1
|
Xiao T, Ünal E. Remodeling, compartmentalization, and degradation: a trifecta for organelle quality control during gametogenesis. Curr Opin Genet Dev 2025; 92:102347. [PMID: 40233504 DOI: 10.1016/j.gde.2025.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025]
Abstract
The key to healthy offspring production lies in the accurate inheritance of components from progenitor germ cells during gametogenesis. Along with genetic material, precise regulation of organelle inheritance is vital for gamete health and embryonic development, especially in aged organisms, where organelle function declines and damage accumulates. In these cases, removing age-related organellar defects in precursor cells is crucial for successful reproduction. The single-celled organism Saccharomyces cerevisiae shares striking similarities with more complex organisms: like metazoan cells, yeast accumulate organelle damage with age, yet can still produce damage-free gametes with a reset lifespan. Recent studies show that organelles undergo significant reorganization during yeast gametogenesis, and similar remodeling occurs in metazoans, suggesting common strategies for maintaining gamete quality. This review summarizes organellar reorganization during gametogenesis in yeast and how it aids in clearing age-related cellular damage. We also explore organellar remodeling in multicellular organisms and discuss the potential mechanisms and biological benefits of meiotic organellar reshaping.
Collapse
Affiliation(s)
- Tianyao Xiao
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley 94720, USA. https://twitter.com/@XiaoTianyao
| | - Elçin Ünal
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley 94720, USA.
| |
Collapse
|
2
|
Oyerinde TO, Anadu VE, Olajide TS, Ijomone OK, Okeowo OM, Ijomone OM. Stress-induced neurodegeneration and behavioral alterations in Caenorhabditis elegans: Insights into the evolutionary conservation of stress-related pathways and implications for human health. PROGRESS IN BRAIN RESEARCH 2025; 291:405-425. [PMID: 40222789 DOI: 10.1016/bs.pbr.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stress is a significant determinant for a range of neurological and psychiatric illnesses, and comprehending its influence on the brain is vital for developing effective interventions. Caenorhabditis elegans (C. elegans), a tiny nematode, has become a potent model system for investigating the impact of stress on neuronal integrity, behavior, and lifespan. This chapter presents a comprehensive summary of the existing understanding of stress-induced neurodegeneration, behavioral abnormalities, and changes in lifespan in C. elegans. We explored the stress response pathways in C. elegans, specifically focusing on the heat shock response and insulin-like signaling (ILS) pathway, targeting how these pathways affect neural integrity and functions. Additionally, this chapter highlighted behavioral modifications such as changes in locomotion, feeding, pharyngeal pumping, defecation, and copulation behaviors that occur in C. elegans following exposure to stressors, and how these findings contribute to our comprehension of stress-related illnesses. Furthermore, the evolutionary preservation of stress responses in both C. elegans and humans, underscoring the significance of C. elegans studies for translational research were highlighted. In conclusion, the possible implications of C. elegans research on human well-being, with a specific emphasis on the discovery of targets for treatment and the creation of innovative approaches to address stress-related conditions are discussed in this chapter.
Collapse
Affiliation(s)
- Toheeb O Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
| | - Victor E Anadu
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Tobiloba S Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
| | - Olayemi K Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Oritoke M Okeowo
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria; Albeit Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
3
|
Fischbach A, Widlund PO, Hao X, Nyström T. mTOR signaling controls protein aggregation during heat stress and cellular aging in a translation- and Hsf1-independent manner. J Biol Chem 2025; 301:108172. [PMID: 39798875 PMCID: PMC11849620 DOI: 10.1016/j.jbc.2025.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway appears central to the aging process as genetic or pharmacological inhibition of mTOR extends lifespan in most eukaryotes tested. While the regulation of protein synthesis by mTOR has been studied in great detail, its impact on protein misfolding and aggregation during stress and aging is less explored. In this study, we identified the mTOR signaling pathway and the linked Seh1-associated complex as central nodes of protein aggregation during heat stress and cellular aging, using Saccharomyces cerevisiae as a model organism. Based on a synthetic genetic array screen, we found that reduced mTOR activity, achieved through deletion of TCO89, an mTORC1 subunit, almost completely prevents protein aggregation during heat stress and aging without reducing global translation rates and independently of an Hsf1-dependent stress response. Conversely, increased mTOR activity, achieved through deletion of NPR3, a Seh1-associated complex subunit, exacerbates protein aggregation, but not by overactivating translation. In summary, our work demonstrates that mTOR signaling is a central contributor to age-associated and heat shock-induced protein aggregation, and that this is unlinked to quantitatively discernable effects on translation and Hsf1.
Collapse
Affiliation(s)
- Arthur Fischbach
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| | - Per O Widlund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Terpstra HM, Gómez-Sánchez R, Veldsink AC, Otto TA, Veenhoff LM, Heinemann M. PunctaFinder: An algorithm for automated spot detection in fluorescence microscopy images. Mol Biol Cell 2024; 35:mr9. [PMID: 39535892 PMCID: PMC11656481 DOI: 10.1091/mbc.e24-06-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 11/30/2024] [Indexed: 11/16/2024] Open
Abstract
Fluorescence microscopy has revolutionized biological research by enabling the visualization of subcellular structures at high resolution. With the increasing complexity and volume of microscopy data, there is a growing need for automated image analysis to ensure efficient and consistent interpretation. In this study, we introduce PunctaFinder, a novel Python-based algorithm designed to detect puncta, small bright spots, in raw fluorescence microscopy images without image denoising or signal enhancement steps. Furthermore, unlike other available spot detectors, PunctaFinder not only detects puncta, but also defines the cytoplasmic region, making it a valuable tool to quantify target molecule localization in cellular contexts. PunctaFinder is a widely applicable punctum detector and size estimator, as evidenced by its successful detection of Atg9-positive vesicles, lipid droplets, aggregates of a destabilized luciferase mutant, and the nuclear pore complex. Notably, PunctaFinder excels in detecting puncta in images with a relatively low resolution and signal-to-noise ratio, demonstrating its capability to identify dim puncta and puncta of dynamic target molecules. PunctaFinder reliably detects puncta in fluorescence microscopy images where automated analysis was not possible before, providing researchers with an efficient and robust method for punctum quantification in fluorescence microscopy images.
Collapse
Affiliation(s)
- Hanna M. Terpstra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Rubén Gómez-Sánchez
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Annemiek C. Veldsink
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center, 9713 AV Groningen, The Netherlands
| | - Tegan A. Otto
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center, 9713 AV Groningen, The Netherlands
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center, 9713 AV Groningen, The Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
5
|
Hanley SE, Willis SD, Friedson B, Cooper KF. Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation. Mol Biol Cell 2024; 35:ar142. [PMID: 39320938 PMCID: PMC11617093 DOI: 10.1091/mbc.e23-12-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D. Willis
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Brittany Friedson
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F. Cooper
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
6
|
Anderton E, Chamoli M, Bhaumik D, King CD, Xie X, Foulger A, Andersen JK, Schilling B, Lithgow GJ. Amyloid β accelerates age-related proteome-wide protein insolubility. GeroScience 2024; 46:4585-4602. [PMID: 38753231 PMCID: PMC11335993 DOI: 10.1007/s11357-024-01169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Loss of proteostasis is a highly conserved feature of aging across model organisms and results in the accumulation of insoluble protein aggregates. Protein insolubility is also a unifying feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), in which hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven generalized protein insolubility as a contributing factor. However, proteins that become insoluble during aging in model organisms are capable of accelerating Aβ aggregation in vitro and lifespan in vivo. Here, using an unbiased proteomics approach, we questioned the relationship between Aβ and age-related protein insolubility. Specifically, we uncovered that Aβ expression drives proteome-wide protein insolubility in C. elegans, even in young animals, and this insoluble proteome is highly similar to the insoluble proteome driven by normal aging, this vulnerable sub-proteome we term the core insoluble proteome (CIP). We show that the CIP is enriched with proteins that modify Aβ toxicity in vivo, suggesting the possibility of a vicious feedforward cycle in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the geroprotective, gut-derived metabolite, Urolithin A, relieves Aβ toxicity, supporting its use in clinical trials for dementia and age-related diseases.
