1
|
Xie Y, Zhao R, Zheng Y, Li Y, Wu F, Lei Y, Li L, Zeng H, Chen Z, Hou Y. Targeting KPNB1 suppresses AML cells by inhibiting HMGB2 nuclear import. Oncogene 2025; 44:1646-1661. [PMID: 40082556 DOI: 10.1038/s41388-025-03340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Acute myeloid leukemia (AML) represents the most prevalent malignancy within the hematologic system, characterized by refractory relapses and a scarcity of effective treatment options. Karyopherin subunit beta-1 (KPNB1) is a member of karyopherin β family, mediating the nuclear import of its cargoes. In this study, we found that elevated expression levels of KPNB1 are associated with unfavorable outcomes in patients with AML. The knockdown of KPNB1 resulted in growth inhibition and apoptosis in AML cells. Additionally, pharmacological inhibition of KPNB1 using the specific inhibitor importazole (IPZ) significantly reduced tumor burden and prolonged survival in MLL-AF9-induced AML mice. Notably, the inhibition of KPNB1 by IPZ significantly enhanced the sensitivity of both AML cell lines and patient-derived cells to venetoclax in vitro and in xenograft mice models. At the molecular level, we identified an unrecognized cargo of KPNB1, high mobility group 2 (HMGB2), which plays a crucial role in DNA damage repair. Inhibition of KPNB1 resulted in impaired nuclear import of HMGB2, eventually leading to compromised DNA damage repair in AML cells. Overall, our findings elucidate the essential roles of KPNB1 in AML cells through the HMGB2-DNA damage repair axis and highlight a promising therapeutic target for AML intervention.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Mice
- beta Karyopherins/antagonists & inhibitors
- beta Karyopherins/genetics
- beta Karyopherins/metabolism
- HMGB2 Protein/metabolism
- HMGB2 Protein/genetics
- Active Transport, Cell Nucleus/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Apoptosis/drug effects
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Quinazolines
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Runlong Zhao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yingjiao Zheng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Feng Wu
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yufei Lei
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Lei Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Zhe Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Yu Hou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China.
| |
Collapse
|
2
|
Zhou Q, Su Y, Wang R, Song Z, Ge H, Qin X. The nuclear transportation of CHRONO regulates the circadian rhythm. J Biol Chem 2024; 300:107917. [PMID: 39454958 PMCID: PMC11599456 DOI: 10.1016/j.jbc.2024.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The pace of the endogenous circadian clock is important for organisms to maintain homeostasis. CHRONO has been shown to be a core component of the mammalian clock and has recently been implicated to function in several important physiological aspects. To function properly, CHRONO needs to enter the nucleus to repress transcription. We have previously shown that the N terminus of CHRONO is required for its nuclear entry. However, how CHRONO enters the nucleus and regulates the circadian clock remains unknown. Here, we report that a novel nonclassical nuclear localization signal in the N terminus of CHRONO is responsible for its nuclear entry. Multiple nuclear transporters are identified that facilitate the nuclear import of CHRONO. We show that the Arg63 is the critical amino acid of the nuclear localization signal. Using prime editing technology, we precisely edit the Arg63 to Ala at the genomic loci and demonstrate that this mutation prolongs the circadian period, which is similar to knockdown of CHRONO. By using the CHRONO KO and R63A mutant cells, we also investigated the changes in the cytoplasmic/nuclear distribution of BMAL1. We show that BMAL1 localizes more in the cytoplasm in the deficiency of CHRONO nuclear entry. These results provide a model for CHRONO nuclear entry using a network of importins involved in the regulation of the circadian period.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunxia Su
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ruohan Wang
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Zhiyuan Song
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Honghua Ge
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China.
| | - Ximing Qin
- Institute of Health Sciences and Technology, Anhui University, Hefei, Anhui Province, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
3
|
Duong HA, Baba K, DeBruyne JP, Davidson AJ, Ehlen C, Powell M, Tosini G. Environmental circadian disruption re-writes liver circadian proteomes. Nat Commun 2024; 15:5537. [PMID: 38956413 PMCID: PMC11220080 DOI: 10.1038/s41467-024-49852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag are ill-defined. Here, we provided a comprehensive and comparative description of male liver circadian gene expression, encompassing transcriptomes, whole-cell proteomes and nuclear proteomes, under normal and after ECD conditions. Under both conditions, post-translation, rather than transcription, is the dominant contributor to circadian functional outputs. After ECD, post-transcriptional and post-translational processes are the major contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, ECD re-writes the rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome. The re-writing, which is associated with changes of circadian regulatory cis-elements, RNA-processing and protein localization, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.
Collapse
Affiliation(s)
- Hao A Duong
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| | - Kenkichi Baba
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Jason P DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Alec J Davidson
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Christopher Ehlen
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Michael Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| |
Collapse
|
4
|
Munteanu C, Turti S, Achim L, Muresan R, Souca M, Prifti E, Mârza SM, Papuc I. The Relationship between Circadian Rhythm and Cancer Disease. Int J Mol Sci 2024; 25:5846. [PMID: 38892035 PMCID: PMC11172077 DOI: 10.3390/ijms25115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The circadian clock regulates biological cycles across species and is crucial for physiological activities and biochemical reactions, including cancer onset and development. The interplay between the circadian rhythm and cancer involves regulating cell division, DNA repair, immune function, hormonal balance, and the potential for chronotherapy. This highlights the importance of maintaining a healthy circadian rhythm for cancer prevention and treatment. This article investigates the complex relationship between the circadian rhythm and cancer, exploring how disruptions to the internal clock may contribute to tumorigenesis and influence cancer progression. Numerous databases are utilized to conduct searches for articles, such as NCBI, MEDLINE, and Scopus. The keywords used throughout the academic archives are "circadian rhythm", "cancer", and "circadian clock". Maintaining a healthy circadian cycle involves prioritizing healthy sleep habits and minimizing disruptions, such as consistent sleep schedules, reduced artificial light exposure, and meal timing adjustments. Dysregulation of the circadian clock gene and cell cycle can cause tumor growth, leading to the need to regulate the circadian cycle for better treatment outcomes. The circadian clock components significantly impact cellular responses to DNA damage, influencing cancer development. Understanding the circadian rhythm's role in tumor diseases and their therapeutic targets is essential for treating and preventing cancer. Disruptions to the circadian rhythm can promote abnormal cell development and tumor metastasis, potentially due to immune system imbalances and hormonal fluctuations.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sabina Turti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Larisa Achim
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Raluca Muresan
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Marius Souca
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Eftimia Prifti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
5
|
Agriesti F, Cela O, Capitanio N. "Time Is out of Joint" in Pluripotent Stem Cells: How and Why. Int J Mol Sci 2024; 25:2063. [PMID: 38396740 PMCID: PMC10889767 DOI: 10.3390/ijms25042063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The circadian rhythm is necessary for the homeostasis and health of living organisms. Molecular clocks interconnected by transcription/translation feedback loops exist in most cells of the body. A puzzling exemption to this, otherwise, general biological hallmark is given by the cell physiology of pluripotent stem cells (PSCs) that lack circadian oscillations gradually acquired following their in vivo programmed differentiation. This process can be nicely phenocopied following in vitro commitment and reversed during the reprogramming of somatic cells to induce PSCs. The current understanding of how and why pluripotency is "time-uncoupled" is largely incomplete. A complex picture is emerging where the circadian core clockwork is negatively regulated in PSCs at the post-transcriptional/translational, epigenetic, and other-clock-interaction levels. Moreover, non-canonical functions of circadian core-work components in the balance between pluripotency identity and metabolic-driven cell reprogramming are emerging. This review selects and discusses results of relevant recent investigations providing major insights into this context.
