifies knowledge gaps and proposes directions for future research, providing a comprehensive overview of this dynamic field.
Collapse
Affiliation(s)
- Quan Yi
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liangyao Xiong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Nakajima S, Hasegawa I, Nakao M, Tanaka A, Abe M, Li M. The elusive nature of forward blocking effect on running-based taste aversion learning in laboratory rats. Behav Processes 2025; 227:105187. [PMID: 40118259 DOI: 10.1016/j.beproc.2025.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/03/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
It is well documented that rats learn to avoid a taste solution consumed immediately before voluntary running in activity wheels, which represents a form of Pavlovian aversive conditioning based on the taste-running association. Although various behavioral phenomena observed in typical Pavlovian preparations, such as fear conditioning, have also been demonstrated in this setup, evidence of the associative blocking effect is limited. The present study aimed to demonstrate this effect, and the first experiment provided some positive evidence. Conditioning rats with serial presentations of two taste solutions followed by an opportunity to run (A → B → running) resulted in reduced aversion to taste A if the rats had prior experience of running after consuming B (B → running), suggesting that the previously established B-running association blocked the A-running association. However, subsequent experiments failed to yield statistically reliable results, raising questions about the robustness of the blocking effect on running-based taste aversion learning.
Collapse
Affiliation(s)
- Sadahiko Nakajima
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan.
| | - Iho Hasegawa
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan
| | - Maria Nakao
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan
| | - Ai Tanaka
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan
| | - Madoka Abe
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan
| | - Mengwei Li
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan
| |
Collapse
|
3
|
Sen E, El-Keredy A, Jacob N, Mancini N, Asnaz G, Widmann A, Gerber B, Thoener J. Cognitive limits of larval Drosophila: testing for conditioned inhibition, sensory preconditioning, and second-order conditioning. Learn Mem 2024; 31:a053726. [PMID: 38862170 PMCID: PMC11199949 DOI: 10.1101/lm.053726.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/18/2024] [Indexed: 06/13/2024]
Abstract
Drosophila larvae are an established model system for studying the mechanisms of innate and simple forms of learned behavior. They have about 10 times fewer neurons than adult flies, and it was the low total number of their neurons that allowed for an electron microscopic reconstruction of their brain at synaptic resolution. Regarding the mushroom body, a central brain structure for many forms of associative learning in insects, it turned out that more than half of the classes of synaptic connection had previously escaped attention. Understanding the function of these circuit motifs, subsequently confirmed in adult flies, is an important current research topic. In this context, we test larval Drosophila for their cognitive abilities in three tasks that are characteristically more complex than those previously studied. Our data provide evidence for (i) conditioned inhibition, as has previously been reported for adult flies and honeybees. Unlike what is described for adult flies and honeybees, however, our data do not provide evidence for (ii) sensory preconditioning or (iii) second-order conditioning in Drosophila larvae. We discuss the methodological features of our experiments as well as four specific aspects of the organization of the larval brain that may explain why these two forms of learning are observed in adult flies and honeybees, but not in larval Drosophila.
Collapse
Affiliation(s)
- Edanur Sen
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Amira El-Keredy
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Department of Genetics, Faculty of Agriculture, Tanta University, 31111 Tanta, Egypt
| | - Nina Jacob
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Nino Mancini
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Gülüm Asnaz
- Department of Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Annekathrin Widmann
- Department of Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Bertram Gerber
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Otto von Guericke University Magdeburg, Institute of Biology, 39106 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| | - Juliane Thoener
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| |
Collapse
|
4
|
Toshima N, Schleyer M. IR76b-expressing neurons in Drosophila melanogaster are necessary for associative reward learning of an amino acid mixture. Biol Lett 2024; 20:20230519. [PMID: 38351746 PMCID: PMC10865000 DOI: 10.1098/rsbl.2023.0519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Learning where to find nutrients while at the same time avoiding toxic food is essential for survival of any animal. Using Drosophila melanogaster larvae as a study case, we investigate the role of gustatory sensory neurons expressing IR76b for associative learning of amino acids, the building blocks of proteins. We found surprising complexity in the neuronal underpinnings of sensing amino acids, and a functional division of sensory neurons. We found that the IR76b receptor is dispensable for amino acid learning, whereas the neurons expressing IR76b are specifically required for the rewarding but not the punishing effect of amino acids. This unexpected dissociation in neuronal processing of amino acids for different behavioural functions provides a study case for functional divisions of labour in gustatory systems.
Collapse
Affiliation(s)
- Naoko Toshima
- Department Genetics of Learning and Memory, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Japan
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
5
|
Jürgensen AM, Sakagiannis P, Schleyer M, Gerber B, Nawrot MP. Prediction error drives associative learning and conditioned behavior in a spiking model of Drosophila larva. iScience 2024; 27:108640. [PMID: 38292165 PMCID: PMC10824792 DOI: 10.1016/j.isci.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Predicting reinforcement from sensory cues is beneficial for goal-directed behavior. In insect brains, underlying associations between cues and reinforcement, encoded by dopaminergic neurons, are formed in the mushroom body. We propose a spiking model of the Drosophila larva mushroom body. It includes a feedback motif conveying learned reinforcement expectation to dopaminergic neurons, which can compute prediction error as the difference between expected and present reinforcement. We demonstrate that this can serve as a driving force in learning. When combined with synaptic homeostasis, our model accounts for theoretically derived features of acquisition and loss of associations that depend on the intensity of the reinforcement and its temporal proximity to the cue. From modeling olfactory learning over the time course of behavioral experiments and simulating the locomotion of individual larvae toward or away from odor sources in a virtual environment, we conclude that learning driven by prediction errors can explain larval behavior.
Collapse
Affiliation(s)
- Anna-Maria Jürgensen
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Panagiotis Sakagiannis
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology (LIN), Department of Genetics, 39118 Magdeburg, Germany
- Institute for the Advancement of Higher Education, Faculty of Science, Hokkaido University, Sapporo 060-08080, Japan
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN), Department of Genetics, 39118 Magdeburg, Germany
- Institute for Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Brain and Behavioral Sciences (CBBS), Otto-von-Guericke University, 39118 Magdeburg, Germany
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
6
|
Mancini N, Thoener J, Tafani E, Pauls D, Mayseless O, Strauch M, Eichler K, Champion A, Kobler O, Weber D, Sen E, Weiglein A, Hartenstein V, Chytoudis-Peroudis CC, Jovanic T, Thum AS, Rohwedder A, Schleyer M, Gerber B. Rewarding Capacity of Optogenetically Activating a Giant GABAergic Central-Brain Interneuron in Larval Drosophila. J Neurosci 2023; 43:7393-7428. [PMID: 37734947 PMCID: PMC10621887 DOI: 10.1523/jneurosci.2310-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/19/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Larvae of the fruit fly Drosophila melanogaster are a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic analyses, optogenetics, Ca2+ imaging, and pharmacology, we study how APL affects associative olfactory memory. We first provide a detailed account of the structure, regional polarity, connectivity, and metamorphic development of APL, and further confirm that optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body Kenyon cells. All these findings are consistent with the previously identified function of APL in the sparsening of sensory representations. To our surprise, however, we found that optogenetically activating APL can also have a strong rewarding effect. Specifically, APL activation together with odor presentation establishes an odor-specific, appetitive, associative short-term memory, whereas naive olfactory behavior remains unaffected. An acute, systemic inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons impair reward learning through APL activation. Our findings provide a study case of complex circuit function in a numerically simple brain, and suggest a previously unrecognized capacity of central-brain GABAergic neurons to engage in dopaminergic reinforcement.SIGNIFICANCE STATEMENT The single, identified giant anterior paired lateral (APL) neuron is one of the most complex neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal activity in the mushroom body, the memory center of insects. We provide the most detailed account yet of the structure of APL in larval Drosophila as a neurogenetically accessible study case. We further reveal that, contrary to expectations, the experimental activation of APL can exert a rewarding effect, likely via dopaminergic reward pathways. The present study both provides an example of unexpected circuit complexity in a numerically simple brain, and reports an unexpected effect of activity in central-brain GABAergic circuits.
