1
|
Kajihara R, Ezaki R, Ichikawa K, Watanabe T, Terada T, Matsuzaki M, Horiuchi H. Wnt signaling blockade is essential for maintaining the pluripotency of chicken embryonic stem cells. Poult Sci 2024; 103:103361. [PMID: 38154448 PMCID: PMC10788285 DOI: 10.1016/j.psj.2023.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Activation of Wnt/β-catenin signaling supports the self-renewal of mouse embryonic stem cells. We aimed to understand the effects of Wnt signaling activation or inhibition on chicken embryonic stem cells (chESCs), as these effects are largely unknown. When the glycogen synthase kinase-3 β inhibitor CHIR99021-which activates Wnt signaling-was added to chESC cultures, the colony shape flattened, and the expression levels of pluripotency-related (NANOG, SOX2, SOX3, OCT4, LIN28A, DNMT3B, and PRDM14) and germ cell (CVH and DAZL) markers showed a decreasing trend, and the growth of chESCs was inhibited after approximately 7 d. By contrast, when the Wnt signaling inhibitor XAV939 was added to the culture, dense and compact multipotent colonies (morphologically similar to mouse embryonic stem cell colonies) showing stable expression of pluripotency-related and germline markers were formed. The addition of XAV939 stabilized the proliferation of chESCs in the early stages of culture and promoted their establishment. Furthermore, these chESCs formed chimeras. In conclusion, functional chESCs can be stably cultured using Wnt signaling inhibitors. These findings suggest the importance of Wnt/β-catenin signaling in avian stem cells, offering valuable insights for applied research using chESCs.
Collapse
Affiliation(s)
- Ryota Kajihara
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Ryo Ezaki
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Kennosuke Ichikawa
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
| | - Tenkai Watanabe
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takumi Terada
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Mei Matsuzaki
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| |
Collapse
|
2
|
Sukparangsi W, Morganti E, Lowndes M, Mayeur H, Weisser M, Hammachi F, Peradziryi H, Roske F, Hölzenspies J, Livigni A, Godard BG, Sugahara F, Kuratani S, Montoya G, Frankenberg SR, Mazan S, Brickman JM. Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency. Nat Commun 2022; 13:5537. [PMID: 36130934 PMCID: PMC9492771 DOI: 10.1038/s41467-022-32481-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/30/2022] [Indexed: 12/31/2022] Open
Abstract
The support of pluripotent cells over time is an essential feature of development. In eutherian embryos, pluripotency is maintained from naïve states in peri-implantation to primed pluripotency at gastrulation. To understand how these states emerged, we reconstruct the evolutionary trajectory of the Pou5 gene family, which contains the central pluripotency factor OCT4. By coupling evolutionary sequence analysis with functional studies in mouse embryonic stem cells, we find that the ability of POU5 proteins to support pluripotency originated in the gnathostome lineage, prior to the generation of two paralogues, Pou5f1 and Pou5f3 via gene duplication. In osteichthyans, retaining both genes, the paralogues differ in their support of naïve and primed pluripotency. The specialization of these duplicates enables the diversification of function in self-renewal and differentiation. By integrating sequence evolution, cell phenotypes, developmental contexts and structural modelling, we pinpoint OCT4 regions sufficient for naïve pluripotency and describe their adaptation over evolutionary time.
Collapse
Affiliation(s)
- Woranop Sukparangsi
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark.,Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Elena Morganti
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Molly Lowndes
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Hélène Mayeur
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, F-66650, Banyuls sur Mer, France
| | - Melanie Weisser
- Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Fella Hammachi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Hanna Peradziryi
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Fabian Roske
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Jurriaan Hölzenspies
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Alessandra Livigni
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Benoit Gilbert Godard
- CNRS, Sorbonne Université, UPMC Univ Paris 06, FR2424, Development and Evolution of Vertebrates Group, Station Biologique, F-29688, Roscoff, France.,CNRS, Sorbonne Université, Laboratoire de Biologie du Développement de Villefranche, UMR7009, F-06234, Villefranche sur Mer, France
| | - Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | | | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, F-66650, Banyuls sur Mer, France.
