1
|
Stephens CA, van Hilten N, Zheng L, Grabe M. Simulation-based survey of TMEM16 family reveals that robust lipid scrambling requires an open groove. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.25.615027. [PMID: 39386458 PMCID: PMC11463437 DOI: 10.1101/2024.09.25.615027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Biological membranes are complex and dynamic structures with different populations of lipids in their inner and outer leaflets. The Ca2+-activated TMEM16 family of membrane proteins plays an important role in collapsing this asymmetric lipid distribution by spontaneously, and bidirectionally, scrambling phospholipids between the two leaflets, which can initiate signaling and alter the physical properties of the membrane. While evidence shows that lipid scrambling can occur via an open hydrophilic pathway ("groove") that spans the membrane, it remains unclear if all family members facilitate lipid movement in this manner. Here we present a comprehensive computational study of lipid scrambling by all TMEM16 members with experimentally solved structures. We performed coarse-grained molecular dynamics (MD) simulations of 27 structures from five different family members solved under activating and non-activating conditions, and we captured over 700 scrambling events in aggregate. This enabled us to directly compare scrambling rates, mechanisms, and protein-lipid interactions for fungal and mammalian TMEM16s, in both open (Ca2+-bound) and closed (Ca2+-free) conformations with statistical rigor. We show that all TMEM16 structures thin the membrane and that the majority of scrambling (>90%) occurs at the groove only when TM4 and TM6 have sufficiently separated. Surprisingly, we also observed 60 scrambling events that occurred outside the canonical groove, over 90% of which took place at the dimer-dimer interface in mammalian TMEM16s. This new site suggests an alternative mechanism for lipid scrambling in the absence of an open groove.
Collapse
Affiliation(s)
- Christina A. Stephens
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Graduate Group in Biophysics, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Niek van Hilten
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Lisa Zheng
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Graduate Group in Biophysics, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| |
Collapse
|
2
|
Alexander AK, Rodriguez KF, Chen YY, Amato C, Estermann MA, Nicol B, Xu X, Yao HHC. Single-nucleus multiomics reveals the gene regulatory networks underlying sex determination of murine primordial germ cells. eLife 2025; 13:RP96591. [PMID: 40063068 PMCID: PMC11893106 DOI: 10.7554/elife.96591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not well understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type-specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs toward a sex-specific fate.
Collapse
Affiliation(s)
- Adriana K Alexander
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Yu-Ying Chen
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Ciro Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Martin A Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Humphrey HC Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| |
Collapse
|
3
|
Kageyama T, Shimizu T, Shirai K, Nabeshima S, Ozawa S, Fujii T, Yonekawa Y, Sakai H. Ion Channel Function of Human TMEM16F Is Associated with Phospholipid Transport through Its Subunit Cavity. Biol Pharm Bull 2025; 48:595-605. [PMID: 40350307 DOI: 10.1248/bpb.b24-00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Transmembrane protein 16F (TMEM16F), identified as the causative gene for Scott syndrome, which causes blood coagulation disorders, is known to function as not only a scramblase that bi-directionally transports phospholipids in the lipid bilayer but also a Ca2+-activated ion channel with low intracellular Ca2+ sensitivity. However, how the dual functions of TMEM16F are controlled remains poorly understood. In this study, we investigated the properties of amino acid residues in human TMEM16F involved in the linkage between phospholipid and ion transports and the regulation of their transports using flow cytometry and whole-cell patch-clamp recordings. We demonstrated that ion and phospholipid transports induced by elevation of intracellular Ca2+ concentration were tightly coupled in human embryonic kidney HEK293T cells overexpressing wild-type TMEM16F or its mutants. Mutations of amino acid residues in the hydrophilic subunit cavity of TMEM16F indicated that both substrates were transported through its subunit cavity. Importantly, the tail current analysis suggests that conformational changes of TMEM16F by the channel gating are required for its phospholipid transport. These results suggest that ion channel activities of human TMEM16F modulate its scramblase activities.
Collapse
Affiliation(s)
- Teppei Kageyama
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kanon Shirai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shota Nabeshima
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shigeki Ozawa
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshiki Yonekawa
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
4
|
Boccaccio A. HEK293 Cell-Based Assay to Measure the Lipid Scrambling Activity of TMEM16 Family Members. Methods Mol Biol 2025; 2888:119-132. [PMID: 39699728 DOI: 10.1007/978-1-0716-4318-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
In recent years, the elucidation of molecular mechanisms underlying lipid scrambling has raised significant attention to its implications in various physiological processes, such as blood coagulation, viral infection, cell fusion processes, and removal of apoptotic cells. This chapter focuses on a HEK293 cell-based assay tailored to assess the lipid scrambling activity of the Ca2+-activated scramblases of the TMEM16/Anoctamin family. It relies on the capacity of Annexin-V to detect the presence of negatively charged lipids and, in particular, phosphatidylserine, on the extracellular surface of the plasma membrane. Although most TMEM16 scramblases, with the exception of TMEM16F, have an intracellular localization, some of them partially localize at the plasma membrane, allowing a direct functional characterization. Annexin-V-based scrambling assay offers a versatile platform for investigating the lipid scrambling properties of TMEM16 family members and their mutants associated with genetic diseases, facilitating the elucidation of their roles in cellular physiology and pathology.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genoa, Italy.
- RAISE Ecosystem, Genoa, Italy.
| |
Collapse
|
5
|
Sebinelli HG, Syska C, Čopič A, Lenoir G. Established and emerging players in phospholipid scrambling: A structural perspective. Biochimie 2024; 227:111-122. [PMID: 39304020 DOI: 10.1016/j.biochi.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The maintenance of a diverse and non-homogeneous lipid composition in cell membranes is crucial for a multitude of cellular processes. One important example is transbilayer lipid asymmetry, which refers to a difference in lipid composition between the two leaflets of a cellular membrane. Transbilayer asymmetry is especially pronounced at the plasma membrane, where at resting state, negatively-charged phospholipids such as phosphatidylserine (PS) are almost exclusively restricted to the cytosolic leaflet, whereas sphingolipids are mostly found in the exoplasmic leaflet. Transbilayer movement of lipids is inherently slow, and for a fast cellular response, for example during apoptosis, transmembrane proteins termed scramblases facilitate the movement of polar/charged lipid headgroups through the membrane interior. In recent years, an expanding number of proteins from diverse families have been suggested to possess a lipid scramblase activity. Members of TMEM16 and XKR proteins have been implicated in blood clotting and apoptosis, whereas the scrambling activity of ATG9 and TMEM41B/VMP1 proteins contributes to the synthesis of autophagosomal membrane during autophagy. Structural studies, in vitro reconstitution of lipid scrambling, and molecular dynamics simulations have significantly advanced our understanding of the molecular mechanisms of lipid scrambling and helped delineate potential lipid transport pathways through the membrane. A number of examples also suggest that lipid scrambling activity can be combined with another activity, as is the case for TMEM16 proteins, which also function as ion channels, rhodopsin in the photoreceptor membrane, and possibly other G-protein coupled receptors.
Collapse
Affiliation(s)
- Heitor Gobbi Sebinelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Camille Syska
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293, Montpellier, Cedex 05, France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293, Montpellier, Cedex 05, France
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Lowry AJ, Liang P, Song M, Wan Y, Pei ZM, Yang H, Zhang Y. TMEM16 and OSCA/TMEM63 proteins share a conserved potential to permeate ions and phospholipids. eLife 2024; 13:RP96957. [PMID: 39495104 PMCID: PMC11534332 DOI: 10.7554/elife.96957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane. Although recent studies have advanced our understanding of TCS structure-function relationships, the molecular determinants of TCS ion and lipid permeation remain unclear. Here, we show that single mutations along the transmembrane helix (TM) 4/6 interface allow non-scrambling TCS members to permeate phospholipids. In particular, this study highlights the key role of TM 4 in controlling TCS ion and lipid permeation and offers novel insights into the evolution of the TCS superfamily, suggesting that, like TMEM16s, the OSCA/TMEM63 family maintains a conserved potential to permeate ions and phospholipids.