Collapse
Affiliation(s)
- Nino Mancini
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Juliane Thoener
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Esmeralda Tafani
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Martin Strauch
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, 52074, Germany
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Old San Juan, Puerto Rico, 00901
| | - Andrew Champion
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, CB2 3EL, United Kingdom
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia
| | - Oliver Kobler
- Leibniz Institute for Neurobiology, Combinatorial Neuroimaging Core Facility, Magdeburg, 39118, Germany
| | - Denise Weber
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Edanur Sen
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Volker Hartenstein
- University of California, Department of Molecular, Cell and Developmental Biology, Los Angeles, California 90095-1606
| | | | - Tihana Jovanic
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des neurosciences Paris-Saclay, Saclay, 91400, France
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Astrid Rohwedder
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
- Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany
- Institute for Biology, Otto von Guericke University, Magdeburg, 39120, Germany
| |
Collapse
|
7
|
Schumann I, Berger M, Nowag N, Schäfer Y, Saumweber J, Scholz H, Thum AS. Ethanol-guided behavior in Drosophila larvae. Sci Rep 2021; 11:12307. [PMID: 34112872 PMCID: PMC8192949 DOI: 10.1038/s41598-021-91677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
Chemosensory signals allow vertebrates and invertebrates not only to orient in its environment toward energy-rich food sources to maintain nutrition but also to avoid unpleasant or even poisonous substrates. Ethanol is a substance found in the natural environment of Drosophila melanogaster. Accordingly, D. melanogaster has evolved specific sensory systems, physiological adaptations, and associated behaviors at its larval and adult stage to perceive and process ethanol. To systematically analyze how D. melanogaster larvae respond to naturally occurring ethanol, we examined ethanol-induced behavior in great detail by reevaluating existing approaches and comparing them with new experiments. Using behavioral assays, we confirm that larvae are attracted to different concentrations of ethanol in their environment. This behavior is controlled by olfactory and other environmental cues. It is independent of previous exposure to ethanol in their food. Moreover, moderate, naturally occurring ethanol concentration of 4% results in increased larval fitness. On the contrary, higher concentrations of 10% and 20% ethanol, which rarely or never appear in nature, increase larval mortality. Finally, ethanol also serves as a positive teaching signal in learning and memory and updates valence associated with simultaneously processed odor information. Since information on how larvae perceive and process ethanol at the genetic and neuronal level is limited, the establishment of standardized assays described here is an important step towards their discovery.
Collapse
Affiliation(s)
- Isabell Schumann
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Michael Berger
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Nadine Nowag
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Yannick Schäfer
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | | | - Henrike Scholz
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Andreas S Thum
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany. .,Department of Genetics, Institute of Biology, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.
| |
Collapse
|
8
|
Howard JD, Kahnt T. To be specific: The role of orbitofrontal cortex in signaling reward identity. Behav Neurosci 2021; 135:210-217. [PMID: 33734730 DOI: 10.1037/bne0000455] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The orbitofrontal cortex (OFC) plays a prominent role in signaling reward expectations. Two important features of rewards are their value (how good they are) and their specific identity (what they are). Whereas research on OFC has traditionally focused on reward value, recent findings point toward a pivotal role of reward identity in understanding OFC signaling and its contribution to behavior. Here, we review work in rodents, nonhuman primates, and humans on how the OFC represents expectations about the identity of rewards, and how these signals contribute to outcome-guided behavior. Moreover, we summarize recent findings suggesting that specific reward expectations in OFC are learned and updated by means of identity errors in the dopaminergic midbrain. We conclude by discussing how OFC encoding of specific rewards complements recent proposals that this region represents a cognitive map of relevant task states, which forms the basis for model-based behavior. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
9
|
Michels B, Franke K, Weiglein A, Sultani H, Gerber B, Wessjohann LA. Rewarding compounds identified from the medicinal plant Rhodiola rosea. ACTA ACUST UNITED AC 2020; 223:223/16/jeb223982. [PMID: 32848044 DOI: 10.1242/jeb.223982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Preparations of Rhodiola rosea root are widely used in traditional medicine. They can increase life span in worms and flies, and have various effects related to nervous system function in different animal species and humans. However, which of the compounds in R. rosea is mediating any one of these effects has remained unknown in most cases. Here, an analysis of the volatile and non-volatile low-molecular-weight constituents of R. rosea root samples was accompanied by an investigation of their behavioral impact on Drosophila melanogaster larvae. Rhodiola rosea root samples have an attractive smell and taste to the larvae, and exert a rewarding effect. This rewarding effect was also observed for R. rosea root extracts, and did not require activity of dopamine neurons that mediate known rewards such as sugar. Based on the chemical profiles of R. rosea root extracts and resultant fractions, a bioactivity-correlation analysis (AcorA) was performed to identify candidate rewarding compounds. This suggested positive correlations for - among related compounds - ferulic acid eicosyl ester (FAE-20) and β-sitosterol glucoside. A validation using these as pure compounds confirmed that the correlations were causal. Their rewarding effects can be observed even at low micromolar concentrations and thus at remarkably lower doses than for any known taste reward in the larva. We discuss whether similar rewarding effects, should they be observed in humans, would indicate a habit-forming or addictive potential.
