1
|
Figueroa FL, Castro-Varela P, Vega J, Losantos R, Peñín B, López-Cóndor L, Pacheco MJ, Redoli SL, Marí-Beffa M, Abdala-Díaz R, Sampedro D. Novel synthetic UV screen compounds inspired in mycosporine-like amino acids (MAAs): Antioxidant capacity, photoprotective properties and toxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113050. [PMID: 39515247 DOI: 10.1016/j.jphotobiol.2024.113050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The combination of environmental stress on the ozone layer, climate change and a greater sun exposure due to outdoor habits has led to an increase in skin cancer cases and other health issues related with UV radiation. Researchers are searching for new alternative UV filters that could protect our skin from the deleterious effects of UV radiation while also presenting low toxicity and biodegradable character (unlike the UV filters currently available in the market). In this work, two compounds inspired in the natural oxo-mycosporine-like amino acids (MAAs) have been synthesized and their antioxidant and photoprotective properties, as well as their in vitro and in vivo toxicity effects were evaluated. Both compounds featured a strong UV-B absorption together with a high antioxidant capacity, close to 50 μmol TE g-1 DW in the ABTS assay. Compound 1 presented an absorption peak at 285-300 nm, whereas compound 2 showed a wider band with a peak around 295-305 nm and two shoulders at 318 and 342 nm. The addition of 5 % of compound 2 to galenic formulas increased the photoprotection, reaching SPF values of 4. Both compounds were stable under UV radiation exposure. Regarding toxicity, the synthetic compounds did not show cytotoxic activity against healthy human cell lines or significant toxicity over zebrafish embryos. Compound 1 showed a complete lack of toxicity over zebrafish, although compound 2 showed slight, not-significant effects on viability, hatching, pericardial stability or body axis formation over 5 mg mL-1. Moreover, compound 1 presented relatively antitumoral activities against HCT-116 cells (selective index:1.49). The relevant antioxidant and photoprotective ability together with the great advantage provided by the reduced toxicity to health cells or zebrafish embryos, make these compounds promising candidates to be exploited as functional ingredients with specific applications in the biotechnological or pharma sector.
Collapse
Affiliation(s)
- Félix L Figueroa
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Lomas de San Julián, 2, 29004 Málaga, Spain.
| | - Pablo Castro-Varela
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Lomas de San Julián, 2, 29004 Málaga, Spain; Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile
| | - Julia Vega
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Lomas de San Julián, 2, 29004 Málaga, Spain
| | - Raúl Losantos
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain
| | - Beatriz Peñín
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain
| | - Leonardo López-Cóndor
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain
| | - María Jesús Pacheco
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Sofía Latorre Redoli
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Manuel Marí-Beffa
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Lomas de San Julián, 2, 29004 Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain; Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Roberto Abdala-Díaz
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Lomas de San Julián, 2, 29004 Málaga, Spain
| | - Diego Sampedro
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
2
|
Isla Naveira R, Granone LI, Massa AE, Churio MS. Argentine squid (Illex argentinus): A source of mycosporine-like amino acids with antioxidant properties. Food Chem 2024; 438:137955. [PMID: 37976873 DOI: 10.1016/j.foodchem.2023.137955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Here we report on the occurrence of mycosporine-like amino acids (MAAs) in the Argentine shortfin squid, Illex argentinus, the second fishery resource mostly exploited in the Argentinean continental shelf. The total content of four MAAs was evaluated by reverse-phase-HPLC in different tissues (eyes, skin, liver, and gonads). Also, the antioxidant activity of crude extracts was assessed by in-vitro determinations: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), Folin-Ciocalteu, and ferrous ion-chelating capacity assays. The content of MAAs was found to be almost ten times higher in female gonads than in other tissues (11,89 ± 0,56 mg/g dry weight). Extracts from skin, female gonads and eyes, exhibit higher antioxidant activity than the reference compounds ascorbic acid and TROLOX. Overall, Argentine squid waste is a promising potential source of MAAs with antioxidant and UV photoprotective properties, which could bear interest in food, cosmetic and pharmaceutical industries, thus encouraging maximal and sustainable use of fishing resources.
Collapse
Affiliation(s)
- Rocío Isla Naveira
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP - CONICET, Rodríguez Peña 4046, B7602GSD Mar del Plata, Argentina.
| | - Luis I Granone
- Departamento de Química y Bioquímica, FCEyN, UNMDP, Deán Funes 3350, B7602AYL Mar del Plata, Argentina; Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), UNMDP - CONICET, Deán Funes 3350, B7602AYL Mar del Plata, Argentina
| | - Agueda E Massa
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP - CONICET, Rodríguez Peña 4046, B7602GSD Mar del Plata, Argentina
| | - María Sandra Churio
- Departamento de Química y Bioquímica, FCEyN, UNMDP, Deán Funes 3350, B7602AYL Mar del Plata, Argentina; Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), UNMDP - CONICET, Deán Funes 3350, B7602AYL Mar del Plata, Argentina
| |
Collapse
|
3
|
Punchakara A, Prajapat G, Bairwa HK, Jain S, Agrawal A. Applications of mycosporine-like amino acids beyond photoprotection. Appl Environ Microbiol 2023; 89:e0074023. [PMID: 37843273 PMCID: PMC10686070 DOI: 10.1128/aem.00740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Recent years have seen a lot of interest in mycosporine-like amino acids (MAAs) because of their alleged potential as a natural microbial sunscreen. Since chemical ultraviolet (UV) absorbers are unsafe for long-term usage, the demand for natural UV-absorbing substances has increased. In this situation, MAA is a strong contender for an eco-friendly UV protector. The capacity of MAAs to absorb light in the UV-A (320-400 nm) and UV-B (280-320 nm) range without generating free radicals is potentially relevant in photoprotection. The usage of MAAs for purposes other than photoprotection has now shifted in favor of medicinal applications. Aside from UV absorption, MAAs also have anti-oxidant, anti-inflammatory, wound-healing, anti-photoaging, cell proliferation stimulators, anti-cancer agents, and anti-adipogenic properties. Recently, MAAs application to combat SARS-CoV-2 infection was also investigated. In this review article, we highlight the biomedical applications of MAAs that go beyond photoprotection, which can help in utilizing the MAAs as promising bioactive compounds in both pharmaceutical and cosmetic applications.
Collapse
Affiliation(s)
- Akhila Punchakara
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Ganshyam Prajapat
- The Energy and Resources Institute (TERI), Darbari Seth Block, India Habitat Centre, New Delhi, India
| | - Himanshu Kumar Bairwa
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shikha Jain
- Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India
| | - Akhil Agrawal
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
4
|
Jin H, Kim S, Lee D, Ledesma-Amaro R, Hahn JS. Efficient production of mycosporine-like amino acids, natural sunscreens, in Yarrowia lipolytica. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:162. [PMID: 37899467 PMCID: PMC10614408 DOI: 10.1186/s13068-023-02415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Mycosporine-like amino acids (MAAs), including shinorine and porphyra-334, are gaining attention as safe natural sunscreens. The production of MAAs has been achieved in diverse microbial hosts, including Saccharomyces cerevisiae. While S. cerevisiae is the most extensively studied model yeast, the oleaginous yeast Yarrowia lipolytica has emerged as a promising candidate for the synthesis of valuable products. In this study, we explored the potential of Y. lipolytica as a host for producing MAAs, utilizing its advantages such as a robust pentose phosphate pathway flux and versatile carbon source utilization. RESULTS We produced MAAs in Y. lipolytica by introducing the MAA biosynthetic genes from cyanobacteria Nostoc punctiforme and Anabaena variabilis. These genes include mysA, mysB, and mysC responsible for producing mycosporine-glycine (MG) from sedoheptulose 7-phosphate (S7P). The two strains utilize different enzymes, D-Ala-D-Ala ligase homologue (MysD) in N. punctiforme and NRPS-like enzyme (MysE) in A. variabilis, for amino acid conjugation to MG. MysE specifically generated shinorine, a serine conjugate of MG, while MysD exhibited substrate promiscuity, yielding both shinorine and a small amount of porphyra-334, a threonine conjugate of MG. We enhanced MAAs production by selecting mysA, mysB, and mysC from A. variabilis and mysD from N. punctiforme based on their activities. We further improved production by strengthening promoters, increasing gene copies, and introducing the xylose utilization pathway. Co-utilization of xylose with glucose or glycerol increased MAAs production by boosting the S7P pool through the pentose phosphate pathway. Overexpressing GND1 and ZWF1, key genes in the pentose phosphate pathway, further enhanced MAAs production. The highest achieved MAAs level was 249.0 mg/L (207.4 mg/L shinorine and 41.6 mg/L of porphyra-334) in YP medium containing 10 g/L glucose and 10 g/L xylose. CONCLUSIONS Y. lipolytica was successfully engineered to produce MAAs, primarily shinorine. This achievement involved the introduction of MAA biosynthetic genes from cyanobacteria, establishing xylose utilizing pathway, and overexpressing the pentose phosphate pathway genes. These results highlight the potential of Y. lipolytica as a promising yeast chassis strain for MAAs production, notably attributed to its proficient expression of MysE enzyme, which remains non-functional in S. cerevisiae, and versatile utilization of carbon sources like glycerol.
