1
|
Hamzah M, Meitinger F, Ohta M. PLK4: Master Regulator of Centriole Duplication and Its Therapeutic Potential. Cytoskeleton (Hoboken) 2025. [PMID: 40257113 DOI: 10.1002/cm.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Centrosomes catalyze the assembly of a microtubule-based bipolar spindle, essential for the precise chromosome segregation during cell division. At the center of this process lies Polo-Like Kinase 4 (PLK4), the master regulator that controls the duplication of the centriolar core to ensure the correct balance of two centrosomes per dividing cell. Disruptions in centrosome number or function can lead to genetic disorders such as primary microcephaly or drive tumorigenesis via centrosome amplification. In this context, several chemical inhibitors of PLK4 have emerged as promising therapeutic candidates. The inhibition of PLK4 results in the emergence of acentrosomal cells, which undergo prolonged and error-prone mitosis. This aberrant mitotic duration triggers a "mitotic stopwatch" mechanism that activates the tumor suppressor p53, halting cellular proliferation. However, in a multitude of cancers, the efficacy of this mitotic surveillance mechanism is compromised by mutations that incapacitate p53. Recent investigations have unveiled p53-independent vulnerabilities in cancers characterized by chromosomal gain or amplification of 17q23, which encodes for the ubiquitin ligase TRIM37, in response to PLK4 inhibition, particularly in neuroblastoma and breast cancer. This review encapsulates the latest advancements in our understanding of centriole duplication and acentrosomal cell division in the context of TRIM37 amplification, positioning PLK4 as a compelling target for innovative cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Hamzah
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Midori Ohta
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Kasera H, Singh P. Harnessing Structure Prediction of Polo-Like Kinase 4 for Drug Repurposing. Cytoskeleton (Hoboken) 2025. [PMID: 40110897 DOI: 10.1002/cm.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Polo-like kinase 4 (PLK4) is a centrosome-specific kinase aberrantly expressed in cancers. Drugs inhibiting its catalytic kinase domain are under clinical phase-1/2 trials in patients with different leukemia types. However, the kinase domain of PLK4 shows structural similarity with other kinases. Therefore, drugs targeting the unique C-terminal polo-box domain (PBD) of PLK4 could provide better specificity. The knowledge of domain orientation in a full-length PLK4 structure is imperative for drug discovery. In this work, we utilized ab initio and threading approaches to predict the full-length structure of human PLK4, which was employed for virtually screening the ChEMBL library. Among the hit compounds targeting the unique regions in PLK4, we identified Alectinib, which affects centrosome numbers corresponding to PLK4 levels at centrosomes. The FT-IR analysis also confirmed Alectinib interaction with the PBD. Therefore, this work identifies a chemical scaffold that could be repurposed to target the unique regions of PLK4.
Collapse
Affiliation(s)
- Harshita Kasera
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Priyanka Singh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| |
Collapse
|
3
|
Dominguez-Vigil IG, Banik K, Baro M, Contessa JN, Hayman TJ. PLK4 inhibition as a strategy to enhance non-small cell lung cancer radiosensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638860. [PMID: 40027806 PMCID: PMC11870518 DOI: 10.1101/2025.02.19.638860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer and comprises 85% of cases. Despite treatment advances, local control after curative-intent chemoradiation for NSCLC remains suboptimal. Polo-like kinase 4 (PLK4) is a serine-threonine kinase that plays a critical role in the regulation of centrosome duplication and cell cycle progression and is overexpressed in NSCLC, thus, making it a potential therapeutic target. CFI-400945 is an orally available PLK4 inhibitor currently undergoing clinical trial evaluation. As radiation causes cell death primarily by mitotic catastrophe, a process enhanced by alterations in centrosome amplification, we hypothesized that disruption of the mitotic machinery by inhibition of PLK4 would enhance the effects of radiation in NSCLC. PLK4 inhibition by CFI-400945 resulted in radiosensitization of NSCLC cell lines. In contrast, CFI-400945 had no effect on the radiosensitivity of normal lung fibroblasts. PLK4 inhibition did not affect cell-cycle phase distribution prior to radiation, but rather the combination of CFI-400945 and radiation resulted in increased G2/M cell cycle arrest, increased centrosome amplification, and a concomitant increase in cell death through mitotic catastrophe. Lastly, CFI-400945 treatment enhanced the radiation-induced tumor growth delay of NSCLC tumor xenografts. These data indicate that targeting PLK4 is a novel approach to enhance the radiation sensitivity of NSCLC in vitro and in vivo through potentiation of centrosome amplification and cell death through mitotic catastrophe.
Collapse
|
4
|
Ohtsuka S, Kato H, Ishikawa R, Watanabe H, Miyazaki R, Katsuragi SY, Yoshimura K, Yamada H, Sakai Y, Inoue Y, Takanashi Y, Sekihara K, Funai K, Sugimura H, Shinmura K. STIL Overexpression Is Associated with Chromosomal Numerical Abnormalities in Non-Small-Cell Lung Carcinoma Through Centrosome Amplification. Curr Oncol 2024; 31:7936-7949. [PMID: 39727708 PMCID: PMC11674966 DOI: 10.3390/curroncol31120585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
STIL is a regulatory protein essential for centriole biogenesis, and its dysregulation has been implicated in various diseases, including malignancies. However, its role in non-small-cell lung carcinoma (NSCLC) remains unclear. In this study, we examined STIL expression and its potential association with chromosomal numerical abnormalities (CNAs) in NSCLC using The Cancer Genome Atlas (TCGA) dataset, immunohistochemical analysis, and in vitro experiments with NSCLC cell lines designed to overexpress STIL. TCGA data revealed upregulated STIL mRNA expression in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), the two major subtypes of NSCLC. Immunohistochemical analysis of cases from our hospital (LUAD, n = 268; LUSC, n = 98) revealed STIL protein overexpression. To elucidate the functional role of STIL, an inducible STIL-overexpressing H1299 NSCLC cell line was generated. Overexpression of STIL in these cells promoted centrosome amplification, leading to chromosomal instability. Finally, analysis of arm-level chromosomal copy number alterations from the TCGA dataset revealed that elevated STIL mRNA expression was associated with CNAs in both LUAD and LUSC. These findings suggest that STIL overexpression is associated with CNAs in NSCLC, likely through centrosome amplification, which is linked to chromosomal instability and might represent a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Shunsuke Ohtsuka
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Rei Ishikawa
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| | - Ryosuke Miyazaki
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Shin-ya Katsuragi
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| | - Yusuke Takanashi
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (Y.T.); (K.S.); (K.F.)
| | - Keigo Sekihara
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (Y.T.); (K.S.); (K.F.)
| | - Kazuhito Funai
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (Y.T.); (K.S.); (K.F.)
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
- Kyoundo Hospital, Sasaki Foundation, Tokyo 101-0062, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| |
Collapse
|
5
|
Wu J, Tian Z, Wang B, Liu J, Bi R, Zhan N, Song D, He C, Zhao W. Exploring resveratrol against Alzheimer's disease and Parkinson's disease through integrating network pharmacology, bioinformatics, and experimental validation strategy in vitro. Heliyon 2024; 10:e37908. [PMID: 39328512 PMCID: PMC11425098 DOI: 10.1016/j.heliyon.2024.e37908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Background The study aims to investigate the pharmacological basis and molecular mechanisms of resveratrol in the treatment of Alzheimer's disease (AD) and Parkinson's disease (PD) through the approach of treating different diseases with the same method, guided by traditional Chinese medicine theory. Utilizing network pharmacology and bioinformatics methods, this research aims to provide modern medical evidence for the theory of treating different diseases with the same method in traditional Chinese medicine. Methods Omnibus from Swiss Target Prediction, TCMSP, SuperPred, SEA, HIT, CTD, TCMIP and Gene Expression Disease datasets for resveratrol related genes, Alzheimer's disease, and Parkinson's disease were obtained from the GEO database. Core targets were identified by weighted gene coexpression network analysis (WGCNA) and minimum absolute contraction and selection operator (LASSO). The expression of core targets was verified in AD and PD cell models. The immune characteristics of AD and PD were analyzed by CIBERSORT algorithm. Finally, the potential mechanism of resveratrol intervention on the core target was studied by molecular docking technique. Results The results of network pharmacological analysis showed that resveratrol acted on 85 common targets such as STAT3 and CASP3, affected AGE-RAGE signaling pathway and PI3K-Akt signaling pathway, and showed the effect of "same disease and different treatment" for AD and PD. Three core targets associated with AD and PD (PLK4, FCGRT, and PRKAR2A) were finally identified through comprehensive transcriptome analysis, and experimentally verified in cell models of AD and PD. At the same time, the analysis of immune cell infiltration suggested that AD and PD had dysregulation of inflammation, and the core target was significantly related to M2 macrophages. Conclusion Resveratrol may play a potential mechanism of "treating the same disease with different diseases" and target three core targets (PLK4, FCGRT and PRKAR2A) to improve the disease process of AD and PD by participating in the regulation of immune and inflammatory pathways. These findings have potential implications for clinical practice and future research.