Collapse
Affiliation(s)
- Francesca Agriesti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (N.C.)
| | | | | |
Collapse
|
6
|
Zheng J, Song W, Zhou Y, Li X, Wang M, Zhang C. Cross-species single-cell landscape of vertebrate pineal gland. J Pineal Res 2024; 76:e12927. [PMID: 38018267 DOI: 10.1111/jpi.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The pineal gland has evolved from a photoreceptive organ in fish to a neuroendocrine organ in mammals. This study integrated multiple daytime single-cell RNA-seq datasets from the pineal glands of zebrafish, rats, and monkeys, providing a detailed examination of the evolutionary transition at single-cell resolution. We identified key factors responsible for the anatomical and functional transformation of the pineal gland. We retrieved and integrated daytime single-cell transcriptomic datasets from the pineal glands of zebrafish, rats, and monkeys, resulting in a total of 22 431 cells after rigorous quality filtering. Comparative analysis was then conducted to elucidate the evolution of pineal cells, their photosensitivity, their role in melatonin production, and the signaling processes within the glands of these species. Our analysis identified distinct cellular compositions of the pineal gland in zebrafish, rats, and monkeys. Zebrafish photoreceptors exhibited comprehensive phototransduction gene expression, while specific genes, including transducin (Gngt1, Gnb3, and Gngt2) and phosducin (Pdc), were consistently present in mammalian pinealocytes. We found transcriptional similarities between the pineal gland and retina, underscoring shared evolutionary and functional pathways. Zebrafish displayed unique light-responsive circadian gene activity compared to rats and monkeys. Key ligand-receptor interactions were identified, especially involving MDK and PTN, influencing melatonin synthesis across species. Furthermore, we observed species-specific GPCR (G protein-coupled receptors) expressions related to melatonin synthesis and their alignment with retinal expressions. Our findings also highlighted specific transcription factors (TFs) and regulatory networks associated with pineal gland evolution and function. Our study provides a detailed analysis of the pineal gland's evolution from fish to mammals. We identified key transcriptional changes and controls that highlight the gland's functional diversity. Notably, we found significant ligand-receptor interactions influencing melatonin synthesis and demonstrated parallels between pineal and retinal expressions. These insights enhance our understanding of the pineal gland's role in phototransduction, melatonin production, and circadian rhythms in vertebrates.
Collapse
Affiliation(s)
- Jihong Zheng
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqi Song
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yihang Zhou
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuan Li
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Songjiang Research Institute, Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Kalita E, Panda M, Prajapati VK. The interplay between circadian clock and viral infections: A molecular perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:293-330. [PMID: 37709380 DOI: 10.1016/bs.apcsb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian clock influences almost every aspect of mammalian behavioral, physiological and metabolic processes. Being a hierarchical network, the circadian clock is driven by the central clock in the brain and is composed of several peripheral tissue-specific clocks. It orchestrates and synchronizes the daily oscillations of biological processes to the environment. Several pathological events are influenced by time and seasonal variations and as such implicate the clock in pathogenesis mechanisms. In context with viral infections, circadian rhythmicity is closely associated with host susceptibility, disease severity, and pharmacokinetics and efficacies of antivirals and vaccines. Leveraging the circadian molecular mechanism insights has increased our understanding of clock infection biology and proposes new avenues for viral diagnostics and therapeutics. In this chapter, we address the molecular interplay between the circadian clock and viral infections and discuss the importance of chronotherapy as a complementary approach to conventional medicines, emphasizing the significance of virus-clock studies.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India..
| |
Collapse
|
8
|
Stanton D, Justin HS, Reitzel AM. Step in Time: Conservation of Circadian Clock Genes in Animal Evolution. Integr Comp Biol 2022; 62:1503-1518. [PMID: 36073444 DOI: 10.1093/icb/icac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Over the past few decades, the molecular mechanisms responsible for circadian phenotypes of animals have been studied in increasing detail in mammals, some insects, and other invertebrates. Particular circadian proteins and their interactions are shared across evolutionary distant animals, resulting in a hypothesis for the canonical circadian clock of animals. As the number of species for which the circadian clockwork has been described increases, the circadian clock in animals driving cyclical phenotypes becomes less similar. Our focus in this review is to develop and synthesize the current literature to better understand the antiquity and evolution of the animal circadian clockwork. Here, we provide an updated understanding of circadian clock evolution in animals, largely through the lens of conserved genes characterized in the circadian clock identified in bilaterian species. These comparisons reveal extensive variation within the likely composition of the core clock mechanism, including losses of many genes, and that the ancestral clock of animals does not equate to the bilaterian clock. Despite the loss of these core genes, these species retain circadian behaviors and physiology, suggesting novel clocks have evolved repeatedly. Additionally, we highlight highly conserved cellular processes (e.g., cell division, nutrition) that intersect with the circadian clock of some animals. The conservation of these processes throughout the animal tree remains essentially unknown, but understanding their role in the evolution and maintenance of the circadian clock will provide important areas for future study.
Collapse
Affiliation(s)
- Daniel Stanton
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Hannah S Justin
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| |
Collapse
|
9
|
Potential Role of the Circadian Clock in the Regulation of Cancer Stem Cells and Cancer Therapy. Int J Mol Sci 2022; 23:ijms232214181. [PMID: 36430659 PMCID: PMC9698777 DOI: 10.3390/ijms232214181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms, including sleep/wake cycles as well as hormonal, immune, metabolic, and cell proliferation rhythms, are fundamental biological processes driven by a cellular time-keeping system called the circadian clock. Disruptions in these rhythms due to genetic alterations or irregular lifestyles cause fundamental changes in physiology, from metabolism to cellular proliferation and differentiation, resulting in pathological consequences including cancer. Cancer cells are not uniform and static but exist as different subtypes with phenotypic and functional differences in the tumor microenvironment. At the top of the heterogeneous tumor cell hierarchy, cancer stem cells (CSCs), a self-renewing and multi-potent cancer cell type, are most responsible for tumor recurrence and metastasis, chemoresistance, and mortality. Phenotypically, CSCs are associated with the epithelial-mesenchymal transition (EMT), which confers cancer cells with increased motility and invasion ability that is characteristic of malignant and drug-resistant stem cells. Recently, emerging studies of different cancer types, such as glioblastoma, leukemia, prostate cancer, and breast cancer, suggest that the circadian clock plays an important role in the maintenance of CSC/EMT characteristics. In this review, we describe recent discoveries regarding how tumor intrinsic and extrinsic circadian clock-regulating factors affect CSC evolution, highlighting the possibility of developing novel chronotherapeutic strategies that could be used against CSCs to fight cancer.