Collapse
Affiliation(s)
- Hyunbin Jin
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sojeong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Daeyeol Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Wang K, Deng Y, He Y, Cao J, Zhang L, Qin L, Qu C, Li H, Miao J. Protective Effect of Mycosporine-like Amino Acids Isolated from an Antarctic Diatom on UVB-Induced Skin Damage. Int J Mol Sci 2023; 24:15055. [PMID: 37894736 PMCID: PMC10606268 DOI: 10.3390/ijms242015055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Although it is well recognized that mycosporine-like amino acids (MAAs) are ultraviolet (UV) protective agents that can reduce UV damage, the specific biological mechanism of its role in the skin remains unclear. In this study, we investigated the effect of MAAs extracted from Antarctic diatom Phaeodactylum tricornutum ICE-H on UVB-induced skin damage using a mice model. The MAAs components identified by liquid chromatography-tandem mass spectrometry included 4-deoxygadusol, shinorine, and porphyra-334, which were purified using a Supledean Carboxen1000 solid phase extraction column. The antioxidant activities of these MAA compounds were tested in vitro. For UVB-induced skin photodamage in mice, MAAs alleviated skin swelling and epidermal thickening in this study. We detected the content of reactive oxygen species (ROS), malondialdehyde, and collagen in skin tissue. In addition, quantitative real-time polymerase chain reaction was used to detect nuclear factor-κB (NF-κB), tumor necrosis factor α, interleukin-1β, cyclooxygenase-2, mitogen activated protein kinase (MAPK) family (extracellular signal-regulated kinase, c-Jun amino-terminal kinase, and p38 kinase), and matrix metalloproteinases. The expression of these cytokines and enzymes is related to inflammatory responses and collagen degradation. In comparison to the model group without MAA treatment, the MAA component decreased the concentration of ROS, the degree of oxidative stress in the skin tissue, and the expression of genes involved in the NF-κB and MAPK pathways. In summary, these MAA components extracted from Phaeodactylum tricornutum ICE-H protected against UVB-induced skin damage by inhibiting ROS generation, relieving skin inflammation, and slowing down collagen degradation, suggesting that these MAA components are effective cosmetic candidate molecules for the protection and therapy of UVB damage.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Yashan Deng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Hongmei Li
- Key Laboratory of Biomedical Polymers, Shandong Academy of Pharmaceutical Science, Jinan 250100, China;
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| |
Collapse
|
6
|
Arsın S, Delbaje E, Jokela J, Wahlsten M, Farrar ZM, Permi P, Fewer D. A Plastic Biosynthetic Pathway for the Production of Structurally Distinct Microbial Sunscreens. ACS Chem Biol 2023; 18:1959-1967. [PMID: 37603862 PMCID: PMC10510106 DOI: 10.1021/acschembio.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Mycosporine-like amino acids (MAAs) are small, colorless, and water-soluble secondary metabolites. They have high molar extinction coefficients and a unique UV radiation absorption mechanism that make them effective sunscreens. Here we report the discovery of two structurally distinct MAAs from the lichen symbiont strain Nostoc sp. UHCC 0926. We identified these MAAs as aplysiapalythine E (C23H38N2O15) and tricore B (C34H53N4O15) using a combination of high-resolution liquid chromatography-mass spectrometry (HR-LCMS) analysis and nuclear magnetic resonance (NMR) spectroscopy. We obtained a 8.3 Mb complete genome sequence of Nostoc sp. UHCC 0926 to gain insights into the genetic basis for the biosynthesis of these two structural distinct MAAs. We identified MAA biosynthetic genes encoded in three separate locations of the genome. The organization of biosynthetic enzymes in Nostoc sp. UHCC 0926 necessitates a branched biosynthetic pathway to produce two structurally distinct MAAs. We detected the presence of such discontiguous MAA biosynthetic gene clusters in 12% of the publicly available complete cyanobacterial genomes. Bioinformatic analysis of public MAA biosynthetic gene clusters suggests that they are subject to rapid evolutionary processes resulting in highly plastic biosynthetic pathways that are responsible for the chemical diversity in this family of microbial sunscreens.
Collapse
Affiliation(s)
- Sıla Arsın
- University
of Helsinki, Department of Microbiology,
Faculty of Agriculture and Forestry, 00014 Helsinki, Finland
| | - Endrews Delbaje
- University
of São Paulo, Center for Nuclear
Energy in Agriculture, Avenida Centenário 303, 13400-970 Piracicaba, São Paulo, Brazil
| | - Jouni Jokela
- University
of Helsinki, Department of Microbiology,
Faculty of Agriculture and Forestry, 00014 Helsinki, Finland
| | - Matti Wahlsten
- University
of Helsinki, Department of Microbiology,
Faculty of Agriculture and Forestry, 00014 Helsinki, Finland
| | - Zoë M. Farrar
- University
of Helsinki, Department of Microbiology,
Faculty of Agriculture and Forestry, 00014 Helsinki, Finland
| | - Perttu Permi
- Department
of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
- Department
of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - David Fewer
- University
of Helsinki, Department of Microbiology,
Faculty of Agriculture and Forestry, 00014 Helsinki, Finland
| |
Collapse
|
7
|
Rice MC, Little JH, Forrister DL, Machado J, Clark NL, Gagnon JA. Gadusol is a maternally provided sunscreen that protects fish embryos from DNA damage. Curr Biol 2023; 33:3229-3237.e4. [PMID: 37369210 PMCID: PMC10528378 DOI: 10.1016/j.cub.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Exposure to ultraviolet radiation (UVR) is harmful to living cells, leading organisms to evolve protective mechanisms against UVR-induced cellular damage and stress.1,2 UVR, particularly UVB (280-320 nm), can damage proteins and DNA, leading to errors during DNA repair and replication. Excessive UVR can induce cellular death. Aquatic organisms face risk of UV exposure as biologically harmful levels of UVB can penetrate >10 m in clear water.3 While melanin is the only known sunscreen in vertebrates, it often emerges late in embryonic development, rendering embryos of many species vulnerable during the earlier stages. Algae and microbes produce a class of sunscreening compounds known as mycosporine-like amino acids (MAAs).4 Fish eggs contain a similar compound called gadusol, whose role as a sunscreen has yet to be tested despite its discovery over 40 years ago.5 The recent finding that many vertebrate genomes contain a biosynthetic pathway for gadusol suggests that many fish may produce and use this molecule as a sunscreen.6 We generated a gadusol-deficient mutant zebrafish to investigate the role of gadusol in protecting fish embryos and larvae from UVR. Our results demonstrate that maternally provided gadusol is the primary sunscreen in embryonic and larval development, while melanin provides modest secondary protection. The gadusol biosynthetic pathway is retained in the vast majority of teleost genomes but is repeatedly lost in species whose young are no longer exposed to UVR. Our data demonstrate that gadusol is a maternally provided sunscreen that is critical for early-life survival in the most species-rich branch of the vertebrate phylogeny.
Collapse
Affiliation(s)
- Marlen C Rice
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Jordan H Little
- Department of Human Genetics, 15 N 2030 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Dale L Forrister
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Julane Machado
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathan L Clark
- Department of Human Genetics, 15 N 2030 E, University of Utah, Salt Lake City, UT 84112, USA
| | - James A Gagnon
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Foulkes NS. Photobiology: Fish eggs go sunny side up. Curr Biol 2023; 33:R810-R812. [PMID: 37552947 DOI: 10.1016/j.cub.2023.06.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The UV radiation in sunlight can damage organisms. A new study reveals that female zebrafish deposit a chemical sunscreen into their eggs to protect their developing embryos, a feat that has been lost in fish species whose embryos never experience sunlight.
Collapse
Affiliation(s)
- Nicholas S Foulkes
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Centre for Organismal Studies (COS) Heidelberg, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
9
|
Sepúlveda D, Campusano S, Moliné M, Barahona S, Baeza M, Alcaíno J, Colabella F, Urzúa B, Libkind D, Cifuentes V. Unraveling the Molecular Basis of Mycosporine Biosynthesis in Fungi. Int J Mol Sci 2023; 24:ijms24065930. [PMID: 36983003 PMCID: PMC10057719 DOI: 10.3390/ijms24065930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The Phaffia rhodozyma UCD 67-385 genome harbors a 7873 bp cluster containing DDGS, OMT, and ATPG, encoding 2-desmethy-4-deoxygadusol synthase, O-methyl transferase, and ATP-grasp ligase, respectively, of the mycosporine glutaminol (MG) biosynthesis pathway. Homozygous deletion mutants of the entire cluster, single-gene mutants, and the Δddgs-/-;Δomt-/- and Δomt-/-;Δatpg-/- double-gene mutants did not produce mycosporines. However, Δatpg-/- accumulated the intermediate 4-deoxygadusol. Heterologous expression of the DDGS and OMT or DDGS, OMT, and ATPG cDNAs in Saccharomyces cerevisiae led to 4-deoxygadusol or MG production, respectively. Genetic integration of the complete cluster into the genome of the non-mycosporine-producing CBS 6938 wild-type strain resulted in a transgenic strain (CBS 6938_MYC) that produced MG and mycosporine glutaminol glucoside. These results indicate the function of DDGS, OMT, and ATPG in the mycosporine biosynthesis pathway. The transcription factor gene mutants Δmig1-/-, Δcyc8-/-, and Δopi1-/- showed upregulation, Δrox1-/- and Δskn7-/- showed downregulation, and Δtup6-/- and Δyap6-/- showed no effect on mycosporinogenesis in glucose-containing medium. Finally, comparative analysis of the cluster sequences in several P. rhodozyma strains and the four newly described species of the genus showed the phylogenetic relationship of the P. rhodozyma strains and their differentiation from the other species of the genus Phaffia.
