1
|
De Vleeschauwer S, Lambaerts K, Hernot S, Debusschere K. Severity Classification of Laboratory Animal Procedures in Two Belgian Academic Institutions. Animals (Basel) 2023; 13:2581. [PMID: 37627373 PMCID: PMC10451636 DOI: 10.3390/ani13162581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
According to the EU Directive 2010/63, all animal procedures must be classified as non-recovery, mild, moderate or severe. Several examples are included in the Directive to help in severity classification. Since the implementation of the Directive, different publications and guidelines have been disseminated on the topic. However, due to the large variety of disease models and animal procedures carried out in many different animal species, guidance on the severity classification of specific procedures or models is often lacking or not specific enough. The latter is especially the case in disease models where the level of pain, suffering, distress and lasting harm depends on the duration of the study (for progressive disease models) or the dosage given (for infectious or chemically induced disease models). This, in turn, may lead to inconsistencies in severity classification between countries, within countries and even within institutions. To overcome this, two Belgian academic institutions with a focus on biomedical research collaborated to develop a severity classification for all the procedures performed. This work started with listing all in-house procedures and assigning them to 16 (sub)categories. First, we determined which parameters, such as clinical signs, dosage or duration, were crucial for severity classification within a specific (sub)category. Next, a severity classification was assigned to the different procedures, which was based on professional judgment by the designated veterinarians, members of the animal welfare body (AWB) and institutional animal ethics committee (AEC), integrating the available literature and guidelines. During the classification process, the use of vague terminology, such as 'minor impact', was avoided as much as possible. Instead, well-defined cut-offs between severity levels were used. Furthermore, we sought to define common denominators to group procedures and to be able to classify new procedures more easily. Although the primary aim is to address prospective severity, this can also be used to assess actual severity. In summary, we developed a severity classification for all procedures performed in two academic, biomedical institutions. These include many procedures and disease models in a variety of animal species for which a severity classification was not reported so far, or the terms that assign them to a different severity were too vague.
Collapse
Affiliation(s)
| | | | - Sophie Hernot
- Laboratory for In Vivo Cellular and Molecular Imaging (ICMI-MIMA/BEFY), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Karlijn Debusschere
- Core Facility ANIM, Vrije Universiteit Brussel, 1090 Brussels, Belgium;
- Core ARTH, Animal Facility, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Bonassera M, Clews E, BéruBé K. Transparency in Non-Technical Project Summaries to Promote the Three Rs in Respiratory Disease Research. Altern Lab Anim 2022; 50:349-364. [DOI: 10.1177/02611929221121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Non-Technical Project Summaries (NTS) are legal documents that were first introduced by the Directive 2010/63/EU to enhance transparency within scientific animal experimentation. Researchers intending to conduct biological research on animal models must fulfil the NTS requirements by outlining their proposed use of animals and how they plan to implement the Three Rs (replacement, reduction and refinement of animal use) in their experiments. This study outlines a novel systematic analysis approach that enables the assessment of NTS transparency based on the accuracy of reporting of certain Three Rs-specific information. This potentially customisable strategy could help toward the development of practical guidelines for use by Animal Welfare and Ethical Review Bodies (AWERBs) in establishments conducting animal research, in the process of scrutinising NTS during their pre-submission review of proposed licence applications. This could help to identify gaps in reporting of Three Rs-specific information relating to the planned animal experiments, which represents a remarkable step toward achieving greater openness in scientific communication. This study supports the concept that NTS transparency can promote the implementation of non-animal alternatives in fields where this is currently lacking, such as respiratory disease research. Although NTS were originally conceived as informative documents for a lay audience, we can conclude that data in NTS can be successfully used as a basis for systematic analysis. By reviewing the NTS, the experimental limitations of the currently available replacement strategies can also be highlighted, potentially pinpointing where there is a need for future method development.
Collapse
Affiliation(s)
| | - Esther Clews
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
3
|
Al-Masawa ME, Alshawsh MA, Ng CY, Ng AMH, Foo JB, Vijakumaran U, Subramaniam R, Ghani NAA, Witwer KW, Law JX. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: A systematic review and meta-analysis of animal studies. Theranostics 2022; 12:6455-6508. [PMID: 36185607 PMCID: PMC9516230 DOI: 10.7150/thno.73436] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/24/2022] [Indexed: 11/05/2022] Open
Abstract
Small extracellular vesicles (sEVs) have been proposed as a possible solution to the current lack of therapeutic interventions for endogenous skin regeneration. We conducted a systematic review of the available evidence to assess sEV therapeutic efficacy and safety in wound healing and skin regeneration in animal models. 68 studies were identified in Web of Science, Scopus, and PubMed that satisfied a set of prespecified inclusion criteria. We critically analyzed the quality of studies that satisfied our inclusion criteria, with an emphasis on methodology, reporting, and adherence to relevant guidelines (including MISEV2018 and ISCT criteria). Overall, our systematic review and meta-analysis indicated that sEV interventions promoted skin regeneration in diabetic and non-diabetic animal models and influenced various facets of the healing process regardless of cell source, production protocol and disease model. The EV source, isolation methods, dosing regimen, and wound size varied among the studies. Modification of sEVs was achieved mainly by manipulating source cells via preconditioning, nanoparticle loading, genetic manipulation, and biomaterial incorporation to enhance sEV therapeutic potential. Evaluation of potential adverse effects received only minimal attention, although none of the studies reported harmful events. Risk of bias as assessed by the SYRCLE's ROB tool was uncertain for most studies due to insufficient reporting, and adherence to guidelines was limited. In summary, sEV therapy has enormous potential for wound healing and skin regeneration. However, reproducibility and comprehensive evaluation of evidence are challenged by a general lack of transparency in reporting and adherence to guidelines. Methodological rigor, standardization, and risk analysis at all stages of research are needed to promote translation to clinical practice.
