1
|
Gąsienica P, Toch K, Zając-Garlacz KS, Labocha-Derkowska M. Genetic Background and Gene Essentiality. Genes (Basel) 2025; 16:570. [PMID: 40428392 PMCID: PMC12111165 DOI: 10.3390/genes16050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Essential genes are those required for an organism's survival and reproduction. However, gene essentiality is not absolute; it can be highly context-dependent, varying across genetic and environmental conditions. Most previous studies have assessed gene essentiality in a single genetic background, limiting our understanding of its variability. The objective of this study was to investigate how genetic background influences gene essentiality in the multicellular model organism Caenorhabditis elegans. METHODS We examined gene essentiality in three genetically distinct C. elegans strains: N2, LKC34, and MY16. A total of 294 genes were selected for RNA interference (RNAi) knockdown: 101 previously classified as essential, 175 as nonessential and 18 as conditional (condition-dependent essentiality). Each gene-strain combination was tested in multiple biological and technical replicates, and rigorous quality control and statistical analyses were used to identify strain-specific effects. RESULTS Our results demonstrate substantial variation in gene essentiality across genetic backgrounds. Among the 101 genes previously identified as essential in the N2 strain, only 56% were consistently essential in all three strains. We identified 23 genes that were newly essential across all strains, 13 genes essential in two strains, and 9 genes essential in only one strain. These results reveal that a significant proportion of essential genes exhibit strain-dependent essentiality. CONCLUSIONS This study underscores the importance of genetic context in determining gene essentiality. Our findings suggest that relying on a single genetic background, such as N2, may lead to an incomplete or misleading view of gene essentiality. Understanding context-dependent gene essentiality has important implications for functional genomics, evolutionary biology, and potentially for translational research where genetic background can modulate phenotypic outcomes.
Collapse
Affiliation(s)
| | - Katarzyna Toch
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland (K.S.Z.-G.); (M.L.-D.)
| | | | | |
Collapse
|
2
|
Zdraljevic S, Walter-McNeill L, Lee A, Bloom J, Kruglyak L. Faster genetic mapping of complex traits in C. elegans. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001544. [PMID: 40342920 PMCID: PMC12059802 DOI: 10.17912/micropub.biology.001544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/11/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Caenorhabditis elegans is a tractable model system that enables the identification of genetic determinants that underlie phenotypic variation. Over the years, new approaches have been developed to lower the cost of and expedite genetic mapping in this model system. The ce X-QTL approach uses the fog-2 ( q71 ) allele to create obligate outcrossing recombinant populations for selection and sequencing experiments. Here, we tested whether the fog-2 ( q71 ) allele is essential to the ce X-QTL approach by comparing crosses between the N2 and XZ1516 strains using either fog-2 ( q71 ) or fog-2 RNAi knockdown to facilitate outcrossing. The genome-wide allele frequencies of the bulk recombinant populations derived from these two methods were largely similar. These results demonstrate that fog-2 RNAi is a viable alternative for rapidly generating recombinant populations, allowing greater flexibility in experimental design.
Collapse
Affiliation(s)
- Stefan Zdraljevic
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Laura Walter-McNeill
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex Lee
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Joshua Bloom
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
3
|
Zhang G, Félix MA, Andersen EC. Transposon-mediated genic rearrangements underlie variation in small RNA pathways. SCIENCE ADVANCES 2024; 10:eado9461. [PMID: 39303031 DOI: 10.1126/sciadv.ado9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
Transposable elements (TEs) can alter host gene structure and expression, whereas host organisms develop mechanisms to repress TE activities. In the nematode Caenorhabditis elegans, a small interfering RNA pathway dependent on the helicase ERI-6/7 primarily silences retrotransposons and recent genes of likely viral origin. By studying gene expression variation among wild C. elegans strains, we found that structural variants and transposon remnants likely underlie expression variation in eri-6/7 and the pathway targets. We further found that multiple insertions of the DNA transposons, Polintons, reshuffled the eri-6/7 locus and induced inversion of eri-6 in some wild strains. In the inverted configuration, gene function was previously shown to be repaired by unusual trans-splicing mediated by direct repeats. We identified that these direct repeats originated from terminal inverted repeats of Polintons. Our findings highlight the role of host-transposon interactions in driving rapid host genome diversification among natural populations and shed light on evolutionary novelty in genes and splicing mechanisms.
Collapse
Affiliation(s)
- Gaotian Zhang
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Erik C Andersen
- Biology Department, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Schmidlin K, Apodaca S, Newell D, Sastokas A, Kinsler G, Geiler-Samerotte K. Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs. eLife 2024; 13:RP94144. [PMID: 39255191 PMCID: PMC11386965 DOI: 10.7554/elife.94144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.
Collapse
Affiliation(s)
- Kara Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Sam Apodaca
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Daphne Newell
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Alexander Sastokas
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Grant Kinsler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
| | - Kerry Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
5
|
Schmidlin, Apodaca, Newell, Sastokas, Kinsler, Geiler-Samerotte. Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562616. [PMID: 37905147 PMCID: PMC10614906 DOI: 10.1101/2023.10.17.562616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into 6 classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.
Collapse
Affiliation(s)
- Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Apodaca
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Newell
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Sastokas
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Kinsler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| |
Collapse
|
6
|
Hale JJ, Matsui T, Goldstein I, Mullis MN, Roy KR, Ville CN, Miller D, Wang C, Reynolds T, Steinmetz LM, Levy SF, Ehrenreich IM. Genome-scale analysis of interactions between genetic perturbations and natural variation. Nat Commun 2024; 15:4234. [PMID: 38762544 PMCID: PMC11102447 DOI: 10.1038/s41467-024-48626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
Interactions between genetic perturbations and segregating loci can cause perturbations to show different phenotypic effects across genetically distinct individuals. To study these interactions on a genome scale in many individuals, we used combinatorial DNA barcode sequencing to measure the fitness effects of 8046 CRISPRi perturbations targeting 1721 distinct genes in 169 yeast cross progeny (or segregants). We identified 460 genes whose perturbation has different effects across segregants. Several factors caused perturbations to show variable effects, including baseline segregant fitness, the mean effect of a perturbation across segregants, and interacting loci. We mapped 234 interacting loci and found four hub loci that interact with many different perturbations. Perturbations that interact with a given hub exhibit similar epistatic relationships with the hub and show enrichment for cellular processes that may mediate these interactions. These results suggest that an individual's response to perturbations is shaped by a network of perturbation-locus interactions that cannot be measured by approaches that examine perturbations or natural variation alone.
Collapse
Affiliation(s)
- Joseph J Hale
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Takeshi Matsui
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ilan Goldstein
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Martin N Mullis
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kevin R Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher Ne Ville
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Darach Miller
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Charley Wang
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Trevor Reynolds
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Sasha F Levy
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
- BacStitch DNA, Los Altos, CA, USA.
| | - Ian M Ehrenreich
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
7
|
Hale JJ, Matsui T, Goldstein I, Mullis MN, Roy KR, Ville CN, Miller D, Wang C, Reynolds T, Steinmetz LM, Levy SF, Ehrenreich IM. Genome-scale analysis of interactions between genetic perturbations and natural variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.06.539663. [PMID: 38293072 PMCID: PMC10827069 DOI: 10.1101/2023.05.06.539663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Interactions between genetic perturbations and segregating loci can cause perturbations to show different phenotypic effects across genetically distinct individuals. To study these interactions on a genome scale in many individuals, we used combinatorial DNA barcode sequencing to measure the fitness effects of 7,700 CRISPRi perturbations targeting 1,712 distinct genes in 169 yeast cross progeny (or segregants). We identified 460 genes whose perturbation has different effects across segregants. Several factors caused perturbations to show variable effects, including baseline segregant fitness, the mean effect of a perturbation across segregants, and interacting loci. We mapped 234 interacting loci and found four hub loci that interact with many different perturbations. Perturbations that interact with a given hub exhibit similar epistatic relationships with the hub and show enrichment for cellular processes that may mediate these interactions. These results suggest that an individual's response to perturbations is shaped by a network of perturbation-locus interactions that cannot be measured by approaches that examine perturbations or natural variation alone.