Collapse
Affiliation(s)
- Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Sebastián Campusano
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Martín Moliné
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (Consejo Nacional de Investigaciones Científicas y Técnicas), CONICET-UNCo, Universidad Nacional del Comahue, Bariloche 8400, Rio Negro, Argentina
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | | | - Blanca Urzúa
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380492, Chile
| | - Diego Libkind
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (Consejo Nacional de Investigaciones Científicas y Técnicas), CONICET-UNCo, Universidad Nacional del Comahue, Bariloche 8400, Rio Negro, Argentina
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| |
Collapse
|
10
|
Alloy MM, Finch BE, Ward CP, Redman AD, Bejarano AC, Barron MG. Recommendations for advancing test protocols examining the photo-induced toxicity of petroleum and polycyclic aromatic compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106390. [PMID: 36709615 PMCID: PMC10519366 DOI: 10.1016/j.aquatox.2022.106390] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Photo-induced toxicity of petroleum products and polycyclic aromatic compounds (PACs) is the enhanced toxicity caused by their interaction with ultraviolet radiation and occurs by two distinct mechanisms: photosensitization and photomodification. Laboratory approaches for designing, conducting, and reporting of photo-induced toxicity studies are reviewed and recommended to enhance the original Chemical Response to Oil Spills: Ecological Research Forum (CROSERF) protocols which did not address photo-induced toxicity. Guidance is provided on conducting photo-induced toxicity tests, including test species, endpoints, experimental design and dosing, light sources, irradiance measurement, chemical characterization, and data reporting. Because of distinct mechanisms, aspects of photosensitization (change in compound energy state) and photomodification (change in compound structure) are addressed separately, and practical applications in laboratory and field studies and advances in predictive modeling are discussed. One goal for developing standardized testing protocols is to support lab-to-field extrapolations, which in the case of petroleum substances often requires a modeling framework to account for differential physicochemical properties of the constituents. Recommendations are provided to promote greater standardization of laboratory studies on photo-induced toxicity, thus facilitating comparisons across studies and generating data needed to improve models used in oil spill science.
Collapse
Affiliation(s)
- Matthew M Alloy
- Office of Research and Development, US EPA, Cincinnati, OH, USA.
| | - Bryson E Finch
- Department of Ecology, State of Washington, Lacey, WA, USA
| | - Collin P Ward
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | | | - Mace G Barron
- Office of Research & Development, US EPA, Gulf Breeze, FL, USA
| |
Collapse
|
11
|
Chen M, Jiang Y, Ding Y. Recent progress in unraveling the biosynthesis of natural sunscreens mycosporine-like amino acids. J Ind Microbiol Biotechnol 2023; 50:kuad038. [PMID: 37950572 PMCID: PMC10666671 DOI: 10.1093/jimb/kuad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Exposure to ultraviolet (UV) rays is a known risk factor for skin cancer, which can be notably mitigated through the application of sun care products. However, escalating concerns regarding the adverse health and environmental impacts of synthetic anti-UV chemicals underscore a pressing need for the development of biodegradable and eco-friendly sunscreen ingredients. Mycosporine-like amino acids (MAAs) represent a family of water-soluble anti-UV natural products synthesized by various organisms. These compounds can provide a two-pronged strategy for sun protection as they not only exhibit a superior UV absorption profile but also possess the potential to alleviate UV-induced oxidative stresses. Nevertheless, the widespread incorporation of MAAs in sun protection products is hindered by supply constraints. Delving into the biosynthetic pathways of MAAs can offer innovative strategies to overcome this limitation. Here, we review recent progress in MAA biosynthesis, with an emphasis on key biosynthetic enzymes, including the dehydroquinate synthase homolog MysA, the adenosine triphosphate (ATP)-grasp ligases MysC and MysD, and the nonribosomal peptide synthetase (NRPS)-like enzyme MysE. Additionally, we discuss recently discovered MAA tailoring enzymes. The enhanced understanding of the MAA biosynthesis paves the way for not only facilitating the supply of MAA analogs but also for exploring the evolution of this unique family of natural sunscreens. ONE-SENTENCE SUMMARY This review discusses the role of mycosporine-like amino acids (MAAs) as potent natural sunscreens and delves into recent progress in their biosynthesis.
Collapse
Affiliation(s)
- Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610USA
| | - Yujia Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610USA
| |
Collapse
|
12
|
Danneels B, Blignaut M, Marti G, Sieber S, Vandamme P, Meyer M, Carlier A. Cyclitol metabolism is a central feature of Burkholderia leaf symbionts. Environ Microbiol 2023; 25:454-472. [PMID: 36451580 DOI: 10.1111/1462-2920.16292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The symbioses between plants of the Rubiaceae and Primulaceae families with Burkholderia bacteria represent unique and intimate plant-bacterial relationships. Many of these interactions have been identified through PCR-dependent typing methods, but there is little information available about their functional and ecological roles. We assembled 17 new endophyte genomes representing endophytes from 13 plant species, including those of two previously unknown associations. Genomes of leaf endophytes belonging to Burkholderia s.l. show extensive signs of genome reduction, albeit to varying degrees. Except for one endophyte, none of the bacterial symbionts could be isolated on standard microbiological media. Despite their taxonomic diversity, all endophyte genomes contained gene clusters linked to the production of specialized metabolites, including genes linked to cyclitol sugar analog metabolism and in one instance non-ribosomal peptide synthesis. These genes and gene clusters are unique within Burkholderia s.l. and are likely horizontally acquired. We propose that the acquisition of secondary metabolite gene clusters through horizontal gene transfer is a prerequisite for the evolution of a stable association between these endophytes and their hosts.
Collapse
Affiliation(s)
- Bram Danneels
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Monique Blignaut
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Guillaume Marti
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UT3, INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Simon Sieber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Marion Meyer
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
13
|
Rice MC, Little JH, Forrister DL, Machado J, Clark NL, Gagnon JA. Gadusol is a maternally provided sunscreen that protects fish embryos from DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526370. [PMID: 36778296 PMCID: PMC9915660 DOI: 10.1101/2023.01.30.526370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ultraviolet radiation (UVR) and its deleterious effects on living cells selects for UVR-protective mechanisms. Organisms across the tree of life evolved a variety of natural sunscreens to prevent UVR-induced cellular damage and stress. However, in vertebrates, only melanin is known to act as a sunscreen. Here we demonstrate that gadusol, a transparent compound discovered over 40 years ago in fish eggs, is a maternally provided sunscreen required for survival of embryonic and larval zebrafish exposed to UVR. Mutating an enzyme involved in gadusol biosynthesis increases the formation of cyclobutane pyrimidine dimers, a hallmark of UVB-induced DNA damage. Compared to the contributions of melanin and the chorion, gadusol is the primary sunscreening mechanism in embryonic and larval fish. The gadusol biosynthetic pathway is retained in the vast majority of teleost genomes but is repeatedly lost in species whose young are no longer exposed to UVR. Our data demonstrate that gadusol is a maternally provided sunscreen that is critical for early-life survival in the most species-rich branch of the vertebrate phylogeny.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, SLC, UT 84112, USA
| | - Jordan H. Little
- Department of Human Genetics, University of Utah, SLC, UT 84112, USA
| | - Dale L. Forrister
- School of Biological Sciences, University of Utah, SLC, UT 84112, USA
| | - Julane Machado
- School of Biological Sciences, University of Utah, SLC, UT 84112, USA
| | - Nathan L. Clark
- Department of Human Genetics, University of Utah, SLC, UT 84112, USA
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, SLC, UT 84112, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Tapfuma KI, Nyambo K, Adu-Amankwaah F, Baatjies L, Smith L, Allie N, Keyster M, Loxton AG, Ngxande M, Malgas-Enus R, Mavumengwana V. Antimycobacterial activity and molecular docking of methanolic extracts and compounds of marine fungi from Saldanha and False Bays, South Africa. Heliyon 2022; 8:e12406. [PMID: 36582695 PMCID: PMC9793266 DOI: 10.1016/j.heliyon.2022.e12406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The number and diversity of drugs in the tuberculosis (TB) drug development process has increased over the years, yet the attrition rate remains very high, signaling the need for continued research in drug discovery. In this study, crude secondary metabolites from marine fungi associated with ascidians collected from Saldanha and False Bays (South Africa) were investigated for antimycobacterial activity. Isolation of fungi was performed by sectioning thin inner-tissues of ascidians and spreading them over potato dextrose agar (PDA). Solid state fermentation of fungal isolates on PDA was then performed for 28 days to allow production of secondary metabolites. Afterwards, PDA cultures were dried and solid-liquid extraction using methanol was performed to extract fungal metabolites. Profiling of metabolites was performed using untargeted liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS). The broth microdilution method was used to determine antimycobacterial activity against Mycobacterium smegmatis mc2155 and Mycobacterium tuberculosis H37Rv, while in silico flexible docking was performed on selected target proteins from M. tuberculosis. A total of 16 ascidians were sampled and 46 fungi were isolated. Only 32 fungal isolates were sequenced, and their sequences submitted to GenBank to obtain accession numbers. Metabolite profiling of 6 selected fungal extracts resulted in the identification of 65 metabolites. The most interesting extract was that of Clonostachys rogersoniana MGK33 which inhibited Mycobacterium smegmatis mc2155 and Mycobacterium tuberculosis H37Rv growth with minimum inhibitory concentrations (MICs) of 0.125 and 0.2 mg/mL, respectively. These results were in accordance with those from in silico molecular docking studies which showed that bionectin F produced by C. rogersoniana MGK33 is a potential inhibitor of M. tuberculosis β-ketoacyl-acyl carrier protein reductase (MabA, PDB ID = 1UZN), with the docking score observed as -11.17 kcal/mol. These findings provided evidence to conclude that metabolites from marine-derived fungi are potential sources of bioactive metabolites with antimycobacterial activity. Even though in silico studies showed that bionectin F is a potent inhibitor of an essential enzyme, MabA, the results should be validated by performing purification of bionectin F from C. rogersoniana MGK33 and in vitro assays against MabA and whole cells (M. tuberculosis).