Collapse
Affiliation(s)
- Edward Anderton
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
- USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90191, USA.
| | - Manish Chamoli
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Dipa Bhaumik
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Christina D King
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Xueshu Xie
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Anna Foulger
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Julie K Andersen
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Birgit Schilling
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Gordon J Lithgow
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
7
|
Liu AY, Mathew A, Karim C, Eshak P, Chen KY. Regulation of the structural dynamics, aggregation, and pathogenicity of polyQ-expanded Huntingtin by osmolytes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:113-143. [PMID: 39947746 DOI: 10.1016/bs.pmbts.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Huntington Disease is an autosomal dominant neurodegenerative disease caused by expansion of the polymorphic trinucleotide CAG repeat of the HTT gene to code for an expanded glutamine track of the mutant Huntingtin protein (mHTT). Like other neurodegenerative diseases, symptomatic presentation of Huntington Disease is age-dependent or age-related. This age-dependent manifestation of an autosomal dominant disease trait underscores important and possibly priming role of age-related changes in cellular physiology that are conducive to disease presentation. Herein, we present studies on the effects of osmolytes on mHTT structuring and aggregation, vis-a-vis pathogenicity. We show that stabilizing polyol osmolytes, by their generic activity in promoting protein structuring and compaction, drive aggregation of the disordered mHTT protein and simultaneously inhibit their binding to and sequestration of key transcription factors for improved homeostasis and cell survival under stress. These and related observations in the literature give strong support to the notion that lower molecular weight and structurally dynamic forms of mHTT contribute importantly to disease pathogenesis. Aging is associated with important changes in the cell environment-disease protein accumulation, reduced hydration, and macromolecular crowding as examples. These changes have significant consequences on the structuring and pathogenicity of the disordered mHTT protein. A crowded and less hydrated aging cell environment is conducive to mHTT binding to and inhibition of cell regulatory protein function on the one hand, and in promoting mHTT aggregation on the other hand, to culminate in Huntington disease presentation.
Collapse
Affiliation(s)
- Alice Y Liu
- Department of Cell Biology and Neuroscience, Rutgers-The State University of New Jersey, United States.
| | - Amala Mathew
- Department of Cell Biology and Neuroscience, Rutgers-The State University of New Jersey, United States
| | - Christopher Karim
- Department of Cell Biology and Neuroscience, Rutgers-The State University of New Jersey, United States
| | - Pierre Eshak
- Department of Cell Biology and Neuroscience, Rutgers-The State University of New Jersey, United States
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers-The State University of New Jersey, United States
| |
Collapse
|
8
|
Lippi A, Krisko A. Protein aggregation: A detrimental symptom or an adaptation mechanism? J Neurochem 2024; 168:1426-1441. [PMID: 37694504 DOI: 10.1111/jnc.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Protein quality control mechanisms oversee numerous aspects of protein lifetime. From the point of protein synthesis, protein homeostasis machineries take part in folding, solubilization, and/or degradation of impaired proteins. Some proteins follow an alternative path upon loss of their solubility, thus are secluded from the cytosol and form protein aggregates. Protein aggregates differ in their function and composition, rendering protein aggregation a complex phenomenon that continues to receive plenty of attention in the scientific and medical communities. Traditionally, protein aggregates have been associated with aging and a large spectrum of protein folding diseases, such as neurodegenerative diseases, type 2 diabetes, or cataract. However, a body of evidence suggests that they may act as an adaptive mechanism to overcome transient stressful conditions, serving as a sink for the removal of misfolded proteins from the cytosol or storage compartments for machineries required upon stress release. In this review, we present examples and evidence elaborating different possible roles of protein aggregation and discuss their potential roles in stress survival, aging, and disease, as well as possible anti-aggregation interventions.
Collapse
Affiliation(s)
- Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Garadi Suresh H, Bonneil E, Albert B, Dominique C, Costanzo M, Pons C, Masinas MPD, Shuteriqi E, Shore D, Henras AK, Thibault P, Boone C, Andrews BJ. K29-linked free polyubiquitin chains affect ribosome biogenesis and direct ribosomal proteins to the intranuclear quality control compartment. Mol Cell 2024; 84:2337-2352.e9. [PMID: 38870935 PMCID: PMC11193623 DOI: 10.1016/j.molcel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Benjamin Albert
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland; Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
10
|
Schneider KL, Hao X, Keuenhof KS, Berglund LL, Fischbach A, Ahmadpour D, Chawla S, Gómez P, Höög JL, Widlund PO, Nyström T. Elimination of virus-like particles reduces protein aggregation and extends replicative lifespan in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2024; 121:e2313538121. [PMID: 38527193 PMCID: PMC10998562 DOI: 10.1073/pnas.2313538121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/04/2024] [Indexed: 03/27/2024] Open
Abstract
A major consequence of aging and stress, in yeast to humans, is an increased accumulation of protein aggregates at distinct sites within the cells. Using genetic screens, immunoelectron microscopy, and three-dimensional modeling in our efforts to elucidate the importance of aggregate annexation, we found that most aggregates in yeast accumulate near the surface of mitochondria. Further, we show that virus-like particles (VLPs), which are part of the retrotransposition cycle of Ty elements, are markedly enriched in these sites of protein aggregation. RNA interference-mediated silencing of Ty expression perturbed aggregate sequestration to mitochondria, reduced overall protein aggregation, mitigated toxicity of a Huntington's disease model, and expanded the replicative lifespan of yeast in a partially Hsp104-dependent manner. The results are in line with recent data demonstrating that VLPs might act as aging factors in mammals, including humans, and extend these findings by linking VLPs to a toxic accumulation of protein aggregates and raising the possibility that they might negatively influence neurological disease progression.
Collapse
Affiliation(s)
- K. L. Schneider
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - X. Hao
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - K. S. Keuenhof
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg41390, Sweden
| | - L. L. Berglund
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg41390, Sweden
| | - A. Fischbach
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - D. Ahmadpour
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - S. Chawla
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - P. Gómez
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - J. L. Höög
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg41390, Sweden
| | - P. O. Widlund
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - T. Nyström
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| |
Collapse
|
11
|
Goncalves D, Duy DL, Peffer S, Morano KA. Cytoplasmic redox imbalance in the thioredoxin system activates Hsf1 and results in hyperaccumulation of the sequestrase Hsp42 with misfolded proteins. Mol Biol Cell 2024; 35:ar53. [PMID: 38381577 PMCID: PMC11064659 DOI: 10.1091/mbc.e23-07-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Cells employ multiple systems to maintain homeostasis when experiencing environmental stress. For example, the folding of nascent polypeptides is exquisitely sensitive to proteotoxic stressors including heat, pH, and oxidative stress, and is safeguarded by a network of protein chaperones that concentrate potentially toxic misfolded proteins into transient assemblies to promote folding or degradation. The redox environment itself is buffered by both cytosolic and organellar thioredoxin and glutathione pathways. How these systems are linked is poorly understood. Here, we determine that specific disruption of the cytosolic thioredoxin system resulted in constitutive activation of the heat shock response in Saccharomyces cerevisiae and accumulation of the sequestrase Hsp42 into an exaggerated and persistent juxtanuclear quality control (JUNQ) compartment. Terminally misfolded proteins also accumulated in this compartment in thioredoxin reductase (TRR1)-deficient cells, despite apparently normal formation and dissolution of transient cytoplasmic quality control (CytoQ) bodies during heat shock. Notably, cells lacking TRR1 and HSP42 exhibited severe synthetic slow growth exacerbated by oxidative stress, signifying a critical role for Hsp42 under redox-challenged conditions. Finally, we demonstrated that Hsp42 localization patterns in trr1∆ cells mimic those observed in chronically aging and glucose-starved cells, linking nutrient depletion and redox imbalance with management of misfolded proteins via a process of long-term sequestration.
Collapse
Affiliation(s)
- Davi Goncalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
| | - Duong Long Duy
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
| | - Sara Peffer
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
- Microbiology and Infectious Disease Program, MD Anderson UTHealth Graduate School at UTHealth Houston, Houston, TX 77030
| | - Kevin A. Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
| |
Collapse
|
12
|
Anderton E, Chamoli M, Bhaumik D, King CD, Xie X, Foulger A, Andersen JK, Schilling B, Lithgow GJ. Amyloid β accelerates age-related proteome-wide protein insolubility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548937. [PMID: 37503138 PMCID: PMC10369951 DOI: 10.1101/2023.07.13.548937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Loss of proteostasis is a highly conserved feature of aging across model organisms and typically results in the accumulation of insoluble protein aggregates. Protein insolubility is a central feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), where hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Moreover, proteins that become insoluble during aging in model organisms are capable of accelerating Aβ aggregation in vitro. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven protein insolubility as a contributory factor. Here, using an unbiased proteomics approach, we questioned the relationship between Aβ and age-related protein insolubility. We demonstrate that Aβ expression drives proteome-wide protein insolubility in C. elegans and this insoluble proteome closely resembles the insoluble proteome driven by normal aging, suggesting the possibility of a vicious feedforward cycle of aggregation in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the CIP is enriched with proteins that modulate the toxic effects of Aβ and that the gut-derived metabolite, Urolithin A, relieves Aβ toxicity, supporting its use in clinical trials for dementia and other age-related diseases.