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark.
| |
Collapse
|
3
|
Gessara I, Dittrich F, Hertel M, Hildebrand S, Pfeifer A, Frankl-Vilches C, McGrew M, Gahr M. Highly Efficient Genome Modification of Cultured Primordial Germ Cells with Lentiviral Vectors to Generate Transgenic Songbirds. Stem Cell Reports 2021; 16:784-796. [PMID: 33740464 PMCID: PMC8072032 DOI: 10.1016/j.stemcr.2021.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The ability to genetically manipulate organisms has led to significant insights into functional genomics in many species. In birds, manipulation of the genome is hindered by the inaccessibility of the one-cell embryo. During embryonic development, avian primordial germ cells (PGCs) migrate through the bloodstream and reach the gonadal anlage, where they develop into mature germ cells. Here, we explored the use of PGCs to produce transgenic offspring in the zebra finch, which is a major animal model for sexual brain differentiation, vocal learning, and vocal communication. Zebra finch PGCs (zfPGCs) obtained from embryonic blood significantly proliferated when cultured in an optimized culture medium and conserved the expression of germ and stem cell markers. Transduction of cultured zfPGCs with lentiviral vectors was highly efficient, leading to strong expression of the enhanced green fluorescent protein. Transduced zfPGCs were injected into the host embryo and transgenic songbirds were successfully generated.
Collapse
Affiliation(s)
- Ivana Gessara
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany.
| | - Falk Dittrich
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| | - Moritz Hertel
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| | - Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Mike McGrew
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Manfred Gahr
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| |
Collapse
|
4
|
Bentz AB, Niederhuth CE, Carruth LL, Navara KJ. Prenatal testosterone triggers long-term behavioral changes in male zebra finches: unravelling the neurogenomic mechanisms. BMC Genomics 2021; 22:158. [PMID: 33676394 PMCID: PMC7937265 DOI: 10.1186/s12864-021-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 02/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Maternal hormones, like testosterone, can strongly influence developing offspring, even generating long-term organizational effects on adult behavior; yet, the mechanisms facilitating these effects are still unclear. Here, we experimentally elevated prenatal testosterone in the eggs of zebra finches (Taeniopygia guttata) and measured male aggression in adulthood along with patterns of neural gene expression (RNA-seq) and DNA methylation (MethylC-Seq) in two socially relevant brain regions (hypothalamus and nucleus taenia of the amygdala). We used enrichment analyses and protein-protein interaction networks to find candidate processes and hub genes potentially affected by the treatment. We additionally identified differentially expressed genes that contained differentially methylated regions. RESULTS We found that males from testosterone-injected eggs displayed more aggressive behaviors compared to males from control eggs. Hundreds of genes were differentially expressed, particularly in the hypothalamus, including potential aggression-related hub genes (e.g., brain derived neurotrophic factor). There were also enriched processes with well-established links to aggressive phenotypes (e.g., somatostatin and glutamate signaling). Furthermore, several highly connected genes identified in protein-protein interaction networks also showed differential methylation, including adenylate cyclase 2 and proprotein convertase 2. CONCLUSIONS These results highlight genes and processes that may play an important role in mediating the effects of prenatal testosterone on long-term phenotypic outcomes, thereby providing insights into the molecular mechanisms that facilitate hormone-mediated maternal effects.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.
- Poultry Science Department, University of Georgia, Athens, GA, 30602, USA.
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Laura L Carruth
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Kristen J Navara
- Poultry Science Department, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
5
|
Rengaraj D, Hwang YS, Lee HC, Han JY. Zygotic genome activation in the chicken: a comparative review. Cell Mol Life Sci 2020; 77:1879-1891. [PMID: 31728579 PMCID: PMC11104987 DOI: 10.1007/s00018-019-03360-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Maternal RNAs and proteins in the oocyte contribute to early embryonic development. After fertilization, these maternal factors are cleared and embryonic development is determined by an individual's own RNAs and proteins, in a process called the maternal-to-zygotic transition. Zygotic transcription is initially inactive, but is eventually activated by maternal transcription factors. The timing and molecular mechanisms involved in zygotic genome activation (ZGA) have been well-described in many species. Among birds, a transcriptome-based understanding of ZGA has only been explored in chickens by RNA sequencing of intrauterine embryos. RNA sequencing of chicken intrauterine embryos, including oocytes, zygotes, and Eyal-Giladi and Kochav (EGK) stages I-X has enabled the identification of differentially expressed genes between consecutive stages. These studies have revealed that there are two waves of ZGA: a minor wave at the one-cell stage (shortly after fertilization) and a major wave between EGK.III and EGK.VI (during cellularization). In the chicken, the maternal genome is activated during minor ZGA and the paternal genome is quiescent until major ZGA to avoid transcription from supernumerary sperm nuclei. In this review, we provide a detailed overview of events in intrauterine embryonic development in birds (and particularly in chickens), as well as a transcriptome-based analysis of ZGA.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyung Chul Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
6
|
Prasad MS, Uribe-Querol E, Marquez J, Vadasz S, Yardley N, Shelar PB, Charney RM, García-Castro MI. Blastula stage specification of avian neural crest. Dev Biol 2020; 458:64-74. [PMID: 31610145 PMCID: PMC7050198 DOI: 10.1016/j.ydbio.2019.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 11/21/2022]
Abstract
Cell fate specification defines the earliest steps towards a distinct cell lineage. Neural crest, a multipotent stem cell population, is thought to be specified from the ectoderm, but its varied contributions defy canons of segregation potential and challenges its embryonic origin. Aiming to resolve this conflict, we have assayed the earliest specification of neural crest using blastula stage chick embryos. Specification assays on isolated chick epiblast explants identify an intermediate region specified towards the neural crest cell fate. Furthermore, low density culture suggests that the specification of intermediate cells towards the neural crest lineage is independent of contact mediated induction and Wnt-ligand induced signaling, but is, however, dependent on transcriptional activity of β-catenin. Finally, we have validated the regional identity of the intermediate region towards the neural crest cell fate using fate map studies. Our results suggest a model of neural crest specification within a restricted epiblast region in blastula stage chick embryos.