Collapse
Affiliation(s)
- Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | | | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ubashini Vijakumaran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Revatyambigai Subramaniam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Nur Azurah Abdul Ghani
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kenneth Whitaker Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Ritskes-Hoitinga M, Pound P. The role of systematic reviews in identifying the limitations of preclinical animal research, 2000-2022: part 2. J R Soc Med 2022; 115:231-235. [PMID: 35616311 PMCID: PMC9158443 DOI: 10.1177/01410768221100970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
|
5
|
Kane PB, Kimmelman J. Is preclinical research in cancer biology reproducible enough? eLife 2021; 10:67527. [PMID: 34874006 PMCID: PMC8651283 DOI: 10.7554/elife.67527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
The Reproducibility Project: Cancer Biology (RPCB) was established to provide evidence about reproducibility in basic and preclinical cancer research, and to identify the factors that influence reproducibility more generally. In this commentary we address some of the scientific, ethical and policy implications of the project. We liken the basic and preclinical cancer research enterprise to a vast 'diagnostic machine' that is used to determine which clinical hypotheses should be advanced for further development, including clinical trials. The results of the RPCB suggest that this diagnostic machine currently recommends advancing many findings that are not reproducible. While concerning, we believe that more work needs to be done to evaluate the performance of the diagnostic machine. Specifically, we believe three questions remain unanswered: how often does the diagnostic machine correctly recommend against advancing real effects to clinical testing?; what are the relative costs to society of false positive and false negatives?; and how well do scientists and others interpret the outputs of the machine?
Collapse
Affiliation(s)
- Patrick Bodilly Kane
- Studies in Translation, Ethics and Medicine, Biomedical Ethics Unit, McGill University, Montréal, Canada
| | - Jonathan Kimmelman
- Studies in Translation, Ethics and Medicine, Biomedical Ethics Unit, McGill University, Montréal, Canada
| |
Collapse
|
6
|
Abstract
The Reproducibility Project: Cancer Biology (RPCB) was established to provide evidence about reproducibility in basic and preclinical cancer research, and to identify the factors that influence reproducibility more generally. In this commentary we address some of the scientific, ethical and policy implications of the project. We liken the basic and preclinical cancer research enterprise to a vast 'diagnostic machine' that is used to determine which clinical hypotheses should be advanced for further development, including clinical trials. The results of the RPCB suggest that this diagnostic machine currently recommends advancing many findings that are not reproducible. While concerning, we believe that more work needs to be done to evaluate the performance of the diagnostic machine. Specifically, we believe three questions remain unanswered: how often does the diagnostic machine correctly recommend against advancing real effects to clinical testing?; what are the relative costs to society of false positive and false negatives?; and how well do scientists and others interpret the outputs of the machine?
Collapse
Affiliation(s)
- Patrick Bodilly Kane
- Studies in Translation, Ethics and Medicine, Biomedical Ethics Unit, McGill University
| | - Jonathan Kimmelman
- Studies in Translation, Ethics and Medicine, Biomedical Ethics Unit, McGill University
| |
Collapse
|
7
|
Hayashida K, Takegawa R, Shoaib M, Aoki T, Choudhary RC, Kuschner CE, Nishikimi M, Miyara SJ, Rolston DM, Guevara S, Kim J, Shinozaki K, Molmenti EP, Becker LB. Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies. J Transl Med 2021; 19:214. [PMID: 34001191 PMCID: PMC8130169 DOI: 10.1186/s12967-021-02878-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mitochondria are essential organelles that provide energy for cellular functions, participate in cellular signaling and growth, and facilitate cell death. Based on their multifactorial roles, mitochondria are also critical in the progression of critical illnesses. Transplantation of mitochondria has been reported as a potential promising approach to treat critical illnesses, particularly ischemia reperfusion injury (IRI). However, a systematic review of the relevant literature has not been conducted to date. Here, we systematically reviewed the animal and human studies relevant to IRI to summarize the evidence for mitochondrial transplantation. METHODS We searched MEDLINE, the Cochrane library, and Embase and performed a systematic review of mitochondrial transplantation for IRI in both preclinical and clinical studies. We developed a search strategy using a combination of keywords and Medical Subject Heading/Emtree terms. Studies including cell-mediated transfer of mitochondria as a transfer method were excluded. Data were extracted to a tailored template, and data synthesis was descriptive because the data were not suitable for meta-analysis. RESULTS Overall, we identified 20 animal studies and two human studies. Among animal studies, 14 (70%) studies focused on either brain or heart IRI. Both autograft and allograft mitochondrial transplantation were used in 17 (85%) animal studies. The designs of the animal studies were heterogeneous in terms of the route of administration, timing of transplantation, and dosage used. Twelve (60%) studies were performed in a blinded manner. All animal studies reported that mitochondrial transplantation markedly mitigated IRI in the target tissues, but there was variation in biological biomarkers and pathological changes. The human studies were conducted with a single-arm, unblinded design, in which autologous mitochondrial transplantation was applied to pediatric patients who required extracorporeal membrane oxygenation (ECMO) for IRI-associated myocardial dysfunction after cardiac surgery. CONCLUSION The evidence gathered from our systematic review supports the potential beneficial effects of mitochondrial transplantation after IRI, but its clinical translation remains limited. Further investigations are thus required to explore the mechanisms of action and patient outcomes in critical settings after mitochondrial transplantation. Systematic review registration The study was registered at UMIN under the registration number UMIN000043347.