Collapse
Affiliation(s)
- Birgit Michels
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Katrin Franke
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Haider Sultani
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany .,Otto von Guericke University, Institute of Biology, 39106 Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Ludger A Wessjohann
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany
| |
Collapse
|
10
|
Schleyer M, Weiglein A, Thoener J, Strauch M, Hartenstein V, Kantar Weigelt M, Schuller S, Saumweber T, Eichler K, Rohwedder A, Merhof D, Zlatic M, Thum AS, Gerber B. Identification of Dopaminergic Neurons That Can Both Establish Associative Memory and Acutely Terminate Its Behavioral Expression. J Neurosci 2020; 40:5990-6006. [PMID: 32586949 PMCID: PMC7392503 DOI: 10.1523/jneurosci.0290-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/14/2020] [Accepted: 05/19/2020] [Indexed: 02/01/2023] Open
Abstract
An adaptive transition from exploring the environment in search of vital resources to exploiting these resources once the search was successful is important to all animals. Here we study the neuronal circuitry that allows larval Drosophila melanogaster of either sex to negotiate this exploration-exploitation transition. We do so by combining Pavlovian conditioning with high-resolution behavioral tracking, optogenetic manipulation of individually identified neurons, and EM data-based analyses of synaptic organization. We find that optogenetic activation of the dopaminergic neuron DAN-i1 can both establish memory during training and acutely terminate learned search behavior in a subsequent recall test. Its activation leaves innate behavior unaffected, however. Specifically, DAN-i1 activation can establish associative memories of opposite valence after paired and unpaired training with odor, and its activation during the recall test can terminate the search behavior resulting from either of these memories. Our results further suggest that in its behavioral significance DAN-i1 activation resembles, but does not equal, sugar reward. Dendrogram analyses of all the synaptic connections between DAN-i1 and its two main targets, the Kenyon cells and the mushroom body output neuron MBON-i1, further suggest that the DAN-i1 signals during training and during the recall test could be delivered to the Kenyon cells and to MBON-i1, respectively, within previously unrecognized, locally confined branching structures. This would provide an elegant circuit motif to terminate search on its successful completion.SIGNIFICANCE STATEMENT In the struggle for survival, animals have to explore their environment in search of food. Once food is found, however, it is adaptive to prioritize exploiting it over continuing a search that would now be as pointless as searching for the glasses you are wearing. This exploration-exploitation trade-off is important for animals and humans, as well as for technical search devices. We investigate which of the only 10,000 neurons of a fruit fly larva can tip the balance in this trade-off, and identify a single dopamine neuron called DAN-i1 that can do so. Given the similarities in dopamine neuron function across the animal kingdom, this may reflect a general principle of how search is terminated once it is successful.
Collapse
Affiliation(s)
- Michael Schleyer
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Juliane Thoener
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Martin Strauch
- Institute of Imaging & Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095-1606
| | - Melisa Kantar Weigelt
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Sarah Schuller
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Timo Saumweber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Katharina Eichler
- University of Konstanz, Institute for Biology, 78464 Konstanz, Germany
- HHMI Janelia Research Campus, Ashburn, Virginia 20147
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Old San Juan, Puerto Rico 00901
| | - Astrid Rohwedder
- University of Konstanz, Institute for Biology, 78464 Konstanz, Germany
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Marta Zlatic
- HHMI Janelia Research Campus, Ashburn, Virginia 20147
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Andreas S Thum
- University of Konstanz, Institute for Biology, 78464 Konstanz, Germany
- University Leipzig, Institute for Biology, 04103 Leipzig, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
- Centre for Behavioural Brain Sciences, 39108 Magdeburg, Germany
- Institute for Biology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
11
|
Toshima N, Schleyer M. Neuronal processing of amino acids in Drosophila: from taste sensing to behavioural regulation. CURRENT OPINION IN INSECT SCIENCE 2019; 36:39-44. [PMID: 31473590 DOI: 10.1016/j.cois.2019.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Finding and feeding on appropriate food are crucial for all animals. Carbohydrates and amino acids are both essential nutrients, albeit with distinct roles: the former are the main energy source whereas the latter are the building blocks of proteins and are used as neurotransmitters. Despite their crucial role, neither the sensing nor the neuronal processing of amino acids is well understood. Studies in Drosophila melanogaster have only recently gained momentum in shedding new light on the molecular and neuronal mechanisms of peripheral and internal amino acid sensing, as well as the organization of amino acid feeding behaviour. Furthermore, amino acids have been shown to act as rewards in associative learning. Focusing on recent studies in Drosophila, we summarize what is known so far about the perception of, and the behavioural responses to, amino acids in insects, and try to identify key questions for future research.
Collapse
Affiliation(s)
- Naoko Toshima
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany.
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| |
Collapse
|
12
|
Toshima N, Kantar Weigelt M, Weiglein A, Boetzl FA, Gerber B. An amino-acid mixture can be both rewarding and punishing to larval Drosophila melanogaster. ACTA ACUST UNITED AC 2019; 222:jeb.209486. [PMID: 31672727 DOI: 10.1242/jeb.209486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Amino acids are important nutrients for animals because they are necessary for protein synthesis in particular during growth, as well as for neurotransmission. However, little is known about how animals use past experience to guide their search for amino-acid-rich food. We reasoned that the larvae of Drosophila melanogaster are suitable for investigating this topic because they are the feeding and growth stages in the life cycle of these holometabolous insects. Specifically, we investigated whether experiencing an odour with a 20 amino-acid mixture as a semi-natural tastant during training establishes odour-tastant associative memories. Across a broad concentration range (0.01-20 mmol l-1), such an amino-acid mixture was found to have a rewarding effect, establishing appetitive memory for the odour. To our surprise, however, manipulation of the test conditions revealed that relatively high concentrations of the amino-acid mixture (3.3 mmol l-1 and higher) in addition establish aversive memory for the odour. We then characterized both of these oppositely valenced memories in terms of their dependency on the number of training trials, their temporal stability, their modulation through starvation and the specific changes in locomotion underlying them. Collectively, and in the light of what is known about the neuronal organization of odour-food memory in larval D . melanogaster, our data suggest that these memories are established in parallel. We discuss the similarity of our results to what has been reported for sodium chloride, and the possible neurogenetic bases for concentration-dependent changes in valence when these tastants are used as reinforcers.
Collapse
Affiliation(s)
- Naoko Toshima
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Melisa Kantar Weigelt
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Aliće Weiglein
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Fabian A Boetzl
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany.,Institute for Biology, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| |
Collapse
|
13
|
Mancini N, Hranova S, Weber J, Weiglein A, Schleyer M, Weber D, Thum AS, Gerber B. Reversal learning in Drosophila larvae. Learn Mem 2019; 26:424-435. [PMID: 31615854 PMCID: PMC6796787 DOI: 10.1101/lm.049510.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023]
Abstract
Adjusting behavior to changed environmental contingencies is critical for survival, and reversal learning provides an experimental handle on such cognitive flexibility. Here, we investigate reversal learning in larval Drosophila Using odor-taste associations, we establish olfactory reversal learning in the appetitive and the aversive domain, using either fructose as a reward or high-concentration sodium chloride as a punishment, respectively. Reversal learning is demonstrated both in differential and in absolute conditioning, in either valence domain. In differential conditioning, the animals are first trained such that an odor A is paired, for example, with the reward whereas odor B is not (A+/B); this is followed by a second training phase with reversed contingencies (A/B+). In absolute conditioning, odor B is omitted, such that the animals are first trained with paired presentations of A and reward, followed by unpaired training in the second training phase. Our results reveal "true" reversal learning in that the opposite associative effects of both the first and the second training phase are detectable after reversed-contingency training. In what is a surprisingly quick, one-trial contingency adjustment in the Drosophila larva, the present study establishes a simple and genetically easy accessible study case of cognitive flexibility.