Collapse
Affiliation(s)
- Edward Anderton
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
- USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191
| | - Manish Chamoli
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Dipa Bhaumik
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Christina D. King
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Xueshu Xie
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Anna Foulger
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Julie K. Andersen
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Birgit Schilling
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| |
Collapse
|
13
|
Yamashita YM. Asymmetric Stem Cell Division and Germline Immortality. Annu Rev Genet 2023; 57:181-199. [PMID: 37552892 DOI: 10.1146/annurev-genet-022123-040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Germ cells are the only cell type that is capable of transmitting genetic information to the next generation, which has enabled the continuation of multicellular life for the last 1.5 billion years. Surprisingly little is known about the mechanisms supporting the germline's remarkable ability to continue in this eternal cycle, termed germline immortality. Even unicellular organisms age at a cellular level, demonstrating that cellular aging is inevitable. Extensive studies in yeast have established the framework of how asymmetric cell division and gametogenesis may contribute to the resetting of cellular age. This review examines the mechanisms of germline immortality-how germline cells reset the aging of cells-drawing a parallel between yeast and multicellular organisms.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
14
|
Biba DA, Wolf YI, Koonin EV, Rochman ND. Unicellular life balances asymmetric allocation and repair of somatic damage representing the origin of r/K selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568103. [PMID: 38076808 PMCID: PMC10705550 DOI: 10.1101/2023.11.21.568103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Over the course of multiple divisions, cells accumulate diverse non-genetic, somatic damage including misfolded and aggregated proteins and cell wall defects. If the rate of damage accumulation exceeds the rate of dilution through cell growth, a dedicated mitigation strategy is required to prevent eventual population collapse. Strategies for somatic damage control can be divided into two categories, asymmetric allocation and repair, which are not, in principle, mutually exclusive. Through mathematical modelling, we identify the optimal strategy, maximizing the total cell number, over a wide range of environmental and physiological conditions. The optimal strategy is primarily determined by extrinsic (damage-independent) mortality and the physiological model for damage accumulation that can be either independent (linear) or increasing (exponential) with respect to the prior accumulated damage. Under the linear regime, the optimal strategy is either exclusively repair or asymmetric allocation whereas under the exponential regime, the optimal strategy is mixed. Repair is preferred when extrinsic mortality is low, whereas at high extrinsic mortality, asymmetric damage allocation becomes the strategy of choice. We hypothesize that optimization over somatic damage repair and asymmetric allocation in early cellular life forms gave rise to the r and K selection strategies.
Collapse
Affiliation(s)
- Dmitry A. Biba
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Nash D. Rochman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY), New York, NY, USA
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York (CUNY), New York, NY, USA
| |
Collapse
|
15
|
Paukštytė J, López Cabezas RM, Feng Y, Tong K, Schnyder D, Elomaa E, Gregorova P, Doudin M, Särkkä M, Sarameri J, Lippi A, Vihinen H, Juutila J, Nieminen A, Törönen P, Holm L, Jokitalo E, Krisko A, Huiskonen J, Sarin LP, Hietakangas V, Picotti P, Barral Y, Saarikangas J. Global analysis of aging-related protein structural changes uncovers enzyme-polymerization-based control of longevity. Mol Cell 2023; 83:3360-3376.e11. [PMID: 37699397 DOI: 10.1016/j.molcel.2023.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
Aging is associated with progressive phenotypic changes. Virtually all cellular phenotypes are produced by proteins, and their structural alterations can lead to age-related diseases. However, we still lack comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contributions to age-related phenotypes. Here, we conducted proteome-wide analysis of early age-related protein structural changes in budding yeast using limited proteolysis-mass spectrometry (LiP-MS). The results, compiled in online ProtAge catalog, unraveled age-related functional changes in regulators of translation, protein folding, and amino acid metabolism. Mechanistically, we found that folded glutamate synthase Glt1 polymerizes into supramolecular self-assemblies during aging, causing breakdown of cellular amino acid homeostasis. Inhibiting Glt1 polymerization by mutating the polymerization interface restored amino acid levels in aged cells, attenuated mitochondrial dysfunction, and led to lifespan extension. Altogether, this comprehensive map of protein structural changes enables identifying mechanisms of age-related phenotypes and offers opportunities for their reversal.
Collapse
Affiliation(s)
- Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Yuehan Feng
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Kai Tong
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Ellinoora Elomaa
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Pavlina Gregorova
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Matteo Doudin
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Meeri Särkkä
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Jesse Sarameri
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Helena Vihinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Juhana Juutila
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Anni Nieminen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Törönen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Liisa Holm
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Juha Huiskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - L Peter Sarin
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Paola Picotti
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland; Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
16
|
Mortier J, Cambré A, Schack S, Christie G, Aertsen A. Impact of Protein Aggregates on Sporulation and Germination of Bacillus subtilis. Microorganisms 2023; 11:2365. [PMID: 37764209 PMCID: PMC10536567 DOI: 10.3390/microorganisms11092365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In order to improve our general understanding of protein aggregate (PA) management and impact in bacteria, different model systems and processes need to be investigated. As such, we developed an inducible synthetic PA model system to investigate PA dynamics in the Gram-positive model organism Bacillus subtilis. This confirmed previous observations that PA segregation in this organism seems to follow the Escherichia coli paradigm of nucleoid occlusion governing polar localization and asymmetric segregation during vegetative growth. However, our findings also revealed that PAs can readily persist throughout the entire sporulation process after encapsulation in the forespore during sporulation. Moreover, no deleterious effects of PA presence on sporulation, germination and spore survival against heat or UV stress could be observed. Our findings therefore indicate that the sporulation process is remarkably robust against perturbations by PAs and misfolded proteins.
Collapse
Affiliation(s)
- Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| | - Sina Schack
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (S.S.); (G.C.)
| | - Graham Christie
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (S.S.); (G.C.)
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| |
Collapse
|
17
|
Gonçalves D, Peffer S, Morano KA. Cytoplasmic redox imbalance in the thioredoxin system activates Hsf1 and results in hyperaccumulation of the sequestrase Hsp42 with misfolded proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546610. [PMID: 37425817 PMCID: PMC10327208 DOI: 10.1101/2023.06.26.546610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cells employ multiple systems to maintain homeostasis when experiencing environmental stress. For example, the folding of nascent polypeptides is exquisitely sensitive to proteotoxic stressors including heat, pH and oxidative stress, and is safeguarded by a network of protein chaperones that concentrate potentially toxic misfolded proteins into transient assemblies to promote folding or degradation. The redox environment itself is buffered by both cytosolic and organellar thioredoxin and glutathione pathways. How these systems are linked is poorly understood. Here, we determine that specific disruption of the cytosolic thioredoxin system resulted in constitutive activation of the heat shock response in Saccharomyces cerevisiae and accumulation of the sequestrase Hsp42 into an exaggerated and persistent juxtanuclear quality control (JUNQ) compartment. Terminally misfolded proteins also accumulated in this compartment in thioredoxin reductase (TRR1)-deficient cells, despite apparently normal formation and dissolution of transient cytoplasmic quality control (CytoQ) bodies during heat shock. Notably, cells lacking TRR1 and HSP42 exhibited severe synthetic slow growth exacerbated by oxidative stress, signifying a critical role for Hsp42 under redox-challenged conditions. Finally, we demonstrated that Hsp42 localization patterns in trr1∆ cells mimic those observed in chronically aging and glucose-starved cells, linking nutrient depletion and redox imbalance with management of misfolded proteins via a mechanism of long-term sequestration.
Collapse
Affiliation(s)
- Davi Gonçalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX USA
- Current address: Cemvita Factory, Houston, TX USA
| | - Sara Peffer
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX USA
- MD Anderson UTHealth Graduate School at UTHealth Houston, Houston, TX USA
- Current address: Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Kevin A. Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX USA
| |
Collapse
|
18
|
Uvdal P, Shashkova S. The Effect of Calorie Restriction on Protein Quality Control in Yeast. Biomolecules 2023; 13:biom13050841. [PMID: 37238710 DOI: 10.3390/biom13050841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Initially, protein aggregates were regarded as a sign of a pathological state of the cell. Later, it was found that these assemblies are formed in response to stress, and that some of them serve as signalling mechanisms. This review has a particular focus on how intracellular protein aggregates are related to altered metabolism caused by different glucose concentrations in the extracellular environment. We summarise the current knowledge of the role of energy homeostasis signalling pathways in the consequent effect on intracellular protein aggregate accumulation and removal. This covers regulation at different levels, including elevated protein degradation and proteasome activity mediated by the Hxk2 protein, the enhanced ubiquitination of aberrant proteins through Torc1/Sch9 and Msn2/Whi2, and the activation of autophagy mediated through ATG genes. Finally, certain proteins form reversible biomolecular aggregates in response to stress and reduced glucose levels, which are used as a signalling mechanism in the cell, controlling major primary energy pathways related to glucose sensing.