Collapse
Affiliation(s)
- Augustus J Lowry
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
| | - Pengfei Liang
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
| | - Mo Song
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryGuangdongChina
| | - Yuichun Wan
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
| | - Zhen-Ming Pei
- Department of Biology, Duke UniversityDurhamUnited States
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Yang Zhang
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryGuangdongChina
| |
Collapse
|
7
|
Feng Z, Alvarenga OE, Accardi A. Structural basis of closed groove scrambling by a TMEM16 protein. Nat Struct Mol Biol 2024; 31:1468-1481. [PMID: 38684930 DOI: 10.1038/s41594-024-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Activation of Ca2+-dependent TMEM16 scramblases induces phosphatidylserine externalization, a key step in multiple signaling processes. Current models suggest that the TMEM16s scramble lipids by deforming the membrane near a hydrophilic groove and that Ca2+ dependence arises from the different association of lipids with an open or closed groove. However, the molecular rearrangements underlying groove opening and how lipids reorganize outside the closed groove remain unknown. Here we directly visualize how lipids associate at the closed groove of Ca2+-bound fungal nhTMEM16 in nanodiscs using cryo-EM. Functional experiments pinpoint lipid-protein interaction sites critical for closed groove scrambling. Structural and functional analyses suggest groove opening entails the sequential appearance of two π-helical turns in the groove-lining TM6 helix and identify critical rearrangements. Finally, we show that the choice of scaffold protein and lipids affects the conformations of nhTMEM16 and their distribution, highlighting a key role of these factors in cryo-EM structure determination.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Omar E Alvarenga
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
8
|
Tang J, Song H, Li S, Lam SM, Ping J, Yang M, Li N, Chang T, Yu Z, Liu W, Lu Y, Zhu M, Tang Z, Liu Z, Guo YR, Shui G, Veillette A, Zeng Z, Wu N. TMEM16F Expressed in Kupffer Cells Regulates Liver Inflammation and Metabolism to Protect Against Listeria Monocytogenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402693. [PMID: 39136057 PMCID: PMC11497084 DOI: 10.1002/advs.202402693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Indexed: 10/25/2024]
Abstract
Infection by bacteria leads to tissue damage and inflammation, which need to be tightly controlled by host mechanisms to avoid deleterious consequences. It is previously reported that TMEM16F, a calcium-activated lipid scramblase expressed in various immune cell types including T cells and neutrophils, is critical for the control of infection by bacterium Listeria monocytogenes (Lm) in vivo. This function correlated with the capacity of TMEM16F to repair the plasma membrane (PM) damage induced in T cells in vitro, by the Lm toxin listeriolysin O (LLO). However, whether the protective effect of TMEM16F on Lm infection in vivo is mediated by an impact in T cells, or in other cell types, is not determined. Herein, the immune cell types and mechanisms implicated in the protective effect of TMEM16F against Lm in vivo are elucidated. Cellular protective effects of TMEM16F correlated with its capacity of lipid scrambling and augment PM fluidity. Using cell type-specific TMEM16F-deficient mice, the indication is obtained that TMEM16F expressed in liver Kupffer cells (KCs), but not in T cells or B cells, is key for protection against Listeria in vivo. In the absence of TMEM16F, Listeria induced PM rupture and fragmentation of KCs in vivo. KC death associated with greater liver damage, inflammatory changes, and dysregulated liver metabolism. Overall, the results uncovered that TMEM16F expressed in Kupffer cells is crucial to protect the host against Listeria infection. This influence is associated with the capacity of Kupffer cell-expressed TMEM16F to prevent excessive inflammation and abnormal liver metabolism.
Collapse
Affiliation(s)
- Jianlong Tang
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Hua Song
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
| | - Shimin Li
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Jieming Ping
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Mengyun Yang
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Na Li
- Department of biochemistry and molecular biologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Teding Chang
- Department of Traumatic SurgeryTongji Trauma CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ze Yu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyNo. 1095 Jiefang AvenueWuhan430030China
| | - Weixiang Liu
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Yan Lu
- Department of Clinical ImmunologyThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Min Zhu
- Department of Thoracic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhaohui Tang
- Department of Traumatic SurgeryTongji Trauma CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyNo. 1095 Jiefang AvenueWuhan430030China
| | - Yusong R. Guo
- Department of biochemistry and molecular biologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cell Architecture Research CenterTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - André Veillette
- Laboratory of Molecular OncologyInstitut de recherches cliniques de Montréal (IRCM)MontréalQuébecH2W1R7Canada
- Department of MedicineUniversity of MontréalMontréalQuébecH3T 1J4Canada
- Department of MedicineMcGill UniversityMontréalQuébecH3G 1Y6Canada
| | - Zhutian Zeng
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
- Department of OncologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefei230001China
| | - Ning Wu
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
- Cell Architecture Research CenterTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
9
|
Alexander AK, Rodriguez KF, Chen YY, Amato CM, Estermann MA, Nicol B, Xu X, Hung-Chang Yao H. Single-nucleus multiomics reveals the gene-regulatory networks underlying sex determination of murine primordial germ cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581036. [PMID: 39386556 PMCID: PMC11463670 DOI: 10.1101/2024.02.19.581036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs towards a sex-specific fate.
Collapse
Affiliation(s)
- Adriana K. Alexander
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Karina F. Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yu-Ying Chen
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Martin A. Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
10
|
Lowry AJ, Liang P, Song M, Serena Wan YC, Pei ZM, Yang H, Zhang Y. TMEM16 and OSCA/TMEM63 proteins share a conserved potential to permeate ions and phospholipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578431. [PMID: 38370744 PMCID: PMC10871192 DOI: 10.1101/2024.02.04.578431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane. Although recent studies have advanced our understanding of TCS structure-function relationships, the molecular determinants of TCS ion and lipid permeation remain unclear. Here we show that single mutations along the transmembrane helix (TM) 4/6 interface allow non-scrambling TCS members to permeate phospholipids. In particular, this study highlights the key role of TM 4 in controlling TCS ion and lipid permeation and offers novel insights into the evolution of the TCS superfamily, suggesting that, like TMEM16s, the OSCA/TMEM63 family maintains a conserved potential to permeate ions and phospholipids.
Collapse
Affiliation(s)
- Augustus J Lowry
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pengfei Liang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mo Song
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Guangdong 518106, China
| | - Y C Serena Wan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27710, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yang Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Guangdong 518106, China
| |
Collapse
|
11
|
Gilbert GE. Unexpected bleeding with platelet phosphatidylserine exposure defect: new kindred motivates rethinking Scott syndrome. J Thromb Haemost 2024; 22:2147-2149. [PMID: 39048266 DOI: 10.1016/j.jtha.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Gary E Gilbert
- Department of Medicine, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Shan KZ, Le T, Liang P, Dong P, Lowry AJ, Kremmyda P, Claesson-Welsh L, Yang H. TMEM16F scramblase regulates angiogenesis via endothelial intracellular signaling. J Cell Sci 2024; 137:jcs261566. [PMID: 38940198 PMCID: PMC11273297 DOI: 10.1242/jcs.261566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
TMEM16F (also known as ANO6), a Ca2+-activated lipid scramblase (CaPLSase) that dynamically disrupts lipid asymmetry, plays a crucial role in various physiological and pathological processes, such as blood coagulation, neurodegeneration, cell-cell fusion and viral infection. However, the mechanisms through which it regulates these processes remain largely elusive. Using endothelial cell-mediated angiogenesis as a model, here we report a previously unknown intracellular signaling function of TMEM16F. We demonstrate that TMEM16F deficiency impairs developmental retinal angiogenesis in mice and disrupts angiogenic processes in vitro. Biochemical analyses indicate that the absence of TMEM16F enhances the plasma membrane association of activated Src kinase. This in turn increases VE-cadherin phosphorylation and downregulation, accompanied by suppressed angiogenesis. Our findings not only highlight the role of intracellular signaling by TMEM16F in endothelial cells but also open new avenues for exploring the regulatory mechanisms for membrane lipid asymmetry and their implications in disease pathogenesis.