Collapse
Affiliation(s)
- Kei Hayashida
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA. .,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA.
| | - Ryosuke Takegawa
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Muhammad Shoaib
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA.,Zucker School of Medicine At Hofstra/Northwell, New York, NY, USA
| | - Tomoaki Aoki
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Rishabh C Choudhary
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Cyrus E Kuschner
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA.,Zucker School of Medicine At Hofstra/Northwell, New York, NY, USA
| | - Mitsuaki Nishikimi
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Santiago J Miyara
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Daniel M Rolston
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA.,Zucker School of Medicine At Hofstra/Northwell, New York, NY, USA
| | - Sara Guevara
- Department of Surgery, Northwell Health, Manhasset, NY, USA
| | - Junhwan Kim
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA.,Zucker School of Medicine At Hofstra/Northwell, New York, NY, USA
| | - Koichiro Shinozaki
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA.,Zucker School of Medicine At Hofstra/Northwell, New York, NY, USA
| | - Ernesto P Molmenti
- Zucker School of Medicine At Hofstra/Northwell, New York, NY, USA.,Department of Surgery, Northwell Health, Manhasset, NY, USA
| | - Lance B Becker
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, 350 Community Dr, Manhasset, NY, 11030, USA.,Zucker School of Medicine At Hofstra/Northwell, New York, NY, USA
| |
Collapse
|
8
|
Hunter H, de Gracia Hahn D, Duret A, Im YR, Cheah Q, Dong J, Fairey M, Hjalmarsson C, Li A, Lim HK, McKeown L, Mitrofan CG, Rao R, Utukuri M, Rowe IA, Mann JP. Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver. eLife 2020; 9:56573. [PMID: 33063664 PMCID: PMC7647398 DOI: 10.7554/elife.56573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The classical drug development pipeline necessitates studies using animal models of human disease to gauge future efficacy in humans, however there is a low conversion rate from success in animals to humans. Non-alcoholic fatty liver disease (NAFLD) is a complex chronic disease without any established therapies and a major field of animal research. We performed a meta-analysis with meta-regression of 603 interventional rodent studies (10,364 animals) in NAFLD to assess which variables influenced treatment response. Weight loss and alleviation of insulin resistance were consistently associated with improvement in NAFLD. Multiple drug classes that do not affect weight in humans caused weight loss in animals. Other study design variables, such as age of animals and dietary composition, influenced the magnitude of treatment effect. Publication bias may have increased effect estimates by 37-79%. These findings help to explain the challenge of reproducibility and translation within the field of metabolism.
Collapse
Affiliation(s)
- Harriet Hunter
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dana de Gracia Hahn
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Amedine Duret
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yu Ri Im
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Qinrong Cheah
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jiawen Dong
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Madison Fairey
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Alice Li
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hong Kai Lim
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lorcan McKeown
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Raunak Rao
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mrudula Utukuri
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ian A Rowe
- Leeds Institute for Medical Research & Leeds Institute for Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Jake P Mann
- Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Affiliation(s)
- Ulrich Dirnagl
- Berlin Institute of Health, QUEST Center for Transforming Biomedical Research, Berlin, Germany. .,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
|
11
|
Pound P, Ritskes-Hoitinga M. Can prospective systematic reviews of animal studies improve clinical translation? J Transl Med 2020; 18:15. [PMID: 31918734 PMCID: PMC6953128 DOI: 10.1186/s12967-019-02205-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/31/2019] [Indexed: 01/27/2023] Open
Abstract
Systematic reviews are powerful tools with the potential to generate high quality evidence. Their application to animal studies has been instrumental in exposing the poor quality of these studies, as well as a catalyst for improvements in study design, conduct and reporting. It has been suggested that prospective systematic reviews of animal studies (i.e. systematic reviews conducted prior to clinical trials) would allow scrutiny of the preclinical evidence, providing valuable information on safety and efficacy, and helping to determine whether clinical trials should proceed. However, while prospective systematic reviews allow valuable scrutiny of the preclinical animal data, they are not necessarily able to reliably predict the safety and efficacy of an intervention when trialled in humans. Consequently, they may not reliably safeguard humans participating in clinical trials and might potentially result in lost opportunities for beneficial clinical treatments. Furthermore, animal and human studies are often conducted concurrently, which not only makes prospective systematic reviews of animal studies impossible, but suggests that animal studies do not inform human studies in the manner presumed. We suggest that this points to a confused attitude regarding animal studies, whereby tradition demands that they precede human studies but practice indicates that their findings are often ignored. We argue that it is time to assess the relative contributions of animal and human research in order to better understand how clinical knowledge is actually produced.
Collapse
Affiliation(s)
- Pandora Pound
- Safer Medicines Trust, PO Box 122, Kingsbridge, TQ7 9AX, UK.
| | - Merel Ritskes-Hoitinga
- SYRCLE, Department for Health Evidence, Radboud University Medical Center, PO Box 9101, Route 133, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Fergusson DA, Wesch NL, Leung GJ, MacNeil JL, Conic I, Presseau J, Cobey KD, Diallo JS, Auer R, Kimmelman J, Kekre N, El-Sayes N, Krishnan R, Keller BA, Ilkow C, Lalu MM. Assessing the Completeness of Reporting in Preclinical Oncolytic Virus Therapy Studies. Mol Ther Oncolytics 2019; 14:179-187. [PMID: 31276026 PMCID: PMC6586991 DOI: 10.1016/j.omto.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023] Open
Abstract
Irreproducibility of preclinical findings could be a significant barrier to the "bench-to-bedside" development of oncolytic viruses (OVs). A contributing factor is the incomplete and non-transparent reporting of study methodology and design. Using the NIH Principles and Guidelines for Reporting Preclinical Research, a core set of seven recommendations, we evaluated the completeness of reporting of preclinical OV studies. We also developed an evidence map identifying the current trends in OV research. A systematic search of MEDLINE and Embase identified all relevant articles published over an 18 month period. We screened 1,554 articles, and 236 met our a priori-defined inclusion criteria. Adenovirus (43%) was the most commonly used viral platform. Frequently investigated cancers included colorectal (14%), skin (12%), and breast (11%). Xenograft implantation (61%) in mice (96%) was the most common animal model. The use of preclinical reporting guidelines was listed in 0.4% of articles. Biological and technical replicates were completely reported in 1% of studies, statistics in 49%, randomization in 1%, blinding in 2%, sample size estimation in 0%, and inclusion/exclusion criteria in 0%. Overall, completeness of reporting in the preclinical OV therapy literature is poor. This may hinder efforts to interpret, replicate, and ultimately translate promising preclinical OV findings.
