1
|
Flanagan L, Mansur BDM, Reichert C, Richter A, Golbabaei S, Kizilirmak JM, Sweeney-Reed CM. Exploring anterior thalamus functional connectivity with cortical regions in prospective memory with ultra-high-field functional MRI. Brain Commun 2025; 7:fcaf135. [PMID: 40276704 PMCID: PMC12018800 DOI: 10.1093/braincomms/fcaf135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Prospective memory, or memory for future intentions, engages particular cortical regions. Lesion studies also implicate the thalamus, with prospective memory deterioration following thalamic stroke. Neuroimaging, anatomical and lesion studies suggest the anterior nuclei of the thalamus (ANT), in particular, are involved in episodic memory, with electrophysiological studies suggesting an active role in selecting neural assemblies underlying particular memory traces. Here, we hypothesized that the ANT are engaged in realizing prospectively-encoded intentions, detectable using ultra-high-field strength functional MRI. Using a within-subject design, participants (N = 14; age 20-35 years) performed an ongoing n-back working memory task with two cognitive loads, each with and without a prospective memory component, during 7-Tesla functional MRI. Seed-to-voxel whole brain functional connectivity analyses were performed to establish whether including a prospective memory component in an ongoing task results in greater connectivity between ANT and cortical regions engaged in prospective memory. Repeated measures ANOVAs were applied to behavioral and connectivity measures, with the factors Task Type (with prospective memory or not) and N-Back (2-back or 3-back). Response accuracy was greater and reaction times faster without the prospective memory component, and accuracy was higher in the 2- than 3-back condition. Task Type had a main effect on connectivity with an ANT seed, with greater ANT-DLPFC and ANT-STG connectivity when including a prospective memory component. Post hoc testing based on a significant interaction showed greater ANT-DLPFC connectivity (p-FWE = 0.007) when prospective memory was included with the low cognitive load and ANT-STG connectivity (p-FWE = 0.019) with the high cognitive load ongoing task. Direct comparison showed greater functional connectivity between these areas and the ANT than dorsomedial nucleus of the thalamus (DMNT) during prospective remembering. Enhanced ANT-DLPFC connectivity, a brain region with an established role in strategic monitoring for prospective memory cues, arose with a low cognitive load ongoing task that enabled monitoring. This connectivity was significantly less on direct comparison with increasing the cognitive load of the ongoing task without prospective memory, suggesting specificity for prospective memory. Greater ANT-STG connectivity on prospective memory inclusion in the higher cognitive load ongoing task fits with reported STG activation on prospective memory through spontaneous retrieval. Lower connectivity on direct comparison with a DMNT seed suggests ANT specificity. The findings fit with a coordinating role for the ANT in prospective remembering. Given the small sample, these findings should be considered preliminary, with replication required.
Collapse
Affiliation(s)
- Luke Flanagan
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Bruno de Matos Mansur
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
| | | | - Anni Richter
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, 39120 Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, 39120 Magdeburg, Germany
| | - Soroosh Golbabaei
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Jasmin M Kizilirmak
- Neurodidactics and NeuroLab, Institute of Psychology, University of Hildesheim, 31141 Hildesheim, Germany
- German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
2
|
Zhang E, Hauson AO, Pollard AA, Zelman D, Ulibarri M, Kapalka G, Fortea L, Radua J. Lateralized white matter integrity changes across the lifespan in major depression: AES-SDM meta-analysis. Psychiatry Res Neuroimaging 2025; 348:111960. [PMID: 40048924 DOI: 10.1016/j.pscychresns.2025.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 03/15/2025]
Abstract
This meta-analysis examined white matter fractional anisotropy (FA) differences across the lifespan to better understand underlying neurobiological mechanisms of major depressive disorder (MDD). Using anisotropic effect size-based-signed differential mapping (AES-SDM), the study meta-analyzed 67 whole-brain FA voxel-based analysis (VBA) and tract-based spatial statistics (TBSS) studies. The sample included 3620 individuals with MDD and 3764 age-matched healthy controls, ranging from adolescence to older adulthood. AES-SDM uses anisotropic kernels combined with random-effects models and permutation tests to perform robust neuroimaging meta-analysis. Between-group analyses uncovered a lateralization effect: Adolescent and adult MDD were associated with left-hemisphere abnormalities, while older adult MDD was associated with right-hemisphere abnormalities. Specifically, MDD was associated with lower left anterior thalamic projection, left pons, left corticospinal projection, and left cingulum FA in adolescents; lower left optic radiation, left striatum, left cingulum, and left inferior longitudinal fasciculus FA in adults; and lower right anterior thalamic projection, right fronto-occipital fasciculus, right striatum, right superior longitudinal fasciculus, and left inferior longitudinal fasciculus FA in older adults. The laterality seen in the current data and previous research could potentially serve as biomarkers to improve diagnostic accuracy. It is recommended that future white matter MDD primary studies include more adolescents and older adults.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; California School of Professional Psychology, Clinical Psychopharmacology MS Program, San Diego, CA, USA.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA
| | - Diane Zelman
- California School of Professional Psychology, Clinical Psychology PhD Program, San Francisco, CA, USA
| | - Monica Ulibarri
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA
| | - George Kapalka
- California School of Professional Psychology, Clinical Psychopharmacology MS Program, San Diego, CA, USA
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Passiatore R, Lupo A, Sambuco N, Antonucci LA, Stolfa G, Bertolino A, Popolizio T, Suchan B, Pergola G. Interindividual Variability In Memory Performance Is Related To Cortico-Thalamic Networks During Memory Encoding And Retrieval. J Neurosci 2025; 45:e0975242025. [PMID: 40147936 PMCID: PMC12060627 DOI: 10.1523/jneurosci.0975-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 03/29/2025] Open
Abstract
Encoding new memories relies on functional connections between the medial temporal lobe and the frontoparietal cortices. Multi-scan fMRI showed changes in these functional connections before and after memory encoding, potentially influenced by the thalamus. As different thalamic nuclei are interconnected with distinct cortical networks, we hypothesized that variations in cortico-thalamic recruitment may impact individual memory performance.We used a multi-scan fMRI protocol including a resting-state scan followed by an associative memory task encompassing encoding and retrieval phases, in two independent samples of healthy adults (N1=29, mean age=26, males=35%; N2=108; mean age=28, males=52%). Individual activity and functional connectivity were analyzed in the native space to minimize registration bias. By modeling the direct and indirect effects of cortico-thalamic recruitment on memory using Structural Equation Modeling, we showed a positive association between resting-state functional connectivity of the medial thalamic subdivision within the frontoparietal network and memory performance across samples (effect size R2 ranging between 0.27 and 0.36; p-values between 0.01 and 4e-05). This direct relationship was mediated by decreased activation of the anterior subdivision during encoding (R2 ranging between 0.04 and 0.2; p-values between 0.05 and 0.006) and by increased activation of the medial subdivision during retrieval (R2 ranging between 0.04 and 0.2; p-values between 0.05 and 0.004). Moreover, three distinct clusters of individuals displayed different cortico-thalamic patterns across memory phases.We suggest that associative memory encoding relies on the distinct cortico-thalamic pathways involving medial thalamic recruitment and suppression of anterior subdivision to support the successful encoding of new memories.Significance statement Every person is unique in their learning process and related brain functional organization. Prior research has mainly aimed to find shared patterns in how the brain responds to external stimuli, often overlooking individual behavioral differences. We hypothesized that individuals may recruit different neural resources supporting their learning abilities. We investigated whether specific brain configurations are beneficial to individual memory performance. We found that the baseline configuration of select cortico-thalamic networks involving the medial thalamic subdivision supports memory performance via the indirect effects of the anterior thalamic subdivision deactivation and medial activation during the memory task. We propose that cortico-thalamic functioning involving the anterior and medial thalamus underlies interindividual variability in associative memory encoding.