Collapse
Affiliation(s)
- Ke Zoe Shan
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Trieu Le
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Pengfei Liang
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Ping Dong
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Augustus J. Lowry
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Polina Kremmyda
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala 751 85, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala 751 85, Sweden
| | - Huanghe Yang
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, Duke University, School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
13
|
Zubia MV, Yong AJH, Holtz KM, Huang EJ, Jan YN, Jan LY. TMEM16F exacerbates tau pathology and mediates phosphatidylserine exposure in phospho-tau-burdened neurons. Proc Natl Acad Sci U S A 2024; 121:e2311831121. [PMID: 38941274 PMCID: PMC11228522 DOI: 10.1073/pnas.2311831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
TMEM16F is a calcium-activated phospholipid scramblase and nonselective ion channel, which allows the movement of lipids bidirectionally across the plasma membrane. While the functions of TMEM16F have been extensively characterized in multiple cell types, the role of TMEM16F in the central nervous system remains largely unknown. Here, we sought to study how TMEM16F in the brain may be involved in neurodegeneration. Using a mouse model that expresses the pathological P301S human tau (PS19 mouse), we found reduced tauopathy and microgliosis in 6- to 7-mo-old PS19 mice lacking TMEM16F. Furthermore, this reduction of pathology can be recapitulated in the PS19 mice with TMEM16F removed from neurons, while removal of TMEM16F from microglia of PS19 mice did not significantly impact tauopathy at this time point. Moreover, TMEM16F mediated aberrant phosphatidylserine exposure in neurons with phospho-tau burden. These studies raise the prospect of targeting TMEM16F in neurons as a potential treatment of neurodegeneration.
Collapse
Affiliation(s)
- Mario V. Zubia
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA94143
- Department of Physiology, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| | - Adeline J. H. Yong
- Department of Physiology, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| | | | - Eric J. Huang
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA94143
- Department of Pathology, University of California, San Francisco, CA94143
| | - Yuh Nung Jan
- Department of Physiology, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| | - Lily Y. Jan
- Department of Physiology, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| |
Collapse
|
14
|
Feng Z, Di Zanni E, Alvarenga O, Chakraborty S, Rychlik N, Accardi A. In or out of the groove? Mechanisms of lipid scrambling by TMEM16 proteins. Cell Calcium 2024; 121:102896. [PMID: 38749289 PMCID: PMC11178363 DOI: 10.1016/j.ceca.2024.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Phospholipid scramblases mediate the rapid movement of lipids between membrane leaflets, a key step in establishing and maintaining membrane homeostasis of the membranes of all eukaryotic cells and their organelles. Thus, impairment of lipid scrambling can lead to a variety of pathologies. How scramblases catalyzed the transbilayer movement of lipids remains poorly understood. Despite the availability of direct structural information on three unrelated families of scramblases, the TMEM16s, the Xkrs, and ATG-9, a unifying mechanism has failed to emerge thus far. Among these, the most extensively studied and best understood are the Ca2+ activated TMEM16s, which comprise ion channels and/or scramblases. Early work supported the view that these proteins provided a hydrophilic, membrane-exposed groove through which the lipid headgroups could permeate. However, structural, and functional experiments have since challenged this mechanism, leading to the proposal that the TMEM16s distort and thin the membrane near the groove to facilitate lipid scrambling. Here, we review our understanding of the structural and mechanistic underpinnings of lipid scrambling by the TMEM16s and discuss how the different proposals account for the various experimental observations.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Eleonora Di Zanni
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Omar Alvarenga
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Nicole Rychlik
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
15
|
Moran O, Tammaro P. Identification of determinants of lipid and ion transport in TMEM16/anoctamin proteins through a Bayesian statistical analysis. Biophys Chem 2024; 308:107194. [PMID: 38401241 DOI: 10.1016/j.bpc.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/26/2024]
Abstract
The TMEM16/Anoctamin protein family (TMEM16x) is composed of members with different functions; some members form Ca2+-activated chloride channels, while others are lipid scramblases or combine the two functions. TMEM16x proteins are typically activated in response to agonist-induced rises of intracellular Ca2+; thus, they couple Ca2+-signalling with cell electrical activity or plasmalemmal lipid homeostasis. The structural domains underlying these functions are not fully defined. We used a Naïve Bayes classifier to gain insights into these domains. The method enabled identification of regions involved in either ion or lipid transport, and suggested domains for possible pharmacological exploitation. The method allowed the prediction of the transport property of any given TMEM16x. We envisage this strategy could be exploited to illuminate the structure-function relationship of any protein family composed of members playing different molecular roles.
Collapse
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Paolo Tammaro
- Department Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
16
|
Feng Z, Alvarenga OE, Accardi A. Structural basis of closed groove scrambling by a TMEM16 protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553029. [PMID: 37609346 PMCID: PMC10441378 DOI: 10.1101/2023.08.11.553029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Activation of Ca2+-dependent TMEM16 scramblases induces the externalization of phosphatidylserine, a key molecule in multiple signaling processes. Current models suggest that the TMEM16s scramble lipids by deforming the membrane near a hydrophilic groove, and that Ca2+ dependence arises from the different association of lipids with an open or closed groove. However, the molecular rearrangements involved in groove opening and of how lipids reorganize outside the closed groove remain unknown. Using cryogenic electron microscopy, we directly visualize how lipids associate at the closed groove of Ca2+-bound nhTMEM16 in nanodiscs. Functional experiments pinpoint the lipid-protein interaction sites critical for closed groove scrambling. Structural and functional analyses suggest groove opening entails the sequential appearance of two π-helical turns in the groove-lining TM6 helix and identify critical rearrangements. Finally, we show that the choice of scaffold protein and lipids affects the conformations of nhTMEM16 and their distribution, highlighting a key role of these factors in cryoEM structure determination.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medical College
| | - Omar E. Alvarenga
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College
- Department of Physiology and Biophysics, Weill Cornell Medical College
- Department of Biochemistry, Weill Cornell Medical College
| |
Collapse
|
17
|
Liang P, Zhang Y, Wan YCS, Ma S, Dong P, Lowry AJ, Francis SJ, Khandelwal S, Delahunty M, Telen MJ, Strouse JJ, Arepally GM, Yang H. Deciphering and disrupting PIEZO1-TMEM16F interplay in hereditary xerocytosis. Blood 2024; 143:357-369. [PMID: 38033286 PMCID: PMC10862370 DOI: 10.1182/blood.2023021465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
ABSTRACT Cell-surface exposure of phosphatidylserine (PS) is essential for phagocytic clearance and blood clotting. Although a calcium-activated phospholipid scramblase (CaPLSase) has long been proposed to mediate PS exposure in red blood cells (RBCs), its identity, activation mechanism, and role in RBC biology and disease remain elusive. Here, we demonstrate that TMEM16F, the long-sought-after RBC CaPLSase, is activated by calcium influx through the mechanosensitive channel PIEZO1 in RBCs. PIEZO1-TMEM16F functional coupling is enhanced in RBCs from individuals with hereditary xerocytosis (HX), an RBC disorder caused by PIEZO1 gain-of-function channelopathy. Enhanced PIEZO1-TMEM16F coupling leads to an increased propensity to expose PS, which may serve as a key risk factor for HX clinical manifestations including anemia, splenomegaly, and postsplenectomy thrombosis. Spider toxin GsMTx-4 and antigout medication benzbromarone inhibit PIEZO1, preventing force-induced echinocytosis, hemolysis, and PS exposure in HX RBCs. Our study thus reveals an activation mechanism of TMEM16F CaPLSase and its pathophysiological function in HX, providing insights into potential treatment.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Yang Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Yui Chun S. Wan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Shang Ma
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX
| | - Ping Dong
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Augustus J. Lowry
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
| | - Samuel J. Francis
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Sanjay Khandelwal
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Martha Delahunty
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Marilyn J. Telen
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - John J. Strouse
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | | | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC
- Department of Neurobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
18
|
Kim E, Bang J, Sung JH, Lee J, Shin DH, Kim S, Lee BC. Generation of human TMEM16F-specific affibodies using purified TMEM16F. Front Mol Biosci 2024; 10:1319251. [PMID: 38274091 PMCID: PMC10808743 DOI: 10.3389/fmolb.2023.1319251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: TMEM16 family proteins are involved in a variety of functions, including ion transport, phospholipid scrambling, and the regulation of membrane proteins. Among them, TMEM16F has dual functions as a phospholipid scramblase and a nonselective ion channel. TMEM16F is widely expressed and functions in platelet activation during blood clotting, bone formation, and T cell activation. Despite the functional importance of TMEM16F, the modulators of TMEM16F function have not been sufficiently studied. Method: In this study, we generated TMEM16F-specific affibodies by performing phage display with brain-specific TMEM16F (hTMEM16F) variant 1 purified from GnTi- cells expressing this variant in the presence of digitonin as a detergent. Purified human TMEM16F protein, which was proficient in transporting phospholipids in a Ca2+-dependent manner in proteoliposomes, was coated onto plates and then the phage library was added to fish out TMEM16F-binding affibodies. For the validation of interaction between affibodies and TMEM16F proteins, ELISA, bio-layer interferometry, and size exclusion chromatography were conducted. Results and Discussion: As a result, the full sequences of 38 candidates were acquired from 98 binding candidates. Then, we selected 10 candidates and purified seven of them from E. coli expressing these candidates. Using various assays, we confirmed that two affibodies bound to human TMEM16F with high affinity. These affibodies can be useful for therapeutical and diagnostic applications of TMEM16F-related cancer and neurodegenerative diseases. Future studies will be required to investigate the effects of these affibodies on TMEM16F function.