Collapse
Affiliation(s)
- Jinpu Wu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Ziyue Tian
- Hainan General Hospital, Haikou, 570311 China
| | - Boxue Wang
- First Hospital of Jilin University, Jilin, 130061, China
| | - Jian Liu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Ran Bi
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Naixin Zhan
- Changchun University of Chinese Medicine, Jilin, 130117, China
| | - Daixuan Song
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Chengcheng He
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| | - Weimin Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Jilin, 130021, China
| |
Collapse
|
6
|
Ryniawec JM, Amoiroglou A, Rogers GC. Generating CRISPR-edited clonal lines of cultured Drosophila S2 cells. Biol Methods Protoc 2024; 9:bpae059. [PMID: 39206452 PMCID: PMC11357795 DOI: 10.1093/biomethods/bpae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
CRISPR/Cas9 genome editing is a pervasive research tool due to its relative ease of use. However, some systems are not amenable to generating edited clones due to genomic complexity and/or difficulty in establishing clonal lines. For example, Drosophila Schneider 2 (S2) cells possess a segmental aneuploid genome and are challenging to single-cell select. Here, we describe a streamlined CRISPR/Cas9 methodology for knock-in and knock-out experiments in S2 cells, whereby an antibiotic resistance gene is inserted in-frame with the coding region of a gene-of-interest. By using selectable markers, we have improved the ease and efficiency for the positive selection of null cells using antibiotic selection in feeder layers followed by cell expansion to generate clonal lines. Using this method, we generated the first acentrosomal S2 cell lines by knocking-out centriole genes Polo-like Kinase 4/Plk4 or Ana2 as proof of concept. These strategies for generating gene-edited clonal lines will add to the collection of CRISPR tools available for cultured Drosophila cells by making CRISPR more practical and therefore improving gene function studies.
Collapse
Affiliation(s)
- John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Anastasia Amoiroglou
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| |
Collapse
|
7
|
Sankaralingam P, Wang S, Liu Y, Oegema KF, O'Connell KF. The kinase ZYG-1 phosphorylates the cartwheel protein SAS-5 to drive centriole assembly in C. elegans. EMBO Rep 2024; 25:2698-2721. [PMID: 38744971 PMCID: PMC11169420 DOI: 10.1038/s44319-024-00157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5S10A exhibit centriole assembly failure, while those expressing SAS-5S331/338/340A possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.
Collapse
Affiliation(s)
- Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yan Liu
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Karen F Oegema
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin F O'Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Wang B, Zhang X, Li ZS, Wei C, Yu RZ, Du XZ, He YJ, Ren Y, Zhen YW, Han L. Polo-like kinase 4 promotes tumorigenesis and glucose metabolism in glioma by activating AKT1 signaling. Cancer Lett 2024; 585:216665. [PMID: 38290657 DOI: 10.1016/j.canlet.2024.216665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Glioblastoma (GBM) is an extremely aggressive tumor associated with a poor prognosis that impacts the central nervous system. Increasing evidence suggests an inherent association between glucose metabolism dysregulation and the aggression of GBM. Polo-like kinase 4 (PLK4), a highly conserved serine/threonine protein kinase, was found to relate to glioma progression and unfavorable prognosis. As revealed by the integration of proteomics and phosphoproteomics, PLK4 was found to be involved in governing metabolic processes and the PI3K/AKT/mTOR pathway. For the first time, this study supports evidence demonstrating that PLK4 activated PI3K/AKT/mTOR signaling through direct binding to AKT1 and subsequent phosphorylating AKT1 at S124, T308, and S473 to promote tumorigenesis and glucose metabolism in glioma. In addition, PLK4-mediated phosphorylation of AKT1 S124 significantly augmented the phosphorylation of AKT1 S473. Therefore, PLK4 exerted an influence on glucose metabolism by stimulating PI3K/AKT/mTOR signaling. Additionally, the expression of PLK4 protein exhibited a positive correlation with AKT1 phosphorylation in glioma patient tissues. These findings highlight the pivotal role of PLK4-mediated phosphorylation of AKT1 in glioma tumorigenesis and dysregulation of glucose metabolism.
Collapse
Affiliation(s)
- Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoyang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ze-Sheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Run-Ze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue-Zhi Du
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ying-Jie He
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Ying-Wei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
9
|
Sullenberger C, Kong D, Avazpour P, Luvsanjav D, Loncarek J. Centrosomal organization of Cep152 provides flexibility in Plk4 and procentriole positioning. J Cell Biol 2023; 222:e202301092. [PMID: 37707473 PMCID: PMC10501443 DOI: 10.1083/jcb.202301092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/25/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
Centriole duplication is a high-fidelity process driven by Polo-like kinase 4 (Plk4) and a few conserved initiators. Dissecting how Plk4 and its receptors organize within centrosomes is critical to understand the centriole duplication process and biochemical and architectural differences between centrosomes of different species. Here, at nanoscale resolution, we dissect centrosomal localization of Plk4 in G1 and S phase in its catalytically active and inhibited state during centriole duplication and amplification. We build a precise distribution map of Plk4 and its receptor Cep152, as well as Cep44, Cep192, and Cep152-anchoring factors Cep57 and Cep63. We find that Cep57, Cep63, Cep44, and Cep192 localize in ninefold symmetry. However, during centriole maturation, Cep152, which we suggest is the major Plk4 receptor, develops a more complex pattern. We propose that the molecular arrangement of Cep152 creates flexibility for Plk4 and procentriole placement during centriole initiation. As a result, procentrioles form at variable positions in relation to the mother centriole microtubule triplets.
Collapse
Affiliation(s)
- Catherine Sullenberger
- Cancer Innovation Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Dong Kong
- Cancer Innovation Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Pegah Avazpour
- Cancer Innovation Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Delgermaa Luvsanjav
- Cancer Innovation Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Jadranka Loncarek
- Cancer Innovation Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| |
Collapse
|
10
|
Carden S, Vitiello E, Rosa E Silva I, Holder J, Quarantotti V, Kishore K, Roamio Franklin VN, D'Santos C, Ochi T, van Breugel M, Gergely F. Proteomic profiling of centrosomes across multiple mammalian cell and tissue types by an affinity capture method. Dev Cell 2023; 58:2393-2410.e9. [PMID: 37852252 DOI: 10.1016/j.devcel.2023.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Centrosomes are the major microtubule-organizing centers in animals and play fundamental roles in many cellular processes. Understanding how their composition varies across diverse cell types and how it is altered in disease are major unresolved questions, yet currently available centrosome isolation protocols are cumbersome and time-consuming, and they lack scalability. Here, we report the development of centrosome affinity capture (CAPture)-mass spectrometry (MS), a powerful one-step purification method to obtain high-resolution centrosome proteomes from mammalian cells. Utilizing a synthetic peptide derived from CCDC61 protein, CAPture specifically isolates intact centrosomes. Importantly, as a bead-based affinity method, it enables rapid sample processing and multiplexing unlike conventional approaches. Our study demonstrates the power of CAPture-MS to elucidate cell-type-dependent heterogeneity in centrosome composition, dissect hierarchical interactions, and identify previously unknown centrosome components. Overall, CAPture-MS represents a transformative tool to unveil temporal, regulatory, cell-type- and tissue-specific changes in centrosome proteomes in health and disease.