Collapse
Affiliation(s)
- Roberta Passiatore
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205 Baltimore, MD, United States
| | - Antonella Lupo
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Nicola Sambuco
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Linda A Antonucci
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppe Stolfa
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Psychiatric Unit - University Hospital, 70124 Bari, Italy
| | - Teresa Popolizio
- Department of Neuroradiology, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Boris Suchan
- Institute of Cognitive Neuroscience, Clinical Neuropsychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205 Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 21205 Baltimore, MD, United States
| |
Collapse
|
4
|
Krueger J, Krauth R, Reichert C, Perdikis S, Vogt S, Huchtemann T, Dürschmid S, Sickert A, Lamprecht J, Huremovic A, Görtler M, Nasuto SJ, Tsai IC, Knight RT, Hinrichs H, Heinze HJ, Lindquist S, Sailer M, Millán JDR, Sweeney-Reed CM. Hebbian plasticity induced by temporally coincident BCI enhances post-stroke motor recovery. Sci Rep 2024; 14:18700. [PMID: 39134592 PMCID: PMC11319604 DOI: 10.1038/s41598-024-69037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Functional electrical stimulation (FES) can support functional restoration of a paretic limb post-stroke. Hebbian plasticity depends on temporally coinciding pre- and post-synaptic activity. A tight temporal relationship between motor cortical (MC) activity associated with attempted movement and FES-generated visuo-proprioceptive feedback is hypothesized to enhance motor recovery. Using a brain-computer interface (BCI) to classify MC spectral power in electroencephalographic (EEG) signals to trigger FES-delivery with detection of movement attempts improved motor outcomes in chronic stroke patients. We hypothesized that heightened neural plasticity earlier post-stroke would further enhance corticomuscular functional connectivity and motor recovery. We compared subcortical non-dominant hemisphere stroke patients in BCI-FES and Random-FES (FES temporally independent of MC movement attempt detection) groups. The primary outcome measure was the Fugl-Meyer Assessment, Upper Extremity (FMA-UE). We recorded high-density EEG and transcranial magnetic stimulation-induced motor evoked potentials before and after treatment. The BCI group showed greater: FMA-UE improvement; motor evoked potential amplitude; beta oscillatory power and long-range temporal correlation reduction over contralateral MC; and corticomuscular coherence with contralateral MC. These changes are consistent with enhanced post-stroke motor improvement when movement is synchronized with MC activity reflecting attempted movement.
Collapse
Affiliation(s)
- Johanna Krueger
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Richard Krauth
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | | | - Serafeim Perdikis
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Susanne Vogt
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Tessa Huchtemann
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Stefan Dürschmid
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Almut Sickert
- Neurorehabilitation Centre, MEDIAN, Magdeburg, Germany
| | - Juliane Lamprecht
- Neurorehabilitation Centre, MEDIAN, Magdeburg, Germany
- Health and Care Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Almir Huremovic
- Neurorehabilitation Centre, MEDIAN, Magdeburg, Germany
- Department of Neurology, Ingolstadt Hospital, Ingolstadt, Germany
| | - Michael Görtler
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | | | - I-Chin Tsai
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California -Berkeley, Berkeley, USA
- Department of Psychology, University of California -Berkeley, Berkeley, USA
| | - Hermann Hinrichs
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
| | - Sabine Lindquist
- Department of Neurology, Pfeiffersche Stiftung, Magdeburg, Germany
| | | | - Jose Del R Millán
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, USA
- Department of Neurology, The University of Texas at Austin, Austin, USA
- Mulva Clinic for the Neurosciences, The University of Texas at Austin, Austin, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
5
|
Stieger JR, Pinheiro-Chagas P, Fang Y, Li J, Lusk Z, Perry CM, Girn M, Contreras D, Chen Q, Huguenard JR, Spreng RN, Edlow BL, Wagner AD, Buch V, Parvizi J. Cross-regional coordination of activity in the human brain during autobiographical self-referential processing. Proc Natl Acad Sci U S A 2024; 121:e2316021121. [PMID: 39078679 PMCID: PMC11317603 DOI: 10.1073/pnas.2316021121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
For the human brain to operate, populations of neurons across anatomical structures must coordinate their activity within milliseconds. To date, our understanding of such interactions has remained limited. We recorded directly from the hippocampus (HPC), posteromedial cortex (PMC), ventromedial/orbital prefrontal cortex (OFC), and the anterior nuclei of the thalamus (ANT) during two experiments of autobiographical memory processing that are known from decades of neuroimaging work to coactivate these regions. In 31 patients implanted with intracranial electrodes, we found that the presentation of memory retrieval cues elicited a significant increase of low frequency (LF < 6 Hz) activity followed by cross-regional phase coherence of this LF activity before select populations of neurons within each of the four regions increased high-frequency (HF > 70 Hz) activity. The power of HF activity was modulated by memory content, and its onset followed a specific temporal order of ANT→HPC/PMC→OFC. Further, we probed cross-regional causal effective interactions with repeated electrical pulses and found that HPC stimulations cause the greatest increase in LF-phase coherence across all regions, whereas the stimulation of any region caused the greatest LF-phase coherence between that particular region and ANT. These observations support the role of the ANT in gating, and the HPC in synchronizing, the activity of cortical midline structures when humans retrieve self-relevant memories of their past. Our findings offer a fresh perspective, with high temporal fidelity, about the dynamic signaling and underlying causal connections among distant regions when the brain is actively involved in retrieving self-referential memories from the past.
Collapse
Affiliation(s)
- James R. Stieger
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Pedro Pinheiro-Chagas
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
| | - Ying Fang
- School of Psychology, South China Normal University, Guangzhou510631, China
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Zoe Lusk
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Claire M. Perry
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Manesh Girn
- Montreal Neurological Institute, Department Neurology and Neurosurgery, McGill University, Montreal, QCH3G 1A4, Canada
| | - Diego Contreras
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, PA19104
| | - Qi Chen
- School of Psychology, South China Normal University, Guangzhou510631, China
| | - John R. Huguenard
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford, CA94305
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department Neurology and Neurosurgery, McGill University, Montreal, QCH3G 1A4, Canada
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Anthony D. Wagner
- Wu Tsai Neurosciences Institute, Stanford, CA94305
- Department of Psychology, Stanford University, Stanford, CA94305
| | - Vivek Buch
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Stanford, CA94305
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford, CA94305
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Stanford, CA94305
| |
Collapse
|
6
|
Yin Q, Johnson EL, Ofen N. Neurophysiological mechanisms of cognition in the developing brain: Insights from intracranial EEG studies. Dev Cogn Neurosci 2023; 64:101312. [PMID: 37837918 PMCID: PMC10589793 DOI: 10.1016/j.dcn.2023.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
The quest to understand how the development of the brain supports the development of complex cognitive functions is fueled by advances in cognitive neuroscience methods. Intracranial EEG (iEEG) recorded directly from the developing human brain provides unprecedented spatial and temporal resolution for mapping the neurophysiological mechanisms supporting cognitive development. In this paper, we focus on episodic memory, the ability to remember detailed information about past experiences, which improves from childhood into adulthood. We review memory effects based on broadband spectral power and emphasize the importance of isolating narrowband oscillations from broadband activity to determine mechanisms of neural coordination within and between brain regions. We then review evidence of developmental variability in neural oscillations and present emerging evidence linking the development of neural oscillations to the development of memory. We conclude by proposing that the development of oscillations increases the precision of neural coordination and may be an essential factor underlying memory development. More broadly, we demonstrate how recording neural activity directly from the developing brain holds immense potential to advance our understanding of cognitive development.
Collapse
Affiliation(s)
- Qin Yin
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
7
|
Aiello G, Ledergerber D, Dubcek T, Stieglitz L, Baumann C, Polanìa R, Imbach L. Functional network dynamics between the anterior thalamus and the cortex in deep brain stimulation for epilepsy. Brain 2023; 146:4717-4735. [PMID: 37343140 DOI: 10.1093/brain/awad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/10/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Owing to its unique connectivity profile with cortical brain regions, and its suggested role in the subcortical propagation of seizures, the anterior nucleus of the thalamus (ANT) has been proposed as a key deep brain stimulation (DBS) target in drug-resistant epilepsy. However, the spatio-temporal interaction dynamics of this brain structure, and the functional mechanisms underlying ANT DBS in epilepsy remain unknown. Here, we study how the ANT interacts with the neocortex in vivo in humans and provide a detailed neurofunctional characterization of mechanisms underlying the effectiveness of ANT DBS, aiming at defining intraoperative neural biomarkers of responsiveness to therapy, assessed at 6 months post-implantation as the reduction in seizure frequency. A cohort of 15 patients with drug-resistant epilepsy (n = 6 males, age = 41.6 ± 13.79 years) underwent bilateral ANT DBS implantation. Using intraoperative cortical and ANT simultaneous electrophysiological recordings, we found that the ANT is characterized by high amplitude θ (4-8 Hz) oscillations, mostly in its superior part. The strongest functional connectivity between the ANT and the scalp EEG was also found in the θ band in ipsilateral centro-frontal regions. Upon intraoperative stimulation in the ANT, we found a decrease in higher EEG frequencies (20-70 Hz) and a generalized increase in scalp-to-scalp connectivity. Crucially, we observed that responders to ANT DBS treatment were characterized by higher EEG θ oscillations, higher θ power in the ANT, and stronger ANT-to-scalp θ connectivity, highlighting the crucial role of θ oscillations in the dynamical network characterization of these structures. Our study provides a comprehensive characterization of the interaction dynamic between the ANT and the cortex, delivering crucial information to optimize and predict clinical DBS response in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Giovanna Aiello
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Debora Ledergerber
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Tena Dubcek
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Christian Baumann
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Rafael Polanìa
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
8
|
Wessel JR, Anderson MC. Neural mechanisms of domain-general inhibitory control. Trends Cogn Sci 2023; 28:S1364-6613(23)00258-9. [PMID: 39492255 DOI: 10.1016/j.tics.2023.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024]
Abstract
Inhibitory control is a fundamental mechanism underlying flexible behavior and features in theories across many areas of cognitive and psychological science. However, whereas many theories implicitly or explicitly assume that inhibitory control is a domain-general process, the vast majority of neuroscientific work has hitherto focused on individual domains, such as motor, mnemonic, or attentional inhibition. Here, we attempt to close this gap by highlighting recent work that demonstrates shared neuroanatomical and neurophysiological signatures of inhibitory control across domains. We propose that the regulation of thalamocortical drive by a fronto-subthalamic mechanism operating in the β band might be a domain-general mechanism for inhibitory control in the human brain.