Collapse
Affiliation(s)
- Eunyoung Kim
- Korea Brain Research Institute, Neurovascular Unit Research Group, Daegu, Republic of Korea
| | - Jinho Bang
- Korea Institute of Ceramic Engineering and Technology, Bio-Healthcare Materials Center, Cheongju, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Hye Sung
- Korea Brain Research Institute, Neurovascular Unit Research Group, Daegu, Republic of Korea
| | - Jonghwan Lee
- Korea Institute of Ceramic Engineering and Technology, Bio-Healthcare Materials Center, Cheongju, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Sunghyun Kim
- Korea Institute of Ceramic Engineering and Technology, Bio-Healthcare Materials Center, Cheongju, Republic of Korea
| | - Byoung-Cheol Lee
- Korea Brain Research Institute, Neurovascular Unit Research Group, Daegu, Republic of Korea
| |
Collapse
|
19
|
Whitlock JM. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle. Results Probl Cell Differ 2024; 71:257-279. [PMID: 37996682 DOI: 10.1007/978-3-031-37936-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Skeletal muscle possesses a resident, multipotent stem cell population that is essential for its repair and maintenance throughout life. Here I highlight the role of this stem cell population in muscle repair and regeneration and review the genetic control of the process; the mechanistic steps of activation, migration, recognition, adhesion, and fusion of these cells; and discuss the novel recognition of the membrane signaling that coordinates myogenic cell-cell fusion, as well as the identification of a two-part fusogen system that facilitates it.
Collapse
Affiliation(s)
- Jarred M Whitlock
- Section on Membrane Biology, Eunice Kennedy Shrive National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Nguyen DM, Chen TY. Structure and Function of Calcium-Activated Chloride Channels and Phospholipid Scramblases in the TMEM16 Family. Handb Exp Pharmacol 2024; 283:153-180. [PMID: 35792944 DOI: 10.1007/164_2022_595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated chloride channels and phospholipid scramblases. Ten mammalian TMEM16 proteins, TMEM16A-K (with no TMEM16I), and several non-mammalian TMEM16 proteins, such as afTMEM16 and nhTMEM16, have been discovered. All known TMEM16 proteins are homodimeric proteins containing two subunits. Each subunit consists of ten transmembrane helices with Ca2+-binding sites and a single ion-permeation/phospholipid transport pathway. The ion-permeation pathway and the phospholipid transport pathway of TMEM16 proteins have a wide intracellular vestibule, a narrow neck, and a smaller extracellular vestibule. Interestingly, the lining wall of the ion-permeation/phospholipid transport pathway may be formed, at least partially, by membrane phospholipids, though the degree of pore-wall forming by phospholipids likely varies among TMEM16 proteins. Thus, the biophysical properties and activation mechanisms of TMEM16 proteins could differ from each other accordingly. Here we review the current understanding of the structure and function of TMEM16 molecules.
Collapse
Affiliation(s)
- Dung Manh Nguyen
- Center for Neuroscience, University of California, Davis, CA, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Tsung-Yu Chen
- Department of Neurology, Center for Neuroscience, University of California, Davis, CA, USA.
| |
Collapse
|
21
|
Shan KZ, Le T, Liang P, Dong P, Yang H. Endothelial TMEM16F lipid scramblase regulates angiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553724. [PMID: 37645870 PMCID: PMC10462142 DOI: 10.1101/2023.08.17.553724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Dynamic loss of lipid asymmetry through the activation of TMEM16 Ca2+-activated lipid scramblases (CaPLSases) has been increasingly recognized as an essential membrane event in a wide range of physiological and pathological processes, including blood coagulation, microparticle release, bone development, pain sensation, cell-cell fusion, and viral infection. Despite the recent implications of TMEM16F CaPLSase in vascular development and endothelial cell-mediated coagulation, its signaling role in endothelial biology remains to be established. Here, we show that endothelial TMEM16F regulates in vitro and in vivo angiogenesis through intracellular signaling. Developmental retinal angiogenesis is significantly impaired in TMEM16F deficient mice, as evidenced by fewer vascular loops and larger loop areas. Consistent with our in vivo observation, TMEM16F siRNA knockdown in human umbilical vein endothelial cells compromises angiogenesis in vitro. We further discovered that TMEM16F knockdown enhances VE-cadherin phosphorylation and reduces its expression. Moreover, TMEM16F knockdown also promotes Src kinase phosphorylation at tyrosine 416, which may be responsible for downregulating VE-cadherin expression. Our study thus uncovers a new biological function of TMEM16F in angiogenesis and provides a potential mechanism for how the CaPLSase regulates angiogenesis through intracellular signaling.
Collapse
Affiliation(s)
- Ke Zoe Shan
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Trieu Le
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
- Curreent address: Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Pengfei Liang
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Ping Dong
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University, School of Medicine, Durham, NC 27710, USA
- Curreent address: Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
22
|
Feng Z, Alvarenga OE, Accardi A. Structural basis of closed groove scrambling by a TMEM16 protein. RESEARCH SQUARE 2023:rs.3.rs-3256633. [PMID: 37645847 PMCID: PMC10462188 DOI: 10.21203/rs.3.rs-3256633/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Activation of Ca2+-dependent TMEM16 scramblases induces the externalization of phosphatidylserine, a key molecule in multiple signaling processes. Current models suggest that the TMEM16s scramble lipids by deforming the membrane near a hydrophilic groove, and that Ca2+ dependence arises from the different association of lipids with an open or closed groove. However, the molecular rearrangements involved in groove opening and of how lipids reorganize outside the closed groove remain unknown. Using cryogenic electron microscopy, we directly visualize how lipids associate at the closed groove of Ca2+-bound nhTMEM16 in nanodiscs. Functional experiments pinpoint the lipid-protein interaction sites critical for closed groove scrambling. Structural and functional analyses suggest groove opening entails the sequential appearance of two π-helical turns in the groove-lining TM6 helix and identify critical rearrangements. Finally, we show that the choice of scaffold protein and lipids affects the conformations of nhTMEM16 and their distribution, highlighting a key role of these factors in cryoEM structure determination.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medical College
| | - Omar E. Alvarenga
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College
- Department of Physiology and Biophysics, Weill Cornell Medical College
- Department of Biochemistry, Weill Cornell Medical College
| |
Collapse
|
23
|
Schmaier AA, Anderson PF, Chen SM, El-Darzi E, Aivasovsky I, Kaushik MP, Sack KD, Hartzell HC, Parikh SM, Flaumenhaft R, Schulman S. TMEM16E regulates endothelial cell procoagulant activity and thrombosis. J Clin Invest 2023; 133:e163808. [PMID: 36951953 PMCID: PMC10231993 DOI: 10.1172/jci163808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/22/2023] [Indexed: 03/24/2023] Open
Abstract
Endothelial cells (ECs) normally form an anticoagulant surface under physiological conditions, but switch to support coagulation following pathogenic stimuli. This switch promotes thrombotic cardiovascular disease. To generate thrombin at physiologic rates, coagulation proteins assemble on a membrane containing anionic phospholipid, most notably phosphatidylserine (PS). PS can be rapidly externalized to the outer cell membrane leaflet by phospholipid "scramblases," such as TMEM16F. TMEM16F-dependent PS externalization is well characterized in platelets. In contrast, how ECs externalize phospholipids to support coagulation is not understood. We employed a focused genetic screen to evaluate the contribution of transmembrane phospholipid transport on EC procoagulant activity. We identified 2 TMEM16 family members, TMEM16F and its closest paralog, TMEM16E, which were both required to support coagulation on ECs via PS externalization. Applying an intravital laser-injury model of thrombosis, we observed, unexpectedly, that PS externalization was concentrated at the vessel wall, not on platelets. TMEM16E-null mice demonstrated reduced vessel-wall-dependent fibrin formation. The TMEM16 inhibitor benzbromarone prevented PS externalization and EC procoagulant activity and protected mice from thrombosis without increasing bleeding following tail transection. These findings indicate the activated endothelial surface is a source of procoagulant phospholipid contributing to thrombus formation. TMEM16 phospholipid scramblases may be a therapeutic target for thrombotic cardiovascular disease.