Collapse
Affiliation(s)
- Kudzanai Ian Tapfuma
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kudakwashe Nyambo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Francis Adu-Amankwaah
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lucinda Baatjies
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liezel Smith
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nasiema Allie
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory (EBL), Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Andre G. Loxton
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mkhuseli Ngxande
- Computer Science Division, Department of Mathematical Sciences, Faculty of Science University of Stellenbosch, Matieland, South Africa
| | - Rehana Malgas-Enus
- Department of Chemistry and Polymer Science, Faculty of Science, University of Stellenbosch, Matieland, South Africa
| | - Vuyo Mavumengwana
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa,Corresponding author.
| |
Collapse
|
15
|
Aqueous Extracts of Fish Roe as a Source of Several Bioactive Compounds. SEPARATIONS 2022. [DOI: 10.3390/separations9080210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Regular consumption of seafood and, in particular, fish has been associated with important health benefits. A fish product that has been increasingly included in the human nutrition is roe. Despite its nutritional value has been established (fatty acid profile and protein content), the knowledge of the composition of its aqueous extracts is still limited. This work describes the bioactive compounds profile in the roe-derived aqueous extracts of three different marine species (sardine, horse mackerel and sea bass) using a method based on liquid chromatography coupled to high-resolution mass spectrometry with an electrospray ionisation source (LC-ESI/HRMS). The presence of substances with well-known nutritional and functional properties (e.g., antioxidant and anti-inflammatory properties) was demonstrated, namely essential amino acids (e.g., taurine), peptides (e.g., anserine and carnosine), B-group vitamins (e.g., nicotinamide) and gadusol. Therefore, roe-derived aqueous extracts are excellent sources of bioactive compounds and may be used as a font of functional components for several medical and veterinary applications.
Collapse
|
16
|
Investigating the Ultrafast Dynamics and Long-Term Photostability of an Isomer Pair, Usujirene and Palythene, from the Mycosporine-like Amino Acid Family. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072272. [PMID: 35408670 PMCID: PMC9000306 DOI: 10.3390/molecules27072272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Mycosporine-like amino acids are a prevalent form of photoprotection in micro- and macro-organisms. Using a combination of natural product extraction/purification and femtosecond transient absorption spectroscopy, we studied the relaxation pathway for a common mycosporine-like amino acid pair, usujirene and its geometric isomer palythene, in the first few nanoseconds following photoexcitation. Our studies show that the electronic excited state lifetimes of these molecules persist for only a few hundred femtoseconds before the excited state population is funneled through an energetically accessible conical intersection with subsequent vibrational energy transfer to the solvent. We found that a minor portion of the isomer pair did not recover to their original state within 3 ns after photoexcitation. We investigated the long-term photostability using continuous irradiation at a single wavelength and with a solar simulator to mimic a more real-life environment; high levels of photostability were observed in both experiments. Finally, we employed computational methods to elucidate the photochemical and photophysical properties of usujirene and palythene as well as to reconcile the photoprotective mechanism.
Collapse
|
17
|
Raj S, Kuniyil AM, Sreenikethanam A, Gugulothu P, Jeyakumar RB, Bajhaiya AK. Microalgae as a Source of Mycosporine-like Amino Acids (MAAs); Advances and Future Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12402. [PMID: 34886126 PMCID: PMC8656575 DOI: 10.3390/ijerph182312402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
Mycosporine-like amino acids (MAAs), are secondary metabolites, first reported in 1960 and found to be associated with the light-stimulated sporulation in terrestrial fungi. MAAs are nitrogenous, low molecular weight, water soluble compounds, which are highly stable with cyclohexenone or cycloheximine rings to store the free radicals. Microalgae are considered as a good source of different kinds of MAAs, which in turn, has its own applications in various industries due to its UV absorbing, anti-oxidant and therapeutic properties. Microalgae can be easily cultivated and requires a very short generation time, which makes them environment friendly source of biomolecules such as mycosporine-like amino acids. Modifying the cultural conditions along withmanipulation of genes associated with mycosporine-like amino acids biosynthesis can help to enhance MAAs synthesis and, in turn, can make microalgae suitable bio-refinery for large scale MAAs production. This review focuses on properties and therapeutic applications of mycosporine like amino acids derived from microalgae. Further attention is drawn on various culture and genetic engineering approaches to enhance the MAAs production in microalgae.
Collapse
Affiliation(s)
- Subhisha Raj
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Anusree M. Kuniyil
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Arathi Sreenikethanam
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Poornachandar Gugulothu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (P.G.); (R.B.J.)
| | - Rajesh Banu Jeyakumar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (P.G.); (R.B.J.)
| | - Amit K. Bajhaiya
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| |
Collapse
|
18
|
Chen M, Rubin GM, Jiang G, Raad Z, Ding Y. Biosynthesis and Heterologous Production of Mycosporine-Like Amino Acid Palythines. J Org Chem 2021; 86:11160-11168. [PMID: 34006097 DOI: 10.1021/acs.joc.1c00368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycosporine-like amino acids (MAAs) are a family of natural products that are produced by a variety of organisms for protection from ultraviolet damage. In this work, we combined different bioinformatic approaches to assess the distribution of the MAA biosynthesis and identified a putative gene cluster from Nostoc linckia NIES-25 that encodes a short-chain dehydrogenase/reductase and a nonheme iron(II)- and 2-oxoglutarate-dependent oxygenase (MysH) as potential new biosynthetic enzymes. Heterologous expression of refactored gene clusters in E. coli produced two known biosynthetic intermediates, 4-deoxygadusol and mycosporine-glycine, and three disubstituted MAA analogues, porphyra-334, shinorine, and mycosporine-glycine-alanine. Importantly, the disubstituted MAAs were converted into palythines by MysH. Furthermore, biochemical characterization revealed the substrate preference of recombinant MysD, a d-Ala-d-Ala ligase-like enzyme for the formation of disubstituted MAAs. Our study advances the biosynthetic understanding of an important family of natural UV photoprotectants and opens new opportunities to the development of next-generation sunscreens.
Collapse
Affiliation(s)
- Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Garret M Rubin
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Guangde Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Zachary Raad
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
19
|
Mapping the biosynthetic pathway of a hybrid polyketide-nonribosomal peptide in a metazoan. Nat Commun 2021; 12:4912. [PMID: 34389721 PMCID: PMC8363725 DOI: 10.1038/s41467-021-24682-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
Polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) hybrid systems typically use complex protein-protein interactions to facilitate direct transfer of intermediates between these multimodular megaenzymes. In the canal-associated neurons (CANs) of Caenorhabditis elegans, PKS-1 and NRPS-1 produce the nemamides, the only known hybrid polyketide-nonribosomal peptides biosynthesized by animals, through a poorly understood mechanism. Here, we use genome editing and mass spectrometry to map the roles of individual PKS-1 and NRPS-1 enzymatic domains in nemamide biosynthesis. Furthermore, we show that nemamide biosynthesis requires at least five additional enzymes expressed in the CANs that are encoded by genes distributed across the worm genome. We identify the roles of these enzymes and discover a mechanism for trafficking intermediates between a PKS and an NRPS. Specifically, the enzyme PKAL-1 activates an advanced polyketide intermediate as an adenylate and directly loads it onto a carrier protein in NRPS-1. This trafficking mechanism provides a means by which a PKS-NRPS system can expand its biosynthetic potential and is likely important for the regulation of nemamide biosynthesis. The only known animal polyketide-nonribosomal peptides, the nemamides, are biosynthesized by two megasynthetases in the canal-associated neurons (CANs) of C. elegans. Here, the authors map the biosynthetic roles of individual megasynthetase domains and identify additional enzymes in the CANs required for nemamide biosynthesis.
Collapse
|
20
|
Xu P, Zhao C, You X, Yang F, Chen J, Ruan Z, Gu R, Xu J, Bian C, Shi Q. Draft Genome of the Mirrorwing Flyingfish ( Hirundichthys speculiger). Front Genet 2021; 12:695700. [PMID: 34306036 PMCID: PMC8294118 DOI: 10.3389/fgene.2021.695700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Pengwei Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenxi Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxin You
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Fan Yang
- Marine Geological Department, Marine Geological Survey Institute of Hainan Province, Haikou, China
| | - Jieming Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Zhiqiang Ruan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Ruobo Gu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Chao Bian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Qiong Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| |
Collapse
|
21
|
Milito A, Castellano I, Damiani E. From Sea to Skin: Is There a Future for Natural Photoprotectants? Mar Drugs 2021; 19:md19070379. [PMID: 34209059 PMCID: PMC8303403 DOI: 10.3390/md19070379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
In the last few decades, the thinning of the ozone layer due to increased atmospheric pollution has exacerbated the negative effects of excessive exposure to solar ultraviolet radiation (UVR), and skin cancer has become a major public health concern. In order to prevent skin damage, public health advice mainly focuses on the use of sunscreens, along with wearing protective clothing and avoiding sun exposure during peak hours. Sunscreens present on the market are topical formulations that contain a number of different synthetic, organic, and inorganic UVR filters with different absorbance profiles, which, when combined, provide broad UVR spectrum protection. However, increased evidence suggests that some of these compounds cause subtle damage to marine ecosystems. One alternative may be the use of natural products that are produced in a wide range of marine species and are mainly thought to act as a defense against UVR-mediated damage. However, their potential for human photoprotection is largely under-investigated. In this review, attention has been placed on the molecular strategies adopted by marine organisms to counteract UVR-induced negative effects and we provide a broad portrayal of the recent literature concerning marine-derived natural products having potential as natural sunscreens/photoprotectants for human skin. Their chemical structure, UVR absorption properties, and their pleiotropic role as bioactive molecules are discussed. Most studies strongly suggest that these natural products could be promising for use in biocompatible sunscreens and may represent an alternative eco-friendly approach to protect humans against UV-induced skin damage.
Collapse
Affiliation(s)
- Alfonsina Milito
- Centre for Research in Agricultural Genomics, Department of Molecular Genetics, Cerdanyola, 08193 Barcelona, Spain;
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (I.C.); (E.D.)