Collapse
Affiliation(s)
- Jan R Wessel
- Cognitive Control Collaborative, Department of Psychological and Brain Sciences, Department of Neurology, University of Iowa, Iowa City, IA, USA.
| | - Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Collomb-Clerc A, Gueguen MCM, Minotti L, Kahane P, Navarro V, Bartolomei F, Carron R, Regis J, Chabardès S, Palminteri S, Bastin J. Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning. Nat Commun 2023; 14:6534. [PMID: 37848435 PMCID: PMC10582006 DOI: 10.1038/s41467-023-42380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Reinforcement-based adaptive decision-making is believed to recruit fronto-striatal circuits. A critical node of the fronto-striatal circuit is the thalamus. However, direct evidence of its involvement in human reinforcement learning is lacking. We address this gap by analyzing intra-thalamic electrophysiological recordings from eight participants while they performed a reinforcement learning task. We found that in both the anterior thalamus (ATN) and dorsomedial thalamus (DMTN), low frequency oscillations (LFO, 4-12 Hz) correlated positively with expected value estimated from computational modeling during reward-based learning (after outcome delivery) or punishment-based learning (during the choice process). Furthermore, LFO recorded from ATN/DMTN were also negatively correlated with outcomes so that both components of reward prediction errors were signaled in the human thalamus. The observed differences in the prediction signals between rewarding and punishing conditions shed light on the neural mechanisms underlying action inhibition in punishment avoidance learning. Our results provide insight into the role of thalamus in reinforcement-based decision-making in humans.
Collapse
Affiliation(s)
- Antoine Collomb-Clerc
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Maëlle C M Gueguen
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Lorella Minotti
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Fabrice Bartolomei
- Timone University Hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, University Hospital of Marseille, Marseille, France
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
| | - Romain Carron
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
- Timone University Hospital, Department of functional and stereotactic neurosurgery, University Hospital of Marseille, Marseille, France
| | - Jean Regis
- Neurosurgery Department, University Hospital of Marseille, Marseille, France
| | - Stephan Chabardès
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurosurgery Department, University Hospital of Grenoble, Grenoble, France
| | - Stefano Palminteri
- Laboratoire de Neurosciences Cognitives Computationnelles, Département d'Etudes Cognitives, ENS, PSL, INSERM, Paris, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
10
|
Venkatesh P, Wolfe C, Lega B, Illustrations by Corbyn Beach Corbyn.Beach@UTSouthwestern.edu. Neuromodulation of the anterior thalamus: Current approaches and opportunities for the future. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100109. [PMID: 38020810 PMCID: PMC10663132 DOI: 10.1016/j.crneur.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
The role of thalamocortical circuits in memory has driven a recent burst of scholarship, especially in animal models. Investigating this circuitry in humans is more challenging. And yet, the development of new recording and stimulation technologies deployed for clinical indications has created novel opportunities for data collection to elucidate the cognitive roles of thalamic structures. These technologies include stereoelectroencephalography (SEEG), deep brain stimulation (DBS), and responsive neurostimulation (RNS), all of which have been applied to memory-related thalamic regions, specifically for seizure localization and treatment. This review seeks to summarize the existing applications of neuromodulation of the anterior thalamic nuclei (ANT) and highlight several devices and their capabilities that can allow cognitive researchers to design experiments to assay its functionality. Our goal is to introduce to investigators, who may not be familiar with these clinical devices, the capabilities, and limitations of these tools for understanding the neurophysiology of the ANT as it pertains to memory and other behaviors. We also briefly cover the targeting of other thalamic regions including the centromedian (CM) nucleus, dorsomedial (DM) nucleus, and pulvinar, with associated potential avenues of experimentation.
Collapse
Affiliation(s)
- Pooja Venkatesh
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | | |
Collapse
|
11
|
Shine JM, Lewis LD, Garrett DD, Hwang K. The impact of the human thalamus on brain-wide information processing. Nat Rev Neurosci 2023; 24:416-430. [PMID: 37237103 DOI: 10.1038/s41583-023-00701-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/28/2023]
Abstract
The thalamus is a small, bilateral structure in the diencephalon that integrates signals from many areas of the CNS. This critical anatomical position allows the thalamus to influence whole-brain activity and adaptive behaviour. However, traditional research paradigms have struggled to attribute specific functions to the thalamus, and it has remained understudied in the human neuroimaging literature. Recent advances in analytical techniques and increased accessibility to large, high-quality data sets have brought forth a series of studies and findings that (re-)establish the thalamus as a core region of interest in human cognitive neuroscience, a field that otherwise remains cortico-centric. In this Perspective, we argue that using whole-brain neuroimaging approaches to investigate the thalamus and its interaction with the rest of the brain is key for understanding systems-level control of information processing. To this end, we highlight the role of the thalamus in shaping a range of functional signatures, including evoked activity, interregional connectivity, network topology and neuronal variability, both at rest and during the performance of cognitive tasks.
Collapse
Affiliation(s)
- James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Kai Hwang
- Cognitive Control Collaborative, Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
13
|
Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ SCIENCE OF LEARNING 2023; 8:1. [PMID: 36593247 PMCID: PMC9807644 DOI: 10.1038/s41539-022-00152-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation used for improving cognitive functions via delivering weak electrical stimulation with a certain frequency. This systematic review and meta-analysis investigated the effects of tACS protocols on cognitive functions in healthy young adults. We identified 56 qualified studies that compared cognitive functions between tACS and sham control groups, as indicated by cognitive performances and cognition-related reaction time. Moderator variable analyses specified effect size according to (a) timing of tACS, (b) frequency band of simulation, (c) targeted brain region, and (b) cognitive domain, respectively. Random-effects model meta-analysis revealed small positive effects of tACS protocols on cognitive performances. The moderator variable analyses found significant effects for online-tACS with theta frequency band, online-tACS with gamma frequency band, and offline-tACS with theta frequency band. Moreover, cognitive performances were improved in online- and offline-tACS with theta frequency band on either prefrontal and posterior parietal cortical regions, and further both online- and offline-tACS with theta frequency band enhanced executive function. Online-tACS with gamma frequency band on posterior parietal cortex was effective for improving cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. These findings suggested that tACS protocols with specific timing and frequency band may effectively improve cognitive performances.
Collapse
Affiliation(s)
- Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea.
| |
Collapse
|
14
|
Bernhard H, Schaper FLWVJ, Janssen MLF, Gommer ED, Jansma BM, Van Kranen-Mastenbroek V, Rouhl RPW, de Weerd P, Reithler J, Roberts MJ. Spatiotemporal patterns of sleep spindle activity in human anterior thalamus and cortex. Neuroimage 2022; 263:119625. [PMID: 36103955 DOI: 10.1016/j.neuroimage.2022.119625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
Sleep spindles (8 - 16 Hz) are transient electrophysiological events during non-rapid eye movement sleep. While sleep spindles are routinely observed in the cortex using scalp electroencephalography (EEG), recordings of their thalamic counterparts have not been widely studied in humans. Based on a few existing studies, it has been hypothesized that spindles occur as largely local phenomena. We investigated intra-thalamic and thalamocortical spindle co-occurrence, which may underlie thalamocortical communication. We obtained scalp EEG and thalamic recordings from 7 patients that received bilateral deep brain stimulation (DBS) electrodes to the anterior thalamus for the treatment of drug resistant focal epilepsy. Spindles were categorized into subtypes based on their main frequency (i.e., slow (10±2 Hz) or fast (14±2 Hz)) and their level of thalamic involvement (spanning one channel, or spreading uni- or bilaterally within the thalamus). For the first time, we contrasted observed spindle patterns with permuted data to estimate random spindle co-occurrence. We found that multichannel spindle patterns were systematically coordinated at the thalamic and thalamocortical level. Importantly, distinct topographical patterns of thalamocortical spindle overlap were associated with slow and fast subtypes of spindles. These observations provide further evidence for coordinated spindle activity in thalamocortical networks.