Collapse
|
10
|
Wu G, Ruben MD, Francey LJ, Lee YY, Anafi RC, Hogenesch JB. An in silico genome-wide screen for circadian clock strength in human samples. Bioinformatics 2022; 38:5375-5382. [PMID: 36321857 PMCID: PMC9750125 DOI: 10.1093/bioinformatics/btac686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
MOTIVATION Years of time-series gene expression studies have built a strong understanding of clock-controlled pathways across species. However, comparatively little is known about how 'non-clock' pathways influence clock function. We need a strong understanding of clock-coupled pathways in human tissues to better appreciate the links between disease and clock function. RESULTS We developed a new computational approach to explore candidate pathways coupled to the clock in human tissues. This method, termed LTM, is an in silico screen to infer genetic influences on circadian clock function. LTM uses natural variation in gene expression in human data and directly links gene expression variation to clock strength independent of longitudinal data. We applied LTM to three human skin and one melanoma datasets and found that the cell cycle is the top candidate clock-coupled pathway in healthy skin. In addition, we applied LTM to thousands of tumor samples from 11 cancer types in the TCGA database and found that extracellular matrix organization-related pathways are tightly associated with the clock strength in humans. Further analysis shows that clock strength in tumor samples is correlated with the proportion of cancer-associated fibroblasts and endothelial cells. Therefore, we show both the power of LTM in predicting clock-coupled pathways and classify factors associated with clock strength in human tissues. AVAILABILITY AND IMPLEMENTATION LTM is available on GitHub (https://github.com/gangwug/LTMR) and figshare (https://figshare.com/articles/software/LTMR/21217604) to facilitate its use. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gang Wu
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ron C Anafi
- Department of Medicine, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
11
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
12
|
Naven MA, Zeef LA, Li S, Humphreys PA, Smith CA, Pathiranage D, Cain S, Woods S, Bates N, Au M, Wen C, Kimber SJ, Meng QJ. Development of human cartilage circadian rhythm in a stem cell-chondrogenesis model. Theranostics 2022; 12:3963-3976. [PMID: 35664072 PMCID: PMC9131279 DOI: 10.7150/thno.70893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
The circadian clock in murine articular cartilage is a critical temporal regulatory mechanism for tissue homeostasis and osteoarthritis. However, translation of these findings into humans has been hampered by the difficulty in obtaining circadian time series human cartilage tissues. As such, a suitable model is needed to understand the initiation and regulation of circadian rhythms in human cartilage. Methods: We used a chondrogenic differentiation protocol on human embryonic stem cells (hESCs) as a proxy for early human chondrocyte development. Chondrogenesis was validated using histology and expression of pluripotency and differentiation markers. The molecular circadian clock was tracked in real time by lentiviral transduction of human clock gene luciferase reporters. Differentiation-coupled gene expression was assessed by RNAseq and differential expression analysis. Results: hESCs lacked functional circadian rhythms in clock gene expression. During chondrogenic differentiation, there was an expected reduction of pluripotency markers (e.g., NANOG and OCT4) and a significant increase of chondrogenic genes (SOX9, COL2A1 and ACAN). Histology of the 3D cartilage pellets at day 21 showed a matrix architecture resembling human cartilage, with readily detectable core clock proteins (BMAL1, CLOCK and PER2). Importantly, the circadian clocks in differentiating hESCs were activated between day 11 (end of the 2D stage) and day 21 (10 days after 3D differentiation) in the chondrogenic differentiation protocol. RNA sequencing revealed striking differentiation coupled changes in the expression levels of most clock genes and a range of clock regulators. Conclusions: The circadian clock is gradually activated through a differentiation-coupled mechanism in a human chondrogenesis model. These findings provide a human 3D chondrogenic model to investigate the role of the circadian clock during normal homeostasis and in diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Mark A Naven
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Leo A.H. Zeef
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Shiyang Li
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Paul A Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Christopher A Smith
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dharshika Pathiranage
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Stuart Cain
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Manting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
13
|
Kawakami S, Yoshitane H, Morimura T, Kimura W, Fukada Y. Diurnal shift of mouse activity by the deficiency of an aging-related gene Lmna. J Biochem 2022; 171:509-518. [PMID: 35137145 DOI: 10.1093/jb/mvac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear lamina is a fundamental structure of the cell nucleus and regulates a wide range of molecular pathways. Defects of components of the nuclear lamina cause aging-like physiological disorders, called laminopathy. Generally, aging and diseases are often associated with perturbation of various time-of-day-dependent regulations, but it remains still elusive whether laminopathy induces any changes of the circadian clock and physiological rhythms. Here we demonstrated that deficiency of Lmna gene in mice caused an obvious shift of locomotor activities to the daytime. The abnormal activity profile was accompanied by a remarkable change in phase-angle between the central clock in the suprachiasmatic nucleus (SCN) and lung peripheral clocks, leaving the phase of the SCN clock unaffected by the mutation. These observations suggest that Lmna deficiency causes a change of the habitat from nocturnal to diurnal behaviors. On the other hand, molecular oscillation and its phase resetting mechanism were intact in both the Lmna-deficient cells and progeria-mimicking cells. Intriguingly, high-fat diet feeding extended the short lifespan and ameliorated the abnormalities of the behaviors and the phase of the peripheral clock in the Lmna-deficient mice. The present study supports the important contribution of the energy conditions to a shift between the diurnal and nocturnal activities.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Taiki Morimura
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Wataru Kimura
- RIKEN Center for Biosystems Dynamics Research, Minatojima-minamimachi 2-2-3, Chuo-ku, Kobe, Hyogo 650-0043, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan.,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|
15
|
Lindestad O, Nylin S, Wheat CW, Gotthard K. Local adaptation of life cycles in a butterfly is associated with variation in several circadian clock genes. Mol Ecol 2021; 31:1461-1475. [PMID: 34931388 DOI: 10.1111/mec.16331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Many insects exhibit geographical variation in voltinism, the number of generations produced per year. This includes high-latitude species in previously glaciated areas, meaning that divergent selection on life cycle traits has taken place during or shortly after recent colonization. Here, we use a population genomics approach to compare a set of nine Scandinavian populations of the butterfly Pararge aegeria that differ in life cycle traits (diapause thresholds and voltinism) along both north-south and east-west clines. Using a de novo-assembled genome, we reconstruct colonization histories and demographic relationships. Based on the inferred population structure, we then scan the genome for candidate loci showing signs of divergent selection potentially associated with population differences in life cycle traits. The identified candidate genes include a number of components of the insect circadian clock (timeless, timeless2, period, cryptochrome and clockwork orange). Most notably, the gene timeless, which has previously been experimentally linked to life cycle regulation in P. aegeria, is here found to contain a novel 97-amino acid deletion unique to, and fixed in, a single population. These results add to a growing body of research framing circadian gene variation as a potential mechanism for generating local adaptation of life cycles.