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of the Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (I.C.); (E.D.)
| |
Collapse
|
22
|
Scherlach K, Hertweck C. Mining and unearthing hidden biosynthetic potential. Nat Commun 2021; 12:3864. [PMID: 34162873 PMCID: PMC8222398 DOI: 10.1038/s41467-021-24133-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Genetically encoded small molecules (secondary metabolites) play eminent roles in ecological interactions, as pathogenicity factors and as drug leads. Yet, these chemical mediators often evade detection, and the discovery of novel entities is hampered by low production and high rediscovery rates. These limitations may be addressed by genome mining for biosynthetic gene clusters, thereby unveiling cryptic metabolic potential. The development of sophisticated data mining methods and genetic and analytical tools has enabled the discovery of an impressive array of previously overlooked natural products. This review shows the newest developments in the field, highlighting compound discovery from unconventional sources and microbiomes. Natural products are an important source of bioactive compounds and have versatile applications in different fields, but their discovery is challenging. Here, the authors review the recent developments in genome mining for discovery of natural products, focusing on compounds from unconventional microorganisms and microbiomes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
23
|
Foflonker F, Blaby-Haas CE. Colocality to Cofunctionality: Eukaryotic Gene Neighborhoods as a Resource for Function Discovery. Mol Biol Evol 2021; 38:650-662. [PMID: 32886760 PMCID: PMC7826186 DOI: 10.1093/molbev/msaa221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diverging from the classic paradigm of random gene order in eukaryotes, gene proximity can be leveraged to systematically identify functionally related gene neighborhoods in eukaryotes, utilizing techniques pioneered in bacteria. Current methods of identifying gene neighborhoods typically rely on sequence similarity to characterized gene products. However, this approach is not robust for nonmodel organisms like algae, which are evolutionarily distant from well-characterized model organisms. Here, we utilize a comparative genomic approach to identify evolutionarily conserved proximal orthologous gene pairs conserved across at least two taxonomic classes of green algae. A total of 317 gene neighborhoods were identified. In some cases, gene proximity appears to have been conserved since before the streptophyte–chlorophyte split, 1,000 Ma. Using functional inferences derived from reconstructed evolutionary relationships, we identified several novel functional clusters. A putative mycosporine-like amino acid, “sunscreen,” neighborhood contains genes similar to either vertebrate or cyanobacterial pathways, suggesting a novel mosaic biosynthetic pathway in green algae. One of two putative arsenic-detoxification neighborhoods includes an organoarsenical transporter (ArsJ), a glyceraldehyde 3-phosphate dehydrogenase-like gene, homologs of which are involved in arsenic detoxification in bacteria, and a novel algal-specific phosphoglycerate kinase-like gene. Mutants of the ArsJ-like transporter and phosphoglycerate kinase-like genes in Chlamydomonas reinhardtii were found to be sensitive to arsenate, providing experimental support for the role of these identified neighbors in resistance to arsenate. Potential evolutionary origins of neighborhoods are discussed, and updated annotations for formerly poorly annotated genes are presented, highlighting the potential of this strategy for functional annotation.
Collapse
|
24
|
Singh A, Čížková M, Bišová K, Vítová M. Exploring Mycosporine-Like Amino Acids (MAAs) as Safe and Natural Protective Agents against UV-Induced Skin Damage. Antioxidants (Basel) 2021; 10:antiox10050683. [PMID: 33925517 PMCID: PMC8145676 DOI: 10.3390/antiox10050683] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Prolonged exposure to harmful ultraviolet radiation (UVR) can induce many chronic or acute skin disorders in humans. To protect themselves, many people have started to apply cosmetic products containing UV-screening chemicals alone or together with physical sunblocks, mainly based on titanium–dioxide (TiO2) or zinc-oxide (ZnO2). However, it has now been shown that the use of chemical and physical sunblocks is not safe for long-term application, so searches for the novel, natural UV-screening compounds derived from plants or bacteria are gaining attention. Certain photosynthetic organisms such as algae and cyanobacteria have evolved to cope with exposure to UVR by producing mycosporine-like amino acids (MAAs). These are promising substitutes for chemical sunscreens containing commercially available sunblock filters. The use of biopolymers such as chitosan for joining MAAs together or with MAA-Np (nanoparticles) conjugates will provide stability to MAAs similar to the mixing of chemical and physical sunscreens. This review critically describes UV-induced skin damage, problems associated with the use of chemical and physical sunscreens, cyanobacteria as a source of MAAs, the abundance of MAAs and their biotechnological applications. We also narrate the effectiveness and application of MAAs and MAA conjugates on skin cell lines.
Collapse
|
25
|
Geraldes V, Pinto E. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals (Basel) 2021; 14:63. [PMID: 33466685 PMCID: PMC7828830 DOI: 10.3390/ph14010063] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
Mycosporines and mycosporine-like amino acids are ultra-violet-absorbing compounds produced by several organisms such as lichens, fungi, algae and cyanobacteria, especially upon exposure to solar ultraviolet radiation. These compounds have photoprotective and antioxidant functions. Mycosporine-like amino acids have been used as a natural bioactive ingredient in cosmetic products. Several reviews have already been developed on these photoprotective compounds, but they focus on specific features. Herein, an extremely complete database on mycosporines and mycosporine-like amino acids, covering the whole class of these natural sunscreen compounds known to date, is presented. Currently, this database has 74 compounds and provides information about the chemistry, absorption maxima, protonated mass, fragments and molecular structure of these UV-absorbing compounds as well as their presence in organisms. This platform completes the previous reviews and is available online for free and in the public domain. This database is a useful tool for natural product data mining, dereplication studies, research working in the field of UV-absorbing compounds mycosporines and being integrated in mass spectrometry library software.
Collapse
Affiliation(s)
- Vanessa Geraldes
- School of Pharmaceutical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo-SP CEP 05508-000, Brazil;
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| |
Collapse
|
26
|
Llewellyn CA, Greig C, Silkina A, Kultschar B, Hitchings MD, Farnham G. Mycosporine-like amino acid and aromatic amino acid transcriptome response to UV and far-red light in the cyanobacterium Chlorogloeopsis fritschii PCC 6912. Sci Rep 2020; 10:20638. [PMID: 33244119 PMCID: PMC7693272 DOI: 10.1038/s41598-020-77402-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
The "UV sunscreen" compounds, the mycosporine-like amino acids (MAAs) are widely reported in cyanobacteria and are known to be induced under ultra-violet (UV) light. However, the impact of far red (FR) light on MAA biosynthesis has not been studied. We report results from two experiments measuring transcriptional regulation of MAA and aromatic amino acid pathways in the filamentous cyanobacterium Chlorogloeopsis fritschii PCC 6912. The first experiment, comparing UV with white light, shows the expected upregulation of the characteristic MAA mys gene cluster. The second experiment, comparing FR with white light, shows that three genes of the four mys gene cluster encoding up to mycosporine-glycine are also upregulated under FR light. This is a new discovery. We observed corresponding increases in MAAs under FR light using HPLC analysis. The tryptophan pathway was upregulated under UV, with no change under FR. The tyrosine and phenylalanine pathways were unaltered under both conditions. However, nitrate ABC transporter genes were upregulated under UV and FR light indicating increased nitrogen requirement under both light conditions. The discovery that MAAs are upregulated under FR light supports MAAs playing a role in photon dissipation and thermoregulation with a possible role in contributing to Earth surface temperature regulation.
Collapse
Affiliation(s)
- Carole A Llewellyn
- Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, UK.
| | - Carolyn Greig
- Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, UK
| | - Alla Silkina
- Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, UK
| | - Bethan Kultschar
- Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, UK
| | | | - Garry Farnham
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, PL4 8AA, UK
| |
Collapse
|
27
|
Sensitized photo-oxidation of gadusol species mediated by singlet oxygen. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112078. [PMID: 33221626 DOI: 10.1016/j.jphotobiol.2020.112078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 11/21/2022]
Abstract
Gadusols are efficient nature UV sunscreens with antioxidant capacity. The kinetics of the quenching reactions of singlet oxygen O2(1∆g) by gadusol species was evaluated in aqueous solution as well as in the presence of direct charged micelles. Time-resolved phosphorescence detection of O2(1∆g) indicated that gadusolate, the main species under biological pH, is a more efficient quencher than the enol form with a rate constant of ca. 1.3 × 108 L mol-1 s-1. The deactivation proceeds via a collisional mechanism with clear dominance of chemical pathways, according to the rates of gadusol and oxygen consumptions, and typical photooxidation quantum yields of ca. 7%. The relative contributions of the chemical and physical quenching steps were not affected by the presence of anionic or cationic micelles emulating simple pseudo-biological environments. The products of the photo-oxidative quenching support a type II mechanism initiated by the addition of O2(1∆g) to the C-C double bond of gadusolate. These results point to the relevance of considering the role of sacrifice antioxidant along with the UV-screening function for gadusol, particularly in the context of potential biotechnological applications of this natural molecule.
Collapse
|
28
|
Sun L, Jin YS. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae. Biotechnol J 2020; 16:e2000142. [PMID: 33135317 DOI: 10.1002/biot.202000142] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/15/2020] [Indexed: 11/09/2022]
Abstract
Microbial conversion of plant biomass into fuels and chemicals offers a practical solution to global concerns over limited natural resources, environmental pollution, and climate change. Pursuant to these goals, researchers have put tremendous efforts and resources toward engineering the yeast Saccharomyces cerevisiae to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into various fuels and chemicals. Here, recent advances in metabolic engineering of yeast is summarized to address bottlenecks on xylose assimilation and to enable simultaneous co-utilization of xylose and other substrates in lignocellulosic hydrolysates. Distinct characteristics of xylose metabolism that can be harnessed to produce advanced biofuels and chemicals are also highlighted. Although many challenges remain, recent research investments have facilitated the efficient fermentation of xylose and simultaneous co-consumption of xylose and glucose. In particular, understanding xylose-induced metabolic rewiring in engineered yeast has encouraged the use of xylose as a carbon source for producing various non-ethanol bioproducts. To boost the lignocellulosic biomass-based bioeconomy, much attention is expected to promote xylose-utilizing efficiency via reprogramming cellular regulatory networks, to attain robust co-fermentation of xylose and other cellulosic carbon sources under industrial conditions, and to exploit the advantageous traits of yeast xylose metabolism for producing diverse fuels and chemicals.