Collapse
Affiliation(s)
- Dean A. Fergusson
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Neil L. Wesch
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Garvin J. Leung
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jenna L. MacNeil
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Isidora Conic
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Justin Presseau
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kelly D. Cobey
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Journalology, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Psychology, University of Stirling, Stirling FK9 4LA, UK
| | - Jean-Simon Diallo
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rebecca Auer
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | - Natasha Kekre
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nader El-Sayes
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ramya Krishnan
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Brian A. Keller
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Carolina Ilkow
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Manoj M. Lalu
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Anesthesiology and Pain Medicine, University of Ottawa, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
13
|
Veening-Griffioen DH, Ferreira GS, van Meer PJK, Boon WPC, Gispen-de Wied CC, Moors EHM, Schellekens H. Are some animal models more equal than others? A case study on the translational value of animal models of efficacy for Alzheimer's disease. Eur J Pharmacol 2019; 859:172524. [PMID: 31291566 DOI: 10.1016/j.ejphar.2019.172524] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023]
Abstract
Clinical trial failures (>99%) in Alzheimer's disease are in stark contrast to positive efficacy data in animals. We evaluated the correlation between animal and clinical efficacy outcomes (cognition) in Alzheimer's disease using data from registered drugs as well as interventions tested in phase II or III clinical trials for Alzheimer's disease. We identified 20 interventions, which were tested in 208 animal studies in 63 different animal models. Clinical outcome was correlated with animal results in 58% of cases. But, individual animal models showed divergent results across interventions, individual interventions showed divergent results across animal models, and animal model outcomes were determined with 16 different methods. This result is unsurprising due to poor external validity (what do we model) of the animal models. Although the animal models all share Alzheimer's disease symptoms, none represents the whole syndrome. Investigators did not motivate why one model was chosen over another, and did not consider the ways the disease phenomena were generated (spontaneous, (experimentally) induced or by genetic modification), or the species characteristics, which determine the outcomes. The explanation for the lack of correlation between animal and human outcomes can be manifold: the pathogenesis of Alzheimer's disease is not reflected in the animal model or the outcomes are not comparable. Our conclusion is that currently no animal models exist which are predictive for the efficacy of interventions for Alzheimer's disease.
Collapse
Affiliation(s)
- Désirée H Veening-Griffioen
- Utrecht Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands.
| | - Guilherme S Ferreira
- Utrecht Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Peter J K van Meer
- Utrecht Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands; Medicines Evaluation Board, Graadt van Roggenweg 500, 3531 AH, Utrecht, the Netherlands
| | - Wouter P C Boon
- Copernicus Institute of Sustainable Development, Innovation Studies, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, the Netherlands
| | | | - Ellen H M Moors
- Copernicus Institute of Sustainable Development, Innovation Studies, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, the Netherlands
| | - Huub Schellekens
- Utrecht Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| |
Collapse
|
14
|
Pratte M, Ganeshamoorthy S, Carlisle B, Kimmelman J. How well are Phase 2 cancer trial publications supported by preclinical efficacy evidence? Int J Cancer 2019; 145:3370-3375. [DOI: 10.1002/ijc.32405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Pratte
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics UnitMcGill University Québec Canada
| | - Sylviya Ganeshamoorthy
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics UnitMcGill University Québec Canada
| | - Benjamin Carlisle
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics UnitMcGill University Québec Canada
| | - Jonathan Kimmelman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics UnitMcGill University Québec Canada
| |
Collapse
|
15
|
Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med 2018; 16:304. [PMID: 30404629 PMCID: PMC6223056 DOI: 10.1186/s12967-018-1678-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Background The pharmaceutical industry is in the midst of a productivity crisis and rates of translation from bench to bedside are dismal. Patients are being let down by the current system of drug discovery; of the several 1000 diseases that affect humans, only a minority have any approved treatments and many of these cause adverse reactions in humans. A predominant reason for the poor rate of translation from bench to bedside is generally held to be the failure of preclinical animal models to predict clinical efficacy and safety. Attempts to explain this failure have focused on problems of internal validity in preclinical animal studies (e.g. poor study design, lack of measures to control bias). However there has been less discussion of another key factor that influences translation, namely the external validity of preclinical animal models. Review of problems of external validity External validity is the extent to which research findings derived in one setting, population or species can be reliably applied to other settings, populations and species. This paper argues that the reliable translation of findings from animals to humans will only occur if preclinical animal studies are both internally and externally valid. We review several key aspects that impact external validity in preclinical animal research, including unrepresentative animal samples, the inability of animal models to mimic the complexity of human conditions, the poor applicability of animal models to clinical settings and animal–human species differences. We suggest that while some problems of external validity can be overcome by improving animal models, the problem of species differences can never be overcome and will always undermine external validity and the reliable translation of preclinical findings to humans. Conclusion We conclude that preclinical animal models can never be fully valid due to the uncertainties introduced by species differences. We suggest that even if the next several decades were spent improving the internal and external validity of animal models, the clinical relevance of those models would, in the end, only improve to some extent. This is because species differences would continue to make extrapolation from animals to humans unreliable. We suggest that to improve clinical translation and ultimately benefit patients, research should focus instead on human-relevant research methods and technologies.