Collapse
Affiliation(s)
- Joseph J. Hale
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Takeshi Matsui
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ilan Goldstein
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin N. Mullis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kevin R. Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Chris Ne Ville
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Darach Miller
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Charley Wang
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Trevor Reynolds
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lars M. Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Sasha F. Levy
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Present address: BacStitch DNA, Los Altos, California, USA
| | - Ian M. Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Chou HT, Valencia F, Alexander JC, Bell AD, Deb D, Pollard DA, Paaby AB. Diversification of small RNA pathways underlies germline RNA interference incompetence in wild Caenorhabditis elegans strains. Genetics 2024; 226:iyad191. [PMID: 37865119 PMCID: PMC10763538 DOI: 10.1093/genetics/iyad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 10/23/2023] Open
Abstract
The discovery that experimental delivery of dsRNA can induce gene silencing at target genes revolutionized genetics research, by both uncovering essential biological processes and creating new tools for developmental geneticists. However, the efficacy of exogenous RNA interference (RNAi) varies dramatically within the Caenorhabditis elegans natural population, raising questions about our understanding of RNAi in the lab relative to its activity and significance in nature. Here, we investigate why some wild strains fail to mount a robust RNAi response to germline targets. We observe diversity in mechanism: in some strains, the response is stochastic, either on or off among individuals, while in others, the response is consistent but delayed. Increased activity of the Argonaute PPW-1, which is required for germline RNAi in the laboratory strain N2, rescues the response in some strains but dampens it further in others. Among wild strains, genes known to mediate RNAi exhibited very high expression variation relative to other genes in the genome as well as allelic divergence and strain-specific instances of pseudogenization at the sequence level. Our results demonstrate functional diversification in the small RNA pathways in C. elegans and suggest that RNAi processes are evolving rapidly and dynamically in nature.
Collapse
Affiliation(s)
- Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jacqueline C Alexander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Diptodip Deb
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Janelia Research Campus, Ashburn, VA 20147, USA
| | - Daniel A Pollard
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Annalise B Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Tsouris A, Fournier T, Friedrich A, Hou J, Dunham MJ, Schacherer J. Species-wide survey of the expressivity and complexity spectrum of traits in yeast. PLoS Genet 2024; 20:e1011119. [PMID: 38236897 PMCID: PMC10826966 DOI: 10.1371/journal.pgen.1011119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/30/2024] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Assessing the complexity and expressivity of traits at the species level is an essential first step to better dissect the genotype-phenotype relationship. As trait complexity behaves dynamically, the classic dichotomy between monogenic and complex traits is too simplistic. However, no systematic assessment of this complexity spectrum has been carried out on a population scale to date. In this context, we generated a large diallel hybrid panel composed of 190 unique hybrids coming from 20 natural isolates representative of the S. cerevisiae genetic diversity. For each of these hybrids, a large progeny of 160 individuals was obtained, leading to a total of 30,400 offspring individuals. Their mitotic growth was evaluated on 38 conditions inducing various cellular stresses. We developed a classification algorithm to analyze the phenotypic distributions of offspring and assess the trait complexity. We clearly found that traits are mainly complex at the population level. On average, we found that 91.2% of cross/trait combinations exhibit high complexity, while monogenic and oligogenic cases accounted for only 4.1% and 4.7%, respectively. However, the complexity spectrum is very dynamic, trait specific and tightly related to genetic backgrounds. Overall, our study provided greater insight into trait complexity as well as the underlying genetic basis of its spectrum in a natural population.
Collapse
Affiliation(s)
- Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Téo Fournier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Jing Hou
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Maitreya J. Dunham
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
10
|
Frézal L, Saglio M, Zhang G, Noble L, Richaud A, Félix MA. Genome-wide association and environmental suppression of the mortal germline phenotype of wild C. elegans. EMBO Rep 2023; 24:e58116. [PMID: 37983674 PMCID: PMC10702804 DOI: 10.15252/embr.202358116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The animal germline lineage needs to be maintained along generations. However, some Caenorhabditis elegans wild isolates display a mortal germline phenotype, leading to sterility after several generations at 25°C. Using a genome-wide association approach, we detect a significant peak on chromosome III around 5 Mb, confirmed by introgressions. Thus, a seemingly deleterious genotype is maintained at intermediate frequency in the species. Environmental rescue is a likely explanation, and indeed associated bacteria and microsporidia suppress the phenotype of wild isolates as well as mutants in small RNA inheritance (nrde-2) and histone modifications (set-2). Escherichia coli strains of the K-12 lineage suppress the phenotype compared to B strains. By shifting a wild strain from E. coli K-12 to E. coli B, we find that memory of the suppressing condition is maintained over several generations. Thus, the mortal germline phenotype of wild C. elegans is in part revealed by laboratory conditions and may represent variation in epigenetic inheritance and environmental interactions. This study also points to the importance of non-genetic memory in the face of environmental variation.
Collapse
Affiliation(s)
- Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie Saglio
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Gaotian Zhang
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Luke Noble
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Aurélien Richaud
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|
11
|
Bell AD, Chou HT, Valencia F, Paaby AB. Beyond the reference: gene expression variation and transcriptional response to RNA interference in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2023; 13:jkad112. [PMID: 37221008 PMCID: PMC10411595 DOI: 10.1093/g3journal/jkad112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
Though natural systems harbor genetic and phenotypic variation, research in model organisms is often restricted to a reference strain. Focusing on a reference strain yields a great depth of knowledge but potentially at the cost of breadth of understanding. Furthermore, tools developed in the reference context may introduce bias when applied to other strains, posing challenges to defining the scope of variation within model systems. Here, we evaluate how genetic differences among 5 wild Caenorhabditis elegans strains affect gene expression and its quantification, in general and after induction of the RNA interference (RNAi) response. Across strains, 34% of genes were differentially expressed in the control condition, including 411 genes that were not expressed at all in at least 1 strain; 49 of these were unexpressed in reference strain N2. Reference genome mapping bias caused limited concern: despite hyperdiverse hotspots throughout the genome, 92% of variably expressed genes were robust to mapping issues. The transcriptional response to RNAi was highly strain- and target-gene-specific and did not correlate with RNAi efficiency, as the 2 RNAi-insensitive strains showed more differentially expressed genes following RNAi treatment than the RNAi-sensitive reference strain. We conclude that gene expression, generally and in response to RNAi, differs across C. elegans strains such that the choice of strain may meaningfully influence scientific inferences. Finally, we introduce a resource for querying gene expression variation in this dataset at https://wildworm.biosci.gatech.edu/rnai/.
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| | - Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| | - Annalise B Paaby
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Sun YH, Wu YL, Liao BY. Phenotypic heterogeneity in human genetic diseases: ultrasensitivity-mediated threshold effects as a unifying molecular mechanism. J Biomed Sci 2023; 30:58. [PMID: 37525275 PMCID: PMC10388531 DOI: 10.1186/s12929-023-00959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Phenotypic heterogeneity is very common in genetic systems and in human diseases and has important consequences for disease diagnosis and treatment. In addition to the many genetic and non-genetic (e.g., epigenetic, environmental) factors reported to account for part of the heterogeneity, we stress the importance of stochastic fluctuation and regulatory network topology in contributing to phenotypic heterogeneity. We argue that a threshold effect is a unifying principle to explain the phenomenon; that ultrasensitivity is the molecular mechanism for this threshold effect; and discuss the three conditions for phenotypic heterogeneity to occur. We suggest that threshold effects occur not only at the cellular level, but also at the organ level. We stress the importance of context-dependence and its relationship to pleiotropy and edgetic mutations. Based on this model, we provide practical strategies to study human genetic diseases. By understanding the network mechanism for ultrasensitivity and identifying the critical factor, we may manipulate the weak spot to gently nudge the system from an ultrasensitive state to a stable non-disease state. Our analysis provides a new insight into the prevention and treatment of genetic diseases.
Collapse
Affiliation(s)
- Y Henry Sun
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | - Yueh-Lin Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wei-Gong Memorial Hospital, Miaoli, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institute, Zhunan, Miaoli, Taiwan
| |
Collapse
|
13
|
Fausett SR, Sandjak A, Billard B, Braendle C. Higher-order epistasis shapes natural variation in germ stem cell niche activity. Nat Commun 2023; 14:2824. [PMID: 37198172 DOI: 10.1038/s41467-023-38527-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
To study how natural allelic variation explains quantitative developmental system variation, we characterized natural differences in germ stem cell niche activity, measured as progenitor zone (PZ) size, between two Caenorhabditis elegans isolates. Linkage mapping yielded candidate loci on chromosomes II and V, and we found that the isolate with a smaller PZ size harbours a 148 bp promoter deletion in the Notch ligand, lag-2/Delta, a central signal promoting germ stem cell fate. As predicted, introducing this deletion into the isolate with a large PZ resulted in a smaller PZ size. Unexpectedly, restoring the deleted ancestral sequence in the isolate with a smaller PZ did not increase-but instead further reduced-PZ size. These seemingly contradictory phenotypic effects are explained by epistatic interactions between the lag-2/Delta promoter, the chromosome II locus, and additional background loci. These results provide first insights into the quantitative genetic architecture regulating an animal stem cell system.