Collapse
Affiliation(s)
- Liang Sun
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
29
|
Claverie M, McReynolds C, Petitpas A, Thomas M, Fernandes SCM. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers (Basel) 2020; 12:E1002. [PMID: 32357448 PMCID: PMC7285066 DOI: 10.3390/polym12051002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
The review covers recent literature on the ocean as both a source of biotechnological tools and as a source of bio-inspired materials. The emphasis is on marine biomacromolecules namely hyaluronic acid, chitin and chitosan, peptides, collagen, enzymes, polysaccharides from algae, and secondary metabolites like mycosporines. Their specific biological, physicochemical and structural properties together with relevant applications in biocomposite materials have been included. Additionally, it refers to the marine organisms as source of inspiration for the design and development of sustainable and functional (bio)materials. Marine biological functions that mimic reef fish mucus, marine adhesives and structural colouration are explained.
Collapse
Affiliation(s)
- Marion Claverie
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Colin McReynolds
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Arnaud Petitpas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Martin Thomas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Susana C. M. Fernandes
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
- Department of Chemistry—Angstrom Laboratory, Polymer Chemistry, Uppsala University, Lagerhyddsvagen 1, 75120 Uppsala, Sweden
| |
Collapse
|
30
|
Ganley JG, Derbyshire ER. Linking Genes to Molecules in Eukaryotic Sources: An Endeavor to Expand Our Biosynthetic Repertoire. Molecules 2020; 25:E625. [PMID: 32023950 PMCID: PMC7036892 DOI: 10.3390/molecules25030625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
The discovery of natural products continues to interest chemists and biologists for their utility in medicine as well as facilitating our understanding of signaling, pathogenesis, and evolution. Despite an attenuation in the discovery rate of new molecules, the current genomics and transcriptomics revolution has illuminated the untapped biosynthetic potential of many diverse organisms. Today, natural product discovery can be driven by biosynthetic gene cluster (BGC) analysis, which is capable of predicting enzymes that catalyze novel reactions and organisms that synthesize new chemical structures. This approach has been particularly effective in mining bacterial and fungal genomes where it has facilitated the discovery of new molecules, increased the understanding of metabolite assembly, and in some instances uncovered enzymes with intriguing synthetic utility. While relatively less is known about the biosynthetic potential of non-fungal eukaryotes, there is compelling evidence to suggest many encode biosynthetic enzymes that produce molecules with unique bioactivities. In this review, we highlight how the advances in genomics and transcriptomics have aided natural product discovery in sources from eukaryotic lineages. We summarize work that has successfully connected genes to previously identified molecules and how advancing these techniques can lead to genetics-guided discovery of novel chemical structures and reactions distributed throughout the tree of life. Ultimately, we discuss the advantage of increasing the known biosynthetic space to ease access to complex natural and non-natural small molecules.
Collapse
Affiliation(s)
- Jack G Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708-0346, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708-0346, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
31
|
Hylander S. Mycosporine-Like Amino Acids (MAAs) in Zooplankton. Mar Drugs 2020; 18:md18020072. [PMID: 31979234 PMCID: PMC7073964 DOI: 10.3390/md18020072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022] Open
Abstract
Organisms have different adaptations to avoid damage from ultraviolet radiation and one such adaptation is the accumulation of mycosporine-like amino acids (MAAs). These compounds are common in aquatic taxa but a comprehensive review is lacking on their distribution and function in zooplankton. This paper shows that zooplankton MAA concentrations range from non-detectable to ~13 µg mgDW−1. Copepods, rotifers, and krill display a large range of concentrations, whereas cladocerans generally do not contain MAAs. The proposed mechanisms to gain MAAs are via ingestion of MAA-rich food or via symbiotic bacteria providing zooplankton with MAAs. Exposure to UV-radiation increases the concentrations in zooplankton both via increasing MAA concentrations in the phytoplankton food and due to active accumulation. Concentrations are generally low during winter and higher in summer and females seem to deposit MAAs in their eggs. The concentrations of MAAs in zooplankton tend to increase with altitude but only up to a certain altitude suggesting some limitation for the uptake. Shallow and UV-transparent systems tend to have copepods with higher concentrations of MAAs but this has only been shown in a few species. A high MAA concentration has also been shown to lead to lower UV-induced mortality and an overall increased fitness. While there is a lot of information on MAAs in zooplankton we still lack understanding of the potential costs and constraints for accumulation. There is also scarce information in some taxa such as rotifers as well as from systems in tropical, sub(polar) areas as well as in marine systems in general.
Collapse
Affiliation(s)
- Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems-EEMiS, Linnaeus University, SE-39182, Kalmar, Sweden
| |
Collapse
|
32
|
Morgan MA, Griffith CM, Volz DC, Larive CK. TDCIPP exposure affects Artemia franciscana growth and osmoregulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133486. [PMID: 31401516 PMCID: PMC6868324 DOI: 10.1016/j.scitotenv.2019.07.292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 05/18/2023]
Abstract
Environmental monitoring has demonstrated widespread occurrence of the flame-retardant tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), raising concerns about the impact on aquatic life. Using 1H NMR and GC-MS metabolomics and 20-day body length experiments, we have determined that exposure to TDCIPP affects Artemia franciscana. The LC50 for a 48 h TDCIPP exposure was determined to be 37.1 ± 1.3 μM. Acute exposure (48 h) to 20.0 μM did not affect A. franciscana body length but did elicit a metabolic change. Chronic exposure to 0.50 μM TDCIPP caused decreased body length in A. franciscana exposed for 20 days and elicited a metabolic response. Principal component analysis revealed variance between acute and chronic exposure along PC1 (36.4%) and between control and TDCIPP along PC2 (17.4%). One-way ANOVA indicated that 19 metabolites were significantly affected by TDCIPP exposure; namely metabolites of the osmolyte class, including betaine, phosphocholine, gadusol, taurine, glycerol and trehalose - metabolites that are essential osmoprotectants in extremophile species. Other pathways that may be perturbed by TDCIPP exposure include one carbon, glycine, serine, threonine, and glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Melissa A Morgan
- Department of Chemistry, University of California, Riverside, CA 92521, United States
| | - Corey M Griffith
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Cynthia K Larive
- Department of Chemistry, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
33
|
Abstract
Mycosporine-like amino acids have long been known as a natural form of photoprotection for fungi and cyanobacteria. This review will highlight the key time-resolved experimental and theoretical techniques unravelling their photochemistry and photophysics, and directly link this to their use in commercial skin-care products, namely as sunscreen filters. Three case studies have been selected, each having aided advancement in this burgeoning field of research. We discuss these studies in the context of photoprotection and conclude by evaluating the necessary future steps towards translating the photochemistry and photophysics insight of these nature derived sunscreen filters to commercial application.
Collapse
Affiliation(s)
- Jack M. Woolley
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|
34
|
Abstract
Sunscreen-containing skincare products protect the skin from damage caused by sun exposure. However, many of them contain oxybenzone and/or octinoxate, which have been reported to be toxic to juvenile coral and to cause coral bleaching. Thus, there is a growing need for new sunscreen compounds that are less harmful to the environment. Here, we report an engineered biosynthetic pathway employing genes from a vertebrate and two Gram-(+) bacteria that forms novel sunscreen compounds with hybrid structures of gadusol and mycosporine-like amino acids, both of which are found in marine environments. These compounds, named gadusporines, have unique UV absorbance at 340 nm, expanding the range of mycosporine- and gadusol-based sunscreen products. The synthesis of gadusporines in Streptomyces coelicolor establishes a platform for the design and production of novel sunscreens.
Collapse
Affiliation(s)
- Andrew R. Osborn
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| |
Collapse
|
35
|
Mycosporine-Like Amino Acids: Making the Foundation for Organic Personalised Sunscreens. Mar Drugs 2019; 17:md17110638. [PMID: 31726795 PMCID: PMC6891770 DOI: 10.3390/md17110638] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023] Open
Abstract
The surface of the Earth is exposed to harmful ultraviolet radiation (UVR: 280-400 nm). Prolonged skin exposure to UVR results in DNA damage through oxidative stress due to the production of reactive oxygen species (ROS). Mycosporine-like amino acids (MAAs) are UV-absorbing compounds, found in many marine and freshwater organisms that have been of interest in use for skin protection. MAAs are involved in photoprotection from damaging UVR thanks to their ability to absorb light in both the UV-A (315-400 nm) and UV-B (280-315 nm) range without producing free radicals. In addition, by scavenging ROS, MAAs play an antioxidant role and suppress singlet oxygen-induced damage. Currently, there are over 30 different MAAs found in nature and they are characterised by different antioxidative and UV-absorbing capacities. Depending on the environmental conditions and UV level, up- or downregulation of genes from the MAA biosynthetic pathway results in seasonal fluctuation of the MAA content in aquatic species. This review will provide a summary of the MAA antioxidative and UV-absorbing features, including the genes involved in the MAA biosynthesis. Specifically, regulatory mechanisms involved in MAAs pathways will be evaluated for controlled MAA synthesis, advancing the potential use of MAAs in human skin protection.