Collapse
Affiliation(s)
- Pandora Pound
- Safer Medicines Trust, PO Box 122, Kingsbridge, TQ7 9AX, UK.
| | - Merel Ritskes-Hoitinga
- SYRCLE, Department for Health Evidence, Radboud University Medical Center, PO Box 9101, Route 133, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Pound P, Nicol CJ. Retrospective harm benefit analysis of pre-clinical animal research for six treatment interventions. PLoS One 2018; 13:e0193758. [PMID: 29590200 PMCID: PMC5874012 DOI: 10.1371/journal.pone.0193758] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The harm benefit analysis (HBA) is the cornerstone of animal research regulation and is considered to be a key ethical safeguard for animals. The HBA involves weighing the anticipated benefits of animal research against its predicted harms to animals but there are doubts about how objective and accountable this process is. OBJECTIVES i. To explore the harms to animals involved in pre-clinical animal studies and to assess these against the benefits for humans accruing from these studies; ii. To test the feasibility of conducting this type of retrospective HBA. METHODS Data on harms were systematically extracted from a sample of pre-clinical animal studies whose clinical relevance had already been investigated by comparing systematic reviews of the animal studies with systematic reviews of human studies for the same interventions (antifibrinolytics for haemorrhage, bisphosphonates for osteoporosis, corticosteroids for brain injury, Tirilazad for stroke, antenatal corticosteroids for neonatal respiratory distress and thrombolytics for stroke). Clinical relevance was also explored in terms of current clinical practice. Harms were categorised for severity using an expert panel. The quality of the research and its impact were considered. Bateson's Cube was used to conduct the HBA. RESULTS The most common assessment of animal harms by the expert panel was 'severe'. Reported use of analgesia was rare and some animals (including most neonates) endured significant procedures with no, or only light, anaesthesia reported. Some animals suffered iatrogenic harms. Many were kept alive for long periods post-experimentally but only 1% of studies reported post-operative care. A third of studies reported that some animals died prior to endpoints. All the studies were of poor quality. Having weighed the actual harms to animals against the actual clinical benefits accruing from these studies, and taking into account the quality of the research and its impact, less than 7% of the studies were permissible according to Bateson's Cube: only the moderate bisphosphonate studies appeared to minimise harms to animals whilst being associated with benefit for humans. CONCLUSIONS This is the first time the accountability of the HBA has been systematically explored across a range of pre-clinical animal studies. The regulatory systems in place when these studies were conducted failed to safeguard animals from severe suffering or to ensure that only beneficial, scientifically rigorous research was conducted. Our findings indicate a pressing need to: i. review regulations, particularly those that permit animals to suffer severe harms; ii. reform the processes of prospectively assessing pre-clinical animal studies to make them fit for purpose; and iii. systematically evaluate the benefits of pre-clinical animal research to permit a more realistic assessment of its likely future benefits.
Collapse
Affiliation(s)
- Pandora Pound
- Population Health Sciences, University of Bristol, Canynge Hall, Bristol, United Kingdom
| | - Christine J. Nicol
- School of Veterinary Science, University of Bristol, Langford House, Langford, United Kingdom
| |
Collapse
|
17
|
Martínez-Bosch N, Guerrero PE, Moreno M, José A, Iglesias M, Munné-Collado J, Anta H, Gibert J, Orozco CA, Vinaixa J, Fillat C, Viñals F, Navarro P. The pancreatic niche inhibits the effectiveness of sunitinib treatment of pancreatic cancer. Oncotarget 2018; 7:48265-48279. [PMID: 27374084 PMCID: PMC5217016 DOI: 10.18632/oncotarget.10199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022] Open
Abstract
Current treatments for pancreatic ductal adenocarcinoma (PDA) are ineffective, making this the 4th leading cause of cancer deaths. Sunitinib is a broad-spectrum inhibitor of tyrosine kinase receptors mostly known for its anti-angiogenic effects. We tested the therapeutic effects of sunitinib in pancreatic cancer using the Ela-myc transgenic mouse model. We showed that Ela-myc pancreatic tumors express PDGFR and VEGFR in blood vessels and epithelial cells, rendering these tumors sensitive to sunitinib by more than only its anti-angiogenic activity. However, sunitinib treatment of Ela-myc mice with either early or advanced tumor progression had no impact on either survival or tumor burden. Further histopathological characterization of these tumors did not reveal differences in necrosis, cell differentiation, angiogenesis, apoptosis or proliferation. In stark contrast, in vitro sunitinib treatment of Ela-myc– derived cell lines showed high sensitivity to the drug, with increased apoptosis and reduced proliferation. Correspondingly, subcutaneous tumors generated from these cell lines completely regressed in vivo after sunitinib treatments. These data point at the pancreatic tumor microenvironment as the most likely barrier preventing sunitinib treatment efficiency in vivo. Combined treatments with drugs that disrupt tumor fibrosis may enhance sunitinib therapeutic effectiveness in pancreatic cancer treatment.
Collapse
Affiliation(s)
| | | | - Mireia Moreno
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Anabel José
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Mar Iglesias
- Pathology Service, Hospital del Mar, Barcelona, Spain
| | | | - Héctor Anta
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Joan Gibert
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Judith Vinaixa
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Cristina Fillat
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Francesc Viñals
- Catalan Institute of Oncology-IDIBELL, Barcelona University, Barcelona, Spain
| | - Pilar Navarro
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
18
|
Segarra I, Modamio P, Fernández C, Mariño EL. Sex-Divergent Clinical Outcomes and Precision Medicine: An Important New Role for Institutional Review Boards and Research Ethics Committees. Front Pharmacol 2017; 8:488. [PMID: 28785221 PMCID: PMC5519571 DOI: 10.3389/fphar.2017.00488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
The efforts toward individualized medicine have constantly increased in an attempt to improve treatment options. These efforts have led to the development of small molecules which target specific molecular pathways involved in cancer progression. We have reviewed preclinical studies of sunitinib that incorporate sex as a covariate to explore possible sex-based differences in pharmacokinetics and drug–drug interactions (DDI) to attempt a relationship with published clinical outputs. We observed that covariate sex is lacking in most clinical outcome reports and suggest a series of ethic-based proposals to improve research activities and identify relevant different sex outcomes. We propose a deeper integration of preclinical, clinical, and translational research addressing statistical and clinical significance jointly; to embed specific sex-divergent endpoints to evaluate possible gender differences objectively during all stages of research; to pay greater attention to sex-divergent outcomes in polypharmacy scenarios, DDI and bioequivalence studies; the clear reporting of preclinical and clinical findings regarding sex-divergent outcomes; as well as to encourage the active role of scientists and the pharmaceutical industry to foster a new scientific culture through their research programs, practice, and participation in editorial boards and Institutional Ethics Review Boards (IRBs) and Research Ethics Committees (RECs). We establish the IRB/REC as the centerpiece for the implementation of these proposals. We suggest the expansion of its competence to follow up clinical trials to ensure that sex differences are addressed and recognized; to engage in data monitoring committees to improve clinical research cooperation and ethically address those potential clinical outcome differences between male and female patients to analyze their social and clinical implications in research and healthcare policies.