Collapse
Affiliation(s)
- Hannah Bernhard
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Centre for Integrative Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Frederic L W V J Schaper
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's hospital, Harvard Medical School, Boston, United States
| | - Marcus L F Janssen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Erik D Gommer
- Academic Center for Epileptology Kempenhaeghe/MUMC+ Maastricht and Heeze, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bernadette M Jansma
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Vivianne Van Kranen-Mastenbroek
- Academic Center for Epileptology Kempenhaeghe/MUMC+ Maastricht and Heeze, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+ Maastricht and Heeze, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Peter de Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Joel Reithler
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
15
|
Frank D, Garo-Pascual M, Velasquez PAR, Frades B, Peled N, Zhang L, Strange BA. Brain structure and episodic learning rate in cognitively healthy ageing. Neuroimage 2022; 263:119630. [PMID: 36113738 DOI: 10.1016/j.neuroimage.2022.119630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022] Open
Abstract
Memory normally declines with ageing and these age-related cognitive changes are associated with changes in brain structure. Episodic memory retrieval has been widely studied during ageing, whereas learning has received less attention. Here we examined the neural correlates of episodic learning rate in ageing. Our study sample consisted of 982 cognitively healthy female and male older participants from the Vallecas Project cohort, without a clinical diagnosis of mild cognitive impairment or dementia. The learning rate across the three consecutive recall trials of the verbal memory task (Free and Cued Selective Reminding Test) recall trials was used as a predictor of grey matter (GM) using voxel-based morphometry, and WM microstructure using tract-based spatial statistics on fractional anisotropy (FA) and mean diffusivity (MD) measures. Immediate Recall improved by 1.4 items per trial on average, and this episodic learning rate was faster in women and negatively associated with age. Structurally, hippocampal and anterior thalamic GM volume correlated positively with learning rate. Learning also correlated with the integrity of WM microstructure (high FA and low MD) in an extensive network of tracts including bilateral anterior thalamic radiation, fornix, and long-range tracts. These results suggest that episodic learning rate is associated with key anatomical structures for memory functioning, motivating further exploration of the differential diagnostic properties between episodic learning rate and retrieval in ageing.
Collapse
Affiliation(s)
- Darya Frank
- Laboratory for Clinical Neuroscience, Centro de Tecnología Biomédica, CTB, Universidad Politécnica de Madrid, Madrid 28223, Spain.
| | - Marta Garo-Pascual
- Laboratory for Clinical Neuroscience, Centro de Tecnología Biomédica, CTB, Universidad Politécnica de Madrid, Madrid 28223, Spain; Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid 28031, Spain; PhD Program in Neuroscience, Autonoma de Madrid University, Madrid 28049, Spain.
| | - Pablo Alejandro Reyes Velasquez
- Laboratory for Clinical Neuroscience, Centro de Tecnología Biomédica, CTB, Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Belén Frades
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid 28031, Spain
| | - Noam Peled
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Linda Zhang
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid 28031, Spain
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Centro de Tecnología Biomédica, CTB, Universidad Politécnica de Madrid, Madrid 28223, Spain; Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid 28031, Spain.
| |
Collapse
|
16
|
Aggleton JP, Nelson AJD, O'Mara SM. Time to retire the serial Papez circuit: Implications for space, memory, and attention. Neurosci Biobehav Rev 2022; 140:104813. [PMID: 35940310 PMCID: PMC10804970 DOI: 10.1016/j.neubiorev.2022.104813] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
After more than 80 years, Papez serial circuit remains a hugely influential concept, initially for emotion, but in more recent decades, for memory. Here, we show how this circuit is anatomically and mechanistically naïve as well as outdated. We argue that a new conceptualisation is necessitated by recent anatomical and functional findings that emphasize the more equal, working partnerships between the anterior thalamic nuclei and the hippocampal formation, along with their neocortical interactions in supporting, episodic memory. Furthermore, despite the importance of the anterior thalamic for mnemonic processing, there is growing evidence that these nuclei support multiple aspects of cognition, only some of which are directly associated with hippocampal function. By viewing the anterior thalamic nuclei as a multifunctional hub, a clearer picture emerges of extra-hippocampal regions supporting memory. The reformulation presented here underlines the need to retire Papez serially processing circuit.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK.
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK
| | - Shane M O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
17
|
Vrontou S, Bédécarrats A, Wei X, Ayodeji M, Brassai A, Molnár L, Mody I. Altered brain rhythms and behaviour in the accelerated ovarian failure mouse model of human menopause. Brain Commun 2022; 4:fcac166. [PMID: 35794872 PMCID: PMC9253886 DOI: 10.1093/braincomms/fcac166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
To date, potential mechanisms of menopause-related memory and cognitive deficits have not been elucidated. Therefore, we studied brain oscillations, their phase–amplitude coupling, sleep and vigilance state patterns, running wheel use and other behavioural measures in a translationally valid mouse model of menopause, the 4-vinylcyclohexene-diepoxide-induced accelerated ovarian failure. After accelerated ovarian failure, female mice show significant alterations in brain rhythms, including changes in the frequencies of θ (5–12 Hz) and γ (30–120 Hz) oscillations, a reversed phase–amplitude coupling, altered coupling of hippocampal sharp-wave ripples to medial prefrontal cortical sleep spindles and reduced δ oscillation (0.5–4 Hz) synchrony between the two regions during non-rapid eye movement sleep. In addition, we report on significant circadian variations in the frequencies of θ and γ oscillations, and massive synchronous δ oscillations during wheel running. Our results reveal novel and specific network alterations and feasible signs for diminished brain connectivity in the accelerated ovarian failure mouse model of menopause. Taken together, our results may have identified changes possibly responsible for some of the memory and cognitive deficits previously described in this model. Corresponding future studies in menopausal women could shed light on fundamental mechanisms underlying the neurological and psychiatric comorbidities present during this important transitional phase in women’s lives.
Collapse
Affiliation(s)
- Sophia Vrontou
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | - Alexis Bédécarrats
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | - Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | | | - Attila Brassai
- Department of Pharmacology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology , Târgu Mureş 540139 , Romania
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania , Târgu Mureş 540485 , Romania
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
- Department of Physiology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| |
Collapse
|
18
|
The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci 2022; 23:505-516. [PMID: 35478245 DOI: 10.1038/s41583-022-00591-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.
Collapse
|
19
|
Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches? J Clin Med 2022; 11:jcm11020358. [PMID: 35054052 PMCID: PMC8780504 DOI: 10.3390/jcm11020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) or repeated sport-related concussions (rSRC) may lead to long-term memory impairment. Diffusion tensor imaging (DTI) is helpful to reveal global white matter damage but may underestimate focal abnormalities. We investigated the distribution of post-injury regional white matter changes after TBI and rSRC. Six patients with moderate/severe TBI, and 12 athletes with rSRC were included ≥6 months post-injury, and 10 (age-matched) healthy controls (HC) were analyzed. The Repeatable Battery for the Assessment of Neuropsychological Status was performed at the time of DTI. Major white matter pathways were tracked using q-space diffeomorphic reconstruction and analyzed for global and regional changes with a controlled false discovery rate. TBI patients displayed multiple classic white matter injuries compared with HC (p < 0.01). At the regional white matter analysis, the left frontal aslant tract, anterior thalamic radiation, and the genu of the corpus callosum displayed focal changes in both groups compared with HC but with different trends. Both TBI and rSRC displayed worse memory performance compared with HC (p < 0.05). While global analysis of DTI-based parameters did not reveal common abnormalities in TBI and rSRC, abnormalities to the fronto-thalamic network were observed in both groups using regional analysis of the white matter pathways. These results may be valuable to tailor individualized rehabilitative approaches for post-injury cognitive impairment in both TBI and rSRC patients.
Collapse
|
20
|
Leparulo A, Bisio M, Redolfi N, Pozzan T, Vassanelli S, Fasolato C. Accelerated Aging Characterizes the Early Stage of Alzheimer's Disease. Cells 2022; 11:238. [PMID: 35053352 PMCID: PMC8774248 DOI: 10.3390/cells11020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
For Alzheimer's disease (AD), aging is the main risk factor, but whether cognitive impairments due to aging resemble early AD deficits is not yet defined. When working with mouse models of AD, the situation is just as complicated, because only a few studies track the progression of the disease at different ages, and most ignore how the aging process affects control mice. In this work, we addressed this problem by comparing the aging process of PS2APP (AD) and wild-type (WT) mice at the level of spontaneous brain electrical activity under anesthesia. Using local field potential recordings, obtained with a linear probe that traverses the posterior parietal cortex and the entire hippocampus, we analyzed how multiple electrical parameters are modified by aging in AD and WT mice. With this approach, we highlighted AD specific features that appear in young AD mice prior to plaque deposition or that are delayed at 12 and 16 months of age. Furthermore, we identified aging characteristics present in WT mice but also occurring prematurely in young AD mice. In short, we found that reduction in the relative power of slow oscillations (SO) and Low/High power imbalance are linked to an AD phenotype at its onset. The loss of SO connectivity and cortico-hippocampal coupling between SO and higher frequencies as well as the increase in UP-state and burst durations are found in young AD and old WT mice. We show evidence that the aging process is accelerated by the mutant PS2 itself and discuss such changes in relation to amyloidosis and gliosis.