Collapse
Affiliation(s)
- Sarah R Fausett
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France.
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.
| | - Asma Sandjak
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | | | |
Collapse
|
14
|
Bell AD, Chou HT, Paaby AB. Beyond the reference: gene expression variation and transcriptional response to RNAi in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533964. [PMID: 36993640 PMCID: PMC10055391 DOI: 10.1101/2023.03.24.533964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A universal feature of living systems is that natural variation in genotype underpins variation in phenotype. Yet, research in model organisms is often constrained to a single genetic background, the reference strain. Further, genomic studies that do evaluate wild strains typically rely on the reference strain genome for read alignment, leading to the possibility of biased inferences based on incomplete or inaccurate mapping; the extent of reference bias can be difficult to quantify. As an intermediary between genome and organismal traits, gene expression is well positioned to describe natural variability across genotypes generally and in the context of environmental responses, which can represent complex adaptive phenotypes. C. elegans sits at the forefront of investigation into small-RNA gene regulatory mechanisms, or RNA interference (RNAi), and wild strains exhibit natural variation in RNAi competency following environmental triggers. Here, we examine how genetic differences among five wild strains affect the C. elegans transcriptome in general and after inducing RNAi responses to two germline target genes. Approximately 34% of genes were differentially expressed across strains; 411 genes were not expressed at all in at least one strain despite robust expression in others, including 49 genes not expressed in reference strain N2. Despite the presence of hyper-diverse hotspots throughout the C. elegans genome, reference mapping bias was of limited concern: over 92% of variably expressed genes were robust to mapping issues. Overall, the transcriptional response to RNAi was strongly strain-specific and highly specific to the target gene, and the laboratory strain N2 was not representative of the other strains. Moreover, the transcriptional response to RNAi was not correlated with RNAi phenotypic penetrance; the two germline RNAi incompetent strains exhibited substantial differential gene expression following RNAi treatment, indicating an RNAi response despite failure to reduce expression of the target gene. We conclude that gene expression, both generally and in response to RNAi, differs across C. elegans strains such that choice of strain may meaningfully influence scientific conclusions. To provide a public, easily accessible resource for querying gene expression variation in this dataset, we introduce an interactive website at https://wildworm.biosci.gatech.edu/rnai/ .
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Annalise B. Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
15
|
Loss-of-function mutation survey revealed that genes with background-dependent fitness are rare and functionally related in yeast. Proc Natl Acad Sci U S A 2022; 119:e2204206119. [PMID: 36067306 PMCID: PMC9478683 DOI: 10.1073/pnas.2204206119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In different individuals, the same mutation can lead to different phenotypes due to genetic background effects. This is commonly observed in various systems, including many human diseases. While isolated examples of such background effects have been observed, a systematic view across a large number of individuals is still lacking. Here, we surveyed genetic background effects associated with gene loss-of-function mutations across a population of natural isolates of the yeast Saccharomyces cerevisiae. We found that ∼15% of genes can display a background-dependent fitness change. Genes related to mitochondrial functions are significantly overrepresented, and showed reversed patterns of fitness gain or loss with genes involved in transcription and chromatin remodeling as well as in nuclear–cytoplasmic transport, suggesting a potential functional rewiring. In natural populations, the same mutation can lead to different phenotypic outcomes due to the genetic variation that exists among individuals. Such genetic background effects are commonly observed, including in the context of many human diseases. However, systematic characterization of these effects at the species level is still lacking to date. Here, we sought to comprehensively survey background-dependent traits associated with gene loss-of-function (LoF) mutations in 39 natural isolates of Saccharomyces cerevisiae using a transposon saturation strategy. By analyzing the modeled fitness variability of a total of 4,469 genes, we found that 15% of them, when impacted by a LoF mutation, exhibited a significant gain- or loss-of-fitness phenotype in certain natural isolates compared with the reference strain S288C. Out of these 632 genes with predicted background-dependent fitness effects, around 2/3 impact multiple backgrounds with a gradient of predicted fitness change while 1/3 are specific to a single genetic background. Genes related to mitochondrial function are significantly overrepresented in the set of genes showing a continuous variation and display a potential functional rewiring with other genes involved in transcription and chromatin remodeling as well as in nuclear–cytoplasmic transport. Such rewiring effects are likely modulated by both the genetic background and the environment. While background-specific cases are rare and span diverse cellular processes, they can be functionally related at the individual level. All genes with background-dependent fitness effects tend to have an intermediate connectivity in the global genetic interaction network and have shown relaxed selection pressure at the population level, highlighting their potential evolutionary characteristics.
Collapse
|
16
|
Kaul S, Chou HT, Charles S, Aubry G, Lu H, Paaby AB. Single-molecule FISH in C. elegans embryos reveals early embryonic expression dynamics of par-2 , lgl-1 and chin-1 and possible differences between hyper-diverged strains. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000609. [PMID: 35903776 PMCID: PMC9315406 DOI: 10.17912/micropub.biology.000609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Wild C. elegans strains harbor natural variation in developmental pathways, but investigating these differences requires precise and well-powered phenotyping methods. Here we employ a microfluidics platform for single-molecule FISH to simultaneously visualize the transcripts of three genes in embryos of two distinct strains. We capture transcripts at high resolution by developmental stage in over one hundred embryos of each strain and observe wide-scale conservation of expression, but subtle differences in par-2 and chin-1 abundance and rate of change. As both genes reside in a genomic interval of hyper-divergence, these results may reflect consequences of pathway evolution over long timescales.
Collapse
Affiliation(s)
- Samiksha Kaul
- School of Biological Sciences, Georgia Institute of Technology
| | - Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology
| | - Seleipiri Charles
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
| | - Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology
| | | |
Collapse
|
17
|
Sun S, Roth C, Floyd Averette A, Magwene PM, Heitman J. Epistatic genetic interactions govern morphogenesis during sexual reproduction and infection in a global human fungal pathogen. Proc Natl Acad Sci U S A 2022; 119:e2122293119. [PMID: 35169080 PMCID: PMC8872808 DOI: 10.1073/pnas.2122293119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Cullen Roth
- Department of Biology, Duke University, Durham, NC 27708
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
18
|
Schell R, Hale JJ, Mullis MN, Matsui T, Foree R, Ehrenreich IM. Genetic basis of a spontaneous mutation’s expressivity. Genetics 2022; 220:6515283. [PMID: 35078232 PMCID: PMC8893249 DOI: 10.1093/genetics/iyac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Genetic background often influences the phenotypic consequences of mutations, resulting in variable expressivity. How standing genetic variants collectively cause this phenomenon is not fully understood. Here, we comprehensively identify loci in a budding yeast cross that impact the growth of individuals carrying a spontaneous missense mutation in the nuclear-encoded mitochondrial ribosomal gene MRP20. Initial results suggested that a single large effect locus influences the mutation’s expressivity, with one allele causing inviability in mutants. However, further experiments revealed this simplicity was an illusion. In fact, many additional loci shape the mutation’s expressivity, collectively leading to a wide spectrum of mutational responses. These results exemplify how complex combinations of alleles can produce a diversity of qualitative and quantitative responses to the same mutation.
Collapse
Affiliation(s)
- Rachel Schell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph J Hale
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin N Mullis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Takeshi Matsui
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan Foree
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
19
|
Andersen EC, Rockman MV. Natural genetic variation as a tool for discovery in Caenorhabditis nematodes. Genetics 2022; 220:iyab156. [PMID: 35134197 PMCID: PMC8733454 DOI: 10.1093/genetics/iyab156] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/11/2021] [Indexed: 11/12/2022] Open
Abstract
Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we describe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic variation. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect phenotypic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model animal contribute to its exceptional value as a tool to understand natural phenotypic variation.