Collapse
Affiliation(s)
- Ignacio Segarra
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Pilar Modamio
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Cecilia Fernández
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Eduardo L Mariño
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| |
Collapse
|
19
|
|
20
|
Reichlin TS, Vogt L, Würbel H. The Researchers' View of Scientific Rigor-Survey on the Conduct and Reporting of In Vivo Research. PLoS One 2016; 11:e0165999. [PMID: 27911901 PMCID: PMC5135049 DOI: 10.1371/journal.pone.0165999] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/23/2016] [Indexed: 12/31/2022] Open
Abstract
Reproducibility in animal research is alarmingly low, and a lack of scientific rigor has been proposed as a major cause. Systematic reviews found low reporting rates of measures against risks of bias (e.g., randomization, blinding), and a correlation between low reporting rates and overstated treatment effects. Reporting rates of measures against bias are thus used as a proxy measure for scientific rigor, and reporting guidelines (e.g., ARRIVE) have become a major weapon in the fight against risks of bias in animal research. Surprisingly, animal scientists have never been asked about their use of measures against risks of bias and how they report these in publications. Whether poor reporting reflects poor use of such measures, and whether reporting guidelines may effectively reduce risks of bias has therefore remained elusive. To address these questions, we asked in vivo researchers about their use and reporting of measures against risks of bias and examined how self-reports relate to reporting rates obtained through systematic reviews. An online survey was sent out to all registered in vivo researchers in Switzerland (N = 1891) and was complemented by personal interviews with five representative in vivo researchers to facilitate interpretation of the survey results. Return rate was 28% (N = 530), of which 302 participants (16%) returned fully completed questionnaires that were used for further analysis. According to the researchers' self-report, they use measures against risks of bias to a much greater extent than suggested by reporting rates obtained through systematic reviews. However, the researchers' self-reports are likely biased to some extent. Thus, although they claimed to be reporting measures against risks of bias at much lower rates than they claimed to be using these measures, the self-reported reporting rates were considerably higher than reporting rates found by systematic reviews. Furthermore, participants performed rather poorly when asked to choose effective over ineffective measures against six different biases. Our results further indicate that knowledge of the ARRIVE guidelines had a positive effect on scientific rigor. However, the ARRIVE guidelines were known by less than half of the participants (43.7%); and among those whose latest paper was published in a journal that had endorsed the ARRIVE guidelines, more than half (51%) had never heard of these guidelines. Our results suggest that whereas reporting rates may underestimate the true use of measures against risks of bias, self-reports may overestimate it. To a large extent, this discrepancy can be explained by the researchers' ignorance and lack of knowledge of risks of bias and measures to prevent them. Our analysis thus adds significant new evidence to the assessment of research integrity in animal research. Our findings further question the confidence that the authorities have in scientific rigor, which is taken for granted in the harm-benefit analyses on which approval of animal experiments is based. Furthermore, they suggest that better education on scientific integrity and good research practice is needed. However, they also question reliance on reporting rates as indicators of scientific rigor and highlight a need for more reliable predictors.
Collapse
Affiliation(s)
- Thomas S. Reichlin
- Division of Animal Welfare, Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lucile Vogt
- Division of Animal Welfare, Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanno Würbel
- Division of Animal Welfare, Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Vogt L, Reichlin TS, Nathues C, Würbel H. Authorization of Animal Experiments Is Based on Confidence Rather than Evidence of Scientific Rigor. PLoS Biol 2016; 14:e2000598. [PMID: 27911892 PMCID: PMC5135031 DOI: 10.1371/journal.pbio.2000598] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/03/2016] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence indicates high risk of bias in preclinical animal research, questioning the scientific validity and reproducibility of published research findings. Systematic reviews found low rates of reporting of measures against risks of bias in the published literature (e.g., randomization, blinding, sample size calculation) and a correlation between low reporting rates and inflated treatment effects. That most animal research undergoes peer review or ethical review would offer the possibility to detect risks of bias at an earlier stage, before the research has been conducted. For example, in Switzerland, animal experiments are licensed based on a detailed description of the study protocol and a harm-benefit analysis. We therefore screened applications for animal experiments submitted to Swiss authorities (n = 1,277) for the rates at which the use of seven basic measures against bias (allocation concealment, blinding, randomization, sample size calculation, inclusion/exclusion criteria, primary outcome variable, and statistical analysis plan) were described and compared them with the reporting rates of the same measures in a representative sub-sample of publications (n = 50) resulting from studies described in these applications. Measures against bias were described at very low rates, ranging on average from 2.4% for statistical analysis plan to 19% for primary outcome variable in applications for animal experiments, and from 0.0% for sample size calculation to 34% for statistical analysis plan in publications from these experiments. Calculating an internal validity score (IVS) based on the proportion of the seven measures against bias, we found a weak positive correlation between the IVS of applications and that of publications (Spearman's rho = 0.34, p = 0.014), indicating that the rates of description of these measures in applications partly predict their rates of reporting in publications. These results indicate that the authorities licensing animal experiments are lacking important information about experimental conduct that determines the scientific validity of the findings, which may be critical for the weight attributed to the benefit of the research in the harm-benefit analysis. Similar to manuscripts getting accepted for publication despite poor reporting of measures against bias, applications for animal experiments may often be approved based on implicit confidence rather than explicit evidence of scientific rigor. Our findings shed serious doubt on the current authorization procedure for animal experiments, as well as the peer-review process for scientific publications, which in the long run may undermine the credibility of research. Developing existing authorization procedures that are already in place in many countries towards a preregistration system for animal research is one promising way to reform the system. This would not only benefit the scientific validity of findings from animal experiments but also help to avoid unnecessary harm to animals for inconclusive research.