Collapse
Affiliation(s)
- Alessandro Leparulo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| | - Marta Bisio
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
- Neuroscience Institute-Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2B, 35129 Padua, Italy
| | - Stefano Vassanelli
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
- Padua Neuroscience Center (PNC), University of Padua, Via G. Orus 2B, 35129 Padua, Italy
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| |
Collapse
|
21
|
Simor P, Szalárdy O, Gombos F, Ujma PP, Jordán Z, Halász L, Erőss L, Fabó D, Bódizs R. REM Sleep Microstates in the Human Anterior Thalamus. J Neurosci 2021; 41:5677-5686. [PMID: 33863786 PMCID: PMC8244978 DOI: 10.1523/jneurosci.1899-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/24/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Rapid eye movement (REM) sleep is an elusive neural state that is associated with a variety of functions from physiological regulatory mechanisms to complex cognitive processing. REM periods consist of the alternation of phasic and tonic REM microstates that differ in spontaneous and evoked neural activity. Although previous studies indicate, that cortical and thalamocortical activity differs across phasic and tonic microstates, the characterization of neural activity, particularly in subcortical structures that are critical in the initiation and maintenance of REM sleep is still limited in humans. Here, we examined electric activity patterns of the anterior nuclei of the thalamus as well as their functional connectivity with scalp EEG recordings during REM microstates and wakefulness in a group of epilepsy patients (N = 12, 7 females). Anterothalamic local field potentials (LFPs) showed increased high-α and β frequency power in tonic compared with phasic REM, emerging as an intermediate state between phasic REM and wakefulness. Moreover, we observed increased thalamocortical synchronization in phasic compared with tonic REM sleep, especially in the slow and fast frequency ranges. Wake-like activity in tonic REM sleep may index the regulation of arousal and vigilance facilitating environmental alertness. On the other hand, increased thalamocortical synchronization may reflect the intrinsic activity of frontolimbic networks supporting emotional and memory processes during phasic REM sleep. In sum, our findings highlight that the heterogeneity of phasic and tonic REM sleep is not limited to cortical activity, but is also manifested by anterothalamic LFPs and thalamocortical synchronization.SIGNIFICANCE STATEMENT REM sleep is a heterogeneous sleep state that features the alternation of two microstates, phasic and tonic rapid eye movement (REM). These states differ in sensory processing, awakening thresholds, and cortical activity. Nevertheless, the characterization of these microstates, particularly in subcortical structures is still limited in humans. We had the unique opportunity to examine electric activity patterns of the anterior nuclei of the thalamus (ANTs) as well as their functional connectivity with scalp EEG recordings during REM microstates and wakefulness. Our findings show that the heterogeneity of phasic and tonic REM sleep is not limited to cortical activity, but is also manifested in the level of the thalamus and thalamocortical networks.
Collapse
Affiliation(s)
- Péter Simor
- Institute of Psychology, ELTE, Eötvös Loránd University, Budapest 1064, Hungary
- Institute of Behavioural Sciences, Semmelweis University, Budapest 1089, Hungary
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Center for Research in Cognition and Neurosciences and UNI-ULB Neurosciences Institute, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Orsolya Szalárdy
- Institute of Behavioural Sciences, Semmelweis University, Budapest 1089, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Ferenc Gombos
- MTA-PPKE, Hungarian Academy of Sciences, Pázmány Péter Catholic University, Adolescent Development Research Group, Budapest 1088, Hungary
| | - Péter Przemyslaw Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest 1089, Hungary
- National Institute of Clinical Neurosciences, Budapest 1145, Hungary
| | - Zsófia Jordán
- National Institute of Clinical Neurosciences, Budapest 1145, Hungary
| | - László Halász
- National Institute of Clinical Neurosciences, Budapest 1145, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neurosciences, Budapest 1145, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neurosciences, Budapest 1145, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest 1089, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
22
|
Zeng K, Drummond NM, Ghahremani A, Saha U, Kalia SK, Hodaie M, Lozano AM, Aron AR, Chen R. Fronto-subthalamic phase synchronization and cross-frequency coupling during conflict processing. Neuroimage 2021; 238:118205. [PMID: 34077804 PMCID: PMC8944202 DOI: 10.1016/j.neuroimage.2021.118205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Growing evidence suggests that both the medial prefrontal cortex (mPFC) and the subthalamic nucleus (STN) play crucial roles in conflict processing, but how these two structures coordinate their activities remains poorly understood. We simultaneously recorded electroencephalogram from the mPFC and local field potentials from the STN using deep brain stimulation electrodes in 13 Parkinson’s disease patients while they performed a Stroop task. Both mPFC and STN showed significant increases in theta activities (2–8 Hz) in incongruent trials compared to the congruent trials. The theta activity in incongruent trials also demonstrated significantly increased phase synchronization between mPFC and STN. Furthermore, the amplitude of gamma oscillation was modulated by the phase of theta activity at the STN in incongruent trials. Such theta-gamma phase-amplitude coupling (PAC) was much stronger for incongruent trials with faster reaction times than those with slower reaction times. Elevated theta-gamma PAC in the STN provides a novel mechanism by which the STN may operationalize its proposed “hold-your-horses” role. The co-occurrence of mPFC-STN theta phase synchronization and STN theta-gamma PAC reflects a neural substrate for fronto-subthalamic communication during conflict processing. More broadly, it may be a general mechanism for neuronal interactions in the cortico-basal ganglia circuits via a combination of long-range, within-frequency phase synchronization and local cross-frequency PAC.
Collapse
Affiliation(s)
- Ke Zeng
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Neil M Drummond
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ayda Ghahremani
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; School of Medicine, Stanford University, Stanford, California, USA
| | - Utpal Saha
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Adam R Aron
- Department of Psychology, University of California San Diego, San Diego, California, USA
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Edmond J. Safra Program in Parkinson's Disease, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Elevated and Slowed EEG Oscillations in Patients with Post-Concussive Syndrome and Chronic Pain Following a Motor Vehicle Collision. Brain Sci 2021; 11:brainsci11050537. [PMID: 33923286 PMCID: PMC8145977 DOI: 10.3390/brainsci11050537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Mild traumatic brain injury produces significant changes in neurotransmission including brain oscillations. We investigated potential quantitative electroencephalography biomarkers in 57 patients with post-concussive syndrome and chronic pain following motor vehicle collision, and 54 healthy nearly age- and sex-matched controls. (2) Methods: Electroencephalography processing was completed in MATLAB, statistical modeling in SPSS, and machine learning modeling in Rapid Miner. Group differences were calculated using current-source density estimation, yielding whole-brain topographical distributions of absolute power, relative power and phase-locking functional connectivity. Groups were compared using independent sample Mann–Whitney U tests. Effect sizes and Pearson correlations were also computed. Machine learning analysis leveraged a post hoc supervised learning support vector non-probabilistic binary linear kernel classification to generate predictive models from the derived EEG signatures. (3) Results: Patients displayed significantly elevated and slowed power compared to controls: delta (p = 0.000000, r = 0.6) and theta power (p < 0.0001, r = 0.4), and relative delta power (p < 0.00001) and decreased relative alpha power (p < 0.001). Absolute delta and theta power together yielded the strongest machine learning classification accuracy (87.6%). Changes in absolute power were moderately correlated with duration and persistence of symptoms in the slow wave frequency spectrum (<15 Hz). (4) Conclusions: Distributed increases in slow wave oscillatory power are concurrent with post-concussive syndrome and chronic pain.
Collapse
|
24
|
Young J, Homma R, Aazhang B. Addressing indirect frequency coupling via partial generalized coherence. Sci Rep 2021; 11:6535. [PMID: 33753761 PMCID: PMC7985302 DOI: 10.1038/s41598-021-85677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
Distinguishing between direct and indirect frequency coupling is an important aspect of functional connectivity analyses because this distinction can determine if two brain regions are directly connected. Although partial coherence quantifies partial frequency coupling in the linear Gaussian case, we introduce a general framework that can address even the nonlinear and non-Gaussian case. Our technique, partial generalized coherence (PGC), expands prior work by allowing pairwise frequency coupling analyses to be conditioned on other processes, enabling model-free partial frequency coupling results. By taking advantage of recent advances in conditional mutual information estimation, we are able to implement our technique in a way that scales well with dimensionality, making it possible to condition on many processes and produce a partial frequency coupling graph. We analyzed both linear Gaussian and nonlinear simulated networks. We then performed PGC analysis of calcium recordings from mouse olfactory bulb glomeruli under anesthesia and quantified the dominant influence of breathing-related activity on the pairwise relationships between glomeruli for breathing-related frequencies. Overall, we introduce a technique capable of eliminating indirect frequency coupling in a model-free way, empowering future research to correct for potentially misleading frequency interactions in functional connectivity analyses.