Collapse
Affiliation(s)
- Petter Uvdal
- Department of Physics, University of Gothenburg, 405 30 Göteborg, Sweden
| | | |
Collapse
|
19
|
Fischbach A, Johns A, Schneider KL, Hao X, Tessarz P, Nyström T. Artificial Hsp104-mediated systems for re-localizing protein aggregates. Nat Commun 2023; 14:2663. [PMID: 37160881 PMCID: PMC10169802 DOI: 10.1038/s41467-023-37706-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Spatial Protein Quality Control (sPQC) sequesters misfolded proteins into specific, organelle-associated inclusions within the cell to control their toxicity. To approach the role of sPQC in cellular fitness, neurodegenerative diseases and aging, we report on the construction of Hsp100-based systems in budding yeast cells, which can artificially target protein aggregates to non-canonical locations. We demonstrate that aggregates of mutant huntingtin (mHtt), the disease-causing agent of Huntington's disease can be artificially targeted to daughter cells as well as to eisosomes and endosomes with this approach. We find that the artificial removal of mHtt inclusions from mother cells protects them from cell death suggesting that even large mHtt inclusions may be cytotoxic, a trait that has been widely debated. In contrast, removing inclusions of endogenous age-associated misfolded proteins does not significantly affect the lifespan of mother cells. We demonstrate also that this approach is able to manipulate mHtt inclusion formation in human cells and has the potential to be useful as an alternative, complementary approach to study the role of sPQC, for example in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Arthur Fischbach
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Angela Johns
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Peter Tessarz
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
20
|
Suresh HG, Bonneil E, Albert B, Dominique C, Costanzo M, Pons C, David Masinas MP, Shuteriqi E, Shore D, Henras AK, Thibault P, Boone C, Andrews BJ. K29-linked unanchored polyubiquitin chains disrupt ribosome biogenesis and direct ribosomal proteins to the Intranuclear Quality control compartment (INQ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539259. [PMID: 37205480 PMCID: PMC10187189 DOI: 10.1101/2023.05.03.539259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with Ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs), Ubp2 and Ubp14, and E3 ligases, Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the Ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the Intranuclear Quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with Ribosomopathies.
Collapse
|
21
|
Asgarkhani L, Khandakar I, Pakan R, Swayne TC, Emtage L. Threshold inclusion size triggers conversion of huntingtin to prion-like state that is reversible in newly born cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528394. [PMID: 36824970 PMCID: PMC9949074 DOI: 10.1101/2023.02.13.528394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Aggregation of mutant Huntingtin protein (mHtt) leads to neuronal cell death and human disease. We investigated the effect of inclusion formation on yeast cells. Previous work indicates that mHtt protein moves both in and out of inclusions, potentially undergoing refolding in the inclusion. However, the sustained influx of unfolded protein into an inclusion leads to a dramatic change from a phase-separated body to an irregular, less soluble form at a threshold inclusion size. Altered morphology was associated with a prion-like seeding that accelerated inclusion growth despite loss of soluble cytoplasmic protein. The structural change abolished exchange of material between the inclusion and the cytosol and resulted in early cell death. Affected cells continued to divide occasionally, giving rise to daughters with a similar phenotype. Most newly born cells were able to reverse the prion-like aggregation, restoring both soluble cytoplasmic protein and a normal inclusion structure.
Collapse
|
22
|
Lam DK, Sherlock G. Yca1 metacaspase: diverse functions determine how yeast live and let die. FEMS Yeast Res 2023; 23:foad022. [PMID: 37002543 PMCID: PMC10094001 DOI: 10.1093/femsyr/foad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The Yca1 metacaspase was discovered due to its role in the regulation of apoptosis in Saccharomyces cerevisiae. However, the mechanisms that drive apoptosis in yeast remain poorly understood. Additionally, Yca1 and other metacaspase proteins have recently been recognized for their involvement in other cellular processes, including cellular proteostasis and cell cycle regulation. In this minireview, we outline recent findings on Yca1 that will enable the further study of metacaspase multifunctionality and novel apoptosis pathways in yeast and other nonmetazoans. In addition, we discuss advancements in high-throughput screening technologies that can be applied to answer complex questions surrounding the apoptotic and nonapoptotic functions of metacaspase proteins across a diverse range of species.
Collapse
Affiliation(s)
- Darren K Lam
- Department of Genetics, Stanford University, 240 Pasteur Dr, Stanford, CA 94305-5120, United States
| | - Gavin Sherlock
- Department of Genetics, Stanford University, 240 Pasteur Dr, Stanford, CA 94305-5120, United States
| |
Collapse
|
23
|
Inactive Proteasomes Routed to Autophagic Turnover Are Confined within the Soluble Fraction of the Cell. Biomolecules 2022; 13:biom13010077. [PMID: 36671462 PMCID: PMC9855985 DOI: 10.3390/biom13010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Previous studies demonstrated that dysfunctional yeast proteasomes accumulate in the insoluble protein deposit (IPOD), described as the final deposition site for amyloidogenic insoluble proteins and that this compartment also mediates proteasome ubiquitination, a prerequisite for their targeted autophagy (proteaphagy). Here, we examined the solubility state of proteasomes subjected to autophagy as a result of their inactivation, or under nutrient starvation. In both cases, only soluble proteasomes could serve as a substrate to autophagy, suggesting a modified model whereby substrates for proteaphagy are dysfunctional proteasomes in their near-native soluble state, and not as previously believed, those sequestered at the IPOD. Furthermore, the insoluble fraction accumulating in the IPOD represents an alternative pathway, enabling the removal of inactive proteasomes that escaped proteaphagy when the system became saturated. Altogether, we suggest that the relocalization of proteasomes to soluble aggregates represents a general stage of proteasome recycling through autophagy.
Collapse
|
24
|
bin Imtiaz MK, Royall LN, Gonzalez-Bohorquez D, Jessberger S. Human neural progenitors establish a diffusion barrier in the endoplasmic reticulum membrane during cell division. Development 2022; 149:275957. [PMID: 35815653 PMCID: PMC9440750 DOI: 10.1242/dev.200613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022]
Abstract
Asymmetric segregation of cellular components regulates the fate and behavior of somatic stem cells. Similar to dividing budding yeast and precursor cells in Caenorhabditis elegans, it has been shown that mouse neural progenitors establish a diffusion barrier in the membrane of the endoplasmic reticulum (ER), which has been associated with asymmetric partitioning of damaged proteins and cellular age. However, the existence of an ER diffusion barrier in human cells remains unknown. Here, we used fluorescence loss in photobleaching (FLIP) imaging to show that human embryonic stem cell (hESC)- and induced pluripotent stem cell (iPSC)-derived neural progenitor cells establish an ER diffusion barrier during cell division. The human ER diffusion barrier is regulated via lamin-dependent mechanisms and is associated with asymmetric segregation of mono- and polyubiquitylated damaged proteins. Further, forebrain regionalized organoids derived from hESCs were used to show the establishment of an ER membrane diffusion barrier in more naturalistic tissues, mimicking early steps of human brain development. Thus, the data provided here show that human neural progenitors establish a diffusion barrier during cell division in the membrane of the ER, which may allow for asymmetric segregation of cellular components, contributing to the fate and behavior of human neural progenitor cells. Summary: Asymmetric segregation of cellular components, which may contribute to the fate and behavior of human neural progenitors, is allowed by a diffusion barrier in the endoplasmic reticulum membrane during cell division.
Collapse
Affiliation(s)
- Muhammad Khadeesh bin Imtiaz
- Laboratory of Neural Plasticity , Faculties of Medicine and Science , , 8057 Zurich , Switzerland
- Brain Research Institute, University of Zurich , Faculties of Medicine and Science , , 8057 Zurich , Switzerland
| | - Lars N. Royall
- Laboratory of Neural Plasticity , Faculties of Medicine and Science , , 8057 Zurich , Switzerland
- Brain Research Institute, University of Zurich , Faculties of Medicine and Science , , 8057 Zurich , Switzerland
| | - Daniel Gonzalez-Bohorquez
- Laboratory of Neural Plasticity , Faculties of Medicine and Science , , 8057 Zurich , Switzerland
- Brain Research Institute, University of Zurich , Faculties of Medicine and Science , , 8057 Zurich , Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity , Faculties of Medicine and Science , , 8057 Zurich , Switzerland
- Brain Research Institute, University of Zurich , Faculties of Medicine and Science , , 8057 Zurich , Switzerland
| |
Collapse
|
25
|
Paxman J, Zhou Z, O'Laughlin R, Liu Y, Li Y, Tian W, Su H, Jiang Y, Holness SE, Stasiowski E, Tsimring LS, Pillus L, Hasty J, Hao N. Age-dependent aggregation of ribosomal RNA-binding proteins links deterioration in chromatin stability with challenges to proteostasis. eLife 2022; 11:e75978. [PMID: 36194205 PMCID: PMC9578700 DOI: 10.7554/elife.75978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin instability and protein homeostasis (proteostasis) stress are two well-established hallmarks of aging, which have been considered largely independent of each other. Using microfluidics and single-cell imaging approaches, we observed that, during the replicative aging of Saccharomyces cerevisiae, a challenge to proteostasis occurs specifically in the fraction of cells with decreased stability within the ribosomal DNA (rDNA). A screen of 170 yeast RNA-binding proteins identified ribosomal RNA (rRNA)-binding proteins as the most enriched group that aggregate upon a decrease in rDNA stability induced by inhibition of a conserved lysine deacetylase Sir2. Further, loss of rDNA stability induces age-dependent aggregation of rRNA-binding proteins through aberrant overproduction of rRNAs. These aggregates contribute to age-induced proteostasis decline and limit cellular lifespan. Our findings reveal a mechanism underlying the interconnection between chromatin instability and proteostasis stress and highlight the importance of cell-to-cell variability in aging processes.