Collapse
|
36
|
Abstract
Secondary metabolites are often considered within the remit of bacterial or plant research, but animals also contain a plethora of these molecules with important functional roles. Classical feeding studies demonstrate that, whereas some are derived from diet, many of these compounds are made within the animals. In the past 15 years, the genetic and biochemical origin of several animal natural products has been traced to partnerships with symbiotic bacteria. More recently, a number of animal genome-encoded pathways to microbe-like natural products have come to light. These pathways are sometimes horizontally acquired from bacteria, but more commonly they unveil a new and diverse animal biochemistry. In this review, we highlight recent examples of characterized animal biosynthetic enzymes that reveal an unanticipated breadth and intricacy in animal secondary metabolism. The results so far suggest that there may be an immense diversity of animal small molecules and biosynthetic enzymes awaiting discovery. This biosynthetic dark matter is just beginning to be understood, providing a relatively untapped frontier for discovery.
Collapse
Affiliation(s)
- Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
37
|
Morgan MA, Griffith CM, Dinges MM, Lyon YA, Julian RR, Larive CK. Evaluating sub-lethal stress from Roundup ® exposure in Artemia franciscana using 1H NMR and GC-MS. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:77-87. [PMID: 31077969 PMCID: PMC6581565 DOI: 10.1016/j.aquatox.2019.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 05/04/2023]
Abstract
Global salinization trends present an urgent need for methods to monitor aquatic ecosystem health and characterize known and emerging stressors for water bodies that are becoming increasingly saline. Environmental metabolomics methods that combine quantitative measurements of metabolite levels and multivariate statistical analysis are powerful tools for ascertaining biological impacts and identifying potential biomarkers of exposure. We propose the use of the saltwater aquatic crustacean, Artemia franciscana, as a model organism for environmental metabolomics in saltwater ecosystems. Artemia are a good choice for ecotoxicity assays and metabolomics analysis because they have a short life cycle, their hemolymph is rich in metabolites and they tolerate a wide salinity range. In this work we explore the potential of Artemia franciscana for environmental metabolomics through exposure to the broad-spectrum herbicide, glyphosate. The LC50 for a 48 h exposure of Roundup® was determined to be 237 ± 23 ppm glyphosate in the Roundup® formulation. Artemia cysts were hatched and exposed to sub-lethal glyphosate concentrations of 1.00, 10.0, 50.0, or 100 ppm glyphosate in Roundup®. We profiled 48 h old Artemia extracts using 1H NMR and GC-MS. Dose-dependent metabolic perturbation was evident for several metabolites using univariate and multivariate analyses. Metabolites significantly affected by Roundup® exposure included aspartate, formate, betaine, glucose, tyrosine, phenylalanine, gadusol, and isopropylamine. Biochemical pathway analysis with the KEGG database suggests impairment of carbohydrate and energy metabolism, folate-mediated one-carbon metabolism, Artemia molting and development, and microbial metabolism.
Collapse
Affiliation(s)
- Melissa A Morgan
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, United States
| | - Corey M Griffith
- Environmental Toxicology Graduate Program, University of California - Riverside, Riverside, CA, 92521, United States
| | - Meredith M Dinges
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, United States
| | - Yana A Lyon
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, United States
| | - Cynthia K Larive
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, United States.
| |
Collapse
|
38
|
Kim OTP, Nguyen PT, Shoguchi E, Hisata K, Vo TTB, Inoue J, Shinzato C, Le BTN, Nishitsuji K, Kanda M, Nguyen VH, Nong HV, Satoh N. A draft genome of the striped catfish, Pangasianodon hypophthalmus, for comparative analysis of genes relevant to development and a resource for aquaculture improvement. BMC Genomics 2018; 19:733. [PMID: 30290758 PMCID: PMC6173838 DOI: 10.1186/s12864-018-5079-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/14/2018] [Indexed: 11/22/2022] Open
Abstract
Background The striped catfish, Pangasianodon hypophthalmus, is a freshwater and benthopelagic fish common in the Mekong River delta. Catfish constitute a valuable source of dietary protein. Therefore, they are cultured worldwide, and P. hypophthalmus is a food staple in the Mekong area. However, genetic information about the culture stock, is unavailable for breeding improvement, although genetics of the channel catfish, Ictalurus punctatus, has been reported. To acquire genome sequence data as a useful resource for marker-assisted breeding, we decoded a draft genome of P. hypophthalmus and performed comparative analyses. Results Using the Illumina platform, we obtained both nuclear and mitochondrial DNA sequences. Molecular phylogeny using the mitochondrial genome confirmed that P. hypophthalmus is a member of the family Pangasiidae and is nested within a clade including the families Cranoglanididae and Ictaluridae. The nuclear genome was estimated at approximately 700 Mb, assembled into 568 scaffolds with an N50 of 14.29 Mbp, and was estimated to contain ~ 28,600 protein-coding genes, comparable to those of channel catfish and zebrafish. Interestingly, zebrafish produce gadusol, but genes for biosynthesis of this sunscreen compound have been lost from catfish genomes. The differences in gene contents between these two catfishes were found in genes for vitamin D-binding protein and cytosolic phospholipase A2, which have lost only in channel catfish. The Hox cluster in catfish genomes comprised seven paralogous groups, similar to that of zebrafish, and comparative analysis clarified catfish lineage-specific losses of A5a, B10a, and A11a. Genes for insulin-like growth factor (IGF) signaling were conserved between the two catfish genomes. In addition to identification of MHC class I and sex determination-related gene loci, the hypothetical chromosomes by comparison with the channel catfish demonstrated the usefulness of the striped catfish genome as a marker resource. Conclusions We developed genomic resources for the striped catfish. Possible conservation of genes for development and marker candidates were confirmed by comparing the assembled genome to that of a model fish, Danio rerio, and to channel catfish. Since the catfish genomic constituent resembles that of zebrafish, it is likely that zebrafish data for gene functions is applicable to striped catfish as well. Electronic supplementary material The online version of this article (10.1186/s12864-018-5079-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oanh T P Kim
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam.
| | - Phuong T Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Thuy T B Vo
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Jun Inoue
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.,Present address: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Binh T N Le
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Vu H Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Hai V Nong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
39
|
Núñez-Pons L, Avila C, Romano G, Verde C, Giordano D. UV-Protective Compounds in Marine Organisms from the Southern Ocean. Mar Drugs 2018; 16:E336. [PMID: 30223486 PMCID: PMC6165330 DOI: 10.3390/md16090336] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Solar radiation represents a key abiotic factor in the evolution of life in the oceans. In general, marine, biota-particularly in euphotic and dysphotic zones-depends directly or indirectly on light, but ultraviolet radiation (UV-R) can damage vital molecular machineries. UV-R induces the formation of reactive oxygen species (ROS) and impairs intracellular structures and enzymatic reactions. It can also affect organismal physiologies and eventually alter trophic chains at the ecosystem level. In Antarctica, physical drivers, such as sunlight, sea-ice, seasonality and low temperature are particularly influencing as compared to other regions. The springtime ozone depletion over the Southern Ocean makes organisms be more vulnerable to UV-R. Nonetheless, Antarctic species seem to possess analogous UV photoprotection and repair mechanisms as those found in organisms from other latitudes. The lack of data on species-specific responses towards increased UV-B still limits the understanding about the ecological impact and the tolerance levels related to ozone depletion in this region. The photobiology of Antarctic biota is largely unknown, in spite of representing a highly promising reservoir in the discovery of novel cosmeceutical products. This review compiles the most relevant information on photoprotection and UV-repair processes described in organisms from the Southern Ocean, in the context of this unique marine polar environment.
Collapse
Affiliation(s)
- Laura Núñez-Pons
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Giovanna Romano
- Department of Marine Biotechnology (Biotech), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italia.
| | - Cinzia Verde
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Daniela Giordano
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
40
|
Abstract
Pseudo-oligosaccharides are microbial-derived secondary metabolites whose chemical structures contain pseudosugars (glycomimetics). Due to their high resemblance to the molecules of life (carbohydrates), most pseudo-oligosaccharides show significant biological activities. Some of them have been used as drugs to treat human and plant diseases. Because of their significant economic value, efforts have been put into understanding their biosynthesis, optimizing their fermentation conditions, and engineering their metabolic pathways to obtain better production yields. A number of unusual enzymes participating in diverse biosynthetic pathways to pseudo-oligosaccharides have been reported. Various methods and conditions to improve the production yields of the target compounds and eliminate byproducts have also been developed. This review article describes recent studies on the biosynthesis, fermentation optimization, and metabolic engineering of high-value pseudo-oligosaccharides.
Collapse
|
41
|
Woolley JM, Staniforth M, Horbury MD, Richings GW, Wills M, Stavros VG. Unravelling the Photoprotection Properties of Mycosporine Amino Acid Motifs. J Phys Chem Lett 2018; 9:3043-3048. [PMID: 29751729 DOI: 10.1021/acs.jpclett.8b00921] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photoprotection from harmful ultraviolet (UV) radiation exposure is a key problem in modern society. Mycosporine-like amino acids found in fungi, cyanobacteria, macroalgae, phytoplankton, and animals are already presenting a promising form of natural photoprotection in sunscreen formulations. Using time-resolved transient electronic absorption spectroscopy and guided by complementary ab initio calculations, we help to unravel how the core structures of these molecules perform under UV irradiation. Through such detailed insight into the relaxation mechanisms of these ubiquitous molecules, we hope to inspire new thinking in developing next-generation photoprotective molecules.