Collapse
Affiliation(s)
- Nino Mancini
- Department of Genetics, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
| | - Sia Hranova
- Institute for Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Julia Weber
- Department of Genetics, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
| | - Aliće Weiglein
- Department of Genetics, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
| | - Michael Schleyer
- Department of Genetics, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
| | - Denise Weber
- Institute for Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Andreas S Thum
- Institute for Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Bertram Gerber
- Department of Genetics, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Institute for Biology, Otto von Guericke University, 39106 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| |
Collapse
|
14
|
Thane M, Viswanathan V, Meyer TC, Paisios E, Schleyer M. Modulations of microbehaviour by associative memory strength in Drosophila larvae. PLoS One 2019; 14:e0224154. [PMID: 31634372 PMCID: PMC6802848 DOI: 10.1371/journal.pone.0224154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022] Open
Abstract
Finding food is a vital skill and a constant task for any animal, and associative learning of food-predicting cues gives an advantage in this daily struggle. The strength of the associations between cues and food depends on a number of parameters, such as the salience of the cue, the strength of the food reward and the number of joint cue-food experiences. We investigate what impact the strength of an associative odour-sugar memory has on the microbehaviour of Drosophila melanogaster larvae. We find that larvae form stronger memories with increasing concentrations of sugar or odour, and that these stronger memories manifest themselves in stronger modulations of two aspects of larval microbehaviour, the rate and the direction of lateral reorientation manoeuvres (so-called head casts). These two modulations of larval behaviour are found to be correlated to each other in every experiment performed, which is in line with a model that assumes that both modulations are controlled by a common motor output. Given that the Drosophila larva is a genetically tractable model organism that is well suited to the study of simple circuits at the single-cell level, these analyses can guide future research into the neuronal circuits underlying the translation of associative memories of different strength into behaviour, and may help to understand how these processes are organised in more complex systems.
Collapse
Affiliation(s)
- Michael Thane
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Magdeburg, Germany
| | - Vignesh Viswanathan
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Magdeburg, Germany
| | - Tessa Christin Meyer
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Magdeburg, Germany
| | - Emmanouil Paisios
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Magdeburg, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Lyutova R, Selcho M, Pfeuffer M, Segebarth D, Habenstein J, Rohwedder A, Frantzmann F, Wegener C, Thum AS, Pauls D. Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells. Nat Commun 2019; 10:3097. [PMID: 31308381 PMCID: PMC6629635 DOI: 10.1038/s41467-019-11092-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Dopaminergic neurons in the brain of the Drosophila larva play a key role in mediating reward information to the mushroom bodies during appetitive olfactory learning and memory. Using optogenetic activation of Kenyon cells we provide evidence that recurrent signaling exists between Kenyon cells and dopaminergic neurons of the primary protocerebral anterior (pPAM) cluster. Optogenetic activation of Kenyon cells paired with odor stimulation is sufficient to induce appetitive memory. Simultaneous impairment of the dopaminergic pPAM neurons abolishes appetitive memory expression. Thus, we argue that dopaminergic pPAM neurons mediate reward information to the Kenyon cells, and in turn receive feedback from Kenyon cells. We further show that this feedback signaling is dependent on short neuropeptide F, but not on acetylcholine known to be important for odor-shock memories in adult flies. Our data suggest that recurrent signaling routes within the larval mushroom body circuitry may represent a mechanism subserving memory stabilization.
Collapse
Affiliation(s)
- Radostina Lyutova
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Maximilian Pfeuffer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Dennis Segebarth
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Würzburg, D-97078, Würzburg, Germany
| | - Jens Habenstein
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.,Department of Behavioral Physiology and Sociobiology, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Astrid Rohwedder
- Department of Genetics, University of Leipzig, D-04103, Leipzig, Germany
| | - Felix Frantzmann
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Andreas S Thum
- Department of Genetics, University of Leipzig, D-04103, Leipzig, Germany
| | - Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|
16
|
Kudow N, Kamikouchi A, Tanimura T. Softness sensing and learning in Drosophila larvae. ACTA ACUST UNITED AC 2019; 222:jeb.196329. [PMID: 30833462 DOI: 10.1242/jeb.196329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/23/2019] [Indexed: 11/20/2022]
Abstract
Mechanosensation provides animals with important sensory information in addition to olfaction and gustation during feeding behavior. Here, we used Drosophila melanogaster larvae to investigate the role of softness sensing in behavior and learning. In the natural environment, larvae need to dig into soft foods for feeding. Finding foods that are soft enough to dig into is likely to be essential for their survival. We report that larvae can discriminate between different agar concentrations and prefer softer agar. Interestingly, we show that larvae on a harder surface search for a softer surface using memory associated with an odor, and that they evaluate foods by balancing softness and sweetness. These findings suggest that larvae integrate mechanosensory information with chemosensory input while foraging. Moreover, we found that the larval preference for softness is affected by genetic background.
Collapse
Affiliation(s)
- Nana Kudow
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan
| | - Teiichi Tanimura
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan .,Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Aichi 464-8602, Japan.,Department of Genetics, Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, 39118 Magdeburg, Germany
| |
Collapse
|
17
|
Weiglein A, Gerstner F, Mancini N, Schleyer M, Gerber B. One-trial learning in larval Drosophila. ACTA ACUST UNITED AC 2019; 26:109-120. [PMID: 30898973 PMCID: PMC6432171 DOI: 10.1101/lm.049106.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/25/2019] [Indexed: 01/22/2023]
Abstract
Animals of many species are capable of “small data” learning, that is, of learning without repetition. Here we introduce larval Drosophila melanogaster as a relatively simple study case for such one-trial learning. Using odor-food associative conditioning, we first show that a sugar that is both sweet and nutritious (fructose) and sugars that are only sweet (arabinose) or only nutritious (sorbitol) all support appetitive one-trial learning. The same is the case for the optogenetic activation of a subset of dopaminergic neurons innervating the mushroom body, the memory center of the insects. In contrast, no one-trial learning is observed for an amino acid reward (aspartic acid). As regards the aversive domain, one-trial learning is demonstrated for high-concentration sodium chloride, but is not observed for a bitter tastant (quinine). Second, we provide follow-up, parametric analyses of odor-fructose learning. Specifically, we ascertain its dependency on the number and duration of training trials, the requirements for the behavioral expression of one-trial odor-fructose memory, its temporal stability, and the feasibility of one-trial differential conditioning. Our results set the stage for a neurogenetic analysis of one-trial learning and define the requirements for modeling mnemonic processes in the larva.
Collapse
Affiliation(s)
- Aliće Weiglein
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Florian Gerstner
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.,Department of Animal Physiology, University Bayreuth, 95447 Bayreuth, Germany
| | - Nino Mancini
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Michael Schleyer
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Bertram Gerber
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.,Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| |
Collapse
|
18
|
Perry CJ, Chittka L. How foresight might support the behavioral flexibility of arthropods. Curr Opin Neurobiol 2018; 54:171-177. [PMID: 30445344 DOI: 10.1016/j.conb.2018.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 11/27/2022]
Abstract
The small brains of insects and other invertebrates are often thought to constrain these animals to live entirely 'in the moment'. In this view, each one of their many seemingly hard-wired behavioral routines is triggered by a precisely defined environmental stimulus configuration, but there is no mental appreciation of the possible outcomes of one's actions, and therefore little flexibility. However, many studies show problem-solving behavior in various arthropod species that falls outside the range of fixed behavior routines. We propose that a basic form of foresight, the ability to predict the outcomes of one's own actions, is at the heart of such behavioral flexibility, and that the evolutionary roots of such outcome expectation are found in the need to disentangle sensory input that is predictable from self-generated motion versus input generated by changes in the outside world. Based on this, locusts, grasshoppers, dragonflies and flies seem to use internal models of the surrounding world to tailor their actions adaptively to predict the imminent future. Honeybees and orb-weaving spiders appear to act towards a desired outcome of their respective constructions, and the genetically pre-programmed routines that govern these constructions are subordinate to achieving the desired goal. Jumping spiders seem to preplan their route to prey suggesting they recognize the spatial challenge and actions necessary to obtain prey. Bumblebees and ants utilize objects not encountered in the wild as types of tools to solve problems in a manner that suggests an awareness of the desired outcome. Here we speculate that it may be simpler, in terms of the required evolutionary changes, computation and neural architecture, for arthropods to recognize their goal and predict the outcomes of their actions towards that goal, rather than having a large number of pre-programmed behaviors necessary to account for their observed behavioral flexibility.