Collapse
Affiliation(s)
- Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | | | | | | | | | - Patrick B Shelar
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Rebekah M Charney
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA.
| |
Collapse
|
7
|
Jung KM, Kim YM, Keyte AL, Biegler MT, Rengaraj D, Lee HJ, Mello CV, Velho TAF, Fedrigo O, Haase B, Jarvis ED, Han JY. Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch. FASEB J 2019; 33:13825-13836. [DOI: 10.1096/fj.201900760rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyung Min Jung
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life Sciences, College of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Young Min Kim
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life Sciences, College of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Anna L. Keyte
- Laboratory of Neurogenetics of LanguageThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Matthew T. Biegler
- Laboratory of Neurogenetics of LanguageThe Rockefeller UniversityNew YorkNew YorkUSA
- Department of NeurobiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Deivendran Rengaraj
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life Sciences, College of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Hong Jo Lee
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life Sciences, College of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Claudio V. Mello
- Department Behavioral NeuroscienceOregon Health and Science UniversityPortlandOregonUSA
| | - Tarciso A. F. Velho
- The Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Brain Institute, Federal University of Rio Grande do NorteNatalBrazil
| | - Olivier Fedrigo
- Laboratory of Vertebrate GenomesThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Bettina Haase
- Laboratory of Vertebrate GenomesThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of LanguageThe Rockefeller UniversityNew YorkNew YorkUSA
- Department of NeurobiologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Howard Hughes Medical InstituteChevy ChaseMarylandUSA
| | - Jae Yong Han
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life Sciences, College of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
8
|
Han JY, Lee HG, Park YH, Hwang YS, Kim SK, Rengaraj D, Cho BW, Lim JM. Acquisition of pluripotency in the chick embryo occurs during intrauterine embryonic development via a unique transcriptional network. J Anim Sci Biotechnol 2018; 9:31. [PMID: 29644074 PMCID: PMC5891889 DOI: 10.1186/s40104-018-0246-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/26/2018] [Indexed: 12/18/2022] Open
Abstract
Background Acquisition of pluripotency by transcriptional regulatory factors is an initial developmental event that is required for regulation of cell fate and lineage specification during early embryonic development. The evolutionarily conserved core transcriptional factors regulating the pluripotency network in fishes, amphibians, and mammals have been elucidated. There are also species-specific maternally inherited transcriptional factors and their intricate transcriptional networks important in the acquisition of pluripotency. In avian species, however, the core transcriptional network that governs the acquisition of pluripotency during early embryonic development is not well understood. Results We found that chicken NANOG (cNANOG) was expressed in the stages between the pre-ovulatory follicle and oocyte and was continuously detected in Eyal-Giladi and Kochav stage I (EGK.I) to X. However, cPOUV was not expressed during folliculogenesis, but began to be detectable between EGK.V and VI. Unexpectedly, cSOX2 could not be detected during folliculogenesis and intrauterine embryonic development. Instead of cSOX2, cSOX3 was maternally inherited and continuously expressed during chicken intrauterine development. In addition, we found that the pluripotency-related genes such as cENS-1, cKIT, cLIN28A, cMYC, cPRDM14, and cSALL4 began to be dramatically upregulated between EGK.VI and VIII. Conclusion These results suggest that chickens have a unique pluripotent circuitry since maternally inherited cNANOG and cSOX3 may play an important role in the initial acquisition of pluripotency. Moreover, the acquisition of pluripotency in chicken embryos occurs at around EGK.VI to VIII.