Collapse
Affiliation(s)
- Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
20
|
Koneru SL, Hintze M, Katsanos D, Barkoulas M. Cryptic genetic variation in a heat shock protein modifies the outcome of a mutation affecting epidermal stem cell development in C. elegans. Nat Commun 2021; 12:3263. [PMID: 34059684 PMCID: PMC8166903 DOI: 10.1038/s41467-021-23567-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
A fundamental question in medical genetics is how the genetic background modifies the phenotypic outcome of mutations. We address this question by focusing on the seam cells, which display stem cell properties in the epidermis of Caenorhabditis elegans. We demonstrate that a putative null mutation in the GATA transcription factor egl-18, which is involved in seam cell fate maintenance, is more tolerated in the CB4856 isolate from Hawaii than the lab reference strain N2 from Bristol. We identify multiple quantitative trait loci (QTLs) underlying the difference in phenotype expressivity between the two isolates. These QTLs reveal cryptic genetic variation that reinforces seam cell fate through potentiating Wnt signalling. Within one QTL region, a single amino acid deletion in the heat shock protein HSP-110 in CB4856 is sufficient to modify Wnt signalling and seam cell development, highlighting that natural variation in conserved heat shock proteins can shape phenotype expressivity. How the genetic background modifies the expression of mutations is a key question that is addressed in this study in the context of seam cell development in Caenorhabditis elegans isolates. One amino acid deletion in a conserved heat shock protein is sufficient to shape phenotype expressivity upon mutation of a GATA transcription factor.
Collapse
Affiliation(s)
- Sneha L Koneru
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Mark Hintze
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Dimitris Katsanos
- Department of Life Sciences, Imperial College, London, United Kingdom
| | | |
Collapse
|
21
|
Goldstein I, Ehrenreich IM. The complex role of genetic background in shaping the effects of spontaneous and induced mutations. Yeast 2020; 38:187-196. [PMID: 33125810 PMCID: PMC7984271 DOI: 10.1002/yea.3530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 12/27/2022] Open
Abstract
Spontaneous and induced mutations frequently show different phenotypic effects across genetically distinct individuals. It is generally appreciated that these background effects mainly result from genetic interactions between the mutations and segregating loci. However, the architectures and molecular bases of these genetic interactions are not well understood. Recent work in a number of model organisms has tried to advance knowledge of background effects both by using large‐scale screens to find mutations that exhibit this phenomenon and by identifying the specific loci that are involved. Here, we review this body of research, emphasizing in particular the insights it provides into both the prevalence of background effects across different mutations and the mechanisms that cause these background effects. A large fraction of mutations show different effects in distinct individuals. These background effects are mainly caused by epistasis with segregating loci. Mapping studies show a diversity of genetic architectures can be involved. Genetically complex changes in gene expression are often, but not always, causative.
Collapse
Affiliation(s)
- Ilan Goldstein
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, 90089-2910, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, 90089-2910, USA
| |
Collapse
|
22
|
Kinsler G, Geiler-Samerotte K, Petrov DA. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation. eLife 2020; 9:e61271. [PMID: 33263280 PMCID: PMC7880691 DOI: 10.7554/elife.61271] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Building a genotype-phenotype-fitness map of adaptation is a central goal in evolutionary biology. It is difficult even when adaptive mutations are known because it is hard to enumerate which phenotypes make these mutations adaptive. We address this problem by first quantifying how the fitness of hundreds of adaptive yeast mutants responds to subtle environmental shifts. We then model the number of phenotypes these mutations collectively influence by decomposing these patterns of fitness variation. We find that a small number of inferred phenotypes can predict fitness of the adaptive mutations near their original glucose-limited evolution condition. Importantly, inferred phenotypes that matter little to fitness at or near the evolution condition can matter strongly in distant environments. This suggests that adaptive mutations are locally modular - affecting a small number of phenotypes that matter to fitness in the environment where they evolved - yet globally pleiotropic - affecting additional phenotypes that may reduce or improve fitness in new environments.
Collapse
Affiliation(s)
- Grant Kinsler
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Kerry Geiler-Samerotte
- Department of Biology, Stanford UniversityStanfordUnited States
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
23
|
Genetic Variation in Complex Traits in Transgenic α-Synuclein Strains of Caenorhabditis elegans. Genes (Basel) 2020; 11:genes11070778. [PMID: 32664512 PMCID: PMC7397059 DOI: 10.3390/genes11070778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
Different genetic backgrounds can modify the effect of mutated genes. Human α-synuclein (SNCA) gene encodes α-synuclein, and its oligomeric complexes accumulate with age and mediate the disruption of cellular homeostasis, resulting in the neuronal death that is characteristic of Parkinson’s Disease. Polymorphic variants modulate this complex pathologic mechanism. Previously, we constructed five transgenic introgression lines of a Caenorhabditis elegans model of α-synuclein using genetic backgrounds that are genetically diverse from the canonical wild-type Bristol N2. A gene expression analysis revealed that the α-synuclein transgene differentially affects genome-wide transcription due to background modifiers. To further investigate how complex traits are affected in these transgenic lines, we measured the α-synuclein transgene expression, the overall accumulation of the fusion protein of α-synuclein and yellow fluorescent protein (YFP), the lysosome-related organelles, and the body size. By using quantitative PCR (qPCR), we demonstrated stable and similar expression levels of the α-synuclein transgene in different genetic backgrounds. Strikingly, we observed that the levels of the a-synuclein:YFP fusion protein vary in different genetic backgrounds by using the COPAS™ biosorter. The quantification of the Nile Red staining assay demonstrates that α-synuclein also affects lysosome-related organelles and body size. Our results show that the same α-synuclein introgression in different C. elegans backgrounds can produces differing effects on complex traits due to background modifiers.
Collapse
|
24
|
Candida albicans Genetic Background Influences Mean and Heterogeneity of Drug Responses and Genome Stability during Evolution in Fluconazole. mSphere 2020; 5:5/3/e00480-20. [PMID: 32581072 PMCID: PMC7316494 DOI: 10.1128/msphere.00480-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial resistance is an evolutionary phenomenon with clinical implications. We tested how replicates from diverse strains of Candida albicans, a prevalent human fungal pathogen, evolve in the commonly prescribed antifungal drug fluconazole. Replicates on average increased in fitness in the level of drug they were evolved to, with the least fit parental strains improving the most. Very few replicates increased resistance above the drug level they were evolved in. Notably, many replicates increased in genome size and changed in drug tolerance (a drug response where a subpopulation of cells grow slowly in high levels of drug), and variability among replicates in fitness, tolerance, and genome size was higher in strains that initially were more sensitive to the drug. Genetic background influenced the average degree of adaptation and the evolved variability of many phenotypes, highlighting that different strains from the same species may respond and adapt very differently during adaptation. The importance of within-species diversity in determining the evolutionary potential of a population to evolve drug resistance or tolerance is not well understood, including in eukaryotic pathogens. To examine the influence of genetic background, we evolved replicates of 20 different clinical isolates of Candida albicans, a human fungal pathogen, in fluconazole, the commonly used antifungal drug. The isolates hailed from the major C. albicans clades and had different initial levels of drug resistance and tolerance to the drug. The majority of replicates rapidly increased in fitness in the evolutionary environment, with the degree of improvement inversely correlated with parental strain fitness in the drug. Improvement was largely restricted to up to the evolutionary level of drug: only 4% of the evolved replicates increased resistance (MIC) above the evolutionary level of drug. Prevalent changes were altered levels of drug tolerance (slow growth of a subpopulation of cells at drug concentrations above the MIC) and increased diversity of genome size. The prevalence and predominant direction of these changes differed in a strain-specific manner, but neither correlated directly with parental fitness or improvement in fitness. Rather, low parental strain fitness was correlated with high levels of heterogeneity in fitness, tolerance, and genome size among evolved replicates. Thus, parental strain background is an important determinant in mean improvement to the evolutionary environment as well as the diversity of evolved phenotypes, and the range of possible responses of a pathogen to an antimicrobial drug cannot be captured by in-depth study of a single strain background. IMPORTANCE Antimicrobial resistance is an evolutionary phenomenon with clinical implications. We tested how replicates from diverse strains of Candida albicans, a prevalent human fungal pathogen, evolve in the commonly prescribed antifungal drug fluconazole. Replicates on average increased in fitness in the level of drug they were evolved to, with the least fit parental strains improving the most. Very few replicates increased resistance above the drug level they were evolved in. Notably, many replicates increased in genome size and changed in drug tolerance (a drug response where a subpopulation of cells grow slowly in high levels of drug), and variability among replicates in fitness, tolerance, and genome size was higher in strains that initially were more sensitive to the drug. Genetic background influenced the average degree of adaptation and the evolved variability of many phenotypes, highlighting that different strains from the same species may respond and adapt very differently during adaptation.