Collapse
Affiliation(s)
- Olle Lindestad
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
16
|
Abstract
Circadian clocks are biological timing mechanisms that generate 24-h rhythms of physiology and behavior, exemplified by cycles of sleep/wake, hormone release, and metabolism. The adaptive value of clocks is evident when internal body clocks and daily environmental cycles are mismatched, such as in the case of shift work and jet lag or even mistimed eating, all of which are associated with physiological disruption and disease. Studies with animal and human models have also unraveled an important role of functional circadian clocks in modulating cellular and organismal responses to physiological cues (ex., food intake, exercise), pathological insults (e.g. virus and parasite infections), and medical interventions (e.g. medication). With growing knowledge of the molecular and cellular mechanisms underlying circadian physiology and pathophysiology, it is becoming possible to target circadian rhythms for disease prevention and treatment. In this review, we discuss recent advances in circadian research and the potential for therapeutic applications that take patient circadian rhythms into account in treating disease.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington
| | - Jeffrey M. Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Aviram R, Adamovich Y, Asher G. Circadian Organelles: Rhythms at All Scales. Cells 2021; 10:2447. [PMID: 34572096 PMCID: PMC8469338 DOI: 10.3390/cells10092447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circadian clocks have evolved in most light-sensitive organisms, from unicellular organisms to mammals. Consequently, a myriad of biological functions exhibits circadian rhythmicity, from behavior to physiology, through tissue and cellular functions to subcellular processes. Circadian rhythms in intracellular organelles are an emerging and exciting research arena. We summarize herein the current literature for rhythmicity in major intracellular organelles in mammals. These include changes in the morphology, content, and functions of different intracellular organelles. While these data highlight the presence of rhythmicity in these organelles, a gap remains in our knowledge regarding the underlying molecular mechanisms and their functional significance. Finally, we discuss the importance and challenges faced by spatio-temporal studies on these organelles and speculate on the presence of oscillators in organelles and their potential mode of communication. As circadian biology has been and continues to be studied throughout temporal and spatial axes, circadian organelles appear to be the next frontier.
Collapse
Affiliation(s)
| | | | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (R.A.); (Y.A.)
| |
Collapse
|
18
|
Gabriel CH, Del Olmo M, Zehtabian A, Jäger M, Reischl S, van Dijk H, Ulbricht C, Rakhymzhan A, Korte T, Koller B, Grudziecki A, Maier B, Herrmann A, Niesner R, Zemojtel T, Ewers H, Granada AE, Herzel H, Kramer A. Live-cell imaging of circadian clock protein dynamics in CRISPR-generated knock-in cells. Nat Commun 2021; 12:3796. [PMID: 34145278 PMCID: PMC8213786 DOI: 10.1038/s41467-021-24086-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The cell biology of circadian clocks is still in its infancy. Here, we describe an efficient strategy for generating knock-in reporter cell lines using CRISPR technology that is particularly useful for genes expressed transiently or at low levels, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins allowing us to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>5 times) compared to PER2 questioning the current model of the circadian oscillator.
Collapse
Affiliation(s)
- Christian H Gabriel
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Marta Del Olmo
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Amin Zehtabian
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marten Jäger
- Berlin Institute of Health (BIH) Core Genomics Facility, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Reischl
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Hannah van Dijk
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Carolin Ulbricht
- Immune Dynamics, Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Korte
- Molecular Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Barbara Koller
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Astrid Grudziecki
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Bert Maier
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Herrmann
- Molecular Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Raluca Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Tomasz Zemojtel
- Berlin Institute of Health (BIH) Core Genomics Facility, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Adrián E Granada
- Charité Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
19
|
Yan J, Kim YJ, Somers DE. Post-Translational Mechanisms of Plant Circadian Regulation. Genes (Basel) 2021; 12:325. [PMID: 33668215 PMCID: PMC7995963 DOI: 10.3390/genes12030325] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The molecular components of the circadian system possess the interesting feature of acting together to create a self-sustaining oscillator, while at the same time acting individually, and in complexes, to confer phase-specific circadian control over a wide range of physiological and developmental outputs. This means that many circadian oscillator proteins are simultaneously also part of the circadian output pathway. Most studies have focused on transcriptional control of circadian rhythms, but work in plants and metazoans has shown the importance of post-transcriptional and post-translational processes within the circadian system. Here we highlight recent work describing post-translational mechanisms that impact both the function of the oscillator and the clock-controlled outputs.
Collapse
Affiliation(s)
| | | | - David E. Somers
- Department of Molecular Genetics, The Ohio State University; Columbus, OH 43210, USA; (J.Y.); (Y.J.K.)
| |
Collapse
|
20
|
Chi RPA, van der Watt P, Wei W, Birrer MJ, Leaner VD. Inhibition of Kpnβ1 mediated nuclear import enhances cisplatin chemosensitivity in cervical cancer. BMC Cancer 2021; 21:106. [PMID: 33530952 PMCID: PMC7852134 DOI: 10.1186/s12885-021-07819-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Background Inhibition of nuclear import via Karyopherin beta 1 (Kpnβ1) shows potential as an anti-cancer approach. This study investigated the use of nuclear import inhibitor, INI-43, in combination with cisplatin. Methods Cervical cancer cells were pre-treated with INI-43 before treatment with cisplatin, and MTT cell viability and apoptosis assays performed. Activity and localisation of p53 and NFκB was determined after co-treatment of cells. Results Pre-treatment of cervical cancer cells with INI-43 at sublethal concentrations enhanced cisplatin sensitivity, evident through decreased cell viability and enhanced apoptosis. Kpnβ1 knock-down cells similarly displayed increased sensitivity to cisplatin. Combination index determination using the Chou-Talalay method revealed that INI-43 and cisplatin engaged in synergistic interactions. p53 was found to be involved in the cell death response to combination treatment as its inhibition abolished the enhanced cell death observed. INI-43 pre-treatment resulted in moderately stabilized p53 and induced p53 reporter activity, which translated to increased p21 and decreased Mcl-1 upon cisplatin combination treatment. Furthermore, cisplatin treatment led to nuclear import of NFκB, which was diminished upon pre-treatment with INI-43. NFκB reporter activity and expression of NFκB transcriptional targets, cyclin D1, c-Myc and XIAP, showed decreased levels after combination treatment compared to single cisplatin treatment and this associated with enhanced DNA damage. Conclusions Taken together, this study shows that INI-43 pre-treatment significantly enhances cisplatin sensitivity in cervical cancer cells, mediated through stabilization of p53 and decreased nuclear import of NFκB. Hence this study suggests the possible synergistic use of nuclear import inhibition and cisplatin to treat cervical cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07819-3.