Collapse
Affiliation(s)
- Jack M Woolley
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , U.K
| | - Michael Staniforth
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , U.K
| | - Michael D Horbury
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , U.K
| | - Gareth W Richings
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , U.K
| | - Martin Wills
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , U.K
| | - Vasilios G Stavros
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , U.K
| |
Collapse
|
42
|
Kapp FG, Perlin JR, Hagedorn EJ, Gansner JM, Schwarz DE, O'Connell LA, Johnson NS, Amemiya C, Fisher DE, Wölfle U, Trompouki E, Niemeyer CM, Driever W, Zon LI. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature 2018; 558:445-448. [PMID: 29899448 PMCID: PMC6093292 DOI: 10.1038/s41586-018-0213-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 05/15/2018] [Indexed: 11/09/2022]
Abstract
Haematopoietic stem and progenitor cells (HSPCs) require a specific microenvironment, the haematopoietic niche, which regulates HSPC behaviour1,2. The location of this niche varies across species, but the evolutionary pressures that drive HSPCs to different microenvironments remain unknown. The niche is located in the bone marrow in adult mammals, whereas it is found in other locations in non-mammalian vertebrates, for example, in the kidney marrow in teleost fish. Here we show that a melanocyte umbrella above the kidney marrow protects HSPCs against ultraviolet light in zebrafish. Because mutants that lack melanocytes have normal steady-state haematopoiesis under standard laboratory conditions, we hypothesized that melanocytes above the stem cell niche protect HSPCs against ultraviolet-light-induced DNA damage. Indeed, after ultraviolet-light irradiation, unpigmented larvae show higher levels of DNA damage in HSPCs, as indicated by staining of cyclobutane pyrimidine dimers and have reduced numbers of HSPCs, as shown by cmyb (also known as myb) expression. The umbrella of melanocytes associated with the haematopoietic niche is highly evolutionarily conserved in aquatic animals, including the sea lamprey, a basal vertebrate. During the transition from an aquatic to a terrestrial environment, HSPCs relocated into the bone marrow, which is protected from ultraviolet light by the cortical bone around the marrow. Our studies reveal that melanocytes above the haematopoietic niche protect HSPCs from ultraviolet-light-induced DNA damage in aquatic vertebrates and suggest that during the transition to terrestrial life, ultraviolet light was an evolutionary pressure affecting the location of the haematopoietic niche.
Collapse
Affiliation(s)
- Friedrich G Kapp
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julie R Perlin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Elliott J Hagedorn
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - John M Gansner
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel E Schwarz
- US Fish and Wildlife Service, Private John Allen National Fish Hatchery, Tupelo, MS, USA
| | | | - Nicholas S Johnson
- US Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI, USA
| | - Chris Amemiya
- Molecular Cell Biology, University of California, Merced, CA, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ute Wölfle
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Charlotte M Niemeyer
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Morita M, Schmidt EW. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat Prod Rep 2018; 35:357-378. [PMID: 29441375 PMCID: PMC6025756 DOI: 10.1039/c7np00053g] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility. By comparing biological systems, we suggest a common framework for establishing chemical interactions between animals and microbes.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA 84112.
| | | |
Collapse
|
44
|
Sutar RL, Sen S, Eivgi O, Segalovich G, Schapiro I, Reany O, Lemcoff NG. Guiding a divergent reaction by photochemical control: bichromatic selective access to levulinates and butenolides. Chem Sci 2018; 9:1368-1374. [PMID: 29675185 PMCID: PMC5885942 DOI: 10.1039/c7sc05094a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023] Open
Abstract
Allylic and acrylic substrates may be efficiently transformed by a sequential bichromatic photochemical process into derivatives of levulinates or butenolides with high selectivity when phenanthrene is used as a regulator. Thus, UV-A photoinduced cross-metathesis (CM) couples the acrylic and allylic counterparts and subsequent UV-C irradiation initiates E-Z isomerization of the carbon-carbon double bond, followed by one of two competing processes; namely, cyclization by transesterification or a 1,5-H shift and tautomerization. Quantum chemical calculations demonstrate that intermediates are strongly blue-shifted for the cyclization while red-shifted for the 1,5-H shift reaction. Hence, delaying the double bond migration by employing UV-C absorbing phenanthrene, results in a selective novel divergent all-photochemical pathway for the synthesis of fundamental structural motifs of ubiquitous natural products.
Collapse
Affiliation(s)
- Revannath L Sutar
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel .
- Department of Natural Sciences , The Open University of Israel , Ra'anana , 43537 , Israel
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics , Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel
| | - Or Eivgi
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel .
| | - Gal Segalovich
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel .
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics , Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel
| | - Ofer Reany
- Department of Natural Sciences , The Open University of Israel , Ra'anana , 43537 , Israel
| | - N Gabriel Lemcoff
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel .
- Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer-Sheva , 84105 , Israel
| |
Collapse
|
45
|
Yurchenko T, Ševčíková T, Strnad H, Butenko A, Eliáš M. The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite. Open Biol 2017; 6:rsob.160249. [PMID: 27906133 PMCID: PMC5133447 DOI: 10.1098/rsob.160249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/31/2016] [Indexed: 01/26/2023] Open
Abstract
Acquisition of genes by plastid genomes (plastomes) via horizontal gene transfer (HGT) seems to be a rare phenomenon. Here, we report an interesting case of HGT revealed by sequencing the plastomes of the eustigmatophyte algae Monodopsis sp. MarTras21 and Vischeria sp. CAUP Q 202. These plastomes proved to harbour a unique cluster of six genes, most probably acquired from a bacterium of the phylum Bacteroidetes, with homologues in various bacteria, typically organized in a conserved uncharacterized putative operon. Sequence analyses of the six proteins encoded by the operon yielded the following annotation for them: (i) a novel family without discernible homologues; (ii) a new family within the superfamily of metallo-dependent hydrolases; (iii) a novel subgroup of the UbiA superfamily of prenyl transferases; (iv) a new clade within the sugar phosphate cyclase superfamily; (v) a new family within the xylose isomerase-like superfamily; and (vi) a hydrolase for a phosphate moiety-containing substrate. We suggest that the operon encodes enzymes of a pathway synthesizing an isoprenoid–cyclitol-derived compound, possibly an antimicrobial or other protective substance. To the best of our knowledge, this is the first report of an expansion of the metabolic capacity of a plastid mediated by HGT into the plastid genome.
Collapse
Affiliation(s)
- Tatiana Yurchenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Anzhelika Butenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic .,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
46
|
Chrapusta E, Kaminski A, Duchnik K, Bober B, Adamski M, Bialczyk J. Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients. Mar Drugs 2017; 15:md15100326. [PMID: 29065484 PMCID: PMC5666432 DOI: 10.3390/md15100326] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022] Open
Abstract
Human skin is constantly exposed to damaging ultraviolet radiation (UVR), which induces a number of acute and chronic disorders. To reduce the risk of UV-induced skin injury, people apply an additional external protection in the form of cosmetic products containing sunscreens. Nowadays, because of the use of some chemical filters raises a lot of controversies, research focuses on exploring novel, fully safe and highly efficient natural UV-absorbing compounds that could be used as active ingredients in sun care products. A promising alternative is the application of multifunctional mycosporine-like amino acids (MAAs), which can effectively compete with commercially available filters. Here, we outline a complete characterization of these compounds and discuss their enormous biotechnological potential with special emphasis on their use as sunscreens, activators of cells proliferation, anti-cancer agents, anti-photoaging molecules, stimulators of skin renewal, and functional ingredients of UV-protective biomaterials.
Collapse
Affiliation(s)
- Ewelina Chrapusta
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Institute of Botany, Faculty of Biology and Earth Sciences, Jagiellonian University, Kopernika 27, 31-501 Krakow, Poland.
| | - Ariel Kaminski
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Kornelia Duchnik
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Beata Bober
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Michal Adamski
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Jan Bialczyk
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
47
|
Hanna ZR, Henderson JB, Wall JD, Emerling CA, Fuchs J, Runckel C, Mindell DP, Bowie RCK, DeRisi JL, Dumbacher JP. Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes. Genome Biol Evol 2017; 9:2522-2545. [PMID: 28992302 PMCID: PMC5629816 DOI: 10.1093/gbe/evx158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end sequence data at 90× coverage using nine libraries with insert lengths ranging from ∼250 to 9,600 nt and read lengths from 100 to 375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.26 × 109 nt in length with an N50 length of 3.98 × 106 nt. We calculated the genome-wide fixation index (FST) of S. o. caurina with the closely related barred owl (Strix varia) as 0.819. We examined 19 genes that encode proteins with light-dependent functions in our genome assembly as well as in that of the barn owl (Tyto alba). We present genomic evidence for loss of three of these in S. o. caurina and four in T. alba. We suggest that most light-associated gene functions have been maintained in owls and their loss has not proceeded to the same extent as in other dim-light-adapted vertebrates.
Collapse
Affiliation(s)
- Zachary R. Hanna
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - James B. Henderson
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - Jeffrey D. Wall
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Christopher A. Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Jérôme Fuchs
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- UMR 7205 Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| | - Charles Runckel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
- Runckel & Associates, Portland, Oregon, USA
| | - David P. Mindell
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - John P. Dumbacher
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
48
|
Osborn AR, Kean KM, Karplus PA, Mahmud T. The sedoheptulose 7-phosphate cyclases and their emerging roles in biology and ecology. Nat Prod Rep 2017; 34:945-956. [PMID: 28497152 DOI: 10.1039/c7np00017k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering up to: 1999-2016This highlight covers a family of enzymes of growing importance, the sedoheptulose 7-phosphate cyclases, initially of interest due to their involvement in the biosynthesis of pharmaceutically relevant secondary metabolites. More recently, these enzymes have been found throughout Prokarya and Eukarya, suggesting their broad potential biological roles in nature.
Collapse
Affiliation(s)
- Andrew R Osborn
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507, USA.
| | | | | | | |
Collapse
|
49
|
Emerling CA. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Mol Phylogenet Evol 2017; 115:40-49. [PMID: 28739369 DOI: 10.1016/j.ympev.2017.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/16/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
Abstract
Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes.
Collapse
|
50
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|