Collapse
Affiliation(s)
- Julie Paxman
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Zhen Zhou
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Richard O'Laughlin
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
| | - Yuting Liu
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yang Li
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Wanying Tian
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Hetian Su
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yanfei Jiang
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Shayna E Holness
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Elizabeth Stasiowski
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| | - Lorraine Pillus
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- UCSD Moores Cancer Center, University of California San, DiegoLa JollaUnited States
| | - Jeff Hasty
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| | - Nan Hao
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
26
|
Shrivastava A, Sandhof CA, Reinle K, Jawed A, Ruger-Herreros C, Schwarz D, Creamer D, Nussbaum-Krammer C, Mogk A, Bukau B. The cytoprotective sequestration activity of small heat shock proteins is evolutionarily conserved. J Cell Biol 2022; 221:213447. [PMID: 36069810 PMCID: PMC9458469 DOI: 10.1083/jcb.202202149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
The chaperone-mediated sequestration of misfolded proteins into inclusions is a pivotal cellular strategy to maintain proteostasis in Saccharomyces cerevisiae, executed by small heat shock proteins (sHsps) Hsp42 and Btn2. Direct homologs of Hsp42 and Btn2 are absent in other organisms, questioning whether sequestration represents a conserved proteostasis strategy and, if so, which factors are involved. We examined sHsps from Escherchia coli, Caenorhabditis elegans, and humans for their ability to complement the defects of yeast sequestrase mutants. We show that sequestration of misfolded proteins is an original and widespread activity among sHsps executed by specific family members. Sequestrase positive C. elegans' sHsps harbor specific sequence features, including a high content of aromatic and methionine residues in disordered N-terminal extensions. Those sHsps buffer limitations in Hsp70 capacity in C. elegans WT animals and are upregulated in long-lived daf-2 mutants, contributing to lifespan extension. Cellular protection by sequestration of misfolded proteins is, therefore, an evolutionarily conserved activity of the sHsp family.
Collapse
Affiliation(s)
- Aseem Shrivastava
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carl Alexander Sandhof
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kevin Reinle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Areeb Jawed
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carmen Ruger-Herreros
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Schwarz
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Declan Creamer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Oamen HP, Romero Romero N, Knuckles P, Saarikangas J, Radman‐Livaja M, Dong Y, Caudron F. A rare natural lipid induces neuroglobin expression to prevent amyloid oligomers toxicity and retinal neurodegeneration. Aging Cell 2022; 21:e13645. [PMID: 35656861 PMCID: PMC9282837 DOI: 10.1111/acel.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Most neurodegenerative diseases such as Alzheimer's disease are proteinopathies linked to the toxicity of amyloid oligomers. Treatments to delay or cure these diseases are lacking. Using budding yeast, we report that the natural lipid tripentadecanoin induces expression of the nitric oxide oxidoreductase Yhb1 to prevent the formation of protein aggregates during aging and extends replicative lifespan. In mammals, tripentadecanoin induces expression of the Yhb1 orthologue, neuroglobin, to protect neurons against amyloid toxicity. Tripentadecanoin also rescues photoreceptors in a mouse model of retinal degeneration and retinal ganglion cells in a Rhesus monkey model of optic atrophy. Together, we propose that tripentadecanoin affects p-bodies to induce neuroglobin expression and offers a potential treatment for proteinopathies and retinal neurodegeneration.
Collapse
Affiliation(s)
- Henry Patrick Oamen
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Nathaly Romero Romero
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of HelsinkiHelsinkiFinland
- Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Neuroscience Center, University of HelsinkiHelsinkiFinland
| | | | | | | |
Collapse
|
28
|
Kumar A, Mathew V, Stirling PC. Nuclear protein quality control in yeast: the latest INQuiries. J Biol Chem 2022; 298:102199. [PMID: 35760103 PMCID: PMC9305344 DOI: 10.1016/j.jbc.2022.102199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
The nucleus is a highly organized organelle with an intricate substructure of chromatin, RNAs, and proteins. This environment represents a challenge for maintaining protein quality control, since non-native proteins may interact inappropriately with other macromolecules and thus interfere with their function. Maintaining a healthy nuclear proteome becomes imperative during times of stress, such as upon DNA damage, heat shock, or starvation, when the proteome must be remodeled to effect cell survival. This is accomplished with the help of nuclear-specific chaperones, degradation pathways, and specialized structures known as protein quality control (PQC) sites that sequester proteins to help rapidly remodel the nuclear proteome. In this review, we focus on the current knowledge of PQC sites in Saccharomyces cerevisiae, particularly on a specialized nuclear PQC site called the intranuclear quality control site, a poorly understood nuclear inclusion that coordinates dynamic proteome triage decisions in yeast.
Collapse
Affiliation(s)
- Arun Kumar
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada.
| |
Collapse
|
29
|
Spatial sequestration of misfolded proteins in neurodegenerative diseases. Biochem Soc Trans 2022; 50:759-771. [PMID: 35311889 DOI: 10.1042/bst20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Properly folded, functional proteins are essential for cell health. Cells sustain protein homeostasis, or proteostasis, via protein quality control (PQC) mechanisms. It is currently hypothesized that a breakdown in proteostasis during ageing leads to the accumulation of protein aggregates in the cell and disease. Sequestration of misfolded proteins into PQC compartments represents one branch of the PQC network. In neurodegenerative diseases, certain proteins form abnormal protein deposits. Which PQC compartments house misfolded proteins associated with neurodegenerative diseases is still being investigated. It remains unclear if sequestration of these misfolded proteins is toxic or protective to the cell. Here, we review the current knowledge on various PQC compartments that form in the cell, the kinds of protein aggregates found in neurodegenerative diseases, and what is known about their sequestration. Understanding how protein sequestration occurs can shed light on why aggregates are toxic to the cell and are linked to neurodegenerative diseases like Huntington's, Alzheimer's, and Parkinson's diseases.
Collapse
|
30
|
Long L, Liu W, Ruan P, Yang X, Chen X, Li L, Yuan F, He D, Huang P, Gong A, Wang K. Visualizing the Interplay of Lipid Droplets and Protein Aggregates During Aging via a Dual-Functional Fluorescent Probe. Anal Chem 2022; 94:2803-2811. [PMID: 35104110 DOI: 10.1021/acs.analchem.1c04278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescence imaging the interplay between lipid droplets (LDs) and protein aggregates (PAs) is extremely valuable for elucidating molecular mechanisms of aging. Here, we describe the first dual-functional fluorescent probe, LW-1, for simultaneously imaging LDs and PAs in distinct fluorescence channels to dissect interplaying roles between LDs and PAs during aging. Notably, based on an intriguing mechanism of hydrogen bonds regulating single bond rotation, LW-1 selectively detected LDs in a red channel. Meanwhile, based on another mechanism of the hydrogen bond regulating intramolecular charge transfer efficiency, probe LW-1 further detected PAs in an NIR channel. Practical applications showed that LW-1 was capable of concurrently detecting LDs and PAs in living cells. Moreover, simultaneously imaging LDs and PAs in intestine tissues of mice at different aging degrees was conducted. The results denoted that the PAs level in the intestine tissue increased dramatically with aging, accompanying the buildup of LDs. Significantly, the interplay between LDs and PAs during aging was observed. These evidences demonstrated that the PAs level was closely related with aging processes in intestine tissues, while LDs were formed correspondingly to interact with PAs, suggesting that excessive PAs can be loaded into LDs and then be removed by lipophagy.