Collapse
Affiliation(s)
- Joseph Young
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA.
| | - Ryota Homma
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, 77030, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
25
|
Sweeney-Reed CM, Buentjen L, Voges J, Schmitt FC, Zaehle T, Kam JWY, Kaufmann J, Heinze HJ, Hinrichs H, Knight RT, Rugg MD. The role of the anterior nuclei of the thalamus in human memory processing. Neurosci Biobehav Rev 2021; 126:146-158. [PMID: 33737103 DOI: 10.1016/j.neubiorev.2021.02.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Extensive neuroanatomical connectivity between the anterior thalamic nuclei (ATN) and hippocampus and neocortex renders them well-placed for a role in memory processing, and animal, lesion, and neuroimaging studies support such a notion. The deep location and small size of the ATN have precluded their real-time electrophysiological investigation during human memory processing. However, ATN electrophysiological recordings from patients receiving electrodes implanted for deep brain stimulation for pharmacoresistant focal epilepsy have enabled high temporal resolution study of ATN activity. Theta frequency synchronization of ATN and neocortical oscillations during successful memory encoding, enhanced phase alignment, and coupling between ATN local gamma frequency activity and frontal neocortical and ATN theta oscillations provide evidence of an active role for the ATN in memory encoding, potentially integrating information from widespread neocortical sources. Greater coupling of a broader gamma frequency range with theta oscillations at rest than during memory encoding provides additional support for the hypothesis that the ATN play a role in selecting local, task-relevant high frequency activity associated with particular features of a memory trace.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Dept. of Neurology, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| | - Lars Buentjen
- Dept. of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jürgen Voges
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Tino Zaehle
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Julia W Y Kam
- Department of Psychology, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, CA, USA
| | - Jörn Kaufmann
- Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Hermann Hinrichs
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| |
Collapse
|
26
|
Nelson AJD. The anterior thalamic nuclei and cognition: A role beyond space? Neurosci Biobehav Rev 2021; 126:1-11. [PMID: 33737105 PMCID: PMC8363507 DOI: 10.1016/j.neubiorev.2021.02.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Anterior thalamic nuclei important for specific classes of temporal discriminations. Anterior thalamic nuclei required for hippocampal-dependent contextual processes. Critical role for anterior thalamic nuclei in selective attention. Significance of anterior thalamic – anterior cingulate interactions.
The anterior thalamic nuclei are a vital node within hippocampal-diencephalic-cingulate circuits that support spatial learning and memory. Reflecting this interconnectivity, the overwhelming focus of research into the cognitive functions of the anterior thalamic nuclei has been spatial processing. However, there is increasing evidence that the functions of the anterior thalamic nuclei extend beyond the spatial realm. This work has highlighted how these nuclei are required for certain classes of temporal discrimination as well as their importance for processing other contextual information; revealing parallels with the non-spatial functions of the hippocampal formation. Yet further work has shown how the anterior thalamic nuclei may be important for other forms of non-spatial learning, including a critical role for these nuclei in attentional mechanisms. This evidence signals the need to reconsider the functions of the anterior thalamic within the framework of their wider connections with sites including the anterior cingulate cortex that subserve non-spatial functions.
Collapse
Affiliation(s)
- Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
27
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
28
|
Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2021; 73:202-277. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
30
|
Schreiner T, Staudigl T. Electrophysiological signatures of memory reactivation in humans. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190293. [PMID: 32248789 PMCID: PMC7209925 DOI: 10.1098/rstb.2019.0293] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reactivation of neural activity that was present during the encoding of an event is assumed to be essential for human episodic memory retrieval and the consolidation of memories during sleep. Pioneering animal work has already established a crucial role of memory reactivation to prepare and guide behaviour. Research in humans is now delineating the neural processes involved in memory reactivation during both wakefulness and sleep as well as their functional significance. Focusing on the electrophysiological signatures of memory reactivation in humans during both memory retrieval and sleep-related consolidation, this review provides an overview of the state of the art in the field. We outline recent advances, methodological developments and open questions and specifically highlight commonalities and differences in the neuronal signatures of memory reactivation during the states of wakefulness and sleep. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Thomas Schreiner
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
31
|
The striatum, the hippocampus, and short-term memory binding: Volumetric analysis of the subcortical grey matter's role in mild cognitive impairment. NEUROIMAGE-CLINICAL 2019; 25:102158. [PMID: 31918064 PMCID: PMC7036699 DOI: 10.1016/j.nicl.2019.102158] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
Abstract
Hippocampal atrophy plays no role in short-term memory binding. The globus pallidus could be part of the brain network supporting binding. Total brain atrophy does not correlate with striatal grey matter atrophy in MCI. Striatal grey matter atrophy reflects in total brain atrophy in controls. Hippocampal and parahippocampal volumes correlate in MCI and controls.
Background Deficits in short-term memory (STM) binding are a distinguishing feature of preclinical stages leading to Alzheimer's disease (AD). However, the neuroanatomical correlates of conjunctive STM binding are largely unexplored. Here we examine the possible association between the volumes of hippocampi, parahippocampal gyri, and grey matter within the subcortical structures – all found to have foci that seemingly correlate with basic daily living activities in AD patients - with cognitive tests related to conjunctive STM binding. Materials and methods Hippocampal, thalamic, parahippocampal and corpus striatum volumes were semi-automatically quantified in brain magnetic resonance images from 25 cognitively normal people and 21 patients with Mild Cognitive Impairment (MCI) at high risk of AD progression, who undertook a battery of cognitive tests and the short-term memory binding test. Associations were assessed using linear regression models and group differences were assessed using the Mann-Whitney U test. Results Hippocampal and parahippocampal gyrus volumes differed between MCI and control groups. Although the grey matter volume in the globus pallidus (r = -0.71, p < 0.001) and parahippocampal gyry (r = -0.63, p < 0.05) correlated with a STM binding task in the MCI group, only the former remained associated with STM binding deficits in MCI patients, after correcting for age, gender and years of education (β = -0.56,P = 0.042) although with borderline significance. Conclusions Loss of hippocampal volume plays no role in the processing of STM binding. Structures within the basal ganglia, namely the globus pallidus, could be part of the extrahippocampal network supporting binding. Replication of this study in large samples is now needed.
Collapse
|
32
|
Abstract
Information flow between the prefrontal and visual cortices is critical for visual behaviors such as visual search. To investigate its mechanisms, we simultaneously recorded spike and local field potential (LFP) signals in the frontal eye field (FEF) and area V4 while monkeys performed a free-gaze visual search task. During free-gaze search, spike-LFP coherence between FEF and V4 was enhanced in the theta rhythm (4-8 Hz) but suppressed in the alpha rhythm (8-13 Hz). Cross-frequency couplings during the Cue period before the search phase were related to monkey performance, with higher FEF theta-V4 gamma coupling and lower FEF alpha-V4 gamma coupling associated with faster search. Finally, feature-based attention during search enhanced spike-LFP coherence between FEF and V4 in the gamma and beta rhythms, whereas overt spatial attention reduced coherence at frequencies up to 30 Hz. These results suggest that oscillatory coupling may play an important role in mediating interactions between the prefrontal and visual cortices during visual search.
Collapse
Affiliation(s)
- Ting Yan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen Guangdong 518055, China; E-mail:
| | - Hui-Hui Zhou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen Guangdong 518055, China; E-mail:
| |
Collapse
|
33
|
Dynamic modulation of theta–gamma coupling during rapid eye movement sleep. Sleep 2019; 42:5549700. [DOI: 10.1093/sleep/zsz182] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/17/2019] [Indexed: 11/15/2022] Open
Abstract
Abstract
Theta phase modulates gamma amplitude in hippocampal networks during spatial navigation and rapid eye movement (REM) sleep. This cross-frequency coupling has been linked to working memory and spatial memory consolidation; however, its spatial and temporal dynamics remains unclear. Here, we first investigate the dynamics of theta–gamma interactions using multiple frequency and temporal scales in simultaneous recordings from hippocampal CA3, CA1, subiculum, and parietal cortex in freely moving mice. We found that theta phase dynamically modulates distinct gamma bands during REM sleep. Interestingly, we further show that theta–gamma coupling switches between recorded brain structures during REM sleep and progressively increases over a single REM sleep episode. Finally, we show that optogenetic silencing of septohippocampal GABAergic projections significantly impedes both theta–gamma coupling and theta phase coherence. Collectively, our study shows that phase-space (i.e. cross-frequency coupling) coding of information during REM sleep is orchestrated across time and space consistent with region-specific processing of information during REM sleep including learning and memory.