Collapse
Affiliation(s)
- Sarah Carden
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Elisa Vitiello
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - James Holder
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Valentina Quarantotti
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Clive D'Santos
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Takashi Ochi
- MRC Laboratory of Molecular Biology, Cambridge, UK; The Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| | - Mark van Breugel
- MRC Laboratory of Molecular Biology, Cambridge, UK; School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Fanni Gergely
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Kalbfuss N, Gönczy P. Towards understanding centriole elimination. Open Biol 2023; 13:230222. [PMID: 37963546 PMCID: PMC10645514 DOI: 10.1098/rsob.230222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
Centrioles are microtubule-based structures crucial for forming flagella, cilia and centrosomes. Through these roles, centrioles are critical notably for proper cell motility, signalling and division. Recent years have advanced significantly our understanding of the mechanisms governing centriole assembly and architecture. Although centrioles are typically very stable organelles, persisting over many cell cycles, they can also be eliminated in some cases. Here, we review instances of centriole elimination in a range of species and cell types. Moreover, we discuss potential mechanisms that enable the switch from a stable organelle to a vanishing one. Further work is expected to provide novel insights into centriole elimination mechanisms in health and disease, thereby also enabling scientists to readily manipulate organelle fate.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Wilmott ZM, Goriely A, Raff JW. A simple Turing reaction-diffusion model explains how PLK4 breaks symmetry during centriole duplication and assembly. PLoS Biol 2023; 21:e3002391. [PMID: 37983248 PMCID: PMC10659181 DOI: 10.1371/journal.pbio.3002391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
Centrioles duplicate when a mother centriole gives birth to a daughter that grows from its side. Polo-like-kinase 4 (PLK4), the master regulator of centriole duplication, is recruited symmetrically around the mother centriole, but it then concentrates at a single focus that defines the daughter centriole assembly site. How PLK4 breaks symmetry is unclear. Here, we propose that phosphorylated and unphosphorylated species of PLK4 form the 2 components of a classical Turing reaction-diffusion system. These 2 components bind to/unbind from the surface of the mother centriole at different rates, allowing a slow-diffusing activator species of PLK4 to accumulate at a single site on the mother, while a fast-diffusing inhibitor species of PLK4 suppresses activator accumulation around the rest of the centriole. This "short-range activation/long-range inhibition," inherent to Turing systems, can drive PLK4 symmetry breaking on a either a continuous or compartmentalised Plk4-binding surface, with PLK4 overexpression producing multiple PLK4 foci and PLK4 kinase inhibition leading to a lack of symmetry-breaking and PLK4 accumulation-as observed experimentally.
Collapse
Affiliation(s)
- Zachary M. Wilmott
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Shamir M, Martin FJO, Woolfson DN, Friedler A. Molecular Mechanism of STIL Coiled-Coil Domain Oligomerization. Int J Mol Sci 2023; 24:14616. [PMID: 37834064 PMCID: PMC10572602 DOI: 10.3390/ijms241914616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Coiled-coil domains (CCDs) play key roles in regulating both healthy cellular processes and the pathogenesis of various diseases by controlling protein self-association and protein-protein interactions. Here, we probe the mechanism of oligomerization of a peptide representing the CCD of the STIL protein, a tetrameric multi-domain protein that is over-expressed in several cancers and associated with metastatic spread. STIL tetramerization is mediated both by an intrinsically disordered domain (STIL400-700) and a structured CCD (STIL CCD718-749). Disrupting STIL oligomerization via the CCD inhibits its activity in vivo. We describe a comprehensive biophysical and structural characterization of the concentration-dependent oligomerization of STIL CCD peptide. We combine analytical ultracentrifugation, fluorescence and circular dichroism spectroscopy to probe the STIL CCD peptide assembly in solution and determine dissociation constants of both the dimerization, (KD = 8 ± 2 µM) and tetramerization (KD = 68 ± 2 µM) of the WT STIL CCD peptide. The higher-order oligomers result in increased thermal stability and cooperativity of association. We suggest that this complex oligomerization mechanism regulates the activated levels of STIL in the cell and during centriole duplication. In addition, we present X-ray crystal structures for the CCD containing destabilising (L736E) and stabilising (Q729L) mutations, which reveal dimeric and tetrameric antiparallel coiled-coil structures, respectively. Overall, this study offers a basis for understanding the structural molecular biology of the STIL protein, and how it might be targeted to discover anti-cancer reagents.
Collapse
Affiliation(s)
- Mai Shamir
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel;
| | - Freddie J. O. Martin
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK;
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK;
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel;
| |
Collapse
|
14
|
Feldman TP, Ryan Y, Egan ES. Plasmodium falciparum infection of human erythroblasts induces transcriptional changes associated with dyserythropoiesis. Blood Adv 2023; 7:5496-5509. [PMID: 37493969 PMCID: PMC10515311 DOI: 10.1182/bloodadvances.2023010844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
During development down the erythroid lineage, hematopoietic stem cells undergo dramatic changes to cellular morphology and function in response to a complex and tightly regulated program of gene expression. In malaria infection, Plasmodium spp parasites accumulate in the bone marrow parenchyma, and emerging evidence suggests erythroblastic islands are a protective site for parasite development into gametocytes. Although it has been observed that Plasmodium falciparum infection in late-stage erythroblasts can delay terminal erythroid differentiation and enucleation, the mechanism(s) underlying this phenomenon are unknown. Here, we apply RNA sequencing after fluorescence-activated cell sorting of infected erythroblasts to identify transcriptional responses to direct and indirect interaction with P falciparum. Four developmental stages of erythroid cells were analyzed: proerythroblast, basophilic erythroblast, polychromatic erythroblast, and orthochromatic erythroblast. We found extensive transcriptional changes in infected erythroblasts compared with that in uninfected cells in the same culture, including dysregulation of genes involved in erythroid proliferation and developmental processes. Although some indicators of cellular oxidative and proteotoxic stress were common across all stages of erythropoiesis, many responses were specific to cellular processes associated with developmental stage. Together, our results evidence multiple possible avenues by which parasite infection can induce dyserythropoiesis at specific points along the erythroid continuum, advancing our understanding of the molecular determinants of malaria anemia.
Collapse
Affiliation(s)
- Tamar P. Feldman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Yana Ryan
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth S. Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
15
|
Ryniawec JM, Buster DW, Slevin LK, Boese CJ, Amoiroglou A, Dean SM, Slep KC, Rogers GC. Polo-like kinase 4 homodimerization and condensate formation regulate its own protein levels but are not required for centriole assembly. Mol Biol Cell 2023; 34:ar80. [PMID: 37163316 PMCID: PMC10398880 DOI: 10.1091/mbc.e22-12-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Polo-like kinase 4 (Plk4) is the master-regulator of centriole assembly, and cell cycle-dependent regulation of its activity maintains proper centrosome number. During most of the cell cycle, Plk4 levels are nearly undetectable due to its ability to autophosphorylate and trigger its own ubiquitin-mediated degradation. However, during mitotic exit, Plk4 forms a single aggregate on the centriole surface to stimulate centriole duplication. Whereas most Polo-like kinase family members are monomeric, Plk4 is unique because it forms homodimers. Notably, Plk4 trans-autophosphorylates a degron near its kinase domain, a critical step in autodestruction. While it is thought that the purpose of homodimerization is to promote trans-autophosphorylation, this has not been tested. Here, we generated separation-of-function Plk4 mutants that fail to dimerize and show that homodimerization creates a binding site for the Plk4 activator, Asterless. Surprisingly, however, Plk4 dimer mutants are catalytically active in cells, promote centriole assembly, and can trans-autophosphorylate through concentration-dependent condensate formation. Moreover, we mapped and then deleted the weak-interacting regions within Plk4 that mediate condensation and conclude that dimerization and condensation are not required for centriole assembly. Our findings suggest that Plk4 dimerization and condensation function simply to down-regulate Plk4 and suppress centriole overduplication.
Collapse
Affiliation(s)
- John M. Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Daniel W. Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Lauren K. Slevin
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - Cody J. Boese
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Anastasia Amoiroglou
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Spencer M. Dean
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Kevin C. Slep
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
16
|
Troussicot L, Vallet A, Molin M, Burmann BM, Schanda P. Disulfide-Bond-Induced Structural Frustration and Dynamic Disorder in a Peroxiredoxin from MAS NMR. J Am Chem Soc 2023; 145:10700-10711. [PMID: 37140345 PMCID: PMC10197130 DOI: 10.1021/jacs.3c01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 05/05/2023]
Abstract
Disulfide bond formation is fundamentally important for protein structure and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive μs time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfill other favorable contacts.