Collapse
Affiliation(s)
- Lucile Vogt
- Division of Animal Welfare, Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Thomas S. Reichlin
- Division of Animal Welfare, Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christina Nathues
- Division of VPH-Epidemiology, Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Liebefeld, Switzerland
| | - Hanno Würbel
- Division of Animal Welfare, Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Petrelli A, Prakken BJ, Rosenblum ND. Developing translational medicine professionals: the Marie Skłodowska-Curie action model. J Transl Med 2016; 14:329. [PMID: 27899114 PMCID: PMC5129597 DOI: 10.1186/s12967-016-1088-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/18/2016] [Indexed: 11/21/2022] Open
Abstract
End goal of translational medicine is to combine disciplines and expertise to eventually promote improvement of the global healthcare system by delivering effective therapies to individuals and society. Well-trained experts of the translational medicine process endowed with profound knowledge of biomedical technology, ethical and clinical issues, as well as leadership and teamwork abilities are essential for the effective development of tangible therapeutic products for patients. In this article we focus on education and, in particular, we discuss how programs providing training on the broad spectrum of the translational medicine continuum have still a limited degree of diffusion and do not provide professional support and mentorship in the long-term, resulting in the lack of well established professionals of translational medicine (TMPs) in the scientific community. Here, we describe the Marie Skłodowska-Curie Actions program ITN-EUtrain (EUropean Translational tRaining for Autoimmunity & Immune manipulation Network) where training on the Translational Medicine machinery was integrated with education on professional and personal skills, mentoring, and a long-lasting network of TMPs.
Collapse
Affiliation(s)
- Alessandra Petrelli
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center of Utrecht (UMCU), Lundlaan 6, 3584 EA, Utrecht, Netherlands. .,Diabetes Research Institute, San Raffaele Vita-Salute University, Milan, Italy.
| | - Berent J Prakken
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center of Utrecht (UMCU), Lundlaan 6, 3584 EA, Utrecht, Netherlands
| | - Norman D Rosenblum
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
23
|
Avey MT, Moher D, Sullivan KJ, Fergusson D, Griffin G, Grimshaw JM, Hutton B, Lalu MM, Macleod M, Marshall J, Mei SHJ, Rudnicki M, Stewart DJ, Turgeon AF, McIntyre L, Canadian Critical Care Translational Biology Group. The Devil Is in the Details: Incomplete Reporting in Preclinical Animal Research. PLoS One 2016; 11:e0166733. [PMID: 27855228 PMCID: PMC5113978 DOI: 10.1371/journal.pone.0166733] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022] Open
Abstract
Incomplete reporting of study methods and results has become a focal point for failures in the reproducibility and translation of findings from preclinical research. Here we demonstrate that incomplete reporting of preclinical research is not limited to a few elements of research design, but rather is a broader problem that extends to the reporting of the methods and results. We evaluated 47 preclinical research studies from a systematic review of acute lung injury that use mesenchymal stem cells (MSCs) as a treatment. We operationalized the ARRIVE (Animal Research: Reporting of In Vivo Experiments) reporting guidelines for pre-clinical studies into 109 discrete reporting sub-items and extracted 5,123 data elements. Overall, studies reported less than half (47%) of all sub-items (median 51 items; range 37-64). Across all studies, the Methods Section reported less than half (45%) and the Results Section reported less than a third (29%). There was no association between journal impact factor and completeness of reporting, which suggests that incomplete reporting of preclinical research occurs across all journals regardless of their perceived prestige. Incomplete reporting of methods and results will impede attempts to replicate research findings and maximize the value of preclinical studies.
Collapse
Affiliation(s)
- Marc T. Avey
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| | - David Moher
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- School of Epidemiology Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katrina J. Sullivan
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean Fergusson
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Gilly Griffin
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jeremy M. Grimshaw
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Brian Hutton
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- School of Epidemiology Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Malcolm Macleod
- Division of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - John Marshall
- Department of Surgery (Critical Care), University of Toronto, Toronto, Ontario, Canada
| | - Shirley H. J. Mei
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael Rudnicki
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Duncan J. Stewart
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexis F. Turgeon
- Population Health and Optimal Health Practices Unit (Trauma – Emergency – Critical Care Medicine), Centre de Recherche du CHU de Québec (Enfant-JésusHospital), Université Laval, Québec City, Québec, Canada
- Division of Critical Care Medicine, Department of Anesthesiology, Université Laval, Québec City, Québec, Canada
| | - Lauralyn McIntyre
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine (Division of Critical Care), University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
24
|
Koonrungsesomboon N, Laothavorn J, Karbwang J. Ethical considerations and challenges in first-in-human research. Transl Res 2016; 177:6-18. [PMID: 27337526 DOI: 10.1016/j.trsl.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022]
Abstract
First-in-human (FIH) research is a translational process to move a new potential therapy from bench to bedside. Major ethical challenges of an FIH trial arise because of the indeterminate nature of the risks involved and the controversial risk-benefit justification. Severe adverse events and death of subjects who participated in FIH research in the past have led to an increased attention on ethical considerations in the design and conduct of such research. Furthermore, novel therapies in the current decade, such as molecular-targeted, gene transfer, and pluripotent stem cells therapies, have led to numerous emerging ethical challenges or different ethical assessment and justification frameworks for FIH research. This article presents, discusses, and interlinks ethical considerations and challenges in FIH research through a review of related ethical principles and their application to each ethical issue with given examples. Possible solutions to address each ethical challenge are presented. The scope of this article focuses on 4 major ethical issues in FIH research: risk-benefit assessment and justification for the conduct of research, selection of a suitable target population, informed consent, and conflict of interest.