Collapse
|
25
|
Pesevski M, Dworkin I. Genetic and environmental canalization are not associated among altitudinally varying populations of Drosophila melanogaster. Evolution 2020; 74:1755-1771. [PMID: 32562566 DOI: 10.1111/evo.14039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 01/23/2023]
Abstract
Organisms are exposed to environmental and mutational effects influencing both mean and variance of phenotypes. Potentially deleterious effects arising from this variation can be reduced by the evolution of buffering (canalizing) mechanisms, ultimately reducing phenotypic variability. There has been interest regarding the conditions enabling the evolution of canalization. Under some models, the circumstances under which genetic canalization evolves are limited despite apparent empirical evidence for it. It has been argued that genetic canalization evolves as a correlated response to environmental canalization (congruence model). Yet, empirical evidence has not consistently supported predictions of a correlation between genetic and environmental canalization. In a recent study, a population of Drosophila adapted to high altitude showed evidence of genetic decanalization relative to those from low altitudes. Using strains derived from these populations, we tested if they varied for multiple aspects of environmental canalization We observed the expected differences in wing size, shape, cell (trichome) density and mutational defects between high- and low-altitude populations. However, we observed little evidence for a relationship between measures of environmental canalization with population or with defect frequency. Our results do not support the predicted association between genetic and environmental canalization.
Collapse
Affiliation(s)
- Maria Pesevski
- Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
26
|
Natural cryptic variation in epigenetic modulation of an embryonic gene regulatory network. Proc Natl Acad Sci U S A 2020; 117:13637-13646. [PMID: 32482879 DOI: 10.1073/pnas.1920343117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory networks (GRNs) that direct animal embryogenesis must respond to varying environmental and physiological conditions to ensure robust construction of organ systems. While GRNs are evolutionarily modified by natural genomic variation, the roles of epigenetic processes in shaping plasticity of GRN architecture are not well understood. The endoderm GRN in Caenorhabditis elegans is initiated by the maternally supplied SKN-1/Nrf2 bZIP transcription factor; however, the requirement for SKN-1 in endoderm specification varies widely among distinct C. elegans wild isotypes, owing to rapid developmental system drift driven by accumulation of cryptic genetic variants. We report here that heritable epigenetic factors that are stimulated by transient developmental diapause also underlie cryptic variation in the requirement for SKN-1 in endoderm development. This epigenetic memory is inherited from the maternal germline, apparently through a nuclear, rather than cytoplasmic, signal, resulting in a parent-of-origin effect (POE), in which the phenotype of the progeny resembles that of the maternal founder. The occurrence and persistence of POE varies between different parental pairs, perduring for at least 10 generations in one pair. This long-perduring POE requires piwi-interacting RNA (piRNA) function and the germline nuclear RNA interference (RNAi) pathway, as well as MET-2 and SET-32, which direct histone H3K9 trimethylation and drive heritable epigenetic modification. Such nongenetic cryptic variation may provide a resource of additional phenotypic diversity through which adaptation may facilitate evolutionary changes and shape developmental regulatory systems.
Collapse
|
27
|
Hintze M, Koneru SL, Gilbert SPR, Katsanos D, Lambert J, Barkoulas M. A Cell Fate Switch in the Caenorhabditis elegans Seam Cell Lineage Occurs Through Modulation of the Wnt Asymmetry Pathway in Response to Temperature Increase. Genetics 2020; 214:927-939. [PMID: 31988193 PMCID: PMC7153939 DOI: 10.1534/genetics.119.302896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Populations often display consistent developmental phenotypes across individuals despite inevitable biological stochasticity. Nevertheless, developmental robustness has limits, and systems can fail upon change in the environment or the genetic background. We use here the seam cells, a population of epidermal stem cells in Caenorhabditis elegans, to study the influence of temperature change and genetic variation on cell fate. Seam cell development has mostly been studied so far in the laboratory reference strain (N2), grown at 20° temperature. We demonstrate that an increase in culture temperature to 25° introduces variability in the wild-type seam cell lineage, with a proportion of animals showing an increase in seam cell number. We map this increase to lineage-specific symmetrization events of normally asymmetric cell divisions at the fourth larval stage, leading to the retention of seam cell fate in both daughter cells. Using genetics and single-molecule imaging, we demonstrate that this symmetrization occurs via changes in the Wnt asymmetry pathway, leading to aberrant Wnt target activation in anterior cell daughters. We find that intrinsic differences in the Wnt asymmetry pathway already exist between seam cells at 20° and this may sensitize cells toward a cell fate switch at increased temperature. Finally, we demonstrate that wild isolates of C. elegans display variation in seam cell sensitivity to increased culture temperature, although their average seam cell number is comparable at 20°. Our results highlight how temperature can modulate cell fate decisions in an invertebrate model of stem cell patterning.
Collapse
Affiliation(s)
- Mark Hintze
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Sneha L Koneru
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | | | - Julien Lambert
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | |
Collapse
|
28
|
Ewe CK, Torres Cleuren YN, Rothman JH. Evolution and Developmental System Drift in the Endoderm Gene Regulatory Network of Caenorhabditis and Other Nematodes. Front Cell Dev Biol 2020; 8:170. [PMID: 32258041 PMCID: PMC7093329 DOI: 10.3389/fcell.2020.00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023] Open
Abstract
Developmental gene regulatory networks (GRNs) underpin metazoan embryogenesis and have undergone substantial modification to generate the tremendous variety of animal forms present on Earth today. The nematode Caenorhabditis elegans has been a central model for advancing many important discoveries in fundamental mechanistic biology and, more recently, has provided a strong base from which to explore the evolutionary diversification of GRN architecture and developmental processes in other species. In this short review, we will focus on evolutionary diversification of the GRN for the most ancient of the embryonic germ layers, the endoderm. Early embryogenesis diverges considerably across the phylum Nematoda. Notably, while some species deploy regulative development, more derived species, such as C. elegans, exhibit largely mosaic modes of embryogenesis. Despite the relatively similar morphology of the nematode gut across species, widespread variation has been observed in the signaling inputs that initiate the endoderm GRN, an exemplar of developmental system drift (DSD). We will explore how genetic variation in the endoderm GRN helps to drive DSD at both inter- and intraspecies levels, thereby resulting in a robust developmental system. Comparative studies using divergent nematodes promise to unveil the genetic mechanisms controlling developmental plasticity and provide a paradigm for the principles governing evolutionary modification of an embryonic GRN.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | | | - Joel H. Rothman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
29
|
Irvine SQ. Embryonic canalization and its limits-A view from temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:128-144. [PMID: 32011096 DOI: 10.1002/jez.b.22930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Many animals are able to produce similar offspring over a range of environmental conditions. This property of the developmental process has been termed canalization-the channeling of developmental pathways to generate a stable outcome despite varying conditions. Temperature is one environmental parameter that has fundamental effects on cell physiology and biochemistry, yet developmental programs generally result in a stable phenotype under a range of temperatures. On the other hand, there are typically upper and lower temperature limits beyond which the developmental program is unable to produce normal offspring. This review summarizes data on how development is affected by temperature, particularly high temperature, in various animal species. It also brings together information on potential cell biological and developmental genetic factors that may be responsible for developmental stability in varying temperatures, and likely critical mechanisms that break down at high temperature. Also reviewed are possible means for studying temperature effects on embryogenesis and how to determine which factors are most critical at the high-temperature limits for normal development. Increased knowledge of these critical factors will point to the targets of selection under climate change, and more generally, how developmental robustness in varying environments is maintained.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
30
|
Snoek BL, Sterken MG, Hartanto M, van Zuilichem AJ, Kammenga JE, de Ridder D, Nijveen H. WormQTL2: an interactive platform for systems genetics in Caenorhabditis elegans. Database (Oxford) 2020; 2020:baz149. [PMID: 31960906 PMCID: PMC6971878 DOI: 10.1093/database/baz149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/30/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022]
Abstract
Quantitative genetics provides the tools for linking polymorphic loci to trait variation. Linkage analysis of gene expression is an established and widely applied method, leading to the identification of expression quantitative trait loci (eQTLs). (e)QTL detection facilitates the identification and understanding of the underlying molecular components and pathways, yet (e)QTL data access and mining often is a bottleneck. Here, we present WormQTL2, a database and platform for comparative investigations and meta-analyses of published (e)QTL data sets in the model nematode worm C. elegans. WormQTL2 integrates six eQTL studies spanning 11 conditions as well as over 1000 traits from 32 studies and allows experimental results to be compared, reused and extended upon to guide further experiments and conduct systems-genetic analyses. For example, one can easily screen a locus for specific cis-eQTLs that could be linked to variation in other traits, detect gene-by-environment interactions by comparing eQTLs under different conditions, or find correlations between QTL profiles of classical traits and gene expression. WormQTL2 makes data on natural variation in C. elegans and the identified QTLs interactively accessible, allowing studies beyond the original publications. Database URL: www.bioinformatics.nl/WormQTL2/.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Margi Hartanto