Collapse
Affiliation(s)
- Laura Troussicot
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, SE-405 30 Göteborg, Sweden
- Institut
de Biologie Structurale, Univ. Grenoble
Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France
- Institute
of Science and Technology Austria, Am Campus
1, A-3400 Klosterneuburg, Austria
| | - Alicia Vallet
- Institut
de Biologie Structurale, Univ. Grenoble
Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France
| | - Mikael Molin
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Department
of Life Sciences, Chalmers University of
Technology, SE-405 30 Göteborg, Sweden
| | - Björn M. Burmann
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Paul Schanda
- Institute
of Science and Technology Austria, Am Campus
1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
17
|
Arora S, Rana M, Sachdev A, D’Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023. [DOI: 10.1007/s12038-023-00326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
18
|
Arora S, Rana M, Sachdev A, D'Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023; 48:8. [PMID: 36924208 PMCID: PMC10005925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The past few decades have seen a rise in research on vertebrate cilia and ciliopathy, with interesting collaborations between basic and clinical scientists. This work includes studies on ciliary architecture, composition, evolution, and organelle generation and its biological role. The human body has cells that harbour any of the following four types of cilia: 9+0 motile, 9+0 immotile, 9+2 motile, and 9+2 immotile. Depending on the type, cilia play an important role in cell/fluid movement, mating, sensory perception, and development. Defects in cilia are associated with a wide range of human diseases afflicting the brain, heart, kidneys, respiratory tract, and reproductive system. These are commonly known as ciliopathies and affect millions of people worldwide. Due to their complex genetic etiology, diagnosis and therapy have remained elusive. Although model organisms like Chlamydomonas reinhardtii have been a useful source for ciliary research, reports of a fascinating and rewarding translation of this research into mammalian systems, especially humans, are seen. The current review peeks into one of the complex features of this organelle, namely its birth, the common denominators across the formation of both 9+0 and 9+2 ciliary types, the molecules involved in ciliogenesis, and the steps that go towards regulating their assembly and disassembly.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | | | | | | |
Collapse
|
19
|
Lerit DA. Reflections on mentorship as an early career researcher. Mol Biol Cell 2022; 33:ae3. [PMID: 36399627 PMCID: PMC9727808 DOI: 10.1091/mbc.e22-08-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It is my great honor to receive the 2022 Günter Blobel Early Career Award from the American Society for Cell Biology. Reflecting upon my research and career trajectory, I recognize the incredible support of my mentors and the hard work of everyone within my lab. I have always relied on a network of advisors and colleagues who supported me throughout my scientific journey. To better support my own trainees, I endeavor to pass on lessons learned while continuously developing and strengthening my own leadership potential. I am a relentless advocate for the success of my trainees, a legacy I pass on from my own mentors.
Collapse
Affiliation(s)
- Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322,Winship Cancer Institute, Emory University, Atlanta, GA 30322,*Address correspondence to: Dorothy A. Lerit ()
| |
Collapse
|
20
|
Huang F, Xu X, Xin G, Zhang B, Jiang Q, Zhang C. Cartwheel disassembly regulated by CDK1-cyclin B kinase allows human centriole disengagement and licensing. J Biol Chem 2022; 298:102658. [PMID: 36356903 PMCID: PMC9763691 DOI: 10.1016/j.jbc.2022.102658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Cartwheel assembly is considered the first step in the initiation of procentriole biogenesis; however, the reason for persistence of the assembled human cartwheel structure from S phase to late mitosis remains unclear. Here, we demonstrate mainly using cell synchronization, RNA interference, immunofluorescence and time-lapse-microscopy, biochemical analysis, and methods that the cartwheel persistently assembles and maintains centriole engagement and centrosome integrity during S phase to late G2 phase. Blockade of the continuous accumulation of centriolar Sas-6, a major cartwheel protein, after procentriole formation induces premature centriole disengagement and disrupts pericentriolar matrix integrity. Additionally, we determined that during mitosis, CDK1-cyclin B phosphorylates Sas-6 at T495 and S510, disrupting its binding to cartwheel component STIL and pericentriolar component Nedd1 and promoting cartwheel disassembly and centriole disengagement. Perturbation of this phosphorylation maintains the accumulation of centriolar Sas-6 and retains centriole engagement during mitotic exit, which results in the inhibition of centriole reduplication. Collectively, these data demonstrate that persistent cartwheel assembly after procentriole formation maintains centriole engagement and that this configuration is relieved through phosphorylation of Sas-6 by CDK1-cyclin B during mitosis in human cells.
Collapse
Affiliation(s)
- Fan Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiaowei Xu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Guangwei Xin
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Boyan Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Qing Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Chuanmao Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
21
|
PLK4 Is a Potential Biomarker for Abnormal Tumor Proliferation, Immune Infiltration, and Prognosis in ccRCC. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6302234. [PMID: 36176741 PMCID: PMC9514917 DOI: 10.1155/2022/6302234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
Background PLK4 is highly expressed and associated with poor prognosis in various malignancies. However, the role of PLK4 in clear cell renal cell carcinoma (ccRCC) is still unclear. This study is aimed at analyzing the expression, the potential regulating mechanism, and the role of PLK4 in the ccRCC by bioinformatics. Methods PLK4 mRNA expression data and methylation levels in ccRCC were examined using TIMER, UALCAN, MethSurv, NCBI-GEO, and UCSC databases. Quantitative real-time PCR verifies the regulatory relationship between PLK4 and has-miR-214-3p. The GEPIA2 and STRING databases were used to find similar genes of PLK4 and then enriched with R language to analyze their similar genes. Correlations between PLK4 and tumor-infiltrating immune cells and cytokines exerting immunosuppression were analyzed using the TIMER database and the TISIDB databases. Results PLK4 mRNA expression levels were significantly higher in ccRCC tissues than in paracancerous tissues. ccRCC tissues had lower DNA methylation levels of PLK4 than normal tissues. Importantly, the high PLK4 expression was associated with poor prognosis in ccRCC patients. The has-miR-214-3p negatively regulates the expression of PLK4. GO and KEGG pathway analysis showed that PLK4 coexpressed genes were mainly associated with multiple immune-related pathways, including cytokinesis, sister chromatid adhesions, and mitotic nuclear division. Our data suggest that the PLK4 expression is closely related to the level of immune infiltration and the cytokines that exert immune suppression, and IPS was significantly higher in the PLK4 low expression group. Conclusion The PLK4 expression is associated with the prognosis of ccRCC patients and affects the immune microenvironment of ccRCC, and PLK4 is expected to be a new target for the diagnosis and treatment of ccRCC.
Collapse
|
22
|
Steinacker TL, Wong SS, Novak ZA, Saurya S, Gartenmann L, van Houtum EJ, Sayers JR, Lagerholm BC, Raff JW. Centriole growth is limited by the Cdk/Cyclin-dependent phosphorylation of Ana2/STIL. J Cell Biol 2022; 221:e202205058. [PMID: 35861803 PMCID: PMC9442473 DOI: 10.1083/jcb.202205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Centrioles duplicate once per cell cycle, but it is unclear how daughter centrioles assemble at the right time and place and grow to the right size. Here, we show that in Drosophila embryos the cytoplasmic concentrations of the key centriole assembly proteins Asl, Plk4, Ana2, Sas-6, and Sas-4 are low, but remain constant throughout the assembly process-indicating that none of them are limiting for centriole assembly. The cytoplasmic diffusion rate of Ana2/STIL, however, increased significantly toward the end of S-phase as Cdk/Cyclin activity in the embryo increased. A mutant form of Ana2 that cannot be phosphorylated by Cdk/Cyclins did not exhibit this diffusion change and allowed daughter centrioles to grow for an extended period. Thus, the Cdk/Cyclin-dependent phosphorylation of Ana2 seems to reduce the efficiency of daughter centriole assembly toward the end of S-phase. This helps to ensure that daughter centrioles stop growing at the correct time, and presumably also helps to explain why centrioles cannot duplicate during mitosis.
Collapse
Affiliation(s)
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Zsofia A. Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Judith R. Sayers
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Takumi K, Kitagawa D. Experimental and Natural Induction of de novo Centriole Formation. Front Cell Dev Biol 2022; 10:861864. [PMID: 35445021 PMCID: PMC9014216 DOI: 10.3389/fcell.2022.861864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
In cycling cells, new centrioles are assembled in the vicinity of pre-existing centrioles. Although this canonical centriole duplication is a tightly regulated process in animal cells, centrioles can also form in the absence of pre-existing centrioles; this process is termed de novo centriole formation. De novo centriole formation is triggered by the removal of all pre-existing centrioles in the cell in various manners. Moreover, overexpression of polo-like kinase 4 (Plk4), a master regulatory kinase for centriole biogenesis, can induce de novo centriole formation in some cell types. Under these conditions, structurally and functionally normal centrioles can be formed de novo. While de novo centriole formation is normally suppressed in cells with intact centrioles, depletion of certain suppressor proteins leads to the ectopic formation of centriole-related protein aggregates in the cytoplasm. It has been shown that de novo centriole formation also occurs naturally in some species. For instance, during the multiciliogenesis of vertebrate epithelial cells, massive de novo centriole amplification occurs to form numerous motile cilia. In this review, we summarize the previous findings on de novo centriole formation, particularly under experimental conditions, and discuss its regulatory mechanisms.