Collapse
Affiliation(s)
- Lingliang Long
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.,Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| | - Weiguo Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Peng Ruan
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Xinrong Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Xiaodong Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - LuLu Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Dan He
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Pan Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Aihua Gong
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| |
Collapse
|
31
|
Differential Interactions of Molecular Chaperones and Yeast Prions. J Fungi (Basel) 2022; 8:jof8020122. [PMID: 35205876 PMCID: PMC8877571 DOI: 10.3390/jof8020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Baker’s yeast Saccharomyces cerevisiae is an important model organism that is applied to study various aspects of eukaryotic cell biology. Prions in yeast are self-perpetuating heritable protein aggregates that can be leveraged to study the interaction between the protein quality control (PQC) machinery and misfolded proteins. More than ten prions have been identified in yeast, of which the most studied ones include [PSI+], [URE3], and [PIN+]. While all of the major molecular chaperones have been implicated in propagation of yeast prions, many of these chaperones differentially impact propagation of different prions and/or prion variants. In this review, we summarize the current understanding of the life cycle of yeast prions and systematically review the effects of different chaperone proteins on their propagation. Our analysis clearly shows that Hsp40 proteins play a central role in prion propagation by determining the fate of prion seeds and other amyloids. Moreover, direct prion-chaperone interaction seems to be critically important for proper recruitment of all PQC components to the aggregate. Recent results also suggest that the cell asymmetry apparatus, cytoskeleton, and cell signaling all contribute to the complex network of prion interaction with the yeast cell.
Collapse
|
32
|
Kang PJ, Mullner R, Li H, Hansford D, Shen HW, Park HO. Upregulation of the Cdc42 GTPase limits the replicative lifespan of budding yeast. Mol Biol Cell 2022; 33:br5. [PMID: 35044837 PMCID: PMC9250358 DOI: 10.1091/mbc.e21-04-0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. Cell polarity is critical for asymmetric cell division, and asymmetric cell division underlies replicative aging of budding yeast. Yet how Cdc42 and other polarity factors impact life span is largely unknown. Here we show by live-cell imaging that the active Cdc42 level is sporadically elevated in wild type during repeated cell divisions but rarely in the long-lived bud8 deletion cells. We find a novel Bud8 localization with cytokinesis remnants, which also recruit Rga1, a Cdc42 GTPase activating protein. Genetic analyses and live-cell imaging suggest that Rga1 and Bud8 oppositely impact life span likely by modulating active Cdc42 levels. An rga1 mutant, which has a shorter life span, dies at the unbudded state with a defect in polarity establishment. Remarkably, Cdc42 accumulates in old cells, and its mild overexpression accelerates aging with frequent symmetric cell divisions, despite no harmful effects on young cells. Our findings implicate that the interplay among these positive and negative polarity factors limits the life span of budding yeast.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel Mullner
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Haoyu Li
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Derek Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Han-Wei Shen
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Kovacs M, Geltinger F, Verwanger T, Weiss R, Richter K, Rinnerthaler M. Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells. Front Cell Dev Biol 2021; 9:774985. [PMID: 34869375 PMCID: PMC8640092 DOI: 10.3389/fcell.2021.774985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Besides their role as a storage for neutral lipids and sterols, there is increasing evidence that lipid droplets (LDs) are involved in cellular detoxification. LDs are in close contact to a broad variety of organelles where protein- and lipid exchange is mediated. Mitochondria as a main driver of the aging process produce reactive oxygen species (ROS), which damage several cellular components. LDs as highly dynamic organelles mediate a potent detoxification mechanism by taking up toxic lipids and proteins. A stimulation of LDs induced by the simultaneously overexpression of Lro1p and Dga1p (both encoding acyltransferases) prolongs the chronological as well as the replicative lifespan of yeast cells. The increased number of LDs reduces mitochondrial fragmentation as well as mitochondrial ROS production, both phenotypes that are signs of aging. Strains with an altered LD content or morphology as in the sei1∆ or lro1∆ mutant lead to a reduced replicative lifespan. In a yeast strain defective for the LON protease Pim1p, which showed an enhanced ROS production, increased doubling time and an altered mitochondrial morphology, a LRO1 overexpression resulted in a partially reversion of this "premature aging" phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark Rinnerthaler
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| |
Collapse
|
34
|
Fassler JS, Skuodas S, Weeks DL, Phillips BT. Protein Aggregation and Disaggregation in Cells and Development. J Mol Biol 2021; 433:167215. [PMID: 34450138 PMCID: PMC8530975 DOI: 10.1016/j.jmb.2021.167215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| | - Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@sskuodas
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@bt4phillips
| |
Collapse
|
35
|
Reinle K, Mogk A, Bukau B. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network. J Mol Biol 2021; 434:167157. [PMID: 34271010 DOI: 10.1016/j.jmb.2021.167157] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023]
Abstract
The protein quality control (PQC) system maintains protein homeostasis by counteracting the accumulation of misfolded protein conformers. Substrate degradation and refolding activities executed by ATP-dependent proteases and chaperones constitute major strategies of the proteostasis network. Small heat shock proteins represent ATP-independent chaperones that bind to misfolded proteins, preventing their uncontrolled aggregation. sHsps share the conserved α-crystallin domain (ACD) and gain functional specificity through variable and largely disordered N- and C-terminal extensions (NTE, CTE). They form large, polydisperse oligomers through multiple, weak interactions between NTE/CTEs and ACD dimers. Sequence variations of sHsps and the large variability of sHsp oligomers enable sHsps to fulfill diverse tasks in the PQC network. sHsp oligomers represent inactive yet dynamic resting states that are rapidly deoligomerized and activated upon stress conditions, releasing substrate binding sites in NTEs and ACDs Bound substrates are usually isolated in large sHsp/substrate complexes. This sequestration activity of sHsps represents a third strategy of the proteostasis network. Substrate sequestration reduces the burden for other PQC components during immediate and persistent stress conditions. Sequestered substrates can be released and directed towards refolding pathways by ATP-dependent Hsp70/Hsp100 chaperones or sorted for degradation by autophagic pathways. sHsps can also maintain the dynamic state of phase-separated stress granules (SGs), which store mRNA and translation factors, by reducing the accumulation of misfolded proteins inside SGs and preventing unfolding of SG components. This ensures SG disassembly and regain of translational capacity during recovery periods.
Collapse
Affiliation(s)
- Kevin Reinle
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Abstract
Despite our extensive knowledge of the genetic regulation of heat shock proteins (HSPs), the evolutionary routes that allow bacteria to adaptively tune their HSP levels and corresponding proteostatic robustness have been explored less. In this report, directed evolution experiments using the Escherichia coli model system unexpectedly revealed that seemingly random single mutations in its tnaA gene can confer significant heat resistance. Closer examination, however, indicated that these mutations create folding-deficient and aggregation-prone TnaA variants that in turn can endogenously and preemptively trigger HSP expression to cause heat resistance. These findings, importantly, demonstrate that even erosive mutations with disruptive effects on protein structure and functionality can still yield true gain-of-function alleles with a selective advantage in adaptive evolution.
Collapse
|
37
|
Targeted Deletion of Los1 Homologue Affects the Production of a Recombinant Model Protein in Pichia pastoris. IRANIAN BIOMEDICAL JOURNAL 2021; 25:255-64. [PMID: 33992037 PMCID: PMC8334395 DOI: 10.52547/ibj.25.4.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: The methylotrophic yeast Pichia pastoris is an appealing production host for a variety of recombinant proteins, including biologics. In this sense, various genetic- and non-genetic-based techniques have been implemented to improve the production efficiency of this expression platform. Los1 (loss of supression) encodes a non-essential nuclear tRNA exporter in Saccharomyces cerevisiae, which its deletion extends RLS. Herein, a los1-deficient strain of P. pastoris was generated and characterized. Methods: A gene disruption cassette was prepared and transformed into an anti-CD22-expressing strain of P. pastoris. A δ los1 mutant was isolated and confirmed. The drug sensitivity of the mutant was also assessed. The growth pattern and the level of anti-CD22 ScFv expression were compared between the parent and mutant strains. Results: The los1 homologue was found to be a non-essential gene in P. pastoris. Furthermore, the susceptibility of los1 deletion strain to protein synthesis inhibitors was altered. This strain showed an approximately 1.85-fold increase in the extracellular level of anti-CD22 scFv (p < 0.05). The maximum concentrations of total proteins secreted by δ los1 and parent strains were 125 mg/L and 68 mg/L, respectively. Conclusion: The presented data suggest that the targeted disruption of los1 homologue in P. pastoris can result in a higher expression level of our target protein. Findings of this study may improve the current strategies used in optimizing the productivity of recombinant P. pastoris strains.
Collapse
|
38
|
Eisele F, Eisele-Bürger AM, Hao X, Berglund LL, Höög JL, Liu B, Nyström T. An Hsp90 co-chaperone links protein folding and degradation and is part of a conserved protein quality control. Cell Rep 2021; 35:109328. [PMID: 34192536 DOI: 10.1016/j.celrep.2021.109328] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/30/2020] [Accepted: 06/09/2021] [Indexed: 10/21/2022] Open
Abstract
In this paper, we show that the essential Hsp90 co-chaperone Sgt1 is a member of a general protein quality control network that links folding and degradation through its participation in the degradation of misfolded proteins both in the cytosol and the endoplasmic reticulum (ER). Sgt1-dependent protein degradation acts in a parallel pathway to the ubiquitin ligase (E3) and ubiquitin chain elongase (E4), Hul5, and overproduction of Hul5 partly suppresses defects in cells with reduced Sgt1 activity. Upon proteostatic stress, Sgt1 accumulates transiently, in an Hsp90- and proteasome-dependent manner, with quality control sites (Q-bodies) of both yeast and human cells that co-localize with Vps13, a protein that creates organelle contact sites. Misfolding disease proteins, such as synphilin-1 involved in Parkinson's disease, are also sequestered to these compartments and require Sgt1 for their clearance.