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Albert-Jan van Zuilichem
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| |
Collapse
|
31
|
Vertical transmission in Caenorhabditis nematodes of RNA molecules encoding a viral RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 2019; 116:24738-24747. [PMID: 31740606 PMCID: PMC6900638 DOI: 10.1073/pnas.1903903116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In organisms composed of a single cell, RNAs of viral origin may be transmitted to daughter cells at cell division without passing through an extracellular virion stage. These RNAs usually encode an RNA-dependent RNA polymerase that enables their replication. For some of these agents, such as Narnaviruses, no capsid protein is expressed, and thus, they are called capsidless viruses. Here, we identify putative capsidless viral RNAs in animals, in nematodes closely related to the model organism Caenorhabditis elegans. We show that these RNAs are transmitted vertically through the host germline. Our work provides evidence that animal cells harbor capsidless viruses. Here, we report on the discovery in Caenorhabditis nematodes of multiple vertically transmitted RNAs coding for putative RNA-dependent RNA polymerases. Their sequences share similarity to distinct RNA viruses, including bunyaviruses, narnaviruses, and sobemoviruses. The sequences are present exclusively as RNA and are not found in DNA form. The RNAs persist in progeny after bleach treatment of adult animals, indicating vertical transmission of the RNAs. We tested one of the infected strains for transmission to an uninfected strain and found that mating of infected animals with uninfected animals resulted in infected progeny. By in situ hybridization, we detected several of these RNAs in the cytoplasm of the male and female germline of the nematode host. The Caenorhabditis hosts were found defective in degrading exogenous double-stranded RNAs, which may explain retention of viral-like RNAs. Strikingly, one strain, QG551, harbored three distinct virus-like RNA elements. Specific patterns of small RNAs complementary to the different viral-like RNAs were observed, suggesting that the different RNAs are differentially recognized by the RNA interference (RNAi) machinery. While vertical transmission of viruses in the family Narnaviridae, which are known as capsidless viruses, has been described in fungi, these observations provide evidence that multicellular animal cells harbor similar viruses.
Collapse
|
32
|
Eguchi Y, Bilolikar G, Geiler-Samerotte K. Why and how to study genetic changes with context-dependent effects. Curr Opin Genet Dev 2019; 58-59:95-102. [PMID: 31593884 DOI: 10.1016/j.gde.2019.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 01/18/2023]
Abstract
The phenotypic impacts of a genetic change can depend on genetic background (e.g. epistasis), as well as other contexts including environment, developmental stage, cell type, disease state, and higher-order combinations thereof. Recent advances in high-throughput phenotyping are uncovering examples of context dependence faster than genotype-phenotype maps and other core concepts are changing to reflect the dynamic nature of biological systems. Here, we review several approaches to study context dependence and their findings. In our opinion, these findings encourage more studies that examine the spectrum of effects a genetic change may have, as opposed to studies that exclusively measure the impact of a genetic change in a particular context. Studies that elucidate the mechanisms that cause the effects of genetic change to vary with context are of special interest. Previous studies of the mechanisms underlying context dependence have improved predictions of phenotype from genotype and have provided insight about how biological systems function and evolve.
Collapse
Affiliation(s)
- Yuichi Eguchi
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Gaurav Bilolikar
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
33
|
Bernstein MR, Zdraljevic S, Andersen EC, Rockman MV. Tightly linked antagonistic-effect loci underlie polygenic phenotypic variation in C. elegans. Evol Lett 2019; 3:462-473. [PMID: 31636939 PMCID: PMC6791183 DOI: 10.1002/evl3.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Recent work has provided strong empirical support for the classic polygenic model for trait variation. Population-based findings suggest that most regions of genome harbor variation affecting most traits. Here, we use the approach of experimental genetics to show that, indeed, most genomic regions carry variants with detectable effects on growth and reproduction in Caenorhabditis elegans populations sensitized by nickel stress. Nine of 15 adjacent intervals on the X chromosome, each encompassing ∼0.001 of the genome, have significant effects when tested individually in near-isogenic lines (NILs). These intervals have effects that are similar in magnitude to those of genome-wide significant loci that we mapped in a panel of recombinant inbred advanced intercross lines (RIAILs). If NIL-like effects were randomly distributed across the genome, the RIAILs would exhibit phenotypic variance that far exceeds the observed variance. However, the NIL intervals are arranged in a pattern that significantly reduces phenotypic variance relative to a random arrangement; adjacent intervals antagonize one another, cancelling each other's effects. Contrary to the expectation of small additive effects, our findings point to large-effect variants whose effects are masked by epistasis or linkage disequilibrium between alleles of opposing effect.
Collapse
Affiliation(s)
- Max R. Bernstein
- Department of Biology and Center for Genomics & Systems BiologyNew York UniversityNew YorkNew York10003
| | - Stefan Zdraljevic
- Molecular Biosciences and Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinois60208
| | - Erik C. Andersen
- Molecular Biosciences and Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinois60208
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics & Systems BiologyNew York UniversityNew YorkNew York10003
| |
Collapse
|
34
|
Torres Cleuren YN, Ewe CK, Chipman KC, Mears ER, Wood CG, Al-Alami CEA, Alcorn MR, Turner TL, Joshi PM, Snell RG, Rothman JH. Extensive intraspecies cryptic variation in an ancient embryonic gene regulatory network. eLife 2019; 8:48220. [PMID: 31414984 PMCID: PMC6754231 DOI: 10.7554/elife.48220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Innovations in metazoan development arise from evolutionary modification of gene regulatory networks (GRNs). We report widespread cryptic variation in the requirement for two key regulatory inputs, SKN-1/Nrf2 and MOM-2/Wnt, into the C. elegans endoderm GRN. While some natural isolates show a nearly absolute requirement for these two regulators, in others, most embryos differentiate endoderm in their absence. GWAS and analysis of recombinant inbred lines reveal multiple genetic regions underlying this broad phenotypic variation. We observe a reciprocal trend, in which genomic variants, or knockdown of endoderm regulatory genes, that result in a high SKN-1 requirement often show low MOM-2/Wnt requirement and vice-versa, suggesting that cryptic variation in the endoderm GRN may be tuned by opposing requirements for these two key regulatory inputs. These findings reveal that while the downstream components in the endoderm GRN are common across metazoan phylogeny, initiating regulatory inputs are remarkably plastic even within a single species.
Collapse
Affiliation(s)
- Yamila N Torres Cleuren
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chee Kiang Ewe
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Kyle C Chipman
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Emily R Mears
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Cricket G Wood
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Melissa R Alcorn
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Thomas L Turner
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Pradeep M Joshi
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joel H Rothman
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
35
|
Hughes S, Vrinds I, de Roo J, Francke C, Shimeld SM, Woollard A, Sato A. DnaJ chaperones contribute to canalization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2019; 331:201-212. [PMID: 30653842 DOI: 10.1002/jez.2254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
Canalization, an intrinsic robustness of development to external (environmental) or internal (genetic) perturbations, was first proposed over half a century ago. However, whether the robustness to environmental stress (environmental canalization [EC]) and to genetic variation (genetic canalization) are underpinned by the same molecular basis remains elusive. The recent discovery of the involvement of two endoplasmic reticulum (ER)-associated DnaJ genes in developmental buffering, orthologues of which are conserved across Metazoa, indicates that the role of ER-associated DnaJ genes might be conserved across the animal kingdom. To test this, we surveyed the ER-associated DnaJ chaperones in the nematode Caenorhabditis elegans. We then quantified the phenotype, in the form of variance and mean of seam cell counts, from RNA interference knockdown of DnaJs under three different temperatures. We find that seven out of eight ER-associated DnaJs are involved in either EC or microenvironmental canalization. Moreover, we also found two DnaJ genes not specifically associated with ER (DNAJC2/dnj-11 and DNAJA2/dnj-19) were involved in canalization. Protein expression pattern showed that these DnaJs are upregulated by heat stress, yet not all of them are expressed in the seam cells. Moreover, we found that most of the buffering DnaJs also control lifespan. We therefore concluded that a number of DnaJ chaperones, not limited to those associated with the ER, are involved in canalization as a part of the complex system that underlies development.
