1
|
Astacio H, Bykhovskaia M. High frequency stimulation activates hot spots of spontaneous synaptic transmission. Front Synaptic Neurosci 2025; 17:1539868. [PMID: 40297638 PMCID: PMC12034645 DOI: 10.3389/fnsyn.2025.1539868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Neuronal transmitters are released at the morphological specializations known as active zones (AZs). Transmitters can be released either in response to a stimulus or spontaneously, and spontaneous transmission is a vital component of neuronal communication. Employing postsynaptically tethered calcium sensor GCaMP, we investigated how nerve stimulation affects spontaneous transmission at individual AZs at the Drosophila neuromuscular synapse. Optical monitoring of spontaneous transmission at individual AZs revealed that prolonged high-frequency stimulation (HFS, 30 Hz for 1 min) selectively activates the hot spots of spontaneous transmission, including the individual AZs with elevated activities as well as AZ clusters. In contrast, a brief tetanus (2 s) activated numerous low-activity AZs. We employed Monte-Carlo simulations of spontaneous transmission based on a three-state model of AZ preparedness, which incorporated longer-lasting (minutes) and shorter-lasting (sub-seconds to seconds) high-activity states of AZs. The simulations produced an accurate quantitative description of the variability and time-course of spontaneous transmission at individual AZs before and after the stimulation and suggested that HFS activates both longer-lasting and shorter-lasting states of AZ preparedness.
Collapse
Affiliation(s)
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Jafri H, Thomas SJ, Yang SH, Cain RE, Dalva MB. Nano-organization of synapses defines synaptic release properties at cortical neuron dendritic spines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.637710. [PMID: 39990496 PMCID: PMC11844459 DOI: 10.1101/2025.02.13.637710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Visualization of the submicron organization of excitatory synapses has revealed an unexpectedly ordered architecture consisting of nanocolumns of synaptic proteins that group into nanomodules which scale in number as spine size increases. How these features are related to synaptic function has remained unclear. Here, using super-resolution followed by live-cell line-scan imaging, we find that the size of the smallest miniature calcium and glutamate events are the same, regardless of whether spines have one or two nanopuncta of PSD-95, and that miniature synaptic response in all spines are best fit by a three term Poisson. Two nanomodule spines exhibit more large events without a significant change in event frequency, with the number of the largest events increasing disproportionately. These data support a model where nanomodules define sites of synaptic release and where the nanoarchitecture of synaptic proteins specifies subtypes of excitatory synapses, with increasing numbers of nanomodules increasing coordinated multivesicular release.
Collapse
Affiliation(s)
- Haani Jafri
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10 Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Samantha J Thomas
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10 Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Sung Hoon Yang
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10 Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Rachel E Cain
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10 Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10 Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
- Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, 202 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA 70124, USA
| |
Collapse
|
3
|
Chen K, Shen S, Lv Z, Guo M, Shao Y, Li C. Lytic coelomocyte death is tuned by cleavage but not phosphorylation of MLKL in echinoderms. PLoS Pathog 2025; 21:e1012991. [PMID: 40085533 PMCID: PMC11932488 DOI: 10.1371/journal.ppat.1012991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/24/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Lytic cell death including necroptosis and pyroptosis is induced by mixed lineage kinase domain-like protein (MLKL) phosphorylation and inflammatory caspase specific cleavage Gasdermins in higher mammals, respectively. In this study, we identified a novel MLKL homolog containing a tetrapeptide recognition motif (14-LVAD-17) of inflammatory caspase from Apostichopus japonicus,which was absent of Gasdermins member by genome screening. Functional analysis revealed that AjMLKL was involved in the regulation of Vibrio splendidus AJ01 infection induced lytic coelomocyte death in a cleavage-dependent manner, but not through RIPK3-dependent phosphorylation as mammals. Mechanistically, the activated form of cysteine-aspartic specific proteases-1 (AjCASP-1) bound to the tetrapeptide site of AjMLKL and cleaved it at Asp17. Cleaved AjMLKL18-491 displayed higher binding affinities towards phosphatidylinositol phosphate and cardiolipin compared to those of un-cleaved form. In addition, cleaved AjMLKL18-491 exerted stronger ability in disrupting the membrane integrity of liposome. More importantly, AjMLKL18-491 caused a large non-selective ionic coelomocyte pore and could directly kill the invasive AJ01. Moreover, activation of inflammatory AjCASP-1 was further found to be dependent on forming an inflammasome-like complex via CASc domain of AjCASP-1 and the N-terminal Ig domains of internalized AjNLRC4. All our results proved first evidence that lytic cell death was activated through MLKL cleavage, not MLKL phosphorylation in echinoderm, which offered insights into the functional, evolutionary mechanisms of lytic cell death in invertebrates.