Collapse
Affiliation(s)
- Alec A. Schmaier
- Division of Cardiovascular Medicine and
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Kelsey D. Sack
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Samir M. Parikh
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Zhu X, Huang C, Li N, Ma X, Li Z, Fan J. Distinct roles of graphene and graphene oxide nanosheets in regulating phospholipid flip-flop. J Colloid Interface Sci 2023; 637:112-122. [PMID: 36689797 DOI: 10.1016/j.jcis.2023.01.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Two-dimensional (2D) nanomaterials, such as graphene nanosheets (GNs) and graphene oxide nanosheets (GOs), could adhere onto or insert into a biological membrane, leading to a change in membrane properties and biological activities. Consequently, GN and GO become potential candidates for mediating interleaflet phospholipid transfer. In this work, molecular dynamics (MD) simulations were employed to investigate the effects of GN and GO on lipid flip-flop behavior and the underlying molecular mechanisms. Of great interest is that GN and GO work in opposite directions. The inserted GN can induce the formation of an ordered nanodomain, which dramatically elevates the free energy barrier of flipping phospholipids from one leaflet to the other, thus leading to a decreased lipid flip-flop rate. In contrast, the embedded GO can catalyze the transport of phospholipids between membrane leaflets by facilitating the formation of water pores. These results suggest that GN may work as an inhibitor of the interleaflet lipid translocation, while GO may play the role of scramblases. These findings are expected to expand promising biomedical applications of 2D nanomaterials.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China; Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
26
|
Zhang J, Han Y, Yan D, Zhou D, Yuan X, Zhao W, Zhang D. Identification of Key Genes Associated with Risk and Prognosis of Neuroblastoma. J Mol Neurosci 2022; 72:2398-2412. [PMID: 36443552 DOI: 10.1007/s12031-022-02087-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Neuroblastoma is a childhood malignancy with high morbidity and mortality. We identified key biomarkers associated with neuroblastoma risk and prognosis. The gene modules most associated with neuroblastoma risk were derived by WGCNA. Modular genes were intersected with differentially expressed genes between patients with high-risk (HR) and non-high-risk (NHR) to obtain risk genes, and enrichment analysis was performed. After incorporating risk genes into Cox regression analysis, LASSO algorithm, and K-M survival analysis, key genes were identified and introduced into four external datasets for validation. We performed short time-series expression miner analysis and single-sample genome enrichment analysis. Finally, we evaluated the difference in DNA methylation levels to identify meaningful methylation marks. We identified 5 key genes (ANO6, CPNE2, DST, PLXNC1, SCN3A) for neuroblastoma risk and prognosis, which correlated closely with known neuroblastoma biomarkers. All key genes showed a progressive downregulation trend with increasing risk levels of neuroblastoma. The immune infiltration of 14 immune cells was significantly different between HR-NB and NHR-NB, and most immune cells were negatively correlated with key genes. Furthermore, the expression of ANO6, CPNE2, DST, and PLXNC1 was modified by DNA methylation. This study identified 5 key genes for neuroblastoma risk and prognosis that were potential biomarkers.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Yahui Han
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dun Yan
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Diming Zhou
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiafei Yuan
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Wei Zhao
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Da Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
27
|
Arndt M, Alvadia C, Straub MS, Clerico Mosina V, Paulino C, Dutzler R. Structural basis for the activation of the lipid scramblase TMEM16F. Nat Commun 2022; 13:6692. [PMID: 36335104 PMCID: PMC9637102 DOI: 10.1038/s41467-022-34497-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
TMEM16F, a member of the conserved TMEM16 family, plays a central role in the initiation of blood coagulation and the fusion of trophoblasts. The protein mediates passive ion and lipid transport in response to an increase in intracellular Ca2+. However, the mechanism of how the protein facilitates both processes has remained elusive. Here we investigate the basis for TMEM16F activation. In a screen of residues lining the proposed site of conduction, we identify mutants with strongly activating phenotype. Structures of these mutants determined herein by cryo-electron microscopy show major rearrangements leading to the exposure of hydrophilic patches to the membrane, whose distortion facilitates lipid diffusion. The concomitant opening of a pore promotes ion conduction in the same protein conformation. Our work has revealed a mechanism that is distinct for this branch of the family and that will aid the development of a specific pharmacology for a promising drug target.
Collapse
Affiliation(s)
- Melanie Arndt
- grid.7400.30000 0004 1937 0650Department of Biochemistry University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Carolina Alvadia
- grid.7400.30000 0004 1937 0650Department of Biochemistry University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Monique S. Straub
- grid.7400.30000 0004 1937 0650Department of Biochemistry University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Vanessa Clerico Mosina
- grid.4830.f0000 0004 0407 1981Department of Structural Biology and Membrane Enzymology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Cristina Paulino
- grid.4830.f0000 0004 0407 1981Department of Structural Biology and Membrane Enzymology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Raimund Dutzler
- grid.7400.30000 0004 1937 0650Department of Biochemistry University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
28
|
Kim H, Kim E, Lee BC. Investigation of Phosphatidylserine-Transporting Activity of Human TMEM16C Isoforms. MEMBRANES 2022; 12:1005. [PMID: 36295764 PMCID: PMC9611045 DOI: 10.3390/membranes12101005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Lipid scrambling is a rapid process that dissipates the asymmetrical distribution of phospholipids in the plasma membrane. It is involved in various physiological functions such as blood coagulation and apoptosis. Many TMEM16 members are recognized as Ca2+-activated phospholipid scramblases, which transport phospholipids between the two leaflets of the plasma membrane nonspecifically and bidirectionally; among these, TMEM16C is abundant in the brain, especially in neuronal cells. We investigated the scrambling activity of three human TMEM16C isoforms with different N-terminus lengths. After optimizing conditions to minimize endogenous scrambling activity, an annexin V-based imaging assay was used to detect phosphatidylserine (PS) scrambling in 293T cells. Unlike previous results, our data showed that human TMEM16C isoform 1 and isoform 3 exposed PS to the cell surface. A surface biotinylation assay showed that the surface expression of isoform 2, which did not show scrambling activity, was ~5 times lower than the other isoforms. In contrast to other TMEM16 proteins, flux assays and electrophysiology recording showed TMEM16C does not possess ion-transporting activity. We conclude that the N-terminus of TMEM16C determines whether TMEM16C can translocate to the plasma membrane and facilitate scrambling activity; membrane-localized TMEM16C isoforms 1 and 3 transport PS to the outer leaflet.