Collapse
Affiliation(s)
- Ru-Pin Alicia Chi
- Division of Medical Biochemistry & Structural Biology, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Pauline van der Watt
- Division of Medical Biochemistry & Structural Biology, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Wei Wei
- Pfizer, Andover, MA, 01810, USA
| | - Michael J Birrer
- University of Arkansas Medical Sciences, D Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Virna D Leaner
- Division of Medical Biochemistry & Structural Biology, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
21
|
Cal-Kayitmazbatir S, Kulkoyluoglu-Cotul E, Growe J, Selby CP, Rhoades SD, Malik D, Oner H, Asimgil H, Francey LJ, Sancar A, Kruger WD, Hogenesch JB, Weljie A, Anafi RC, Kavakli IH. CRY1-CBS binding regulates circadian clock function and metabolism. FEBS J 2021; 288:614-639. [PMID: 32383312 PMCID: PMC7648728 DOI: 10.1111/febs.15360] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Circadian disruption influences metabolic health. Metabolism modulates circadian function. However, the mechanisms coupling circadian rhythms and metabolism remain poorly understood. Here, we report that cystathionine β-synthase (CBS), a central enzyme in one-carbon metabolism, functionally interacts with the core circadian protein cryptochrome 1 (CRY1). In cells, CBS augments CRY1-mediated repression of the CLOCK/BMAL1 complex and shortens circadian period. Notably, we find that mutant CBS-I278T protein, the most common cause of homocystinuria, does not bind CRY1 or regulate its repressor activity. Transgenic CbsZn/Zn mice, while maintaining circadian locomotor activity period, exhibit reduced circadian power and increased expression of E-BOX outputs. CBS function is reciprocally influenced by CRY1 binding. CRY1 modulates enzymatic activity of the CBS. Liver extracts from Cry1-/- mice show reduced CBS activity that normalizes after the addition of exogenous wild-type (WT) CRY1. Metabolomic analysis of WT, CbsZn/Zn , Cry1-/- , and Cry2-/- samples highlights the metabolic importance of endogenous CRY1. We observed temporal variation in one-carbon and transsulfuration pathways attributable to CRY1-induced CBS activation. CBS-CRY1 binding provides a post-translational switch to modulate cellular circadian physiology and metabolic control.
Collapse
Affiliation(s)
- Sibel Cal-Kayitmazbatir
- Department Molecular Biology and Genetics, Koc University
Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Eylem Kulkoyluoglu-Cotul
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Jacqueline Growe
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher P. Selby
- Department of Biochemistry and Biophysics, University of
North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Seth D. Rhoades
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dania Malik
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hasimcan Oner
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Hande Asimgil
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Lauren J. Francey
- Divisions of Human Genetics and Immunobiology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of
North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Warren D. Kruger
- Cancer Biology Program, Fox Chase Cancer Center,
Philadelphia, PA, USA
| | - John B. Hogenesch
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Divisions of Human Genetics and Immunobiology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aalim Weljie
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ron C. Anafi
- Department of Medicine, Chronobiology and Sleep Institute,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ibrahim Halil Kavakli
- Department Molecular Biology and Genetics, Koc University
Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| |
Collapse
|
22
|
Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis. Proc Natl Acad Sci U S A 2020; 117:28402-28411. [PMID: 33106420 PMCID: PMC7668169 DOI: 10.1073/pnas.2003524117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythms including wake-sleep cycles are driven by molecular time cues generated by a self-sustaining transcriptional negative feedback loop. Among all clock proteins, PERIOD (PER) is considered the pacemaker protein because its rhythm of accumulation and nuclear entry generates the timing and duration of feedback inhibition. Here we provide a new understanding of how robust PER rhythms are generated: the collective action of interacting PER molecules, not a random mass action of individual molecules, allows compensation of spatial and temporal differences (or “noise”) of individual molecules. We also show that the collective PER rhythm requires healthy cytoplasmic trafficking, and that circadian sleep disorders can arise in such conditions as obesity, aging, and neurodegenerative disorders in which the cytoplasm becomes congested. The circadian clock is based on a transcriptional feedback loop with an essential time delay before feedback inhibition. Previous work has shown that PERIOD (PER) proteins generate circadian time cues through rhythmic nuclear accumulation of the inhibitor complex and subsequent interaction with the activator complex in the feedback loop. Although this temporal manifestation of the feedback inhibition is the direct consequence of PER’s cytoplasmic trafficking before nuclear entry, how this spatial regulation of the pacemaker affects circadian timing has been largely unexplored. Here we show that circadian rhythms, including wake-sleep cycles, are lengthened and severely unstable if the cytoplasmic trafficking of PER is disrupted by any disease condition that leads to increased congestion in the cytoplasm. Furthermore, we found that the time delay and robustness in the circadian clock are seamlessly generated by delayed and collective phosphorylation of PER molecules, followed by synchronous nuclear entry. These results provide clear mechanistic insight into why circadian and sleep disorders arise in such clinical conditions as metabolic and neurodegenerative diseases and aging, in which the cytoplasm is congested.
Collapse
|
23
|
Umemura Y, Yagita K. Development of the Circadian Core Machinery in Mammals. J Mol Biol 2020; 432:3611-3617. [DOI: 10.1016/j.jmb.2019.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/20/2023]
|
24
|
Serway CN, Dunkelberger BS, Del Padre D, Nolan NWC, Georges S, Freer S, Andres AJ, de Belle JS. Importin-α2 mediates brain development, learning and memory consolidation in Drosophila. J Neurogenet 2020; 34:69-82. [PMID: 31965871 DOI: 10.1080/01677063.2019.1709184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Neuronal development and memory consolidation are conserved processes that rely on nuclear-cytoplasmic transport of signaling molecules to regulate gene activity and initiate cascades of downstream cellular events. Surprisingly, few reports address and validate this widely accepted perspective. Here we show that Importin-α2 (Imp-α2), a soluble nuclear transporter that shuttles cargoes between the cytoplasm and nucleus, is vital for brain development, learning and persistent memory in Drosophila melanogaster. Mutations in importin-α2 (imp-α2, known as Pendulin or Pen and homologous with human KPNA2) are alleles of mushroom body miniature B (mbmB), a gene known to regulate aspects of brain development and influence adult behavior in flies. Mushroom bodies (MBs), paired associative centers in the brain, are smaller than normal due to defective proliferation of specific intrinsic Kenyon cell (KC) neurons in mbmB mutants. Extant KCs projecting to the MB β-lobe terminate abnormally on the contralateral side of the brain. mbmB adults have impaired olfactory learning but normal memory decay in most respects, except that protein synthesis-dependent long-term memory (LTM) is abolished. This observation supports an alternative mechanism of persistent memory in which mutually exclusive protein-synthesis-dependent and -independent forms rely on opposing cellular mechanisms or circuits. We propose a testable model of Imp-α2 and nuclear transport roles in brain development and conditioned behavior. Based on our molecular characterization, we suggest that mbmB is hereafter referred to as imp-α2mbmB.