Collapse
|
34
|
Wagner IC, van Buuren M, Fernández G. Thalamo-cortical coupling during encoding and consolidation is linked to durable memory formation. Neuroimage 2019; 197:80-92. [DOI: 10.1016/j.neuroimage.2019.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/19/2019] [Indexed: 01/08/2023] Open
|
35
|
Wolff M, Vann SD. The Cognitive Thalamus as a Gateway to Mental Representations. J Neurosci 2019; 39:3-14. [PMID: 30389839 PMCID: PMC6325267 DOI: 10.1523/jneurosci.0479-18.2018] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 01/16/2023] Open
Abstract
Historically, the thalamus has been viewed as little more than a relay, simply transferring information to key players of the cast, the cortex and hippocampus, without providing any unique functional contribution. In recent years, evidence from multiple laboratories researching different thalamic nuclei has contradicted this idea of the thalamus as a passive structure. Dated models of thalamic functions are being pushed aside, revealing a greater and far more complex contribution of the thalamus for cognition. In this Viewpoints article, we show how recent data support novel views of thalamic functions that emphasize integrative roles in cognition, ranging from learning and memory to flexible adaption. We propose that these apparently separate cognitive functions may indeed be supported by a more general role in shaping mental representations. Several features of thalamocortical circuits are consistent with this suggested role, and we highlight how divergent and convergent thalamocortical and corticothalamic pathways may complement each other to support these functions. Furthermore, the role of the thalamus for subcortical integration is highlighted as a key mechanism for maintaining and updating representations. Finally, we discuss future areas of research and stress the importance of incorporating new experimental findings into existing knowledge to continue developing thalamic models. The presence of thalamic pathology in a number of neurological conditions reinforces the need to better understand the role of this region in cognition.
Collapse
Affiliation(s)
- Mathieu Wolff
- Centre National de la Recherche Scientifique, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France,
- University of Bordeaux, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France, and
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
36
|
Helfrich RF, Knight RT. Cognitive neurophysiology of the prefrontal cortex. HANDBOOK OF CLINICAL NEUROLOGY 2019; 163:35-59. [DOI: 10.1016/b978-0-12-804281-6.00003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Theta oscillations underlie retrieval success effects in the nucleus accumbens and anterior thalamus: Evidence from human intracranial recordings. Neurobiol Learn Mem 2018; 155:104-112. [DOI: 10.1016/j.nlm.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 06/07/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022]
|
38
|
Röhner F, Breitling C, Rufener KS, Heinze HJ, Hinrichs H, Krauel K, Sweeney-Reed CM. Modulation of Working Memory Using Transcranial Electrical Stimulation: A Direct Comparison Between TACS and TDCS. Front Neurosci 2018; 12:761. [PMID: 30405341 PMCID: PMC6206050 DOI: 10.3389/fnins.2018.00761] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023] Open
Abstract
Transcranial electrical stimulation (TES) has been considered a promising tool for improving working memory (WM) performance. Recent studies have demonstrated modulation of networks underpinning WM processing through application of transcranial alternating current (TACS) as well as direct current (TDCS) stimulation. Differences between study designs have limited direct comparison of the efficacy of these approaches, however. Here we directly compared the effects of theta TACS (6 Hz) and anodal TDCS on WM, applying TACS to the frontal-parietal loop and TDCS to the dorsolateral prefrontal cortex (DLPFC). WM was evaluated using a visual 2-back WM task. A within-subject, crossover design was applied (N = 30) in three separate sessions. TACS, TDCS, and sham stimulation were administered in a counterbalanced order, and the WM task was performed before, during, and after stimulation. Neither reaction times for hits (RT-hit) nor accuracy differed according to stimulation type with this study design. A marked practice effect was noted, however, with improvement in RT-hit irrespective of stimulation type, which peaked at the end of the second session. Pre-stimulation RT-hits in session three returned to the level observed pre-stimulation in session two, irrespective of stimulation type. The participants who received sham stimulation in session one and had therefore improved their performance due to practice alone, had thus reached a plateau by session two, enabling us to pool RT-hits from sessions two and three for these participants. The pooling allowed implementation of a within-subject crossover study design, with a direct comparison of the effects of TACS and TDCS in a subgroup of participants (N = 10), each of whom received both stimulation types, in a counterbalanced order, with pre-stimulation performance the same for both sessions. TACS resulted in a greater improvement in RT-hits than TDCS (F(2,18) = 4.31 p = 0.03). Our findings suggest that future work optimizing the application of TACS has the potential to facilitate WM performance.
Collapse
Affiliation(s)
- Franziska Röhner
- Neurocybernetics and Rehabilitation, Department of Neurology and Stereotactic Neurosurgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Carolin Breitling
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katharina S Rufener
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Hermann Hinrichs
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology and Stereotactic Neurosurgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
39
|
Theta Oscillations Organize Spiking Activity in Higher-Order Visual Thalamus during Sustained Attention. eNeuro 2018; 5:eN-NWR-0384-17. [PMID: 29619407 PMCID: PMC5881415 DOI: 10.1523/eneuro.0384-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 12/13/2022] Open
Abstract
Higher-order visual thalamus plays a fundamental but poorly understood role in attention-demanding tasks. To investigate how neuronal dynamics in higher-order visual thalamus are modulated by sustained attention, we performed multichannel electrophysiological recordings in the lateral posterior-pulvinar complex (LP/pulvinar) in the ferret (Mustela putorius furo). We recorded single unit activity and local field potential (LFP) during the performance of the five-choice serial reaction time task (5-CSRTT), which is used in both humans and animals as an assay of sustained attention. We found that half of the units exhibited an increasing firing rate during the delay period before stimulus onset (attention-modulated units). In contrast, the non-attention-modulated units responded to the stimulus, but not during the delay period. Spike-field coherence (SFC) of only the attention-modulated neurons significantly increased from the start of the delay period until screen touch, predominantly in the θ frequency band. In addition, θ power and θ/γ phase amplitude coupling (PAC) were elevated throughout the delay period. Our findings suggest that the θ oscillation plays a central role in orchestrating thalamic signaling during sustained attention.
Collapse
|
40
|
Ibrahim GM, Wong S, Morgan BR, Lipsman N, Fallah A, Weil AG, Krishna V, Wennberg RA, Lozano AA. Phase-amplitude coupling within the anterior thalamic nuclei during seizures. J Neurophysiol 2018; 119:1497-1505. [DOI: 10.1152/jn.00832.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cross-frequency phase-amplitude coupling (cfPAC) subserves an integral role in the hierarchical organization of interregional neuronal communication and is also expressed by epileptogenic cortex during seizures. Here, we sought to characterize patterns of cfPAC expression in the anterior thalamic nuclei during seizures by studying extra-operative recordings in patients implanted with deep brain stimulation electrodes for intractable epilepsy. Nine seizures from two patients were analyzed in the peri-ictal period. CfPAC was calculated using the modulation index and interregional functional connectivity was indexed using the phase-locking value. Statistical analysis was performed within subjects on the basis of nonparametric permutation and corrected with Gaussian field theory. Five of the nine analyzed seizures demonstrated significant cfPAC. Significant cfPAC occurred during the pre-ictal and ictal periods in three seizures, as well as the postictal windows in four seizures. The preferred phase at which cfPAC occurred differed 1) in space, between the thalami of the epileptogenic and nonepileptogenic hemispheres; and 2) in time, at seizure termination. The anterior thalamic nucleus of the epileptogenic hemisphere also exhibited altered interregional phase-locking synchrony concurrent with the expression of cfPAC. By analyzing extraoperative recordings from the anterior thalamic nuclei, we show that cfPAC associated with altered interregional phase synchrony is lateralized to the thalamus of the epileptogenic hemisphere during seizures. Electrophysiological differences in cfPAC, including preferred phase of oscillatory interactions may be further investigated as putative targets for individualized neuromodulation paradigms in patients with drug-resistant epilepsy. NEW & NOTEWORTHY The association between fast brain activity and slower oscillations is an integral mechanism for hierarchical neuronal communication, which is also manifested in epileptogenic cortex. Our data suggest that the same phenomenon occurs in the anterior thalamic nuclei during seizures. Further, the preferred phase of modulation shows differences in space, between the epileptogenic and nonepileptogenic hemispheres and time, as seizures terminate. Our data encourage the study of cross-frequency coupling for targeted, individualized closed-loop stimulation paradigms.
Collapse
Affiliation(s)
- George M. Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Simeon Wong
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benjamin R. Morgan
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Aria Fallah
- Department of Neurosurgery, Mattel Children’s Hospital, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Alexander G. Weil
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Vibhor Krishna
- The Ohio State University, Center for Neuromodulation, Department of Neurosurgery, Columbus, Ohio
- The Ohio State University, Department of Neuroscience, Columbus, Ohio
| | - Richard A. Wennberg
- Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Andres A. Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Dupré la Tour T, Tallot L, Grabot L, Doyère V, van Wassenhove V, Grenier Y, Gramfort A. Non-linear auto-regressive models for cross-frequency coupling in neural time series. PLoS Comput Biol 2017; 13:e1005893. [PMID: 29227989 PMCID: PMC5739510 DOI: 10.1371/journal.pcbi.1005893] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/21/2017] [Accepted: 11/26/2017] [Indexed: 11/19/2022] Open
Abstract
We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model “goodness of fit” via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling. Neural oscillations synchronize information across brain areas at various anatomical and temporal scales. Of particular relevance, slow fluctuations of brain activity have been shown to affect high frequency neural activity, by regulating the excitability level of neural populations. Such cross-frequency-coupling can take several forms. In the most frequently observed type, the power of high frequency activity is time-locked to a specific phase of slow frequency oscillations, yielding phase-amplitude-coupling (PAC). Even when readily observed in neural recordings, such non-linear coupling is particularly challenging to formally characterize. Typically, neuroscientists use band-pass filtering and Hilbert transforms with ad-hoc correlations. Here, we explicitly address current limitations and propose an alternative probabilistic signal modeling approach, for which statistical inference is fast and well-posed. To statistically model PAC, we propose to use non-linear auto-regressive models which estimate the spectral modulation of a signal conditionally to a driving signal. This conditional spectral analysis enables easy model selection and clear hypothesis-testing by using the likelihood of a given model. We demonstrate the advantage of the model-based approach on three datasets acquired in rats and in humans. We further provide novel neuroscientific insights on previously reported PAC phenomena, capturing two mechanisms in PAC: influence of amplitude and directionality estimation.