Collapse
|
29
|
Khelashvili G, Kots E, Cheng X, Levine MV, Weinstein H. The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase. Commun Biol 2022; 5:990. [PMID: 36123525 PMCID: PMC9484709 DOI: 10.1038/s42003-022-03930-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Ekaterina Kots
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiaolu Cheng
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Michael V Levine
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
30
|
Nakao H, Nakano M. Flip-Flop Promotion Mechanisms by Model Transmembrane Peptides. Chem Pharm Bull (Tokyo) 2022; 70:519-523. [DOI: 10.1248/cpb.c22-00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
31
|
Zhang Y, Liang P, Yang L, Shan KZ, Feng L, Chen Y, Liedtke W, Coyne CB, Yang H. Functional coupling between TRPV4 channel and TMEM16F modulates human trophoblast fusion. eLife 2022; 11:e78840. [PMID: 35670667 PMCID: PMC9236608 DOI: 10.7554/elife.78840] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022] Open
Abstract
TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), is critical for placental trophoblast syncytialization, HIV infection, and SARS-CoV2-mediated syncytialization, however, how TMEM16F is activated during cell fusion is unclear. Here, using trophoblasts as a model for cell fusion, we demonstrate that Ca2+ influx through the Ca2+ permeable transient receptor potential vanilloid channel TRPV4 is critical for TMEM16F activation and plays a role in subsequent human trophoblast fusion. GSK1016790A, a TRPV4 specific agonist, robustly activates TMEM16F in trophoblasts. We also show that TRPV4 and TMEM16F are functionally coupled within Ca2+ microdomains in a human trophoblast cell line using patch-clamp electrophysiology. Pharmacological inhibition or gene silencing of TRPV4 hinders TMEM16F activation and subsequent trophoblast syncytialization. Our study uncovers the functional expression of TRPV4 and one of the physiological activation mechanisms of TMEM16F in human trophoblasts, thus providing us with novel strategies to regulate CaPLSase activity as a critical checkpoint of physiologically and disease-relevant cell fusion events.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Pengfei Liang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Liheng Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Ke Zoe Shan
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical CentreDurhamUnited States
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghaiChina
| | - Yong Chen
- Department of Neurology, Duke University Medical CenterDurhamUnited States
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical CenterDurhamUnited States
- Department of Anesthesiology, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
- College of Dentistry, Department of Molecular Pathobiology, NYUNew YorkUnited States
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke UniversityDurhamUnited States
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
32
|
Galietta LJ. TMEM16A (ANO1) as a therapeutic target in cystic fibrosis. Curr Opin Pharmacol 2022; 64:102206. [DOI: 10.1016/j.coph.2022.102206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023]
|
33
|
Foltz S, Wu F, Ghazal N, Kwong JQ, Hartzell HC, Choo HJ. Sex differences in the involvement of skeletal and cardiac muscles in myopathic Ano5-/- mice. Am J Physiol Cell Physiol 2022; 322:C283-C295. [PMID: 35020501 PMCID: PMC8836717 DOI: 10.1152/ajpcell.00350.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
Abstract
Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by recessive mutations in the Anoctamin-5 gene (ANO5, TMEM16E). Although ANO5 myopathy is not X-chromosome linked, we performed a meta-analysis of the research literature and found that three-quarters of patients with LGMD-R12 are males. Females are less likely to present with moderate to severe skeletal muscle and/or cardiac pathology. Because these sex differences could be explained in several ways, we compared males and females in a mouse model of LGMD-R12. This model recapitulates the sex differences in human LGMD-R12. Only male Ano5-/- mice had elevated serum creatine kinase after exercise and exhibited defective membrane repair after laser injury. In contrast, by these measures, female Ano5-/- mice were indistinguishable from wild type. Despite these differences, both male and female Ano5-/- mice exhibited exercise intolerance. Although exercise intolerance of male mice can be explained by skeletal muscle dysfunction, echocardiography revealed that Ano5-/- female mice had features of cardiomyopathy that may be responsible for their exercise intolerance. These findings heighten concerns that mutations of ANO5 in humans may be linked to cardiac disease.
Collapse
Affiliation(s)
- Steven Foltz
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Fang Wu
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Nasab Ghazal
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Jennifer Q Kwong
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
- Division of Pediatric Cardiology, Department of Pediatrics, School of Medicine, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - H Criss Hartzell
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Hyojung J Choo
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
34
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
35
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
36
|
Le SC, Liang P, Lowry AJ, Yang H. Gating and Regulatory Mechanisms of TMEM16 Ion Channels and Scramblases. Front Physiol 2021; 12:787773. [PMID: 34867487 PMCID: PMC8640346 DOI: 10.3389/fphys.2021.787773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated ion channels and Ca2+-activated phospholipid scramblases (CaPLSases) that passively flip-flop phospholipids between the two leaflets of the membrane bilayer. Owing to their diverse functions, TMEM16 proteins have been implicated in various human diseases, including asthma, cancer, bleeding disorders, muscular dystrophy, arthritis, epilepsy, dystonia, ataxia, and viral infection. To understand TMEM16 proteins in health and disease, it is critical to decipher their molecular mechanisms of activation gating and regulation. Structural, biophysical, and computational characterizations over the past decade have greatly advanced the molecular understanding of TMEM16 proteins. In this review, we summarize major structural features of the TMEM16 proteins with a focus on regulatory mechanisms and gating.
Collapse
Affiliation(s)
- Son C. Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Pengfei Liang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Augustus J. Lowry
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
37
|
Boccaccio A, Picco C, Di Zanni E, Scholz-Starke J. Phospholipid scrambling by a TMEM16 homolog of Arabidopsis thaliana. FEBS J 2021; 289:2578-2592. [PMID: 34775680 PMCID: PMC9299152 DOI: 10.1111/febs.16279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Membrane asymmetry is important for cellular physiology and established by energy‐dependent unidirectional lipid translocases, which have diverse physiological functions in plants. By contrast, the role of phospholipid scrambling (PLS), the passive bidirectional lipid transfer leading to the break‐down of membrane asymmetry, is currently still unexplored. The Arabidopsis thaliana genome contains a single gene (At1g73020) with homology to the eukaryotic TMEM16 family of Ca2+‐activated phospholipid scramblases. Here, we investigated the protein function of this Arabidopsis homolog. Fluorescent AtTMEM16 fusions localized to the ER both in transiently expressing Arabidopsis protoplasts and HEK293 cells. A putative scrambling domain (SCRD) was identified on the basis of sequence conservation and conferred PLS to transfected HEK293 cells, when grafted into the backbone of the non‐scrambling plasma membrane‐localized TMEM16A chloride channel. Finally, AtTMEM16 ‘gain‐of‐function’ variants gave rise to cellular phenotypes typical of aberrant scramblase activity, which were reversed by the additional introduction of a ‘loss‐of‐function’ mutation into the SCRD. In conclusion, our data suggest AtTMEM16 works as an ER‐resident lipid scramblase in Arabidopsis.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Cristiana Picco
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Eleonora Di Zanni
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | | |
Collapse
|
38
|
Zamoyski VL, Bovina EV, Bachurin SO, Grigoriev VV. Role of Potassium Ions in Regulation of Calcium-Activated Chloride Channels. DOKL BIOCHEM BIOPHYS 2021; 500:321-323. [PMID: 34697736 DOI: 10.1134/s1607672921050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/23/2022]
Abstract
Using the patch-clamp method in the whole cell configuration, it was shown that external potassium ions play an important role in the regulation of calcium-activated chloride channels (CaCCs). A clear dependence of the conductivity of the СаССs on the external potassium concentration was shown. The effect of external potassium in the range 0-15 mM on the conductivity of chloride channels was significantly greater than the effect it had on other ionic currents (sodium or potassium). There is reason to believe that these changes in the conductivity of CaCCs may contribute to the development of pathophysiological processes such as hypokalemia or hyperkalemia.