Collapse
Affiliation(s)
- Clint J Perry
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Lars Chittka
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; Wissenschaftskolleg/Institute for Advanced Study, Wallotstrasse 19, 14193 Berlin, Germany
| |
Collapse
|
19
|
Connectomics and function of a memory network: the mushroom body of larval Drosophila. Curr Opin Neurobiol 2018; 54:146-154. [PMID: 30368037 DOI: 10.1016/j.conb.2018.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/04/2018] [Indexed: 11/20/2022]
Abstract
The Drosophila larva is a relatively simple, 10 000-neuron study case for learning and memory with enticing analytical power, combining genetic tractability, the availability of robust behavioral assays, the opportunity for single-cell transgenic manipulation, and an emerging synaptic connectome of its complete central nervous system. Indeed, although the insect mushroom body is a much-studied memory network, the connectome revealed that more than half of the classes of connection within the mushroom body had escaped attention. The connectome also revealed circuitry that integrates, both within and across brain hemispheres, higher-order sensory input, intersecting valence signals, and output neurons that instruct behavior. Further, it was found that activating individual dopaminergic mushroom body input neurons can have a rewarding or a punishing effect on olfactory stimuli associated with it, depending on the relative timing of this activation, and that larvae form molecularly dissociable short-term, long-term, and amnesia-resistant memories. Together, the larval mushroom body is a suitable study case to achieve a nuanced account of molecular function in a behaviorally meaningful memory network.
Collapse
|
20
|
Schleyer M, Fendt M, Schuller S, Gerber B. Associative Learning of Stimuli Paired and Unpaired With Reinforcement: Evaluating Evidence From Maggots, Flies, Bees, and Rats. Front Psychol 2018; 9:1494. [PMID: 30197613 PMCID: PMC6117914 DOI: 10.3389/fpsyg.2018.01494] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/30/2018] [Indexed: 12/02/2022] Open
Abstract
Finding rewards and avoiding punishments are powerful goals of behavior. To maximize reward and minimize punishment, it is beneficial to learn about the stimuli that predict their occurrence, and decades of research have provided insight into the brain processes underlying such associative reinforcement learning. In addition, it is well known in experimental psychology, yet often unacknowledged in neighboring scientific disciplines, that subjects also learn about the stimuli that predict the absence of reinforcement. Here we evaluate evidence for both these learning processes. We focus on two study cases that both provide a baseline level of behavior against which the effects of associative learning can be assessed. Firstly, we report pertinent evidence from Drosophila larvae. A re-analysis of the literature reveals that through paired presentations of an odor A and a sugar reward (A+) the animals learn that the reward can be found where the odor is, and therefore show an above-baseline preference for the odor. In contrast, through unpaired training (A/+) the animals learn that the reward can be found precisely where the odor is not, and accordingly these larvae show a below-baseline preference for it (the same is the case, with inverted signs, for learning through taste punishment). In addition, we present previously unpublished data demonstrating that also during a two-odor, differential conditioning protocol (A+/B) both these learning processes take place in larvae, i.e., learning about both the rewarded stimulus A and the non-rewarded stimulus B (again, this is likewise the case for differential conditioning with taste punishment). Secondly, after briefly discussing published evidence from adult Drosophila, honeybees, and rats, we report an unpublished data set showing that relative to baseline behavior after truly random presentations of a visual stimulus A and punishment, rats exhibit memories of opposite valence upon paired and unpaired training. Collectively, the evidence conforms to classical findings in experimental psychology and suggests that across species animals associatively learn both through paired and through unpaired presentations of stimuli with reinforcement – with opposite valence. While the brain mechanisms of unpaired learning for the most part still need to be uncovered, the immediate implication is that using unpaired procedures as a mnemonically neutral control for associative reinforcement learning may be leading analyses astray.
Collapse
Affiliation(s)
- Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Sarah Schuller
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Behavior Genetics, Institute for Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
21
|
Widmann A, Eichler K, Selcho M, Thum AS, Pauls D. Odor-taste learning in Drosophila larvae. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:47-54. [PMID: 28823531 DOI: 10.1016/j.jinsphys.2017.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
The Drosophila larva is an attractive model system to study fundamental questions in the field of neuroscience. Like the adult fly, the larva offers a seemingly unlimited genetic toolbox, which allows one to visualize, silence or activate neurons down to the single cell level. This, combined with its simplicity in terms of cell numbers, offers a useful system to study the neuronal correlates of complex processes including associative odor-taste learning and memory formation. Here, we summarize the current knowledge about odor-taste learning and memory at the behavioral level and integrate the recent progress on the larval connectome to shed light on the sub-circuits that allow Drosophila larvae to integrate present sensory input in the context of past experience and to elicit an appropriate behavioral response.
Collapse
Affiliation(s)
| | - Katharina Eichler
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany; HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mareike Selcho
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Andreas S Thum
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany; Department of Genetics, University of Leipzig, D-04103 Leipzig, Germany.
| | - Dennis Pauls
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| |
Collapse
|
22
|
Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nat Commun 2018; 9:1104. [PMID: 29549237 PMCID: PMC5856778 DOI: 10.1038/s41467-018-03130-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023] Open
Abstract
The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.
Collapse
|
23
|
Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Rivlin PK, Hess H, Zhao T, Parag T, Berg S, Huang G, Katz W, Olbris DJ, Plaza S, Umayam L, Aniceto R, Chang LA, Lauchie S, Ogundeyi O, Ordish C, Shinomiya A, Sigmund C, Takemura S, Tran J, Turner GC, Rubin GM, Scheffer LK. A connectome of a learning and memory center in the adult Drosophila brain. eLife 2017; 6. [PMID: 28718765 PMCID: PMC5550281 DOI: 10.7554/elife.26975] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB’s α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only 6% of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall. DOI:http://dx.doi.org/10.7554/eLife.26975.001
Collapse
Affiliation(s)
- Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toshihide Hige
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Allan Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Harald Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toufiq Parag
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gary Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - William Katz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephen Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Roxanne Aniceto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lei-Ann Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Shirley Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Sigmund
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Julie Tran
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
24
|
Almeida-Carvalho MJ, Berh D, Braun A, Chen YC, Eichler K, Eschbach C, Fritsch PMJ, Gerber B, Hoyer N, Jiang X, Kleber J, Klämbt C, König C, Louis M, Michels B, Miroschnikow A, Mirth C, Miura D, Niewalda T, Otto N, Paisios E, Pankratz MJ, Petersen M, Ramsperger N, Randel N, Risse B, Saumweber T, Schlegel P, Schleyer M, Soba P, Sprecher SG, Tanimura T, Thum AS, Toshima N, Truman JW, Yarali A, Zlatic M. The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 Drosophila larvae. J Exp Biol 2017; 220:2452-2475. [DOI: 10.1242/jeb.156646] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 12/25/2022]
Abstract
ABSTRACT
Mapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva – because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour–taste associative learning, as well as light/dark–electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages.