Collapse
Affiliation(s)
- Christine N Serway
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Brian S Dunkelberger
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Las Vegas High School, Las Vegas, NV, USA
| | - Denise Del Padre
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Nicole W C Nolan
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Methodist Estabrook Cancer Center, Omaha, NE, USA
| | - Stephanie Georges
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Stephanie Freer
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Research Square Inc, Nashville, TN, USA
| | - Andrew J Andres
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - J Steven de Belle
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.,Department of Psychological Sciences, University of San Diego, San Diego, CA, USA
| |
Collapse
|
25
|
The NRON complex controls circadian clock function through regulated PER and CRY nuclear translocation. Sci Rep 2019; 9:11883. [PMID: 31417156 PMCID: PMC6695496 DOI: 10.1038/s41598-019-48341-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Post-translational regulation plays a central role in the circadian clock mechanism. However, nucleocytoplasmic translocation of core clock proteins, a key step in circadian timekeeping, is not fully understood. Earlier we found that the NRON scaffolding complex regulates nuclear translocation of NFAT and its signaling. Here, we show that components of the NRON complex also regulate the circadian clock. In peripheral cell clock models, genetic perturbation of the NRON complex affects PER and CRY protein nuclear translocation, dampens amplitude, and alters period length. Further, we show small molecules targeting the NFAT pathway alter nuclear translocation of PER and CRY proteins and impact circadian rhythms in peripheral cells and tissue explants of the master clock in the suprachiasmatic nucleus. Taken together, these studies highlight a key role for the NRON complex in regulating PER/CRY subcellular localization and circadian timekeeping.
Collapse
|
26
|
Tani N, Ikeda T, Aoki Y, Shida A, Oritani S, Ishikawa T. Pathophysiological significance of clock genes BMAL1 and PER2 as erythropoietin-controlling factors in acute blood hemorrhage. Hum Cell 2019; 32:275-284. [PMID: 30941700 DOI: 10.1007/s13577-019-00248-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
This study aimed to characterize the pathophysiology, including possible correlations, of clock gene expression and erythropoietin (EPO) production in the acute stage of blood hemorrhage. Specimens of human cortical tissues (right and left kidneys) and cardiac blood were collected at autopsy from 52 cases following mortality due to acute-stage blood hemorrhage following sharp instrument injury. BMAL1 and PER2 mRNA levels were determined by reverse transcription-polymerase chain reaction; BMAL1 and PER2 protein levels were assessed using immunohistochemistry; BMAL1 protein levels were quantitatively measured by western blotting; and serum EPO levels were measured by chemiluminescent enzyme immunoassay. Separately, a rat model of hemorrhagic conditions was generated and used to confirm the results obtained with autopsy-derived specimens. A positive correlation was observed between BMAL1 protein and serum EPO levels, but not between BMAL1 mRNA levels and serum EPO levels. We also noted that Per2 mRNA expression became elevated in humans who survived for > 3 h after acute hemorrhagic events, with subsequent decreases in serum EPO levels. The rat model showed that even short (30-min) intervals of blood loss yielded increases in both Bmal1 mRNA and serum EPO levels; longer (60-min) intervals resulted in increases in Per2 mRNA expression along with decreases in serum EPO. Thus, the acute-stage human hemorrhage cases and the rat hemorrhage model yielded similar tendencies for clock gene expression and EPO secretion. In conclusion, our results indicated that clock genes are involved in the regulation of EPO production during the early stages of hypoxia/ischemia resulting from the acute hemorrhagic events.
Collapse
Affiliation(s)
- Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan.
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan.
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Yayoi Aoki
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
| | - Alissa Shida
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
| | - Shigeki Oritani
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Asahi-Machi 1-4-3, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| |
Collapse
|
27
|
Lee Y, Lahens NF, Zhang S, Bedont J, Field JM, Sehgal A. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment. PLoS Biol 2019; 17:e3000228. [PMID: 31039152 PMCID: PMC6490878 DOI: 10.1371/journal.pbio.3000228] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Circadian disruption has multiple pathological consequences, but the underlying mechanisms are largely unknown. To address such mechanisms, we subjected transformed cultured cells to chronic circadian desynchrony (CCD), mimicking a chronic jet-lag scheme, and assayed a range of cellular functions. The results indicated a specific circadian clock–dependent increase in cell proliferation. Transcriptome analysis revealed up-regulation of G1/S phase transition genes (myelocytomatosis oncogene cellular homolog [Myc], cyclin D1/3, chromatin licensing and DNA replication factor 1 [Cdt1]), concomitant with increased phosphorylation of the retinoblastoma (RB) protein by cyclin-dependent kinase (CDK) 4/6 and increased G1-S progression. Phospho-RB (Ser807/811) was found to oscillate in a circadian fashion and exhibit phase-shifted rhythms in circadian desynchronized cells. Consistent with circadian regulation, a CDK4/6 inhibitor approved for cancer treatment reduced growth of cultured cells and mouse tumors in a time-of-day–specific manner. Our study identifies a mechanism that underlies effects of circadian disruption on tumor growth and underscores the use of treatment timed to endogenous circadian rhythms. A study of “jet-lagged” cells reveals a specific molecular mechanism regulating cell proliferation that it impacted by circadian disruption, underscoring the importance of administering anti-cancer treatment at a specific time of day. Circadian misalignment caused by altered sleep–wake cycles, shift work, or frequent jet lag increases susceptibility to several disorders, including cancer. However, the mechanisms by which circadian disruption contributes to disease are not well understood, and so we addressed this issue by investigating the molecular, cellular, and biochemical consequences of chronic circadian desynchronization. Our studies using cancer cell or tumor tissue models show that chronic circadian desynchronization induces multiple oncogenic pathways to promote cell proliferation. In particular, chronic circadian desynchronization promotes phosphorylation of the retinoblastoma (RB) protein, thereby favoring G1/S phase cell cycle progression. Consistent with these findings, the antiproliferative activity of a selective inhibitor of the enzyme that phosphorylates RB has time-of-day–specific effects on cancer cells and mouse tumors, but this time dependence is abrogated by chronic jet-lag conditions. These data suggest a circadian regulation of G1/S cell cycle progression and provide an important molecular rationale for time-of-day–specific treatment of cancer patients, also known as chronotherapy.