Collapse
Affiliation(s)
- Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Wang YW, Chen SC, Gu DL, Yeh YC, Tsai JJ, Yang KT, Jou YS, Chou TY, Tang TK. A novel HIF1α-STIL-FOXM1 axis regulates tumor metastasis. J Biomed Sci 2022; 29:24. [PMID: 35365182 PMCID: PMC8973879 DOI: 10.1186/s12929-022-00807-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastasis is the major cause of morbidity and mortality in cancer that involves in multiple steps including epithelial-mesenchymal transition (EMT) process. Centrosome is an organelle that functions as the major microtubule organizing center (MTOC), and centrosome abnormalities are commonly correlated with tumor aggressiveness. However, the conclusive mechanisms indicating specific centrosomal proteins participated in tumor progression and metastasis remain largely unknown. METHODS The expression levels of centriolar/centrosomal genes in various types of cancers were first examined by in silico analysis of the data derived from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and European Bioinformatics Institute (EBI) datasets. The expression of STIL (SCL/TAL1-interrupting locus) protein in clinical specimens was further assessed by Immunohistochemistry (IHC) analysis and the oncogenic roles of STIL in tumorigenesis were analyzed using in vitro and in vivo assays, including cell migration, invasion, xenograft tumor formation, and metastasis assays. The transcriptome differences between low- and high-STIL expression cells were analyzed by RNA-seq to uncover candidate genes involved in oncogenic pathways. The quantitative polymerase chain reaction (qPCR) and reporter assays were performed to confirm the results. The chromatin immunoprecipitation (ChIP)-qPCR assay was applied to demonstrate the binding of transcriptional factors to the promoter. RESULTS The expression of STIL shows the most significant increase in lung and various other types of cancers, and is highly associated with patients' survival rate. Depletion of STIL inhibits tumor growth and metastasis. Interestingly, excess STIL activates the EMT pathway, and subsequently enhances cancer cell migration and invasion. Importantly, we reveal an unexpected role of STIL in tumor metastasis. A subset of STIL translocate into nucleus and associate with FOXM1 (Forkhead box protein M1) to promote tumor metastasis and stemness via FOXM1-mediated downstream target genes. Furthermore, we demonstrate that hypoxia-inducible factor 1α (HIF1α) directly binds to the STIL promoter and upregulates STIL expression under hypoxic condition. CONCLUSIONS Our findings indicate that STIL promotes tumor metastasis through the HIF1α-STIL-FOXM1 axis, and highlight the importance of STIL as a promising therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Yi-Wei Wang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Shu-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - De-Leung Gu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jhih-Jie Tsai
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Kuo-Tai Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
- Dept. of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Teh-Ying Chou
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan.
| |
Collapse
|
25
|
Hoffmann I. Role of Polo-like Kinases Plk1 and Plk4 in the Initiation of Centriole Duplication-Impact on Cancer. Cells 2022; 11:786. [PMID: 35269408 PMCID: PMC8908989 DOI: 10.3390/cells11050786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Centrosomes nucleate and anchor microtubules and therefore play major roles in spindle formation and chromosome segregation during mitosis. Duplication of the centrosome occurs, similar to DNA, only once during the cell cycle. Aberration of the centrosome number is common in human tumors. At the core of centriole duplication is the conserved polo-like kinase 4, Plk4, and two structural proteins, STIL and Sas-6. In this review, I summarize and discuss developments in our understanding of the first steps of centriole duplication and their regulation.
Collapse
Affiliation(s)
- Ingrid Hoffmann
- F045, Cell Cycle Control and Carcinogenesis, Im Neuenheimer Feld 242, 69115 Heidelberg, Germany
| |
Collapse
|
26
|
Cunningham NHJ, Bouhlel IB, Conduit PT. Daughter centrioles assemble preferentially towards the nuclear envelope in Drosophila syncytial embryos. Open Biol 2022; 12:210343. [PMID: 35042404 PMCID: PMC8767211 DOI: 10.1098/rsob.210343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Centrosomes are important organizers of microtubules within animal cells. They comprise a pair of centrioles surrounded by the pericentriolar material, which nucleates and organizes the microtubules. To maintain centrosome numbers, centrioles must duplicate once and only once per cell cycle. During S-phase, a single new ‘daughter’ centriole is built orthogonally on one side of each radially symmetric ‘mother’ centriole. Mis-regulation of duplication can result in the simultaneous formation of multiple daughter centrioles around a single mother centriole, leading to centrosome amplification, a hallmark of cancer. It remains unclear how a single duplication site is established. It also remains unknown whether this site is pre-defined or randomly positioned around the mother centriole. Here, we show that within Drosophila syncytial embryos daughter centrioles preferentially assemble on the side of the mother facing the nuclear envelope, to which the centrosomes are closely attached. This positional preference is established early during duplication and remains stable throughout daughter centriole assembly, but is lost in centrosomes forced to lose their connection to the nuclear envelope. This shows that non-centrosomal cues influence centriole duplication and raises the possibility that these external cues could help establish a single duplication site.
Collapse
Affiliation(s)
- Neil H J Cunningham
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Imène B Bouhlel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Paul T Conduit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| |
Collapse
|
27
|
Tian Y, Yan Y, Fu J. Nine-fold symmetry of centriole: The joint efforts of its core proteins. Bioessays 2022; 44:e2100262. [PMID: 34997615 DOI: 10.1002/bies.202100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
The centriole is a widely conserved organelle required for the assembly of centrosomes, cilia, and flagella. Its striking feature - the nine-fold symmetrical structure, was discovered over 70 years ago by transmission electron microscopy, and since elaborated mostly by cryo-electron microscopy and super-resolution microscopy. Here, we review the discoveries that led to the current understanding of how the nine-fold symmetrical structure is built. We focus on the recent findings of the centriole structure in high resolution, its assembly pathways, and its nine-fold distributed components. We propose a model that the assembly of the nine-fold symmetrical centriole depends on the concerted efforts of its core proteins.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuxuan Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingyan Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
TEC kinase stabilizes PLK4 to promote liver cancer metastasis. Cancer Lett 2022; 524:70-81. [PMID: 34637843 DOI: 10.1016/j.canlet.2021.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 01/09/2023]
Abstract
Aberrated PLK4 expression has been reported in different malignancies and causes centrosome amplification, aneuploidy, and genomic instability. However, the mechanism by which PLK4 is regulated in carcinogenesis remains not fully characterised. Here, we showed that PLK4 was overexpressed in human HCC and overexpression of PLK4 predicted poorer patient prognosis. Unexpectedly, we found that induced expression of PLK4 promotes, but knockdown of PLK4 inhibits, HCC cell migration and invasion. Mechanistically, we found that TEC tyrosine kinase, which also promotes HCC cell migration, stabilizes PLK4 by phosphorylation. TEC directly phosphorylates PLK4 at tyrosine 86 residue, which not only stabilizes the protein but also enhances PLK4-mediated HCC cell invasion. Further investigation by transcriptome sequencing indicated that PLK4 promotes the phosphorylation of focal adhesion kinase to regulate the focal adhesion pathway in HCC cell migration. Taken together, our results demonstrated that PLK4 plays an important role in HCC metastasis and revealed for the first time the mechanism by which PLK4 promotes HCC metastasis via TEC phosphorylation.