Collapse
Affiliation(s)
| | - Dimitri Berh
- Institute of Neurobiology and Behavioural Biology, University of Münster, 48149 Münster, Germany
- Department of Mathematics and Computer Science, University of Münster, 48149 Münster, Germany
| | - Andreas Braun
- EMBL/CRG Systems Biology Unit, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Yi-chun Chen
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | - Katharina Eichler
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Claire Eschbach
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Bertram Gerber
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
- Institute of Biology, Otto von Guericke University Magdeburg, 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nina Hoyer
- Center for Molecular Neurobiology, University of Hamburg, 20251 Hamburg, Germany
| | - Xiaoyi Jiang
- Department of Mathematics and Computer Science, University of Münster, 48149 Münster, Germany
| | - Jörg Kleber
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | - Christian Klämbt
- Institute of Neurobiology and Behavioural Biology, University of Münster, 48149 Münster, Germany
| | - Christian König
- Leibniz Institute for Neurobiology (Molecular Systems Biology), 39118 Magdeburg, Germany
- Institute of Pharmacology and Toxicology, Otto von Guericke University Magdeburg, 39118 Magdeburg, Germany
| | - Matthieu Louis
- EMBL/CRG Systems Biology Unit, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93117, USA
| | - Birgit Michels
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | | | - Christen Mirth
- Gulbenkian Institute of Science, 2780-156 Oeiras, Portugal
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Daisuke Miura
- Department of Biology, Kyushu University, 819-0395 Fukuoka, Japan
| | - Thomas Niewalda
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | - Nils Otto
- Institute of Neurobiology and Behavioural Biology, University of Münster, 48149 Münster, Germany
| | - Emmanouil Paisios
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | | | - Meike Petersen
- Center for Molecular Neurobiology, University of Hamburg, 20251 Hamburg, Germany
| | - Noel Ramsperger
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Nadine Randel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Benjamin Risse
- Institute of Neurobiology and Behavioural Biology, University of Münster, 48149 Münster, Germany
- Department of Mathematics and Computer Science, University of Münster, 48149 Münster, Germany
| | - Timo Saumweber
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | | | - Michael Schleyer
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
| | - Peter Soba
- Center for Molecular Neurobiology, University of Hamburg, 20251 Hamburg, Germany
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Teiichi Tanimura
- Department of Biology, Kyushu University, 819-0395 Fukuoka, Japan
| | - Andreas S. Thum
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Naoko Toshima
- Leibniz Institute for Neurobiology (Genetics), 39118 Magdeburg, Germany
- Department of Biology, Kyushu University, 819-0395 Fukuoka, Japan
| | - Jim W. Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Ayse Yarali
- Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
- Leibniz Institute for Neurobiology (Molecular Systems Biology), 39118 Magdeburg, Germany
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
25
|
Dylla KV, Raiser G, Galizia CG, Szyszka P. Trace Conditioning in Drosophila Induces Associative Plasticity in Mushroom Body Kenyon Cells and Dopaminergic Neurons. Front Neural Circuits 2017; 11:42. [PMID: 28676744 PMCID: PMC5476701 DOI: 10.3389/fncir.2017.00042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/29/2017] [Indexed: 02/04/2023] Open
Abstract
Dopaminergic neurons (DANs) signal punishment and reward during associative learning. In mammals, DANs show associative plasticity that correlates with the discrepancy between predicted and actual reinforcement (prediction error) during classical conditioning. Also in insects, such as Drosophila, DANs show associative plasticity that is, however, less understood. Here, we study associative plasticity in DANs and their synaptic partners, the Kenyon cells (KCs) in the mushroom bodies (MBs), while training Drosophila to associate an odorant with a temporally separated electric shock (trace conditioning). In most MB compartments DANs strengthened their responses to the conditioned odorant relative to untrained animals. This response plasticity preserved the initial degree of similarity between the odorant- and the shock-induced spatial response patterns, which decreased in untrained animals. Contrary to DANs, KCs (α'/β'-type) decreased their responses to the conditioned odorant relative to untrained animals. We found no evidence for prediction error coding by DANs during conditioning. Rather, our data supports the hypothesis that DAN plasticity encodes conditioning-induced changes in the odorant's predictive power.
Collapse
Affiliation(s)
- Kristina V Dylla
- Department of Biology, Neurobiology, University of KonstanzKonstanz, Germany
| | - Georg Raiser
- Department of Biology, Neurobiology, University of KonstanzKonstanz, Germany
| | - C Giovanni Galizia
- Department of Biology, Neurobiology, University of KonstanzKonstanz, Germany
| | - Paul Szyszka
- Department of Biology, Neurobiology, University of KonstanzKonstanz, Germany
| |
Collapse
|
26
|
Michels B, Saumweber T, Biernacki R, Thum J, Glasgow RDV, Schleyer M, Chen YC, Eschbach C, Stocker RF, Toshima N, Tanimura T, Louis M, Arias-Gil G, Marescotti M, Benfenati F, Gerber B. Pavlovian Conditioning of Larval Drosophila: An Illustrated, Multilingual, Hands-On Manual for Odor-Taste Associative Learning in Maggots. Front Behav Neurosci 2017; 11:45. [PMID: 28469564 PMCID: PMC5395560 DOI: 10.3389/fnbeh.2017.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/27/2017] [Indexed: 01/25/2023] Open
Abstract
Larval Drosophila offer a study case for behavioral neurogenetics that is simple enough to be experimentally tractable, yet complex enough to be worth the effort. We provide a detailed, hands-on manual for Pavlovian odor-reward learning in these animals. Given the versatility of Drosophila for genetic analyses, combined with the evolutionarily shared genetic heritage with humans, the paradigm has utility not only in behavioral neurogenetics and experimental psychology, but for translational biomedicine as well. Together with the upcoming total synaptic connectome of the Drosophila nervous system and the possibilities of single-cell-specific transgene expression, it offers enticing opportunities for research. Indeed, the paradigm has already been adopted by a number of labs and is robust enough to be used for teaching in classroom settings. This has given rise to a demand for a detailed, hands-on manual directed at newcomers and/or at laboratory novices, and this is what we here provide. The paradigm and the present manual have a unique set of features: The present manual can thus foster science education at an earlier age and enable research by a broader community than has been the case to date.