Collapse
Affiliation(s)
- Yool Lee
- Penn Chronobiology, Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas F. Lahens
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shirley Zhang
- Penn Chronobiology, Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph Bedont
- Penn Chronobiology, Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey M. Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amita Sehgal
- Penn Chronobiology, Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Rosensweig C, Green CB. Periodicity, repression, and the molecular architecture of the mammalian circadian clock. Eur J Neurosci 2018; 51:139-165. [PMID: 30402960 DOI: 10.1111/ejn.14254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
Large molecular machines regulate daily cycles of transcriptional activity and help generate rhythmic behavior. In recent years, structural and biochemical analyses have elucidated a number of principles guiding the interactions of proteins that form the basis of circadian timing. In its simplest form, the circadian clock is composed of a transcription/translation feedback loop. However, this description elides a complicated process of activator recruitment, chromatin decompaction, recruitment of coactivators, expression of repressors, formation of a repressive complex, repression of the activators, and ultimately degradation of the repressors and reinitiation of the cycle. Understanding the core principles underlying the clock requires careful examination of molecular and even atomic level details of these processes. Here, we review major structural and biochemical findings in circadian biology and make the argument that shared protein interfaces within the clockwork are critical for both the generation of rhythmicity and timing of the clock.
Collapse
Affiliation(s)
- Clark Rosensweig
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
29
|
Korge S, Maier B, Brüning F, Ehrhardt L, Korte T, Mann M, Herrmann A, Robles MS, Kramer A. The non-classical nuclear import carrier Transportin 1 modulates circadian rhythms through its effect on PER1 nuclear localization. PLoS Genet 2018; 14:e1007189. [PMID: 29377895 PMCID: PMC5805371 DOI: 10.1371/journal.pgen.1007189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 02/08/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Circadian clocks are molecular timekeeping mechanisms that allow organisms to anticipate daily changes in their environment. The fundamental cellular basis of these clocks is delayed negative feedback gene regulation with PERIOD and CRYPTOCHROME containing protein complexes as main inhibitory elements. For a correct circadian period, it is essential that such clock protein complexes accumulate in the nucleus in a precisely timed manner, a mechanism that is poorly understood. We performed a systematic RNAi-mediated screen in human cells and identified 15 genes associated with the nucleo-cytoplasmic translocation machinery, whose expression is important for circadian clock dynamics. Among them was Transportin 1 (TNPO1), a non-classical nuclear import carrier, whose knockdown and knockout led to short circadian periods. TNPO1 was found in endogenous clock protein complexes and particularly binds to PER1 regulating its (but not PER2's) nuclear localization. While PER1 is also transported to the nucleus by the classical, Importin β-mediated pathway, TNPO1 depletion slowed down PER1 nuclear import rate as revealed by fluorescence recovery after photobleaching (FRAP) experiments. In addition, we found that TNPO1-mediated nuclear import may constitute a novel input pathway of how cellular redox state signals to the clock, since redox stress increases binding of TNPO1 to PER1 and decreases its nuclear localization. Together, our RNAi screen knocking down import carriers (but also export carriers) results in short and long circadian periods indicating that the regulatory pathways that control the timing of clock protein subcellular localization are far more complex than previously assumed. TNPO1 is one of the novel players essential for normal circadian periods and potentially for redox regulation of the clock.
Collapse
Affiliation(s)
- Sandra Korge
- Laboratory of Chronobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Bert Maier
- Laboratory of Chronobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Brüning
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Medical Psychology, LMU Munich, Munich, Germany
| | - Lea Ehrhardt
- Laboratory of Chronobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Korte
- Molecular Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Herrmann
- Molecular Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Maria S. Robles
- Institute of Medical Psychology, LMU Munich, Munich, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Sheng C, Qiu J, He Z, Wang H, Wang Q, Guo Z, Zhu L, Ni Q. Suppression of Kpnβ1 expression inhibits human breast cancer cell proliferation by abrogating nuclear transport of Her2. Oncol Rep 2017; 39:554-564. [PMID: 29251332 PMCID: PMC5783623 DOI: 10.3892/or.2017.6151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Breast cancer (BC) is one of the most fatal diseases and poses critical health problems worldwide. However, its mechanisms remain unclear. Consequently, there is an urgency to investigate the mechanisms involved in BC initiation and progression and identify novel therapeutics for its prevention and treatment. In this study, we identified karyopherin β-1 (Kpnβ1) as a possible novel therapeutic target for BC. Western blotting was used to evaluate the expression of Kpnβ1 in four pairs of tumorous and adjacent non-tumorous tissues. The results revealed that the protein level of Kpnβ1 was higher in the cancer samples compared with those in the corresponding normal samples. Immunohistochemistry was performed on 140 BC cases and indicated that Kpnβ1 was significantly associated with clinical pathological variables. Kaplan-Meier curve revealed that high expression of Kpnβ1 was related to poor BC patient prognosis. A starvation and re-feeding assay was used to imitate the cell cycle using the SKBR-3 cell line, indicating that Kpnβ1 plays a critical role in cell proliferation. The Cell Counting Kit-8 assay revealed that SKBR-3 cells treated with Kpnβ1-siRNA (siKpnβ1) grew more slowly than the control cells, while flow cytometry revealed that low-Kpnβ1 expressing SKBR-3 cells exhibited increased BC cell apoptosis. Furthermore, the interaction between Kpnβ1 and Her2 was clearly observed by immunoprecipitation, indicating that Kpnβ1-knockdown abrogated nuclear transport of Her2. In summary, our findings revealed that Kpnβ1 is involved in the progression of BC and may be a useful therapeutic target.
Collapse
Affiliation(s)
- Chenyi Sheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Qiu
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zengya Guo
- Department of General Surgery, Tongzhou People's Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Lianxin Zhu
- Department of Surgical Oncology, Lu'an People's Hospital Tumor Center, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237000, P.R. China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
31
|
Sarayloo E, Tardu M, Unlu YS, Simsek S, Cevahir G, Erkey C, Kavakli IH. Understanding lipid metabolism in high-lipid-producing Chlorella vulgaris mutants at the genome-wide level. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Zhang Z, Zhu J, Dong Y, Xu H, Jiang T, Li W, Xu D, Shi L, Yu J, Zhang J, Du J. Global transcriptome‑wide analysis of the function of GDDR in acute gastric lesions. Mol Med Rep 2017; 16:8673-8684. [PMID: 28990076 PMCID: PMC5779945 DOI: 10.3892/mmr.2017.7687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Acute gastric lesions induced by stress are frequent occurrences in medical establishments. The gastric dramatic downrelated gene (GDDR) is a secreted protein, which is abundantly expressed in normal gastric epithelia and is significantly decreased in gastric cancer. In our previous study, it was found that GDDR aggravated stress-induced acute gastric lesions. However, the role of GDDR in acute gastric lesions remains to be fully elucidated. In the present study, RNA sequencing was performed in order to examine the gene expression profile regulated by GDDR in acute gastric lesions. The dataset comprised four stomach samples from wild-type (WT) mice and four stomach samples from GDDR-knockout mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to analyze the differentially-expressed genes (DEGs). Weighted correlation network analysis was used to identify clusters of highly correlated genes. Cytoscape was used to construct a protein-protein interaction network (PPI) of the DEGs. Based on the GO analysis, the upregulated DEGs were distinctly enriched in muscle contraction and response to wounding; and the downregulated DEGs were significantly enriched in the regulation of nitrogen compound metabolic process and regulation of RNA metabolic process. The results of the KEGG pathway analysis showed that the upregulated DEGs were enriched in ECM-receptor interaction and the signaling pathway of cGMP-PKG, and the downregulated DEGs were enriched in the renin-angiotensin system and glycerolipid metabolism. The co-expression network revealed a group of genes, which were associated with increased wound healing in the WT mice. Significant pathways were identified through the PPI network, including negative regulation of the signaling pathway of glucocorticoid receptor, regulation of cellular stress response, and regulation of hormone secretion. In conclusion, the present study improves current understanding of the molecular mechanism underlying acute gastric lesions and may assist in the treatment of gastric lesions.