Collapse
Affiliation(s)
- V L Zamoyski
- Institute of Physiologically Active Substances, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia.
| | - E V Bovina
- Institute of Physiologically Active Substances, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - S O Bachurin
- Institute of Physiologically Active Substances, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - V V Grigoriev
- Institute of Physiologically Active Substances, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| |
Collapse
|
39
|
Abstract
TMEM16A Ca2+-activated chloride channels are involved in multiple cellular functions and are proposed targets for diseases such as hypertension, stroke, and cystic fibrosis. This therapeutic endeavor, however, suffers from paucity of selective and potent modulators. Here, exploiting a synthetic small molecule with a biphasic effect on the TMEM16A channel, anthracene-9-carboxylic acid (A9C), we shed light on sites of the channel amenable for pharmacological intervention. Mutant channels with the intracellular gate constitutively open were generated. These channels were entirely insensitive to extracellular A9C when intracellular Ca2+ was omitted. However, when physiological Ca2+ levels were reestablished, the mutants regained sensitivity to A9C. Thus, intracellular Ca2+ is mandatory for the channel response to an extracellular modulator. The underlying mechanism is a conformational change in the outer pore that enables A9C to enter the pore to reach its binding site. The explanation of this structural rearrangement highlights a critical site for pharmacological intervention and reveals an aspect of Ca2+ gating in the TMEM16A channel.
Collapse
|
40
|
Xiang X, Su C, Shi Q, Wu J, Zeng Z, Zhang L, Jin S, Huang R, Gao T, Song C. Potential hypoglycemic metabolites in dark tea fermented by Eurotium cristatum based on UPLC-QTOF-MS/MS combining global metabolomic and spectrum-effect relationship analyses. Food Funct 2021; 12:7546-7556. [PMID: 34227645 DOI: 10.1039/d1fo00836f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The preventive and therapeutic effects of dark tea fermented by Eurotium cristatum (DTE) in glucose metabolism have been demonstrated. However, few studies have investigated comprehensive changes in the chemical composition and activity in DTE before and after fermentation. In this study, the metabolic profiling of raw samples and fermented samples was determined by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). Furthermore, a systematic analytical strategy combining global metabolomics and the spectrum-effect relationship based on α-glucosidase inhibition was employed for screening discriminant metabolites. As a result, 15 discriminant metabolites were identified in DTE samples. Among them, 10 metabolites (4 fatty acids, 1 dyphylline derivative, 3 lysophosphatidylcholines, and 2 triterpenes) increased in relative contents and the contents of the other 5 polyphenol metabolites decreased after fermentation. These metabolites were critical constituents possibly associated with DTE's hypoglycemic activity, which also might be suitable as quality evaluation indicators. This study provided a worthy insight into the exploration of representative active constituents or quality indicators of DTE.
Collapse
Affiliation(s)
- Xingliang Xiang
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065, Wuhan, Hubei, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Anion and Cation Permeability of the Mouse TMEM16F Calcium-Activated Channel. Int J Mol Sci 2021; 22:ijms22168578. [PMID: 34445284 PMCID: PMC8395294 DOI: 10.3390/ijms22168578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
TMEM16F is involved in several physiological processes, such as blood coagulation, bone development and virus infections. This protein acts both as a Ca2+-dependent phospholipid scramblase and a Ca2+-activated ion channel but several studies have reported conflicting results about the ion selectivity of the TMEM16F-mediated current. Here, we have performed a detailed side-by-side comparison of the ion selectivity of TMEM16F using the whole-cell and inside-out excised patch configurations to directly compare the results. In inside-out configuration, Ca2+-dependent activation was fast and the TMEM16F-mediated current was activated in a few milliseconds, while in whole-cell recordings full activation required several minutes. We determined the relative permeability between Na+ and Cl¯ (PNa/PCl) using the dilution method in both configurations. The TMEM16F-mediated current was highly nonselective, but there were differences depending on the configuration of the recordings. In whole-cell recordings, PNa/PCl was approximately 0.5, indicating a slight preference for Cl¯ permeation. In contrast, in inside-out experiments the TMEM16F channel showed a higher permeability for Na+ with PNa/PCl reaching 3.7. Our results demonstrate that the time dependence of Ca2+ activation and the ion selectivity of TMEM16F depend on the recording configuration.
Collapse
|
42
|
P2X7 Receptors and TMEM16 Channels Are Functionally Coupled with Implications for Macropore Formation and Current Facilitation. Int J Mol Sci 2021; 22:ijms22126542. [PMID: 34207150 PMCID: PMC8234106 DOI: 10.3390/ijms22126542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/03/2023] Open
Abstract
P2X7 receptors (P2X7) are cationic channels involved in many diseases. Following their activation by extracellular ATP, distinct signaling pathways are triggered, which lead to various physiological responses such as the secretion of pro-inflammatory cytokines or the modulation of cell death. P2X7 also exhibit unique behaviors, such as “macropore” formation, which corresponds to enhanced large molecule cell membrane permeability and current facilitation, which is caused by prolonged activation. These two phenomena have often been confounded but, thus far, no clear mechanisms have been resolved. Here, by combining different approaches including whole-cell and single-channel recordings, pharmacological and biochemical assays, CRISPR/Cas9 technology and cell imaging, we provide evidence that current facilitation and macropore formation involve functional complexes comprised of P2X7 and TMEM16, a family of Ca2+-activated ion channel/scramblases. We found that current facilitation results in an increase of functional complex-embedded P2X7 open probability, a result that is recapitulated by plasma membrane cholesterol depletion. We further show that macropore formation entails two distinct large molecule permeation components, one of which requires functional complexes featuring TMEM16F subtype, the other likely being direct permeation through the P2X7 pore itself. Such functional complexes can be considered to represent a regulatory hub that may orchestrate distinct P2X7 functionalities.
Collapse
|
43
|
Kostritskii AY, Machtens JP. Molecular mechanisms of ion conduction and ion selectivity in TMEM16 lipid scramblases. Nat Commun 2021; 12:2826. [PMID: 33990555 PMCID: PMC8121942 DOI: 10.1038/s41467-021-22724-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
TMEM16 lipid scramblases transport lipids and also operate as ion channels with highly variable ion selectivities and various physiological functions. However, their molecular mechanisms of ion conduction and selectivity remain largely unknown. Using computational electrophysiology simulations at atomistic resolution, we identified the main ion-conductive state of TMEM16 lipid scramblases, in which an ion permeation pathway is lined by lipid headgroups that directly interact with permeating ions in a voltage polarity-dependent manner. We found that lipid headgroups modulate the ion-permeability state and regulate ion selectivity to varying degrees in different scramblase isoforms, depending on the amino-acid composition of the pores. Our work has defined the structural basis of ion conduction and selectivity in TMEM16 lipid scramblases and uncovered the mechanisms responsible for the direct effects of membrane lipids on the conduction properties of ion channels.
Collapse
Affiliation(s)
- Andrei Y. Kostritskii
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany ,grid.1957.a0000 0001 0728 696XInstitute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany ,grid.1957.a0000 0001 0728 696XDepartment of Physics, RWTH Aachen University, Aachen, Germany
| | - Jan-Philipp Machtens
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany ,grid.1957.a0000 0001 0728 696XInstitute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
44
|
ANO7: Insights into topology, function, and potential applications as a biomarker and immunotherapy target. Tissue Cell 2021; 72:101546. [PMID: 33940566 DOI: 10.1016/j.tice.2021.101546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/21/2021] [Accepted: 04/11/2021] [Indexed: 01/01/2023]
Abstract
Anoctamin 7 (ANO7) is a member of the transmembrane protein TMEM16 family. It has a conservative topology similar to other members in this family, such as the typical eight-transmembrane domain, but it also has unique features. Although the ion channel role of ANO7 has been well accepted, evolutionary analyses and relevant studies suggest that ANO7 may be a multi-facet protein in function. Studies have shown that ANO7 may also function as a scramblase. ANO7 is highly expressed in prostate cancer as well as normal prostate tissues. A considerable amount of evidence has confirmed that ANO7 is associated with human physiology and pathology, particularly with the development of prostate cancer, which makes ANO7 a good candidate as a diagnostic and prognostic biomarker. In addition, ANO7 may be a potential target for prostate cancer immunotherapy. Antibody-based or T cell-mediated immunotherapies against prostate cancer by targeting ANO7 have been highly anticipated. ANO7 may also correlate with several other types of cancers or diseases, where further studies are warranted.