Collapse
Affiliation(s)
- Birgit Michels
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Timo Saumweber
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Roland Biernacki
- Department Neurobiology and Genetics, Julius Maximilians UniversityWürzburg, Germany
| | - Jeanette Thum
- Department Neurobiology and Genetics, Julius Maximilians UniversityWürzburg, Germany
| | - Rupert D V Glasgow
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael Schleyer
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Yi-Chun Chen
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | | | - Naoko Toshima
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa BarbaraSanta Barbara, CA, USA
| | - Gonzalo Arias-Gil
- Department Systems Physiology, Leibniz Institute for Neurobiology MagdeburgMagdeburg, Germany
| | | | - Fabio Benfenati
- Italian Institute of Technology, Center for Synaptic Neuroscience and TechnologyGenova, Italy
| | - Bertram Gerber
- Department of Genetics, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Institute of Biology, Otto von Guericke UniversityMagdeburg, Germany.,Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
27
|
Paisios E, Rjosk A, Pamir E, Schleyer M. Common microbehavioral "footprint" of two distinct classes of conditioned aversion. ACTA ACUST UNITED AC 2017; 24:191-198. [PMID: 28416630 PMCID: PMC5397685 DOI: 10.1101/lm.045062.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Avoiding unfavorable situations is a vital skill and a constant task for any animal. Situations can be unfavorable because they feature something that the animal wants to escape from, or because they do not feature something that it seeks to obtain. We investigate whether the microbehavioral mechanisms by which these two classes of aversion come about are shared or distinct. We find that larval Drosophila avoid odors either previously associated with a punishment, or previously associated with the lack of a reward. These two classes of conditioned aversion are found to be strikingly alike at the microbehavioral level. In both cases larvae show more head casts when oriented toward the odor source than when oriented away, and direct fewer of their head casts toward the odor than away when oriented obliquely to it. Thus, conditioned aversion serving two qualitatively different functions—escape from a punishment or search for a reward—is implemented by the modulation of the same microbehavioral features. These features also underlie conditioned approach, albeit with opposite sign. That is, the larvae show conditioned approach toward odors previously associated with a reward, or with the lack of a punishment. In order to accomplish both these classes of conditioned approach the larvae show fewer head casts when oriented toward an odor, and direct more of their head casts toward it when they are headed obliquely. Given that the Drosophila larva is a genetically tractable model organism that is well suited to study simple circuits at the single-cell level, these analyses can guide future research into the neuronal circuits underlying conditioned approach and aversion, and the computational principles of conditioned search and escape.
Collapse
Affiliation(s)
- Emmanouil Paisios
- Leibniz Institute for Neurobiology (LIN), Department of Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Annabell Rjosk
- Leibniz Institute for Neurobiology (LIN), Department of Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Evren Pamir
- Leibniz Institute for Neurobiology (LIN), Department of Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology (LIN), Department of Genetics of Learning and Memory, 39118 Magdeburg, Germany
| |
Collapse
|
28
|
Kudow N, Miura D, Schleyer M, Toshima N, Gerber B, Tanimura T. Preference for and learning of amino acids in larval Drosophila. Biol Open 2017; 6:365-369. [PMID: 28193602 PMCID: PMC5374393 DOI: 10.1242/bio.020412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis - and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.
Collapse
Affiliation(s)
- Nana Kudow
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Daisuke Miura
- Division of Biological Science, Graduate School of Systems Life Sciences, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Michael Schleyer
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Brenneckestrasse 6, Magdeburg 39118, Germany
| | - Naoko Toshima
- Division of Biological Science, Graduate School of Systems Life Sciences, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan.,Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Brenneckestrasse 6, Magdeburg 39118, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Brenneckestrasse 6, Magdeburg 39118, Germany.,Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany.,Otto von Guericke University Magdeburg, Institute for Biology, Universitätsplatz 2, Magdeburg 39106, Germany
| | - Teiichi Tanimura
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan .,Division of Biological Science, Graduate School of Systems Life Sciences, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
29
|
Sun J, Liu C, Bai X, Li X, Li J, Zhang Z, Zhang Y, Guo J, Li Y. Drosophila FIT is a protein-specific satiety hormone essential for feeding control. Nat Commun 2017; 8:14161. [PMID: 28102207 PMCID: PMC5253699 DOI: 10.1038/ncomms14161] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023] Open
Abstract
Protein homeostasis is critical for health and lifespan of animals. However, the mechanisms for controlling protein feeding remain poorly understood. Here we report that in Drosophila, protein intake-induced feeding inhibition (PIFI) is specific to protein-containing food, and this effect is mediated by a fat body (FB) peptide named female-specific independent of transformer (FIT). Upon consumption of protein food, FIT expression is greatly elevated. Secreted FIT peptide in the fly haemolymph conveys this metabolic message to the brain, thereby promoting the release of Drosophila insulin-like peptide 2 (DILP2) and suppressing further protein intake. Interestingly, Fit is a sexually dimorphic gene, and consequently protein consumption-induced insulin release, as well as protein feeding behaviour, are also dimorphic between sexes. Thus, our findings reveal a protein-specific satiety hormone, providing important insights into the complex regulation of feeding decision, as well as the sexual dimorphism in feeding behaviour.
Collapse
Affiliation(s)
- Jinghan Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobing Bai
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Xiaoting Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingyun Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiping Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunpeng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
30
|
Wystrach A, Lagogiannis K, Webb B. Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae. eLife 2016; 5. [PMID: 27751233 PMCID: PMC5117870 DOI: 10.7554/elife.15504] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022] Open
Abstract
Taxis behaviour in Drosophila larva is thought to consist of distinct control mechanisms triggering specific actions. Here, we support a simpler hypothesis: that taxis results from direct sensory modulation of continuous lateral oscillations of the anterior body, sparing the need for ‘action selection’. Our analysis of larvae motion reveals a rhythmic, continuous lateral oscillation of the anterior body, encompassing all head-sweeps, small or large, without breaking the oscillatory rhythm. Further, we show that an agent-model that embeds this hypothesis reproduces a surprising number of taxis signatures observed in larvae. Also, by coupling the sensory input to a neural oscillator in continuous time, we show that the mechanism is robust and biologically plausible. The mechanism provides a simple architecture for combining information across modalities, and explaining how learnt associations modulate taxis. We discuss the results in the light of larval neural circuitry and make testable predictions. DOI:http://dx.doi.org/10.7554/eLife.15504.001
Collapse
Affiliation(s)
- Antoine Wystrach
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.,Centre de recherche sur la cognition animal, CNRS, Universite de Toulouse, Toulouse, United Kingdom
| | | | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Das G, Lin S, Waddell S. Remembering Components of Food in Drosophila. Front Integr Neurosci 2016; 10:4. [PMID: 26924969 PMCID: PMC4759284 DOI: 10.3389/fnint.2016.00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/25/2016] [Indexed: 12/28/2022] Open
Abstract
Remembering features of past feeding experience can refine foraging and food choice. Insects can learn to associate sensory cues with components of food, such as sugars, amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila some food components activate unique subsets of dopaminergic neurons (DANs) that innervate distinct functional zones on the mushroom bodies (MBs). This architecture suggests that the overall dopaminergic neuron population could provide a potential cellular substrate through which the fly might learn to value a variety of food components. In addition, such an arrangement predicts that individual component memories reside in unique locations. DANs are also critical for food memory consolidation and deprivation-state dependent motivational control of the expression of food-relevant memories. Here, we review our current knowledge of how nutrient-specific memories are formed, consolidated and specifically retrieved in insects, with a particular emphasis on Drosophila.