Collapse
Affiliation(s)
- Samantha Hughes
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Inge Vrinds
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Joris de Roo
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Christof Francke
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | | | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Atsuko Sato
- Department of Biology, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
36
|
Abstract
Genetic background impacts the phenotypic outcome of a mutation in different individuals; however, the underlying molecular mechanisms are often unclear. We characterized genes exhibiting conditional essentiality when mutated in two genetically distinct yeast strains. Hybrid crosses and whole-genome sequencing revealed that conditional essentiality can be associated with nonchromosomal elements or a single-modifier locus, but most involve a complex set of modifier loci. Detailed analysis of the cysteine biosynthesis pathway showed that independent, rare, single-gene modifiers, related to both up- and downstream pathway functions, can arise in multiple allelic forms from separate lineages. For several genes, we also resolved complex sets of modifying loci underlying conditional essentiality, revealing specific genetic interactions that drive an individual strain’s background effect. The phenotypic consequence of a given mutation can be influenced by the genetic background. For example, conditional gene essentiality occurs when the loss of function of a gene causes lethality in one genetic background but not another. Between two individual Saccharomyces cerevisiae strains, S288c and Σ1278b, ∼1% of yeast genes were previously identified as “conditional essential.” Here, in addition to confirming that some conditional essential genes are modified by a nonchromosomal element, we show that most cases involve a complex set of genomic modifiers. From tetrad analysis of S288C/Σ1278b hybrid strains and whole-genome sequencing of viable hybrid spore progeny, we identified complex sets of multiple genomic regions underlying conditional essentiality. For a smaller subset of genes, including CYS3 and CYS4, each of which encodes components of the cysteine biosynthesis pathway, we observed a segregation pattern consistent with a single modifier associated with conditional essentiality. In natural yeast isolates, we found that the CYS3/CYS4 conditional essentiality can be caused by variation in two independent modifiers, MET1 and OPT1, each with roles associated with cellular cysteine physiology. Interestingly, the OPT1 allelic variation appears to have arisen independently from separate lineages, with rare allele frequencies below 0.5%. Thus, while conditional gene essentiality is usually driven by genetic interactions associated with complex modifier architectures, our analysis also highlights the role of functionally related, genetically independent, and rare variants.
Collapse
|
37
|
Sato A. Chaperones, Canalization, and Evolution of Animal Forms. Int J Mol Sci 2018; 19:E3029. [PMID: 30287767 PMCID: PMC6213012 DOI: 10.3390/ijms19103029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Over half a century ago, British developmental biologist Conrad Hal Waddington proposed the idea of canalization, that is, homeostasis in development. Since the breakthrough that was made by Rutherford and Lindquist (1998), who proposed a role of Hsp90 in developmental buffering, chaperones have gained much attention in the study of canalization. However, recent studies have revealed that a number of other molecules are also potentially involved in canalization. Here, I introduce the emerging role of DnaJ chaperones in canalization. I also discuss how the expression levels of such buffering molecules can be altered, thereby altering organismal development. Since developmental robustness is maternally inherited in various organisms, I propose that dynamic bet hedging, an increase in within-clutch variation in offspring phenotypes that is caused by unpredictable environmental challenges to the mothers, plays a key role in altering the expression levels of buffering molecules. Investigating dynamic bet hedging at the molecular level and how it impacts upon morphological phenotypes will help our understanding of the molecular mechanisms of canalization and evolutionary processes.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan.
- Marine Biological Association of the UK, The Laboratory, Plymouth PL1 2PB, UK.
| |
Collapse
|
38
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
39
|
Mullis MN, Matsui T, Schell R, Foree R, Ehrenreich IM. The complex underpinnings of genetic background effects. Nat Commun 2018; 9:3548. [PMID: 30224702 PMCID: PMC6141565 DOI: 10.1038/s41467-018-06023-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/09/2018] [Indexed: 12/01/2022] Open
Abstract
Genetic interactions between mutations and standing polymorphisms can cause mutations to show distinct phenotypic effects in different individuals. To characterize the genetic architecture of these so-called background effects, we genotype 1411 wild-type and mutant yeast cross progeny and measure their growth in 10 environments. Using these data, we map 1086 interactions between segregating loci and 7 different gene knockouts. Each knockout exhibits between 73 and 543 interactions, with 89% of all interactions involving higher-order epistasis between a knockout and multiple loci. Identified loci interact with as few as one knockout and as many as all seven knockouts. In mutants, loci interacting with fewer and more knockouts tend to show enhanced and reduced phenotypic effects, respectively. Cross–environment analysis reveals that most interactions between the knockouts and segregating loci also involve the environment. These results illustrate the complicated interactions between mutations, standing polymorphisms, and the environment that cause background effects. Mutations often show distinct phenotypic effects across different genetic backgrounds. Here the authors describe the genetic basis of these so-called background effects using data on genotype and growth in 10 environments from 1411 segregants from a cross of two strains of budding yeast.
Collapse
Affiliation(s)
- Martin N Mullis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA.
| | - Takeshi Matsui
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA.
| | - Rachel Schell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA
| | - Ryan Foree
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA.
| |
Collapse
|
40
|
Genetic Network Complexity Shapes Background-Dependent Phenotypic Expression. Trends Genet 2018; 34:578-586. [PMID: 29903533 DOI: 10.1016/j.tig.2018.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/09/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022]
Abstract
The phenotypic consequences of a given mutation can vary across individuals. This so-called background effect is widely observed, from mutant fitness of loss-of-function variants in model organisms to variable disease penetrance and expressivity in humans; however, the underlying genetic basis often remains unclear. Taking insights gained from recent large-scale surveys of genetic interaction and suppression analyses in yeast, we propose that the genetic network context for a given mutation may shape its propensity of exhibiting background-dependent phenotypes. We argue that further efforts in systematically mapping the genetic interaction networks beyond yeast will provide not only key insights into the functional properties of genes, but also a better understanding of the background effects and the (un)predictability of traits in a broader context.
Collapse
|
41
|
Fournier T, Schacherer J. Genetic backgrounds and hidden trait complexity in natural populations. Curr Opin Genet Dev 2017; 47:48-53. [PMID: 28915487 PMCID: PMC5716861 DOI: 10.1016/j.gde.2017.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/09/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022]
Abstract
Dissecting the genetic basis of natural phenotypic variation is a major goal in biology. We know that most traits are strongly heritable. However, their genetic architecture is a long-standing question, which is unfortunately confounded by the lack of complete knowledge of the genetic components as well as their phenotypic effect in a specific genetic background. Many genetic variants are known to affect phenotypes but the same functional variant can have a different effect on the phenotype in different individuals of the same species. Understanding the impact of genetic background on the expressivity of a given phenotype is essential because this effect complicates our ability to predict phenotype from genotype. Here, we briefly review recent progress on the exploration of the effect of genetic background and we discuss how a deeper characterization of the inheritance, expressivity and genetic interactions hidden behind the phenotypic landscape of natural variation could provide a better understanding of the relationship between genotype and phenotype.
Collapse
Affiliation(s)
- Téo Fournier
- Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| |
Collapse
|
42
|
Noble LM, Chelo I, Guzella T, Afonso B, Riccardi DD, Ammerman P, Dayarian A, Carvalho S, Crist A, Pino-Querido A, Shraiman B, Rockman MV, Teotónio H. Polygenicity and Epistasis Underlie Fitness-Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) Panel. Genetics 2017; 207:1663-1685. [PMID: 29066469 PMCID: PMC5714472 DOI: 10.1534/genetics.117.300406] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/10/2017] [Indexed: 01/27/2023] Open
Abstract
Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity, and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here, we report an advanced recombinant inbred line (RIL) quantitative trait locus mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140-190 generations, and inbreeding by selfing for 13-16 generations. The panel contains 22% of single-nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across > 95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad-sense heritability in the CeMEE. While simulations show that we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits do not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor ([Formula: see text]), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms.