Collapse
Affiliation(s)
- Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Medicinaregatan 7A, 413 90 Gothenburg, Sweden.
| | - Anna Maria Eisele-Bürger
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Medicinaregatan 7A, 413 90 Gothenburg, Sweden; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Medicinaregatan 7A, 413 90 Gothenburg, Sweden
| | - Lisa Larsson Berglund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Medicinaregatan 7A, 413 90 Gothenburg, Sweden; Department of Chemistry & Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90 Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry & Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90 Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry & Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90 Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Medicinaregatan 7A, 413 90 Gothenburg, Sweden.
| |
Collapse
|
39
|
Guo HB, Ghafari M, Dang W, Qin H. Protein interaction potential landscapes for yeast replicative aging. Sci Rep 2021; 11:7143. [PMID: 33785798 PMCID: PMC8010020 DOI: 10.1038/s41598-021-86415-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
We proposed a novel interaction potential landscape approach to map the systems-level profile changes of gene networks during replicative aging in Saccharomyces cerevisiae. This approach enabled us to apply quasi-potentials, the negative logarithm of the probabilities, to calibrate the elevation of the interaction landscapes with young cells as a reference state. Our approach detected opposite landscape changes based on protein abundances from transcript levels, especially for intra-essential gene interactions. We showed that essential proteins play different roles from hub proteins on the age-dependent interaction potential landscapes. We verified that hub proteins tend to avoid other hub proteins, but essential proteins prefer to interact with other essential proteins. Overall, we showed that the interaction potential landscape is promising for inferring network profile change during aging and that the essential hub proteins may play an important role in the uncoupling between protein and transcript levels during replicative aging.
Collapse
Affiliation(s)
- Hao-Bo Guo
- Department of Computer Science and Engineering, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA.
- SimCenter, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA.
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA.
| | - Mehran Ghafari
- Department of Computer Science and Engineering, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hong Qin
- Department of Computer Science and Engineering, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA.
- SimCenter, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA.
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA.
| |
Collapse
|
40
|
Devi S, Kim JJ, Singh AP, Kumar S, Dubey AK, Singh SK, Singh RS, Kumar V. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med 2021; 11:69. [PMID: 33503824 PMCID: PMC7912547 DOI: 10.3390/jpm11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham (UAB), 1720 2nd Ave South, Birmingham, AL 35294-1913, USA;
| | - Surendra Kumar
- Cytogenetics Lab, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | | | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Room 4D40, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
41
|
Simpson-Lavy K, Kupiec M. Noise buffering by biomolecular condensates in glucose sensing. Curr Opin Cell Biol 2020; 69:1-6. [PMID: 33388622 DOI: 10.1016/j.ceb.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023]
Abstract
Many cellular processes involve buffering mechanisms against noise to enhance state stability. Such processes include the cell cycle and the switch between respiration and fermentation. In recent years, protein aggregation/condensation has emerged as an important regulatory mechanism. In this article, we examine the regulation of Std1, an activator of the Snf1/AMPK kinase, by sequestration into foci of liquid drops, and how foci of metabolic signaling and enzymatic proteins are regulated by chaperones, anti-aggregases and by phosphorylation.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
42
|
Carolina de Souza-Guerreiro T, Meng X, Dacheux E, Firczuk H, McCarthy J. Translational control of gene expression noise and its relationship to ageing in yeast. FEBS J 2020; 288:2278-2293. [PMID: 33090724 DOI: 10.1111/febs.15594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Gene expression noise influences organism evolution and fitness but is poorly understood. There is increasing evidence that the functional roles of components of the translation machinery influence noise intensity. In addition, modulation of the activities of at least some of these same components affects the replicative lifespan of a broad spectrum of organisms. In a novel comparative approach, we modulate the activities of the translation initiation factors eIFG1 and eIF4G2, both of which are involved in the process of recruiting ribosomal 43S preinitiation complexes to the 5' end of eukaryotic mRNAs. We show that tagging of the cell wall using a fluorescent dye allows us to follow gene expression noise as different yeast strains progress through successive cycles of replicative ageing. This procedure reveals a relationship between global protein synthesis rate and gene expression noise (cell-to-cell heterogeneity), which is accompanied by a parallel correlation between gene expression noise and the replicative age of mother cells. An alternative approach, based on microfluidics, confirms the interdependence between protein synthesis rate, gene expression noise and ageing. We additionally show that it is important to characterize the influence of the design of the microfluidic device on the nutritional state of the cells during such experiments. Analysis of the noise data derived from flow cytometry and fluorescence microscopy measurements indicates that both the intrinsic and the extrinsic noise components increase as a function of ageing.
Collapse
Affiliation(s)
| | - Xiang Meng
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Estelle Dacheux
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Helena Firczuk
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - John McCarthy
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
43
|
ATP hydrolysis by yeast Hsp104 determines protein aggregate dissolution and size in vivo. Nat Commun 2020; 11:5226. [PMID: 33067463 PMCID: PMC7568574 DOI: 10.1038/s41467-020-19104-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Signs of proteostasis failure often entwine with those of metabolic stress at the cellular level. Here, we study protein sequestration during glucose deprivation-induced ATP decline in Saccharomyces cerevisiae. Using live-cell imaging, we find that sequestration of misfolded proteins and nascent polypeptides into two distinct compartments, stress granules, and Q-bodies, is triggered by the exhaustion of ATP. Both compartments readily dissolve in a PKA-dependent manner within minutes of glucose reintroduction and ATP level restoration. We identify the ATP hydrolase activity of Hsp104 disaggregase as the critical ATP-consuming process determining compartments abundance and size, even in optimal conditions. Sequestration of proteins into distinct compartments during acute metabolic stress and their retrieval during the recovery phase provide a competitive fitness advantage, likely promoting cell survival during stress. The sequestration of misfolded protein into insoluble aggregates occurs under conditions of proteotoxic stress. Here the authors observe that a reduction in cellular ATP promotes protein sequestration into two separate compartments: Q-bodies and stress granules; and identify Hsp104 as a critical ATP-consuming process that determines those compartments abundance and size.
Collapse
|
44
|
Abstract
Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective. The extent of senescence due to damage accumulation—or aging—is evidently evolvable as it differs hugely between species and is not universal, suggesting that its fitness advantages depend on life history and environment. In contrast, repair of damage is present in all organisms studied. Despite the fundamental trade-off between investing resources into repair or into growth, repair and segregation of damage have not always been considered alternatives. For unicellular organisms, unrepaired damage could be divided asymmetrically between daughter cells, leading to senescence of one and rejuvenation of the other. Repair of “unicells” has been predicted to be advantageous in well-mixed environments such as chemostats. Most microorganisms, however, live in spatially structured systems, such as biofilms, with gradients of environmental conditions and cellular physiology as well as a clonal population structure. To investigate whether this clonal structure might favor senescence by damage segregation (a division-of-labor strategy akin to the germline-soma division in multicellular organisms), we used an individual-based computational model and developed an adaptive repair strategy where cells respond to their current intracellular damage levels by investing into repair machinery accordingly. Our simulations showed that the new adaptive repair strategy was advantageous provided that growth was limited by substrate availability, which is typical for biofilms. Thus, biofilms do not favor a germline-soma-like division of labor between daughter cells in terms of damage segregation. We suggest that damage segregation is beneficial only when extrinsic mortality is high, a degree of multicellularity is present, and an active mechanism makes segregation effective. IMPORTANCE Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective.