Collapse
Affiliation(s)
- Tom Dupré la Tour
- LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
- * E-mail:
| | - Lucille Tallot
- Neuroscience Paris Seine, CNRS, INSERM, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Neuro-PSI, Université Paris-Sud, Université Paris Saclay, CNRS, Orsay, France
| | - Laetitia Grabot
- Cognitive Neuroimaging Unit, CEA/DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France
- CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Valérie Doyère
- Neuro-PSI, Université Paris-Sud, Université Paris Saclay, CNRS, Orsay, France
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, CEA/DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France
- CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Grenier
- LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
| | - Alexandre Gramfort
- LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
- CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- Inria, Université Paris-Saclay, Saclay, France
| |
Collapse
|
42
|
Dolcos F, Katsumi Y, Weymar M, Moore M, Tsukiura T, Dolcos S. Emerging Directions in Emotional Episodic Memory. Front Psychol 2017; 8:1867. [PMID: 29255432 PMCID: PMC5723010 DOI: 10.3389/fpsyg.2017.01867] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023] Open
Abstract
Building upon the existing literature on emotional memory, the present review examines emerging evidence from brain imaging investigations regarding four research directions: (1) Social Emotional Memory, (2) The Role of Emotion Regulation in the Impact of Emotion on Memory, (3) The Impact of Emotion on Associative or Relational Memory, and (4) The Role of Individual Differences in Emotional Memory. Across these four domains, available evidence demonstrates that emotion- and memory-related medial temporal lobe brain regions (amygdala and hippocampus, respectively), together with prefrontal cortical regions, play a pivotal role during both encoding and retrieval of emotional episodic memories. This evidence sheds light on the neural mechanisms of emotional memories in healthy functioning, and has important implications for understanding clinical conditions that are associated with negative affective biases in encoding and retrieving emotional memories.
Collapse
Affiliation(s)
- Florin Dolcos
- Department of Psychology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Neuroscience Program, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Yuta Katsumi
- Department of Psychology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Mathias Weymar
- Department of Psychology, University of Potsdam, Potsdam, Germany
| | - Matthew Moore
- Department of Psychology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Takashi Tsukiura
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Sanda Dolcos
- Department of Psychology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| |
Collapse
|
43
|
Müller F, Lenz C, Dolder P, Lang U, Schmidt A, Liechti M, Borgwardt S. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatr Scand 2017; 136:648-657. [PMID: 28940312 PMCID: PMC5698745 DOI: 10.1111/acps.12818] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system. METHOD 100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects. RESULTS LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects. CONCLUSION Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT2A -receptor in altered states of consciousness.
Collapse
Affiliation(s)
- F. Müller
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - C. Lenz
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - P. Dolder
- Division of Clinical Pharmacology and ToxicologyDepartment of Biomedicine and Department of Clinical ResearchUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - U. Lang
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - A. Schmidt
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - M. Liechti
- Division of Clinical Pharmacology and ToxicologyDepartment of Biomedicine and Department of Clinical ResearchUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - S. Borgwardt
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| |
Collapse
|
44
|
Danet L, Pariente J, Eustache P, Raposo N, Sibon I, Albucher JF, Bonneville F, Péran P, Barbeau EJ. Medial thalamic stroke and its impact on familiarity and recollection. eLife 2017; 6:28141. [PMID: 28837019 PMCID: PMC5595429 DOI: 10.7554/elife.28141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Models of recognition memory have postulated that the mammillo-thalamic tract (MTT)/anterior thalamic nucleus (AN) complex would be critical for recollection while the Mediodorsal nucleus (MD) of the thalamus would support familiarity and indirectly also be involved in recollection (Aggleton et al., 2011). 12 patients with left thalamic stroke underwent a neuropsychological assessment, three verbal recognition memory tasks assessing familiarity and recollection each using different procedures and a high-resolution structural MRI. Patients showed poor recollection on all three tasks. In contrast, familiarity was spared in each task. No patient had significant AN lesions. Critically, a subset of 5 patients had lesions of the MD without lesions of the MTT. They also showed impaired recollection but preserved familiarity. Recollection is therefore impaired following MD damage, but familiarity is not. This suggests that models of familiarity, which assign a critical role to the MD, should be reappraised.
Collapse
Affiliation(s)
- Lola Danet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Brain and Cognition Research Centre, CNRS, University of Toulouse Paul Sabatier, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Pierre Eustache
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France
| | - Nicolas Raposo
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Igor Sibon
- Department of Diagnostic and Therapeutic Neuroimaging, University of Bordeaux, Bordeaux University Hospital, Bordeaux, France
| | - Jean-François Albucher
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Fabrice Bonneville
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France
| | - Emmanuel J Barbeau
- Brain and Cognition Research Centre, CNRS, University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
45
|
Sweeney-Reed CM, Zaehle T, Voges J, Schmitt FC, Buentjen L, Borchardt V, Walter M, Hinrichs H, Heinze HJ, Rugg MD, Knight RT. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest. Front Hum Neurosci 2017; 11:358. [PMID: 28775684 PMCID: PMC5518534 DOI: 10.3389/fnhum.2017.00358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/22/2017] [Indexed: 12/15/2022] Open
Abstract
Cross-frequency coupling (CFC) between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC), is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN) during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz) phase and high frequency band (80–150 Hz) amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Tino Zaehle
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Jürgen Voges
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Friedhelm C Schmitt
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Lars Buentjen
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Viola Borchardt
- Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Martin Walter
- Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Psychiatry, Eberhard Karls UniversityTübingen, Germany
| | - Hermann Hinrichs
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Otto von Guericke UniversityMagdeburg, Germany
| | - Hans-Jochen Heinze
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Otto von Guericke UniversityMagdeburg, Germany
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of TexasDallas, TX, United States
| | - Robert T Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
46
|
Abstract
Disorders of learning and memory have a large social and economic impact in today's society. Unfortunately, existing medical treatments have shown limited clinical efficacy or potential for modification of the disease course. Deep brain stimulation is a successful treatment for movement disorders and has shown promise in a variety of other diseases including psychiatric disorders. The authors review the potential of neuromodulation for the treatment of disorders of learning and memory. They briefly discuss learning circuitry and its involvement in Alzheimer disease and traumatic brain injury. They then review the literature supporting various targets for neuromodulation to improve memory in animals and humans. Multiple targets including entorhinal cortex, fornix, nucleus basalis of Meynert, basal ganglia, and pedunculopontine nucleus have shown a promising potential for improving dysfunctional memory by mechanisms such as altering firing patterns in neuronal networks underlying memory and increasing synaptic plasticity and neurogenesis. Significant work remains to be done to translate these findings into durable clinical therapies.
Collapse
Affiliation(s)
- Sarah K B Bick
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
47
|
Helfrich RF, Knight RT. Oscillatory Dynamics of Prefrontal Cognitive Control. Trends Cogn Sci 2016; 20:916-930. [PMID: 27743685 DOI: 10.1016/j.tics.2016.09.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 11/26/2022]
Abstract
The prefrontal cortex (PFC) provides the structural basis for numerous higher cognitive functions. However, it is still largely unknown which mechanisms provide the functional basis for flexible cognitive control of goal-directed behavior. Here, we review recent findings that suggest that the functional architecture of cognition is profoundly rhythmic and propose that the PFC serves as a conductor to orchestrate task-relevant large-scale networks. We highlight several studies that demonstrated that oscillatory dynamics, such as phase resetting, cross-frequency coupling (CFC), and entrainment, support PFC-dependent recruitment of task-relevant regions into coherent functional networks. Importantly, these findings support the notion that distinct spectral signatures reflect different cortical computations supporting effective multiplexing on different temporal channels along the same anatomical pathways.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Robert T Knight
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, UC Berkeley, Tolman Hall, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
Pre-stimulus thalamic theta power predicts human memory formation. Neuroimage 2016; 138:100-108. [DOI: 10.1016/j.neuroimage.2016.05.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
|
49
|
Thalamic interictal epileptiform discharges in deep brain stimulated epilepsy patients. J Neurol 2016; 263:2120-6. [DOI: 10.1007/s00415-016-8246-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
|
50
|
Memory-guided attention in the anterior thalamus. Neurosci Biobehav Rev 2016; 66:163-5. [DOI: 10.1016/j.neubiorev.2016.04.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022]
|