Collapse
|
29
|
Kasera H, Kumar S, Singh P. Yeast 2-hybrid assay for investigating the interaction between the centrosome proteins PLK4 and STIL. Methods Cell Biol 2022; 169:97-114. [DOI: 10.1016/bs.mcb.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Šulskis D, Thoma J, Burmann BM. Structural basis of DegP protease temperature-dependent activation. SCIENCE ADVANCES 2021; 7:eabj1816. [PMID: 34878848 PMCID: PMC8654288 DOI: 10.1126/sciadv.abj1816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/16/2021] [Indexed: 05/21/2023]
Abstract
Protein quality control is an essential cellular function mainly executed by a vast array of different proteases and molecular chaperones. One of the bacterial high temperature requirement A (HtrA) protein family members, the homo-oligomeric DegP protease, plays a crucial role in the Escherichia coli protein quality control machinery by removing unfolded proteins or preventing their aggregation and chaperoning them to their final folded state within the periplasm. DegP contains two regulatory PDZ domains, which play key roles in substrate recognition and in the transformation of DegP between inactive hexameric and proteolytic active cage-like structures. Here, we analyze the interaction and dynamics of the DegP PDZ domains underlying this transformation by high-resolution NMR spectroscopy complemented with biochemical cleavage assays. We identify an interdomain molecular lock, which controls the interactions between the two PDZ domains, regulated by fine-tuned temperature-dependent protein dynamics, and which is potentially conserved in proteins harboring tandem PDZ domains.
Collapse
Affiliation(s)
- Darius Šulskis
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Johannes Thoma
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
- Corresponding author.
| |
Collapse
|
31
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
32
|
Gao X, Herrero S, Wernet V, Erhardt S, Valerius O, Braus GH, Fischer R. The role of Aspergillus nidulans polo-like kinase PlkA in microtubule-organizing center control. J Cell Sci 2021; 134:271867. [PMID: 34328180 DOI: 10.1242/jcs.256537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Centrosomes are important microtubule-organizing centers (MTOC) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) have been described in many cell types. The functional analogs of centrosomes in fungi are the spindle pole bodies (SPBs). In Aspergillus nidulans, additional MTOCs have been discovered at septa (sMTOC). Although the core components are conserved in both MTOCs, their composition and organization are different and dynamic. Here, we show that the polo-like kinase PlkA binds the γ-tubulin ring complex (γ-TuRC) receptor protein ApsB and contributes to targeting ApsB to both MTOCs. PlkA coordinates the activities of the SPB outer plaque and the sMTOC. PlkA kinase activity was required for astral MT formation involving ApsB recruitment. PlkA also interacted with the γ-TuRC inner plaque receptor protein PcpA. Mitosis was delayed without PlkA, and the PlkA protein was required for proper mitotic spindle morphology, although this function was independent of its catalytic activity. Our results suggest that the polo-like kinase is a regulator of MTOC activities and acts as a scaffolding unit through interaction with γ-TuRC receptors.
Collapse
Affiliation(s)
- Xiaolei Gao
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Valentin Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Oliver Valerius
- University of Göttingen, Dept. of Microbiology, Justus-von-Liebig-Weg 11 37077 Göttingen, Germany
| | - Gerhard H Braus
- University of Göttingen, Dept. of Microbiology, Justus-von-Liebig-Weg 11 37077 Göttingen, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| |
Collapse
|
33
|
Jung GI, Rhee K. Triple deletion of TP53, PCNT, and CEP215 promotes centriole amplification in the M phase. Cell Cycle 2021; 20:1500-1517. [PMID: 34233584 DOI: 10.1080/15384101.2021.1950386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Supernumerary centrioles are frequently observed in diverse types of cancer cells. In this study, we investigated the mechanism underlying the generation of supernumerary centrioles during the M phase. We generated the TP53;PCNT;CEP215 triple knockout (KO) cells and determined the configurations of the centriole during the cell cycle. The triple KO cells exhibited a precocious separation of centrioles and unscheduled centriole assembly in the M phase. Supernumerary centrioles in the triple KO cells were present throughout the cell cycle; however, among all the centrioles, only two maintained an intact composition, including CEP135, CEP192, CEP295 and CEP152. Intact centrioles were formed during the S phase and the rest of the centrioles may be generated during the M phase. M-phase-assembled centrioles lacked the ability to organize microtubules in the interphase; however, a fraction of them may acquire pericentriolar material to organize microtubules during the M phase. Taken together, our work reveals the heterogeneity of the supernumerary centrioles in the triple KO cells. .
Collapse
Affiliation(s)
- Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
34
|
Badarudeen B, Anand U, Mukhopadhyay S, Manna TK. Ubiquitin signaling in the control of centriole duplication. FEBS J 2021; 289:4830-4849. [PMID: 34115927 DOI: 10.1111/febs.16069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
The centrosome plays an essential role in maintaining genetic stability, ciliogenesis and cell polarisation. The core of the centrosome is made up of two centrioles that duplicate precisely once during every cell cycle to generate two centrosomes that are required for bipolar spindle assembly and chromosome segregation. Abundance of centriole proteins at optimal levels and their recruitment to the centrosome are tightly regulated in time and space in order to restrict aberrant duplication of centrioles, a phenomenon that is observed in many cancers. Recent advances have conclusively shown that dedicated ubiquitin ligase-dependent protein degradation machineries are involved in governing centriole duplication. These studies revealed intricate mechanistic insights into how the ubiquitin ligases target different centriole proteins. In certain cases, a specific ubiquitin ligase targets a number of substrate proteins that co-regulate centriole assembly, prompting the possibility that substrate-targeting occurs during formation of the sub-centriolar structures. There are also instances where a specific centriole duplication protein is targeted by several ubiquitin ligases at different stages of the cell cycle, suggesting synchronised actions. Recent evidence also indicated a direct association of E3 ubiquitin ligase with the centrioles, supporting the notion that substrate-targeting occurs in the organelle itself. In this review, we highlight these advances by underlining the mechanisms of how different ubiquitin ligase machineries control centriole duplication and discuss our views on their coordination.
Collapse
Affiliation(s)
- Binshad Badarudeen
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Ushma Anand
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Swarnendu Mukhopadhyay
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| |
Collapse
|
35
|
Garvey DR, Chhabra G, Ndiaye MA, Ahmad N. Role of Polo-Like Kinase 4 (PLK4) in Epithelial Cancers and Recent Progress in its Small Molecule Targeting for Cancer Management. Mol Cancer Ther 2021; 20:632-640. [PMID: 33402398 PMCID: PMC8026525 DOI: 10.1158/1535-7163.mct-20-0741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/02/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
The polo-like kinases (PLKs) are a family of serine/threonine kinases traditionally linked to cell-cycle regulation. A structurally unique member of this family, PLK4, has been shown to regulate centriole duplication during the cell cycle via interactions with a variety of centrosomal proteins. Recent findings suggest that PLK4 is overexpressed in various human cancers and associated with poor cancer prognosis. Although several studies have shown that PLK4 inhibition may lead to cancer cell death, the underlying mechanisms are largely unknown. In this review, we discuss the structure, localization, and function of PLK4, along with the functional significance of PLK4 in epithelial cancers and some preliminary work suggesting a role for PLK4 in the key cancer progression process epithelial-mesenchymal transition. We also discuss the potential of PLK4 as a druggable target for anticancer drug development based on critical analysis of the available data of PLK4 inhibitors in preclinical development and clinical trials. Overall, the emerging data suggest that PLK4 plays an essential role in epithelial cancers and should be further explored as a potential biomarker and/or therapeutic target. Continued detailed exploration of available and next-generation PLK4 inhibitors may provide a new dimension for novel cancer therapeutics following successful clinical trials.
Collapse
Affiliation(s)
- Debra R Garvey
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin.