Collapse
Affiliation(s)
- Kaiyu Chen
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Sikou Shen
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Zhimeng Lv
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Ming Guo
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Yina Shao
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Chenghua Li
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Ruggiero A, Heim LR, Susman L, Hreaky D, Shapira I, Katsenelson M, Rosenblum K, Slutsky I. NMDA receptors regulate the firing rate set point of hippocampal circuits without altering single-cell dynamics. Neuron 2025; 113:244-259.e7. [PMID: 39515323 DOI: 10.1016/j.neuron.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Understanding how neuronal circuits stabilize their activity is a fundamental yet poorly understood aspect of neuroscience. Here, we show that hippocampal network properties, such as firing rate distribution and dimensionality, are actively regulated, despite perturbations and single-cell drift. Continuous inhibition of N-methyl-D-aspartate receptors (NMDARs) ex vivo lowers the excitation/inhibition ratio and network firing rates while preserving resilience to perturbations. This establishes a new network firing rate set point via NMDAR-eEF2K signaling pathway. NMDARs' capacity to modulate and stabilize network firing is mediated by excitatory synapses and the intrinsic excitability of parvalbumin-positive neurons, respectively. In behaving mice, continuous NMDAR blockade in CA1 reduces network firing without altering single-neuron drift or triggering a compensatory response. These findings expand NMDAR function beyond their canonical role in synaptic plasticity and raise the possibility that some NMDAR-dependent behavioral effects are mediated by their unique regulation of population activity set points.
Collapse
Affiliation(s)
- Antonella Ruggiero
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Lee Susman
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
| | - Dema Hreaky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel; Sieratzki Institute for Advances in Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
5
|
Nolan SO, Melugin PR, Erickson KR, Adams WR, Farahbakhsh ZZ, Mcgonigle CE, Kwon MH, Costa VD, Hackett TA, Cuzon Carlson VC, Constantinidis C, Lapish CC, Grant KA, Siciliano CA. Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits. Curr Biol 2025; 35:431-443.e4. [PMID: 39765226 PMCID: PMC11832050 DOI: 10.1016/j.cub.2024.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/03/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025]
Abstract
Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions.1,2 It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes.3,4,5,6,7 In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.3,8 Each cortical microcircuit receives sensory and cognitive information from upstream sources, which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity.4,9 Via recurrent connections within the microcircuit, activity propagates for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output.4,5,10 Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo, where intercortical and intracortical computations cannot be fully dissociated.5,9,11,12 Here, using high-density calcium imaging of macaque dlPFC, we isolated intracortical computations by interrogating microcircuit networks ex vivo. Using peri-sulcal stimulation to evoke recurrent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks wherein orderly, predictable, low-dimensional collective dynamics arise from ensembles with highly labile cellular memberships. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture. Our findings argue against engram or localist architectures, together demonstrating that generation of high-fidelity population-level signals from distributed, labile networks is an intrinsic feature of dlPFC microcircuitry.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Kirsty R Erickson
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Wilson R Adams
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Zahra Z Farahbakhsh
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen E Mcgonigle
- Department of Psychology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Michelle H Kwon
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Vincent D Costa
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Department of Psychology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Verginia C Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Christopher C Lapish
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
6
|