Collapse
Affiliation(s)
- Ziqiang Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Zhu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yuanqiang Dong
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hongyuan Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Tao Jiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Wenshuai Li
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Diannan Xu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Liubin Shi
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianghong Yu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianjun Du
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
33
|
Reprint of: Importins in the maintenance and lineage commitment of ES cells. Neurochem Int 2017; 106:14-23. [PMID: 28550879 DOI: 10.1016/j.neuint.2017.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
Abstract
The nucleus of a eukaryotic cell is separated from the cytoplasm by a nuclear envelope, and nuclear pores within the envelope facilitate nucleocytoplasmic transport and the exchange of information. Gene regulation is a key component of biological activity regulation in the cell. Transcription factors control the expression levels of various genes that are necessary for the maintenance or conversion of cellular states during animal development. Because transcription factor activities determine the extent of transcription of target genes, the number of active transcription factors must be tightly regulated. In this regard, the nuclear translocation of a transcription factor is an important determinant of its activity. Therefore, it is becoming clear that the nucleocytoplasmic transport machinery is involved in cell differentiation and organism development. This review examines the regulation of transcription factors by the nucleocytoplasmic transport machinery in ES cells.
Collapse
|
34
|
Mendoza-Viveros L, Bouchard-Cannon P, Hegazi S, Cheng AH, Pastore S, Cheng HYM. Molecular modulators of the circadian clock: lessons from flies and mice. Cell Mol Life Sci 2017; 74:1035-1059. [PMID: 27689221 PMCID: PMC11107503 DOI: 10.1007/s00018-016-2378-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/03/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Circadian timekeeping is a ubiquitous mechanism that enables organisms to maintain temporal coordination between internal biological processes and time of the local environment. The molecular basis of circadian rhythms lies in a set of transcription-translation feedback loops (TTFLs) that drives the rhythmic transcription of core clock genes, whose level and phase of expression serve as the marker of circadian time. However, it has become increasingly evident that additional regulatory mechanisms impinge upon the TTFLs to govern the properties and behavior of the circadian clock. Such mechanisms include changes in chromatin architecture, interactions with other transcription factor networks, post-transcriptional control by RNA modifications, alternative splicing and microRNAs, and post-translational regulation of subcellular trafficking and protein degradation. In this review, we will summarize the current knowledge of circadian clock regulation-from transcriptional to post-translational-drawing from literature pertaining to the Drosophila and murine circadian systems.
Collapse
Affiliation(s)
- Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Pascale Bouchard-Cannon
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Sara Hegazi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Arthur H Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Stephen Pastore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
35
|
Importins in the maintenance and lineage commitment of ES cells. Neurochem Int 2017; 105:32-41. [PMID: 28163061 DOI: 10.1016/j.neuint.2017.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
Abstract
The nucleus of a eukaryotic cell is separated from the cytoplasm by a nuclear envelope, and nuclear pores within the envelope facilitate nucleocytoplasmic transport and the exchange of information. Gene regulation is a key component of biological activity regulation in the cell. Transcription factors control the expression levels of various genes that are necessary for the maintenance or conversion of cellular states during animal development. Because transcription factor activities determine the extent of transcription of target genes, the number of active transcription factors must be tightly regulated. In this regard, the nuclear translocation of a transcription factor is an important determinant of its activity. Therefore, it is becoming clear that the nucleocytoplasmic transport machinery is involved in cell differentiation and organism development. This review examines the regulation of transcription factors by the nucleocytoplasmic transport machinery in ES cells.
Collapse
|
36
|
Liu N, Zhang EE. Phosphorylation Regulating the Ratio of Intracellular CRY1 Protein Determines the Circadian Period. Front Neurol 2016; 7:159. [PMID: 27721804 PMCID: PMC5033960 DOI: 10.3389/fneur.2016.00159] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/12/2016] [Indexed: 12/02/2022] Open
Abstract
The core circadian oscillator in mammals is composed of transcription/translation feedback loop, in which cryptochrome (CRY) proteins play critical roles as repressors of their own gene expression. Although post-translational modifications, such as phosphorylation of CRY1, are crucial for circadian rhythm, little is known about how phosphorylated CRY1 contributes to the molecular clockwork. To address this, we created a series of CRY1 mutants with single amino acid substitutions at potential phosphorylation sites and performed a cell-based, phenotype-rescuing screen to identify mutants with aberrant rhythmicity in CRY-deficient cells. We report 10 mutants with an abnormal circadian period length, including long period (S280D and S588D), short period (S158D, S247D, T249D, Y266D, Y273D, and Y432D), and arrhythmicity (S71D and S404D). When expressing mutated CRY1 in HEK293 cells, we show that most of the mutants (S71D, S247D, T249D, Y266D, Y273D, and Y432D) exhibited reduction in repression activity compared with wild-type (WT) CRY1, whereas other mutants had no obvious change. Correspondingly, these mutants also showed differences in protein stability and cellular localization. We show that most of mutants are more stable than WT, except S158D, T249D, and S280D. Although the characteristics of the 10 mutants are various, they all impair the ratio balance of intracellular CRY1 protein. Thus, we conclude that the mutations caused distinct phenotypes most likely through the ratio of functional CRY1 protein in cells.
Collapse
Affiliation(s)
- Na Liu
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | | |
Collapse
|
37
|
Li Y, Xiong W, Zhang EE. The ratio of intracellular CRY proteins determines the clock period length. Biochem Biophys Res Commun 2016; 472:531-8. [PMID: 26966073 DOI: 10.1016/j.bbrc.2016.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
Although a deficiency in CRY1 or CRY2 correlates with a shorter or longer circadian period, the regulation of CRY proteins in the circadian period has not been well studied. In this study, we found that both CRY1 and CRY2 were able to rescue oscillation in CRY null cells and that they displayed different periods. Furthermore, we demonstrated that protein nuclear import rates, not protein stability, regulate the period-length at the cellular level. Co-transfection of CRY1 and CRY2 in various ratios in the same cells gives rise to the predicted period length in a dose-dependent manner. Given the distinct characteristics of the C-terminal tails of the CRY1 and CRY2 proteins, our study addresses a long-standing hypothesis that the ratio of these two CRY molecules affects the clock period.
Collapse
Affiliation(s)
- Yang Li
- College of Biological Sciences, China Agricultural University, Beijing 100083, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Xiong
- National Institute of Biological Sciences, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|