- William S. Middleton VA Medical Center, Madison, Wisconsin
| |
Collapse
|
36
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
37
|
Centrosome dysfunction in human diseases. Semin Cell Dev Biol 2021; 110:113-122. [DOI: 10.1016/j.semcdb.2020.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
|
38
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
39
|
Park JE, Meng L, Ryu EK, Nagashima K, Baxa U, Bang JK, Lee KS. Autophosphorylation-induced self-assembly and STIL-dependent reinforcement underlie Plk4's ring-to-dot localization conversion around a human centriole. Cell Cycle 2020; 19:3419-3436. [PMID: 33323015 DOI: 10.1080/15384101.2020.1843772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis. Studies have shown that Plk4 undergoes dynamic relocalization from a ring-like pattern around a centriole to a dot-like morphology at the procentriole assembly site and this event is central for inducing centriole biogenesis. However, the detailed mechanisms underlying Plk4's capacity to drive its symmetry-breaking ring-to-dot relocalization remain largely unknown. Here, we showed that Plk4 self-initiates this process in an autophosphorylation-dependent manner and that STIL, its downstream target, is not required for this event. Time-dependent analyses with mEOS-fused photoconvertible Plk4 revealed that a portion of ring-state Plk4 acquires a capacity, presumably through autophosphorylation, to linger around a centriole, ultimately generating a dot-state morphology. Interestingly, Plk4 WT, but not its catalytically inactive mutant, showed the ability to form a nanoscale spherical assembly in the cytosol of human cells or heterologous E. coli, demonstrating its autophosphorylation-dependent self-organizing capacity. At the biochemical level, Plk4 - unlike its N-terminal βTrCP degron motif - robustly autophosphorylated the PC3 SSTT motif within its C-terminal cryptic polo-box, an event critical for inducing its physical clustering. Additional in vivo experiments showed that although STIL was not required for Plk4's initial ring-to-dot conversion, coexpressed STIL greatly enhanced Plk4's ability to generate a spherical condensate and recruit Sas6, a major component of the centriolar cartwheel structure. We propose that Plk4's autophosphorylation-induced clustering is sufficient to induce its ring-to-dot localization conversion and that subsequently recruited STIL potentiates this process to generate a procentriole assembly body critical for Plk4-dependent centriole biogenesis.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Lingjun Meng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute , Cheongju, Republic of Korea
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research , Frederick, MD, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research , Frederick, MD, USA
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute , Cheongju, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
40
|
Use of the Polo-like kinase 4 (PLK4) inhibitor centrinone to investigate intracellular signalling networks using SILAC-based phosphoproteomics. Biochem J 2020; 477:2451-2475. [PMID: 32501498 PMCID: PMC7338032 DOI: 10.1042/bcj20200309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication in metazoan organisms. Catalytic activity and protein turnover of PLK4 are tightly coupled in human cells, since changes in PLK4 concentration and catalysis have profound effects on centriole duplication and supernumerary centrosomes, which are associated with aneuploidy and cancer. Recently, PLK4 has been targeted with a variety of small molecule kinase inhibitors exemplified by centrinone, which rapidly induces inhibitory effects on PLK4 and leads to on-target centrosome depletion. Despite this, relatively few PLK4 substrates have been identified unequivocally in human cells, and PLK4 signalling outside centriolar networks remains poorly characterised. We report an unbiased mass spectrometry (MS)-based quantitative analysis of cellular protein phosphorylation in stable PLK4-expressing U2OS human cells exposed to centrinone. PLK4 phosphorylation was itself sensitive to brief exposure to the compound, resulting in PLK4 stabilisation. Analysing asynchronous cell populations, we report hundreds of centrinone-regulated cellular phosphoproteins, including centrosomal and cell cycle proteins and a variety of likely 'non-canonical' substrates. Surprisingly, sequence interrogation of ∼300 significantly down-regulated phosphoproteins reveals an extensive network of centrinone-sensitive [Ser/Thr]Pro phosphorylation sequence motifs, which based on our analysis might be either direct or indirect targets of PLK4. In addition, we confirm that NMYC and PTPN12 are PLK4 substrates, both in vitro and in human cells. Our findings suggest that PLK4 catalytic output directly controls the phosphorylation of a diverse set of cellular proteins, including Pro-directed targets that are likely to be important in PLK4-mediated cell signalling.
Collapse
|
41
|
McLamarrah TA, Speed SK, Ryniawec JM, Buster DW, Fagerstrom CJ, Galletta BJ, Rusan NM, Rogers GC. A molecular mechanism for the procentriole recruitment of Ana2. J Cell Biol 2020; 219:132764. [PMID: 31841145 PMCID: PMC7041687 DOI: 10.1083/jcb.201905172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
McLamarrah et al. characterize an early step in centriole duplication. They show that Plk4 hyperphosphorylates Ana2, which increases the affinity of Ana2 for the G-box domain of Sas4, promoting Ana2’s accumulation at the procentriole and, consequently, daughter centriole formation. During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2–G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.
Collapse
Affiliation(s)
- Tiffany A McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Sarah K Speed
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Daniel W Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Carey J Fagerstrom
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brian J Galletta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nasser M Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
42
|
Panda P, Kovacs L, Dzhindzhev N, Fatalska A, Persico V, Geymonat M, Riparbelli MG, Callaini G, Glover DM. Tissue specific requirement of Drosophila Rcd4 for centriole duplication and ciliogenesis. J Cell Biol 2020; 219:151861. [PMID: 32543652 PMCID: PMC7401805 DOI: 10.1083/jcb.201912154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/01/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Rcd4 is a poorly characterized Drosophila centriole component whose mammalian counterpart, PPP1R35, is suggested to function in centriole elongation and conversion to centrosomes. Here, we show that rcd4 mutants exhibit fewer centrioles, aberrant mitoses, and reduced basal bodies in sensory organs. Rcd4 interacts with the C-terminal part of Ana3, which loads onto the procentriole during interphase, ahead of Rcd4 and before mitosis. Accordingly, depletion of Ana3 prevents Rcd4 recruitment but not vice versa. We find that neither Ana3 nor Rcd4 participates directly in the mitotic conversion of centrioles to centrosomes, but both are required to load Ana1, which is essential for such conversion. Whereas ana3 mutants are male sterile, reflecting a requirement for Ana3 for centriole development in the male germ line, rcd4 mutants are fertile and have male germ line centrioles of normal length. Thus, Rcd4 is essential in somatic cells but is not absolutely required in spermatogenesis, indicating tissue-specific roles in centriole and basal body formation.
Collapse
Affiliation(s)
- Pallavi Panda
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Levente Kovacs
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Agnieszka Fatalska
- Department of Genetics, University of Cambridge, Cambridge, UK.,Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Veronica Persico
- Department of Genetics, University of Cambridge, Cambridge, UK.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Geymonat
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, UK.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
43
|
Kazazian K, Haffani Y, Ng D, Lee CMM, Johnston W, Kim M, Xu R, Pacholzyk K, Zih FSW, Tan J, Smrke A, Pollett A, Wu HST, Swallow CJ. FAM46C/TENT5C functions as a tumor suppressor through inhibition of Plk4 activity. Commun Biol 2020; 3:448. [PMID: 32807875 PMCID: PMC7431843 DOI: 10.1038/s42003-020-01161-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Polo like kinase 4 (Plk4) is a tightly regulated serine threonine kinase that governs centriole duplication. Increased Plk4 expression, which is a feature of many common human cancers, causes centriole overduplication, mitotic irregularities, and chromosomal instability. Plk4 can also promote cancer invasion and metastasis through regulation of the actin cytoskeleton. Herein we demonstrate physical interaction of Plk4 with FAM46C/TENT5C, a conserved protein of unknown function until recently. FAM46C localizes to centrioles, inhibits Plk4 kinase activity, and suppresses Plk4-induced centriole duplication. Interference with Plk4 function by FAM46C was independent of the latter's nucleotidyl transferase activity. In addition, FAM46C restrained cancer cell invasion and suppressed MDA MB-435 cancer growth in a xenograft model, opposing the effect of Plk4. We demonstrate loss of FAM46C in patient-derived colorectal cancer tumor tissue that becomes more profound with advanced clinical stage. These results implicate FAM46C as a tumor suppressor that acts by inhibiting Plk4 activity.
Collapse
Affiliation(s)
- Karineh Kazazian
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Yosr Haffani
- Laboratory of Physiopathology, Alimentation and Biomolecules LR17ES03, Higher Institute of Biotechnology, Sidi Thabet, University of Manouba, Ariana, 2020, Tunisia
| | - Deanna Ng
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Chae Min Michelle Lee
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Wendy Johnston
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | - Minji Kim
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Roland Xu
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Karina Pacholzyk
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Francis Si-Wah Zih
- Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Julie Tan
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Alannah Smrke
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Aaron Pollett
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hannah Sun-Tsi Wu
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Carol Jane Swallow
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada. .,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
44
|
Lee KS, Park JE, Il Ahn J, Wei Z, Zhang L. A self-assembled cylindrical platform for Plk4-induced centriole biogenesis. Open Biol 2020; 10:200102. [PMID: 32810424 PMCID: PMC7479937 DOI: 10.1098/rsob.200102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
The centrosome, a unique membraneless multiprotein organelle, plays a pivotal role in various cellular processes that are critical for promoting cell proliferation. Faulty assembly or organization of the centrosome results in abnormal cell division, which leads to various human disorders including cancer, microcephaly and ciliopathy. Recent studies have provided new insights into the stepwise self-assembly of two pericentriolar scaffold proteins, Cep63 and Cep152, into a near-micrometre-scale higher-order structure whose architectural properties could be crucial for proper execution of its biological function. The construction of the scaffold architecture appears to be centrally required for tight control of a Ser/Thr kinase called Plk4, a key regulator of centriole duplication, which occurs precisely once per cell cycle. In this review, we will discuss a new paradigm for understanding how pericentrosomal scaffolds are self-organized into a new functional entity and how, on the resulting structural platform, Plk4 undergoes physico-chemical conversion to trigger centriole biogenesis.