Collapse
|
45
|
Schnitzer B, Borgqvist J, Cvijovic M. The synergy of damage repair and retention promotes rejuvenation and prolongs healthy lifespans in cell lineages. PLoS Comput Biol 2020; 16:e1008314. [PMID: 33044956 PMCID: PMC7598927 DOI: 10.1371/journal.pcbi.1008314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/30/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023] Open
Abstract
Damaged proteins are inherited asymmetrically during cell division in the yeast Saccharomyces cerevisiae, such that most damage is retained within the mother cell. The consequence is an ageing mother and a rejuvenated daughter cell with full replicative potential. Daughters of old and damaged mothers are however born with increasing levels of damage resulting in lowered replicative lifespans. Remarkably, these prematurely old daughters can give rise to rejuvenated cells with low damage levels and recovered lifespans, called second-degree rejuvenation. We aimed to investigate how damage repair and retention together can promote rejuvenation and at the same time ensure low damage levels in mother cells, reflected in longer health spans. We developed a dynamic model for damage accumulation over successive divisions in individual cells as part of a dynamically growing cell lineage. With detailed knowledge about single-cell dynamics and relationships between all cells in the lineage, we can infer how individual damage repair and retention strategies affect the propagation of damage in the population. We show that damage retention lowers damage levels in the population by reducing the variability across the lineage, and results in larger population sizes. Repairing damage efficiently in early life, as opposed to investing in repair when damage has already accumulated, counteracts accelerated ageing caused by damage retention. It prolongs the health span of individual cells which are moreover less prone to stress. In combination, damage retention and early investment in repair are beneficial for healthy ageing in yeast cell populations.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Johannes Borgqvist
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
Prada-Luengo I, Møller HD, Henriksen RA, Gao Q, Larsen C, Alizadeh S, Maretty L, Houseley J, Regenberg B. Replicative aging is associated with loss of genetic heterogeneity from extrachromosomal circular DNA in Saccharomyces cerevisiae. Nucleic Acids Res 2020; 48:7883-7898. [PMID: 32609810 PMCID: PMC7430651 DOI: 10.1093/nar/gkaa545] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Circular DNA can arise from all parts of eukaryotic chromosomes. In yeast, circular ribosomal DNA (rDNA) accumulates dramatically as cells age, however little is known about the accumulation of other chromosome-derived circles or the contribution of such circles to genetic variation in aged cells. We profiled circular DNA in Saccharomyces cerevisiae populations sampled when young and after extensive aging. Young cells possessed highly diverse circular DNA populations but 94% of the circular DNA were lost after ∼15 divisions, whereas rDNA circles underwent massive accumulation to >95% of circular DNA. Circles present in both young and old cells were characterized by replication origins including circles from unique regions of the genome and repetitive regions: rDNA and telomeric Y' regions. We further observed that circles can have flexible inheritance patterns: [HXT6/7circle] normally segregates to mother cells but in low glucose is present in up to 50% of cells, the majority of which must have inherited this circle from their mother. Interestingly, [HXT6/7circle] cells are eventually replaced by cells carrying stable chromosomal HXT6 HXT6/7 HXT7 amplifications, suggesting circular DNAs are intermediates in chromosomal amplifications. In conclusion, the heterogeneity of circular DNA offers flexibility in adaptation, but this heterogeneity is remarkably diminished with age.
Collapse
Affiliation(s)
- Iñigo Prada-Luengo
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Henrik D Møller
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zurich CH-8093, Switzerland
| | - Rasmus A Henriksen
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Qian Gao
- Epigenetics Programme, The Babraham Institute, Babraham, Cambridge CB22 3-AT, UK
- Adaptimmune Ltd, Oxfordshire OX14 4RX, UK
| | - Camilla Eggert Larsen
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Sefa Alizadeh
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Lasse Maretty
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Jonathan Houseley
- Epigenetics Programme, The Babraham Institute, Babraham, Cambridge CB22 3-AT, UK
| | - Birgitte Regenberg
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|
47
|
Moreno DF, Aldea M. Proteostatic stress as a nodal hallmark of replicative aging. Exp Cell Res 2020; 394:112163. [PMID: 32640194 DOI: 10.1016/j.yexcr.2020.112163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Aging is characterized by the progressive decline of physiology at the cell, tissue and organism level, leading to an increased risk of mortality. Proteotoxic stress, mitochondrial dysfunction and genomic instability are considered major universal drivers of cell aging, and accumulating evidence establishes clear biunivocal relationships among these key hallmarks. In this regard, the finite lifespan of the budding yeast, together with the extensive armamentarium of available analytical tools, has made this single cell eukaryote a key model to study aging at molecular and cellular levels. Here we review the current data that link proteostasis to cell cycle progression in the budding yeast, focusing on senescence as an inherent phenotype displayed by aged cells. Recent advances in high-throughput systems to study yeast mother cells while they replicate are providing crucial information on aging-related processes and their temporal interdependencies at a systems level. In our view, the available data point to the existence of multiple feedback mechanisms among the major causal factors of aging, which would converge into the loss of proteostasis as a nodal driver of cell senescence and death.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
48
|
Abstract
Ageing is considered as a snowballing phenotype of the accumulation of damaged dysfunctional or toxic proteins and silent mutations (polymorphisms) that sensitize relevant proteins to oxidative damage as inborn predispositions to age-related diseases. Ageing is not a disease, but it causes (or shares common cause with) age-related diseases as suggested by similar slopes of age-related increase in the incidence of diseases and death. Studies of robust and more standard species revealed that dysfunctional oxidatively damaged proteins are the root cause of radiation-induced morbidity and mortality. Oxidized proteins accumulate with age and cause reversible ageing-like phenotypes with some irreversible consequences (e.g. mutations). Here, we observe in yeast that aggregation rate of damaged proteins follows the Gompertz law of mortality and review arguments for a causal relationship between oxidative protein damage, ageing and disease. Aerobes evolved proteomes remarkably resistant to oxidative damage, but imperfectly folded proteins become sensitive to oxidation. We show that α-synuclein mutations that predispose to early-onset Parkinson's disease bestow an increased intrinsic sensitivity of α-synuclein to in vitro oxidation. Considering how initially silent protein polymorphism becomes phenotypic while causing age-related diseases and how protein damage leads to genome alterations inspires a vision of predictive diagnostic, prognostic, prevention and treatment of degenerative diseases.
Collapse
Affiliation(s)
- Anita Krisko
- 1 Mediterranean Institute for Life Sciences (MedILS) , 21000 Split , Croatia
| | - Miroslav Radman
- 1 Mediterranean Institute for Life Sciences (MedILS) , 21000 Split , Croatia.,2 Naos Institute for Life Sciences , 13290 Aix-en-Provence , France.,3 Inserm U-1001, Université Paris-Descartes, Faculté de Médecine Paris-Descartes , 74014 Paris , France
| |
Collapse
|
49
|
Laidou S, Alanis-Lobato G, Pribyl J, Raskó T, Tichy B, Mikulasek K, Tsagiopoulou M, Oppelt J, Kastrinaki G, Lefaki M, Singh M, Zink A, Chondrogianni N, Psomopoulos F, Prigione A, Ivics Z, Pospisilova S, Skladal P, Izsvák Z, Andrade-Navarro MA, Petrakis S. Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery. Redox Biol 2020; 32:101458. [PMID: 32145456 PMCID: PMC7058924 DOI: 10.1016/j.redox.2020.101458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.
Collapse
Affiliation(s)
- Stamatia Laidou
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Gregorio Alanis-Lobato
- Faculty of Biology, Johannes Gutenberg University Mainz, 55122, Mainz, Germany; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Tamás Raskó
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Kamil Mikulasek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Maria Tsagiopoulou
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Georgia Kastrinaki
- Aerosol and Particle Technology Laboratory/Chemical Process & Energy Resources Institute/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Maria Lefaki
- Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
| | - Manvendra Singh
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - Annika Zink
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece; Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Alessandro Prigione
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Petr Skladal
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Zsuzsanna Izsvák
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany.
| | | | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece.
| |
Collapse
|
50
|
Iburg M, Puchkov D, Rosas-Brugada IU, Bergemann L, Rieprecht U, Kirstein J. The noncanonical small heat shock protein HSP-17 from Caenorhabditis elegans is a selective protein aggregase. J Biol Chem 2020; 295:3064-3079. [PMID: 32001616 DOI: 10.1074/jbc.ra119.011185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Small heat shock proteins (sHsps) are conserved, ubiquitous members of the proteostasis network. Canonically, they act as "holdases" and buffer unfolded or misfolded proteins against aggregation in an ATP-independent manner. Whereas bacteria and yeast each have only two sHsps in their genomes, this number is higher in metazoan genomes, suggesting a spatiotemporal and functional specialization in higher eukaryotes. Here, using recombinantly expressed and purified proteins, static light-scattering analysis, and disaggregation assays, we report that the noncanonical sHsp HSP-17 of Caenorhabditis elegans facilitates aggregation of model substrates, such as malate dehydrogenase (MDH), and inhibits disaggregation of luciferase in vitro Experiments with fluorescently tagged HSP-17 under the control of its endogenous promoter revealed that HSP-17 is expressed in the digestive and excretory organs, where its overexpression promotes the aggregation of polyQ proteins and of the endogenous kinase KIN-19. Systemic depletion of hsp-17 shortens C. elegans lifespan and severely reduces fecundity and survival upon prolonged heat stress. HSP-17 is an abundant protein exhibiting opposing chaperone activities on different substrates, indicating that it is a selective protein aggregase with physiological roles in development, digestion, and osmoregulation.
Collapse
Affiliation(s)
- Manuel Iburg
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Irving U Rosas-Brugada
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Linda Bergemann
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Ulrike Rieprecht
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Janine Kirstein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany; Faculty 2, Cell Biology, University of Bremen, Leobener Strasse, 28359 Bremen, Germany.
| |
Collapse
|