Collapse
Affiliation(s)
- Gaurav Das
- Centre for Neural Circuits and Behaviour, University of OxfordOxford, UK
| | - Suewei Lin
- Centre for Neural Circuits and Behaviour, University of OxfordOxford, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxford, UK
| |
Collapse
|
32
|
Rohwedder A, Wenz NL, Stehle B, Huser A, Yamagata N, Zlatic M, Truman JW, Tanimoto H, Saumweber T, Gerber B, Thum AS. Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila. Curr Biol 2016; 26:661-9. [PMID: 26877086 DOI: 10.1016/j.cub.2016.01.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 12/01/2022]
Abstract
Dopaminergic neurons serve multiple functions, including reinforcement processing during associative learning [1-12]. It is thus warranted to understand which dopaminergic neurons mediate which function. We study larval Drosophila, in which only approximately 120 of a total of 10,000 neurons are dopaminergic, as judged by the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine biosynthesis [5, 13]. Dopaminergic neurons mediating reinforcement in insect olfactory learning target the mushroom bodies, a higher-order "cortical" brain region [1-5, 11, 12, 14, 15]. We discover four previously undescribed paired neurons, the primary protocerebral anterior medial (pPAM) neurons. These neurons are TH positive and subdivide the medial lobe of the mushroom body into four distinct subunits. These pPAM neurons are acutely necessary for odor-sugar reward learning and require intact TH function in this process. However, they are dispensable for aversive learning and innate behavior toward the odors and sugars employed. Optogenetical activation of pPAM neurons is sufficient as a reward. Thus, the pPAM neurons convey a likely dopaminergic reward signal. In contrast, DL1 cluster neurons convey a corresponding punishment signal [5], suggesting a cellular division of labor to convey dopaminergic reward and punishment signals. On the level of individually identified neurons, this uncovers an organizational principle shared with adult Drosophila and mammals [1-4, 7, 9, 10] (but see [6]). The numerical simplicity and connectomic tractability of the larval nervous system [16-19] now offers a prospect for studying circuit principles of dopamine function at unprecedented resolution.
Collapse
Affiliation(s)
- Astrid Rohwedder
- Department of Biology, University of Fribourg, 1600 Fribourg, Switzerland; Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Nana L Wenz
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Bernhard Stehle
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Annina Huser
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Nobuhiro Yamagata
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, 980-8577 Sendai, Japan
| | | | | | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, 980-8577 Sendai, Japan
| | - Timo Saumweber
- Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für Neurobiologie (LIN), 39118 Magdeburg, Germany.
| | - Bertram Gerber
- Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für Neurobiologie (LIN), 39118 Magdeburg, Germany; Otto von Guericke Universität Magdeburg, Institut für Biologie, Verhaltensgenetik, Universitätsplatz 2, 39106 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany.
| | - Andreas S Thum
- Department of Biology, University of Fribourg, 1600 Fribourg, Switzerland; Department of Biology, University of Konstanz, 78464 Konstanz, Germany; Zukunftskolleg, University of Konstanz, 78464 Konstanz, Germany.
| |
Collapse
|
33
|
Lihoreau M, Poissonnier LA, Isabel G, Dussutour A. Drosophila females trade off good nutrition with high quality oviposition sites when choosing foods. J Exp Biol 2016; 219:2514-24. [DOI: 10.1242/jeb.142257] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/06/2016] [Indexed: 02/04/2023]
Abstract
Animals, from insects to human, select foods to regulate their acquisition of key nutrients in amounts and balances maximising fitness. In species where the nutrition of juveniles depends on parents, adults must make challenging foraging decisions that simultaneously address their own nutrient needs as well as those of the progeny. Here we examined how fruit flies Drosophila melanogaster, a species where individuals eat and lay eggs in decaying fruits, integrate feeding decisions (individual nutrition) and oviposition decisions (offspring nutrition) when foraging. Using cafeteria assays with artificial diets varying in concentrations and ratios of protein to carbohydrates, we show that Drosophila females exhibit complex foraging patterns, alternating between laying eggs on high carbohydrate foods and feeding on foods with different nutrient contents depending on their own nutritional state. Although larvae showed faster development on high protein foods, both survival and learning performances were higher on balanced foods. We suggest that the apparent mismatch between the oviposition preference of females for high carbohydrate foods and the high performances of larvae on balanced foods reflects a natural situation where high carbohydrate ripened fruits gradually enrich in proteinaceous yeast as they start rotting, thereby yielding optimal nutrition for the developing larvae. Our findings that animals with rudimentary parental care uncouple feeding and egg-laying decisions in order to balance their own diet and provide a nutritionally optimal environment to their progeny reveals unsuspected levels of complexity in the nutritional ecology of parent-offspring interactions.
Collapse
Affiliation(s)
- Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| | - Laure-Anne Poissonnier
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
- Current address: School of Agriculture, Food and Wine, The University of Adelaide, 5005 12 SA, Australia
| | - Guillaume Isabel
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| | - Audrey Dussutour
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| |
Collapse
|
34
|
Apostolopoulou AA, Rist A, Thum AS. Taste processing in Drosophila larvae. Front Integr Neurosci 2015; 9:50. [PMID: 26528147 PMCID: PMC4602287 DOI: 10.3389/fnint.2015.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/25/2015] [Indexed: 02/04/2023] Open
Abstract
The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances.
Collapse
Affiliation(s)
| | - Anna Rist
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Andreas S Thum
- Department of Biology, University of Konstanz Konstanz, Germany ; Zukunftskolleg, University of Konstanz Konstanz, Germany
| |
Collapse
|
35
|
Schleyer M, Reid SF, Pamir E, Saumweber T, Paisios E, Davies A, Gerber B, Louis M. The impact of odor-reward memory on chemotaxis in larval Drosophila. ACTA ACUST UNITED AC 2015; 22:267-77. [PMID: 25887280 PMCID: PMC4408773 DOI: 10.1101/lm.037978.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/16/2015] [Indexed: 01/29/2023]
Abstract
How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor “valence” (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior.
Collapse
Affiliation(s)
- Michael Schleyer
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Samuel F Reid
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Evren Pamir
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Timo Saumweber
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Emmanouil Paisios
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Alexander Davies
- University of Edinburgh, School of Informatics, Edinburgh EH8 9AB, United Kingdom
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany Otto von Guericke University Magdeburg, Institute for Biology, Behavior Genetics, 39106 Magdeburg, Germany Center of Behavioural Brain Science (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Matthieu Louis
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
36
|
Identity-specific coding of future rewards in the human orbitofrontal cortex. Proc Natl Acad Sci U S A 2015; 112:5195-200. [PMID: 25848032 DOI: 10.1073/pnas.1503550112] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nervous systems must encode information about the identity of expected outcomes to make adaptive decisions. However, the neural mechanisms underlying identity-specific value signaling remain poorly understood. By manipulating the value and identity of appetizing food odors in a pattern-based imaging paradigm of human classical conditioning, we were able to identify dissociable predictive representations of identity-specific reward in orbitofrontal cortex (OFC) and identity-general reward in ventromedial prefrontal cortex (vmPFC). Reward-related functional coupling between OFC and olfactory (piriform) cortex and between vmPFC and amygdala revealed parallel pathways that support identity-specific and -general predictive signaling. The demonstration of identity-specific value representations in OFC highlights a role for this region in model-based behavior and reveals mechanisms by which appetitive behavior can go awry.
Collapse
|