Collapse
Affiliation(s)
- Luke M Noble
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Ivo Chelo
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
| | - Thiago Guzella
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | - Bruno Afonso
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | - David D Riccardi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Patrick Ammerman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Adel Dayarian
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
| | - Sara Carvalho
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
| | - Anna Crist
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | | | - Boris Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
- Department of Physics, University of California, Santa Barbara, California 93106
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Henrique Teotónio
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| |
Collapse
|
43
|
Chandler CH, Chari S, Kowalski A, Choi L, Tack D, DeNieu M, Pitchers W, Sonnenschein A, Marvin L, Hummel K, Marier C, Victory A, Porter C, Mammel A, Holms J, Sivaratnam G, Dworkin I. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects. PLoS Genet 2017; 13:e1007075. [PMID: 29166655 PMCID: PMC5718557 DOI: 10.1371/journal.pgen.1007075] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/06/2017] [Accepted: 10/15/2017] [Indexed: 12/16/2022] Open
Abstract
For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development) of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis. Different mutations in a gene, or in genes with related functions, can have effects of varying severity. Studying sets of mutations and analyzing how they interact are essential components of a geneticist's toolkit. However, the effects caused by a mutation depend not only on the mutation itself, but on additional genetic variation throughout an organism's genome and on the environment that organism has experienced. Therefore, identifying how the genomic and environmental context alter the expression of mutations is critical for making reliable inferences about how genes function. Yet studies on this context dependence have largely been limited to single mutations in single genes. We examined how the genomic and environmental context influence the expression of multiple mutations in two related genes affecting the fruit fly wing. Our results show that the genetic and environmental context generally affect the expression of related mutations in similar ways. However, the interactions between two different mutations in a single gene sometimes depended strongly on context. In addition, cell proliferation in the developing wing and adult wing size were not affected by the genetic and environmental context in similar ways in mutant flies, suggesting that variation in cell growth cannot fully explain how mutations affect wings. Overall, our findings show that context can have a big impact on the interpretation of genetic experiments, including how we draw conclusions about gene function and cause-and-effect relationships.
Collapse
Affiliation(s)
- Christopher H. Chandler
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Sudarshan Chari
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Alycia Kowalski
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Lin Choi
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - David Tack
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Michael DeNieu
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - William Pitchers
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Anne Sonnenschein
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Leslie Marvin
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Kristen Hummel
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Christian Marier
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Andrew Victory
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Cody Porter
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Anna Mammel
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
| | - Julie Holms
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | - Ian Dworkin
- Department of Integrative Biology, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States of America
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
44
|
Abstract
The oncogenic Ras/MAPK pathway is evolutionarily conserved across metazoans. Yet, almost all our knowledge on this pathway comes from studies using single genetic backgrounds, whereas mutational effects can be highly background dependent. Therefore, we lack insight in the interplay between genetic backgrounds and the Ras/MAPK-signaling pathway. Here, we used a Caenorhabditis elegans RIL population containing a gain-of-function mutation in the Ras/MAPK-pathway gene let-60 and measured how gene expression regulation is affected by this mutation. We mapped eQTL and found that the majority (∼73%) of the 1516 detected cis-eQTL were not specific for the let-60 mutation, whereas most (∼76%) of the 898 detected trans-eQTL were associated with the let-60 mutation. We detected six eQTL trans-bands specific for the interaction between the genetic background and the mutation, one of which colocalized with the polymorphic Ras/MAPK modifier amx-2. Comparison between transgenic lines expressing allelic variants of amx-2 showed the involvement of amx-2 in 79% of the trans-eQTL for genes mapping to this trans-band. Together, our results have revealed hidden loci affecting Ras/MAPK signaling using sensitized backgrounds in C. elegans. These loci harbor putative polymorphic modifier genes that would not have been detected using mutant screens in single genetic backgrounds.
Collapse
|
45
|
Affiliation(s)
- Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910
| |
Collapse
|
46
|
Affiliation(s)
- Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910
| |
Collapse
|
47
|
Kammenga JE. The background puzzle: how identical mutations in the same gene lead to different disease symptoms. FEBS J 2017; 284:3362-3373. [PMID: 28390082 DOI: 10.1111/febs.14080] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
Identical disease-causing mutations can lead to different symptoms in different people. The reason for this has been a puzzling problem for geneticists. Differential penetrance and expressivity of mutations has been observed within individuals with different and similar genetic backgrounds. Attempts have been made to uncover the underlying mechanisms that determine differential phenotypic effects of identical mutations through studies of model organisms. From these studies evidence is accumulating that to understand disease mechanism or predict disease prevalence, an understanding of the influence of genetic background is as important as the putative disease-causing mutations of relatively large effect. This review highlights current insights into phenotypic variation due to gene interactions, epigenetics and stochasticity in model organisms, and discusses their importance for understanding the mutational effect on disease symptoms.
Collapse
Affiliation(s)
- Jan E Kammenga
- Laboratory of Nematology, Wageningen University, The Netherlands
| |
Collapse
|
48
|
Matsui T, Lee JT, Ehrenreich IM. Genetic suppression: Extending our knowledge from lab experiments to natural populations. Bioessays 2017; 39. [PMID: 28471485 DOI: 10.1002/bies.201700023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many mutations have deleterious phenotypic effects that can be alleviated by suppressor mutations elsewhere in the genome. High-throughput approaches have facilitated the large-scale identification of these suppressors and have helped shed light on core functional mechanisms that give rise to suppression. Following reports that suppression occurs naturally within species, it is important to determine how our understanding of this phenomenon based on lab experiments extends to genetically diverse natural populations. Although suppression is typically mediated by individual genetic changes in lab experiments, recent studies have shown that suppression in natural populations can involve combinations of genetic variants. This difference in complexity suggests that sets of variants can exhibit similar functional effects to individual suppressors found in lab experiments. In this review, we discuss how characterizing the way in which these variants jointly lead to suppression could provide important insights into the genotype-phenotype map that are relevant to evolution and health.
Collapse
Affiliation(s)
- Takeshi Matsui
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jonathan T Lee
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
49
|
Nam YJ, Herman D, Blomme J, Chae E, Kojima M, Coppens F, Storme V, Van Daele T, Dhondt S, Sakakibara H, Weigel D, Inzé D, Gonzalez N. Natural Variation of Molecular and Morphological Gibberellin Responses. PLANT PHYSIOLOGY 2017; 173:703-714. [PMID: 27879393 PMCID: PMC5210761 DOI: 10.1104/pp.16.01626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/18/2016] [Indexed: 05/18/2023]
Abstract
Although phytohormones such as gibberellins are essential for many conserved aspects of plant physiology and development, plants vary greatly in their responses to these regulatory compounds. Here, we use genetic perturbation of endogenous gibberellin levels to probe the extent of intraspecific variation in gibberellin responses in natural accessions of Arabidopsis (Arabidopsis thaliana). We find that these accessions vary greatly in their ability to buffer the effects of overexpression of GA20ox1, encoding a rate-limiting enzyme for gibberellin biosynthesis, with substantial differences in bioactive gibberellin concentrations as well as transcriptomes and growth trajectories. These findings demonstrate a surprising level of flexibility in the wiring of regulatory networks underlying hormone metabolism and signaling.
Collapse
Affiliation(s)
- Youn-Jeong Nam
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Dorota Herman
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Eunyoung Chae
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Mikiko Kojima
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Veronique Storme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Twiggy Van Daele
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Stijn Dhondt
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Hitoshi Sakakibara
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Detlef Weigel
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.);
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.);
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (Y.J.N., D.H., F.C., V.S., T.V.D., S.D., D.I., N.G.)
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany (E.C., D.W.); and
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (M.K., H.S.)
| |
Collapse
|
50
|
Considerations when choosing a genetic model organism for metabolomics studies. Curr Opin Chem Biol 2016; 36:7-14. [PMID: 28025166 DOI: 10.1016/j.cbpa.2016.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/16/2023]
Abstract
Model organisms are important in many areas of chemical biology. In metabolomics, model organisms can provide excellent samples for methods development as well as the foundation of comparative phylometabolomics, which will become possible as metabolomics applications expand. Comparative studies of conserved and unique metabolic pathways will help in the annotation of metabolites as well as provide important new targets of investigation in biology and biomedicine. However, most chemical biologists are not familiar with genetics, which needs to be considered when choosing a model organism. In this review we summarize the strengths and weaknesses of several genetic systems, including natural isolates, recombinant inbred lines, and genetic mutations. We also discuss methods to detect targets of selection on the metabolome.
Collapse
|