Collapse
Affiliation(s)
- Nut Koonrungsesomboon
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Junjira Laothavorn
- Chulabhon International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
25
|
Segarra I, Modamio P, Fernández C, Mariño EL. Sunitinib Possible Sex-Divergent Therapeutic Outcomes. Clin Drug Investig 2016; 36:791-9. [PMID: 27318944 DOI: 10.1007/s40261-016-0428-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sunitinib is a tyrosine kinase inhibitor used for the treatment of renal cell carcinoma and metastatic brain tumors. Preclinical pharmacokinetic studies have shown higher sunitinib hepatic and brain exposure in female mice and higher sunitinib kidney concentrations in male mice. We explored whether sex-divergent tissue pharmacokinetics may anticipate sex-divergent therapeutic and toxicology responses in male and female patients. The review of the available scientific literature identified case reports, case series reports, clinical trials, and other studies associating sex with sunitinib outcomes. The results suggest male patients may respond better to renal cell carcinoma treatment and female patients may have better brain tumor treatment outcomes but a higher incidence of adverse events. Although more high-quality evidence is needed, these results, as anticipated by the preclinical data, may indicate possible sunitinib sex-divergent therapeutic outcomes in patients. In addition, we propose the systematic analysis of sex-based outcomes in clinical trial reports and their inclusion and review in the ethics committees and review boards to prevent, amongst others, patient burden in upcoming clinical trials.
Collapse
Affiliation(s)
- Ignacio Segarra
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain.
| | - Pilar Modamio
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain
| | - Cecilia Fernández
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain
| | - Eduardo L Mariño
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain
| |
Collapse
|
26
|
|
27
|
Abstract
Manuscripts should include all the experimental and statistical details that are needed to replicate the experiments and analyses reported in them.
Collapse
Affiliation(s)
- M Dawn Teare
- Sheffield School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Optimized design and analysis of preclinical intervention studies in vivo. Sci Rep 2016; 6:30723. [PMID: 27480578 PMCID: PMC4969752 DOI: 10.1038/srep30723] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/06/2016] [Indexed: 12/20/2022] Open
Abstract
Recent reports have called into question the reproducibility, validity and translatability of the preclinical animal studies due to limitations in their experimental design and statistical analysis. To this end, we implemented a matching-based modelling approach for optimal intervention group allocation, randomization and power calculations, which takes full account of the complex animal characteristics at baseline prior to interventions. In prostate cancer xenograft studies, the method effectively normalized the confounding baseline variability, and resulted in animal allocations which were supported by RNA-seq profiling of the individual tumours. The matching information increased the statistical power to detect true treatment effects at smaller sample sizes in two castration-resistant prostate cancer models, thereby leading to saving of both animal lives and research costs. The novel modelling approach and its open-source and web-based software implementations enable the researchers to conduct adequately-powered and fully-blinded preclinical intervention studies, with the aim to accelerate the discovery of new therapeutic interventions.
Collapse
|
29
|
High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells. Blood 2016; 128:934-47. [PMID: 27297795 DOI: 10.1182/blood-2015-12-687814] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax.
Collapse
|
30
|
Mattina J, MacKinnon N, Henderson VC, Fergusson D, Kimmelman J. Design and Reporting of Targeted Anticancer Preclinical Studies: A Meta-Analysis of Animal Studies Investigating Sorafenib Antitumor Efficacy. Cancer Res 2016; 76:4627-36. [PMID: 27261504 DOI: 10.1158/0008-5472.can-15-3455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022]
Abstract
The validity of preclinical studies of candidate therapeutic agents has been questioned given their limited ability to predict their fate in clinical development, including due to design flaws and reporting bias. In this study, we examined this issue in depth by conducting a meta-analysis of animal studies investigating the efficacy of the clinically approved kinase inhibitor, sorafenib. MEDLINE, Embase, and BIOSIS databases were searched for all animal experiments testing tumor volume response to sorafenib monotherapy in any cancer published until April 20, 2012. We estimated effect sizes from experiments assessing changes in tumor volume and conducted subgroup analyses based on prespecified experimental design elements associated with internal, construct, and external validity. The meta-analysis included 97 experiments involving 1,761 animals. We excluded 94 experiments due to inadequate reporting of data. Design elements aimed at reducing internal validity threats were implemented only sporadically, with 66% reporting animal attrition and none reporting blinded outcome assessment or concealed allocation. Anticancer activity against various malignancies was typically tested in only a small number of model systems. Effect sizes were significantly smaller when sorafenib was tested against either a different active agent or combination arm. Trim and fill suggested a 37% overestimation of effect sizes across all malignancies due to publication bias. We detected a moderate dose-response in one clinically approved indication, hepatocellular carcinoma, but not in another approved malignancy, renal cell carcinoma, or when data were pooled across all malignancies tested. In support of other reports, we found that few preclinical cancer studies addressed important internal, construct, and external validity threats, limiting their clinical generalizability. Our findings reinforce the need to improve guidelines for the design and reporting of preclinical cancer studies. Cancer Res; 76(16); 4627-36. ©2016 AACR.
Collapse
Affiliation(s)
- James Mattina
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Québec, Canada
| | - Nathalie MacKinnon
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Québec, Canada
| | - Valerie C Henderson
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Québec, Canada
| | - Dean Fergusson
- Department of Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jonathan Kimmelman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
31
|
Drug therapy: Preclinical oncology - reporting transparency needed. Nat Rev Clin Oncol 2015; 13:8-9. [PMID: 26667971 DOI: 10.1038/nrclinonc.2015.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
|