Collapse
Affiliation(s)
- Jae Yong Han
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea.,2Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598 Japan
| | - Hyo Gun Lee
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Young Hyun Park
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Young Sun Hwang
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Sang Kyung Kim
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Deivendran Rengaraj
- 3Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546 Korea
| | - Byung Wook Cho
- 4Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, 50463 Korea
| | - Jeong Mook Lim
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
9
|
Hwang YS, Seo M, Lee BR, Lee HJ, Park YH, Kim SK, Lee HC, Choi HJ, Yoon J, Kim H, Han JY. The transcriptome of early chicken embryos reveals signaling pathways governing rapid asymmetric cellularization and lineage segregation. Development 2018; 145:dev.157453. [PMID: 29467246 DOI: 10.1242/dev.157453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
The phylogenomics and comparative functional genomics of avian species were investigated in the Bird 10,000 Genomes (B10K) project because of the important evolutionary position of birds and their value as a research model. However, the systematic profiling of transcriptional changes prior to oviposition has not been investigated in avian species because of the practical difficulties in obtaining pre-oviposited eggs. In this study, a total of 137 pre-oviposited embryos were collected from hen ovaries and oviducts and subjected to RNA-sequencing analyses. Two waves of chicken zygotic genome activation (ZGA) were observed. Functionally distinct developmental programs involving Notch, MAPK, Wnt and TGFβ signaling were separately detected during cleavage and area pellucida formation. Furthermore, the early stages of chicken development were compared with the human and mouse counterparts, highlighting chicken-specific signaling pathways and gradually analogous gene expression via ZGA. These findings provide a genome-wide understanding of avian embryogenesis and comparisons among amniotes.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Minseok Seo
- CHO&KIM Genomics, SNU Research Park, Seoul National University Mt.4-2, Seoul 08826, Korea.,Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bo Ram Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Kyung Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyung Chul Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Joon Yoon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,CHO&KIM Genomics, SNU Research Park, Seoul National University Mt.4-2, Seoul 08826, Korea.,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea .,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
10
|
Hwang YS, Seo M, Bang S, Kim H, Han JY. Transcriptional and translational dynamics during maternal‐to‐zygotic transition in early chicken development. FASEB J 2018; 32:2004-2011. [DOI: 10.1096/fj.201700955r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Minseok Seo
- C& K Genomics, SNU Research ParkSeoul National UniversitySeoulKorea
- Channing Division of Network MedicineHarvard Medical School and Brigham and Women's HospitalBostonMassachusettsUSA
| | - Sohyun Bang
- C& K Genomics, SNU Research ParkSeoul National UniversitySeoulKorea
| | - Heebal Kim
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
- C& K Genomics, SNU Research ParkSeoul National UniversitySeoulKorea
- Institute for Biomedical SciencesShinshu UniversityMinamiminowaJapan
| | - Jae Yong Han
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
- Institute for Biomedical SciencesShinshu UniversityMinamiminowaJapan
| |
Collapse
|
11
|
Boroviak T, Nichols J. Primate embryogenesis predicts the hallmarks of human naïve pluripotency. Development 2017; 144:175-186. [PMID: 28096211 PMCID: PMC5430762 DOI: 10.1242/dev.145177] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Naïve pluripotent mouse embryonic stem cells (ESCs) resemble the preimplantation epiblast and efficiently contribute to chimaeras. Primate ESCs correspond to the postimplantation embryo and fail to resume development in chimaeric assays. Recent data suggest that human ESCs can be ‘reset’ to an earlier developmental stage, but their functional capacity remains ill defined. Here, we discuss how the naïve state is inherently linked to preimplantation epiblast identity in the embryo. We hypothesise that distinctive features of primate development provide stringent criteria to evaluate naïve pluripotency in human and other primate cells. Based on our hypothesis, we define 12 key hallmarks of naïve pluripotency, five of which are specific to primates. These hallmarks may serve as a functional framework to assess human naïve ESCs. Summary: This Hypothesis article highlights several fundamental differences between rodent and primate early development and exploits these to predict key hallmarks of naïve pluripotency in primates.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 4BG, UK
| |
Collapse
|