Collapse
Affiliation(s)
- Kyung S. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Park EM, Scott PM, Clutario K, Cassidy KB, Zhan K, Gerber SA, Holland AJ. WBP11 is required for splicing the TUBGCP6 pre-mRNA to promote centriole duplication. J Cell Biol 2020; 219:133543. [PMID: 31874114 PMCID: PMC7039186 DOI: 10.1083/jcb.201904203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/24/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Centriole duplication occurs once in each cell cycle to maintain centrosome number. A previous genome-wide screen revealed that depletion of 14 RNA splicing factors leads to a specific defect in centriole duplication, but the cause of this deficit remains unknown. Here, we identified an additional pre-mRNA splicing factor, WBP11, as a novel protein required for centriole duplication. Loss of WBP11 results in the retention of ∼200 introns, including multiple introns in TUBGCP6, a central component of the γ-TuRC. WBP11 depletion causes centriole duplication defects, in part by causing a rapid decline in the level of TUBGCP6. Several additional splicing factors that are required for centriole duplication interact with WBP11 and are required for TUBGCP6 expression. These findings provide insight into how the loss of a subset of splicing factors leads to a failure of centriole duplication. This may have clinical implications because mutations in some spliceosome proteins cause microcephaly and/or growth retardation, phenotypes that are strongly linked to centriole defects.
Collapse
Affiliation(s)
- Elizabeth M Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Phillip M Scott
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kevin Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katelyn B Cassidy
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Kevin Zhan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Scott A Gerber
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
46
|
Zhao H, Yang S, Chen Q, Duan X, Li G, Huang Q, Zhu X, Yan X. Cep57 and Cep57l1 function redundantly to recruit the Cep63-Cep152 complex for centriole biogenesis. J Cell Sci 2020; 133:jcs241836. [PMID: 32503940 DOI: 10.1242/jcs.241836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/27/2020] [Indexed: 12/30/2022] Open
Abstract
The Cep63-Cep152 complex located at the mother centriole recruits Plk4 to initiate centriole biogenesis. How the complex is targeted to mother centrioles, however, is unclear. In this study, we show that Cep57 and its paralog, Cep57l1, colocalize with Cep63 and Cep152 at the proximal end of mother centrioles in both cycling cells and multiciliated cells undergoing centriole amplification. Both Cep57 and Cep57l1 bind to the centrosomal targeting region of Cep63. The depletion of both proteins, but not either one, blocks loading of the Cep63-Cep152 complex to mother centrioles and consequently prevents centriole duplication. We propose that Cep57 and Cep57l1 function redundantly to ensure recruitment of the Cep63-Cep152 complex to the mother centrioles for procentriole formation.
Collapse
Affiliation(s)
- Huijie Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sen Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxia Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiaomeng Duan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoqing Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiongping Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
47
|
Lin YN, Lee YS, Li SK, Tang TK. Loss of CPAP in developing mouse brain and its functional implication for human primary microcephaly. J Cell Sci 2020; 133:jcs243592. [PMID: 32501282 DOI: 10.1242/jcs.243592] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by small brain size with mental retardation. CPAP (also known as CENPJ), a known microcephaly-associated gene, plays a key role in centriole biogenesis. Here, we generated a previously unreported conditional knockout allele in the mouse Cpap gene. Our results showed that conditional Cpap deletion in the central nervous system preferentially induces formation of monopolar spindles in radial glia progenitors (RGPs) at around embryonic day 14.5 and causes robust apoptosis that severely disrupts embryonic brains. Interestingly, microcephalic brains with reduced apoptosis are detected in conditional Cpap gene-deleted mice that lose only one allele of p53 (also known as Trp53), while simultaneous removal of p53 and Cpap rescues RGP death. Furthermore, Cpap deletion leads to cilia loss, RGP mislocalization, junctional integrity disruption, massive heterotopia and severe cerebellar hypoplasia. Together, these findings indicate that complete CPAP loss leads to severe and complex phenotypes in developing mouse brain, and provide new insights into the causes of MCPH.
Collapse
Affiliation(s)
- Yi-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Ying-Shan Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Shu-Kuei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
48
|
Gartenmann L, Vicente CC, Wainman A, Novak ZA, Sieber B, Richens JH, Raff JW. Drosophila Sas-6, Ana2 and Sas-4 self-organise into macromolecular structures that can be used to probe centriole and centrosome assembly. J Cell Sci 2020; 133:jcs244574. [PMID: 32409564 PMCID: PMC7328145 DOI: 10.1242/jcs.244574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Centriole assembly requires a small number of conserved proteins. The precise pathway of centriole assembly has been difficult to study, as the lack of any one of the core assembly proteins [Plk4, Ana2 (the homologue of mammalian STIL), Sas-6, Sas-4 (mammalian CPAP) or Asl (mammalian Cep152)] leads to the absence of centrioles. Here, we use Sas-6 and Ana2 particles (SAPs) as a new model to probe the pathway of centriole and centrosome assembly. SAPs form in Drosophila eggs or embryos when Sas-6 and Ana2 are overexpressed. SAP assembly requires Sas-4, but not Plk4, whereas Asl helps to initiate SAP assembly but is not required for SAP growth. Although not centrioles, SAPs recruit and organise many centriole and centrosome components, nucleate microtubules, organise actin structures and compete with endogenous centrosomes to form mitotic spindle poles. SAPs require Asl to efficiently recruit pericentriolar material (PCM), but Spd-2 (the homologue of mammalian Cep192) can promote some PCM assembly independently of Asl. These observations provide new insights into the pathways of centriole and centrosome assembly.
Collapse
Affiliation(s)
- Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Catarina C Vicente
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Zsofi A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| |
Collapse
|
49
|
Arslanhan MD, Gulensoy D, Firat-Karalar EN. A Proximity Mapping Journey into the Biology of the Mammalian Centrosome/Cilium Complex. Cells 2020; 9:E1390. [PMID: 32503249 PMCID: PMC7348975 DOI: 10.3390/cells9061390] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
The mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium and the centriolar satellites, which together regulate cell polarity, signaling, proliferation and motility in cells and thereby development and homeostasis in organisms. Accordingly, deregulation of its structure and functions is implicated in various human diseases including cancer, developmental disorders and neurodegenerative diseases. To better understand these disease connections, the molecular underpinnings of the assembly, maintenance and dynamic adaptations of the centrosome/cilium complex need to be uncovered with exquisite detail. Application of proximity-based labeling methods to the centrosome/cilium complex generated spatial and temporal interaction maps for its components and provided key insights into these questions. In this review, we first describe the structure and cell cycle-linked regulation of the centrosome/cilium complex. Next, we explain the inherent biochemical and temporal limitations in probing the structure and function of the centrosome/cilium complex and describe how proximity-based labeling approaches have addressed them. Finally, we explore current insights into the knowledge we gained from the proximity mapping studies as it pertains to centrosome and cilium biogenesis and systematic characterization of the centrosome, cilium and centriolar satellite interactomes.
Collapse
Affiliation(s)
| | | | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Turkey; (M.D.A.); (D.G.)
| |
Collapse
|
50
|
Structural and Functional Analyses of the FAM46C/Plk4 Complex. Structure 2020; 28:910-921.e4. [PMID: 32433990 DOI: 10.1016/j.str.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
FAM46C, a non-canonical poly(A) polymerase, is frequently mutated in multiple myeloma. Loss of function of FAM46C promotes cell survival of multiple myeloma, suggesting a tumor-suppressive role. FAM46C is also essential for fastening sperm head and flagellum, indispensable for male fertility. The molecular mechanisms of these functions of FAM46C remain elusive. We report the crystal structure of FAM46C to provide the basis for its poly(A) polymerase activity and rationalize mutations associated with multiple myeloma. In addition, we found that FAM46C interacts directly with the serine/threonine kinase Plk4, the master regulator of centrosome duplication. We present the structure of FAM46C in complex with the Cryptic Polo-Box 1-2 domains of Plk4. Our structure-based mutational analyses show that the interaction with Plk4 recruits FAM46C to centrosomes. Our data suggest that Plk4-mediated localization of FAM46C enables its regulation of centrosome structure and functions, which may underlie the roles for FAM46C in cell proliferation and sperm development.
Collapse
|