Collapse
|
45
|
The Groovy TMEM16 Family: Molecular Mechanisms of Lipid Scrambling and Ion Conduction. J Mol Biol 2021; 433:166941. [PMID: 33741412 DOI: 10.1016/j.jmb.2021.166941] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022]
Abstract
The TMEM16 family of membrane proteins displays a remarkable functional dichotomy - while some family members function as Ca2+-activated anion channels, the majority of characterized TMEM16 homologs are Ca2+-activated lipid scramblases, which catalyze the exchange of phospholipids between the two membrane leaflets. Furthermore, some TMEM16 scramblases can also function as channels. Due to their involvement in important physiological processes, the family has been actively studied ever since their molecular identity was unraveled. In this review, we will summarize the recent advances in the field and how they influenced our view of TMEM16 family function and evolution. Structural, functional and computational studies reveal how relatively small rearrangements in the permeation pathway are responsible for the observed functional duality: while TMEM16 scramblases can adopt both ion- and lipid conductive conformations, TMEM16 channels can only populate the former. Recent data further provides the molecular details of a stepwise activation mechanism, which is initiated by Ca2+ binding and modulated by various cellular factors, including lipids. TMEM16 function and the surrounding membrane properties are inextricably intertwined, with the protein inducing bilayer deformations associated with scrambling, while the surrounding lipids modulate TMEM16 conformation and activity.
Collapse
|
46
|
Grigoriev VV. [Calcium-activated chloride channels: structure, properties, role in physiological and pathological processes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:17-33. [PMID: 33645519 DOI: 10.18097/pbmc20216701017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ca2+-activated chloride channels (CaCC) are a class of intracellular calcium activated chloride channels that mediate numerous physiological functions. In 2008, the molecular structure of CaCC was determined. CaCC are formed by the protein known as anoctamine 1 (ANO1 or TMEM16A). CaCC mediates the secretion of Cl- in secretory epithelia, such as the airways, salivary glands, intestines, renal tubules, and sweat glands. The presence of CaCC has also been recognized in the vascular muscles, smooth muscles of the respiratory tract, which control vascular tone and hypersensitivity of the respiratory tract. TMEM16A is activated in many cancers; it is believed that TMEM16A is involved in carcinogenesis. TMEM16A is also involved in cancer cells proliferation. The role of TMEM16A in the mechanisms of hypertension, asthma, cystic fibrosis, nociception, and dysfunction of the gastrointestinal tract has been determined. In addition to TMEM16A, its isoforms are involved in other physiological and pathophysiological processes. TMEM16B (or ANO2) is involved in the sense of smell, while ANO6 works like scramblase, and its mutation causes a rare bleeding disorder, known as Scott syndrome. ANO5 is associated with muscle and bone diseases. TMEM16A interacts with various cellular signaling pathways including: epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK), calmodulin (CaM) kinases, transforming growth factor TGF-β. The review summarizes existing information on known natural and synthetic compounds that can block/modulate CaCC currents and their effect on some pathologies in which CaCC is involved.
Collapse
Affiliation(s)
- V V Grigoriev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
47
|
Foltz SJ, Cui YY, Choo HJ, Hartzell HC. ANO5 ensures trafficking of annexins in wounded myofibers. J Cell Biol 2021; 220:e202007059. [PMID: 33496727 PMCID: PMC7844426 DOI: 10.1083/jcb.202007059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.
Collapse
Affiliation(s)
| | | | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
48
|
Divalent Cation Modulation of Ion Permeation in TMEM16 Proteins. Int J Mol Sci 2021; 22:ijms22042209. [PMID: 33672260 PMCID: PMC7926781 DOI: 10.3390/ijms22042209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
Intracellular divalent cations control the molecular function of transmembrane protein 16 (TMEM16) family members. Both anion channels (such as TMEM16A) and phospholipid scramblases (such as TMEM16F) in this family are activated by intracellular Ca2+ in the low µM range. In addition, intracellular Ca2+ or Co2+ at mM concentrations have been shown to further potentiate the saturated Ca2+-activated current of TMEM16A. In this study, we found that all alkaline earth divalent cations in mM concentrations can generate similar potentiation effects in TMEM16A when applied intracellularly, and that manipulations thought to deplete membrane phospholipids weaken the effect. In comparison, mM concentrations of divalent cations minimally potentiate the current of TMEM16F but significantly change its cation/anion selectivity. We suggest that divalent cations may increase local concentrations of permeant ions via a change in pore electrostatic potential, possibly acting through phospholipid head groups in or near the pore. Monovalent cations appear to exert a similar effect, although with a much lower affinity. Our findings resolve controversies regarding the ion selectivity of TMEM16 proteins. The physiological role of this mechanism, however, remains elusive because of the nearly constant high cation concentrations in cytosols.
Collapse
|
49
|
Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem 2021; 296:100411. [PMID: 33581114 PMCID: PMC8005811 DOI: 10.1016/j.jbc.2021.100411] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Formations of myofibers, osteoclasts, syncytiotrophoblasts, and fertilized zygotes share a common step, cell–cell fusion. Recent years have brought about considerable progress in identifying some of the proteins involved in these and other cell-fusion processes. However, even for the best-characterized cell fusions, we still do not know the mechanisms that regulate the timing of cell-fusion events. Are they fully controlled by the expression of fusogenic proteins or do they also depend on some triggering signal that activates these proteins? The latter scenario would be analogous to the mechanisms that control the timing of exocytosis initiated by Ca2+ influx and virus-cell fusion initiated by low pH- or receptor interaction. Diverse cell fusions are accompanied by the nonapoptotic exposure of phosphatidylserine at the surface of fusing cells. Here we review data on the dependence of membrane remodeling in cell fusion on phosphatidylserine and phosphatidylserine-recognizing proteins and discuss the hypothesis that cell surface phosphatidylserine serves as a conserved “fuse me” signal regulating the time and place of cell-fusion processes.
Collapse
|
50
|
Liang P, Yang H. Molecular underpinning of intracellular pH regulation on TMEM16F. J Gen Physiol 2021; 153:e202012704. [PMID: 33346788 PMCID: PMC7754671 DOI: 10.1085/jgp.202012704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
TMEM16F, a dual-function phospholipid scramblase and ion channel, is important in blood coagulation, skeleton development, HIV infection, and cell fusion. Despite advances in understanding its structure and activation mechanism, how TMEM16F is regulated by intracellular factors remains largely elusive. Here we report that TMEM16F lipid scrambling and ion channel activities are strongly influenced by intracellular pH (pHi). We found that low pHi attenuates, whereas high pHi potentiates, TMEM16F channel and scramblase activation under physiological concentrations of intracellular Ca2+ ([Ca2+]i). We further demonstrate that TMEM16F pHi sensitivity depends on [Ca2+]i and exhibits a bell-shaped relationship with [Ca2+]i: TMEM16F channel activation becomes increasingly pHi sensitive from resting [Ca2+]i to micromolar [Ca2+]i, but when [Ca2+]i increases beyond 15 µM, pHi sensitivity gradually diminishes. The mutation of a Ca2+-binding residue that markedly reduces TMEM16F Ca2+ sensitivity (E667Q) maintains the bell-shaped relationship between pHi sensitivity and Ca2+ but causes a dramatic shift of the peak [Ca2+]i from 15 µM to 3 mM. Our biophysical characterizations thus pinpoint that the pHi regulatory effects on TMEM16F stem from the competition between Ca2+ and protons for the primary Ca2+-binding residues in the pore. Within the physiological [Ca2+]i range, the protonation state of the primary Ca2+-binding sites influences Ca2+ binding and regulates TMEM16F activation. Our findings thus uncover a regulatory mechanism of TMEM16F by pHi and shine light on our understanding of the pathophysiological roles of TMEM16F in diseases with dysregulated pHi, including cancer.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Biochemistry, Duke University Medical Center, Durham, NC
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC
- Department of Neurobiology, Duke University Medical Center, Durham, NC
| |
Collapse
|