Wang W, Wang D, Zhao D, Xu L, Jiang S, Zhang Y, Cui M, Liu J, Meng F, Liu C, Liu D, Li W, Li C. Dorsal raphe dopaminergic neurons target CaMKII + neurons in dorsal bed nucleus of the stria terminalis for mediating depression-related behaviors. Transl Psychiatry 2024; 14:408. [PMID: 39358336 PMCID: PMC11447211 DOI: 10.1038/s41398-024-03093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Dopamine (DA) neurons play a crucial role in the development and manifestation of depression, as well as in response to antidepressant treatments. While the function of the predominantly distributed DA neurons in the ventral tegmental area (VTA) is well established, the contribution of a small fraction of DA neurons in the dorsal raphe nucleus (DRN) during depression remains unclear. In this study, we found that chronic unpredictable stress (CUS) induces depression-related behaviors and decreases spontaneous firing rates, excitatory and inhibitory postsynaptic currents of DA neurons in the DRN associated with reduced excitatory synaptic transmission in male and female mice. The chemogenetic inhibition of DA neurons in the DRN produces depressive phenotypes. Conversely, their activation completely reversed the anhedonic and despair behaviors induced by CUS. Furthermore, we showed that a DRN dopaminergic projecting to the dorsal bed nucleus of the stria terminalis (dBNST) selectively controls depressive behaviors by influencing the neural activity and N-methyl-D-aspartate receptor (NMDAR) mediating EPSC of calcium/calmodulin-dependent protein kinase II+ (CaMKII+) target neurons by regulating dopamine neurotransmitter and dopamine receptor 2 (DR2) in the dBNST. Overall, these findings highlight the essential role of the DRNDA → dBNSTCaMKII+ neural circuit in bi-directionally mediating stress-induced depression-related behaviors. Our findings indicate that DRN DA neurons are a key component of the neural circuitry involved in regulating depression-related behaviors, making them a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lihong Xu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Yu Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Nursing, Binzhou Medical University, Yantai, Shandong, China
| | - Minghu Cui
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dunjiang Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
7
|
Wen W, Turrigiano GG. Keeping Your Brain in Balance: Homeostatic Regulation of Network Function. Annu Rev Neurosci 2024; 47:41-61. [PMID: 38382543 DOI: 10.1146/annurev-neuro-092523-110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.
Collapse
Affiliation(s)
- Wei Wen
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
8
|
Bagatelas ED, Kavalali ET. Chronic modulation of cAMP signaling elicits synaptic scaling irrespective of activity. iScience 2024; 27:110176. [PMID: 38989459 PMCID: PMC11233962 DOI: 10.1016/j.isci.2024.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
Homeostatic plasticity mechanisms act in a negative feedback manner to stabilize neuronal firing around a set point. Classically, homeostatic synaptic plasticity is elicited via rather drastic manipulation of activity in a neuronal population. Here, we employed a chemogenetic approach to regulate activity via eliciting G protein-coupled receptor (GPCR) signaling in hippocampal neurons to trigger homeostatic synaptic plasticity. We demonstrate that chronic activation of hM4D(Gi) signaling induces mild and transient activity suppression, yet still triggers synaptic upscaling akin to tetrodotoxin (TTX)-induced complete activity suppression. Therefore, this homeostatic regulation was irrespective of Gi-signaling regulation of activity, but it was mimicked or occluded by direct manipulation of cyclic AMP (cAMP) signaling in a manner that intersected with the retinoic acid receptor alpha (RARα) signaling pathway. Our data suggest chemogenetic tools can uniquely be used to probe cell-autonomous mechanisms of synaptic scaling and operate via direct modulation of second messenger signaling bypassing activity regulation.
Collapse
Affiliation(s)
- Elena D. Bagatelas
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37209, USA
| | - Ege T. Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37209, USA
| |
Collapse
|
9
|
McCarthy CI, Kavalali ET. Nano-organization of synaptic calcium signaling. Biochem Soc Trans 2024; 52:1459-1471. [PMID: 38752834 PMCID: PMC11346461 DOI: 10.1042/bst20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 06/27/2024]
Abstract
Recent studies suggest an exquisite structural nano-organization within single synapses, where sites of evoked fusion - marked by clustering of synaptic vesicles, active zone proteins and voltage-gated calcium channels - are directly juxtaposed to postsynaptic receptor clusters within nanocolumns. This direct nanometer scale alignment between presynaptic fusion apparatus and postsynaptic receptors is thought to ensure the fidelity of synaptic signaling and possibly allow multiple distinct signals to occur without interference from each other within a single active zone. The functional specificity of this organization is made possible by the inherent nano-organization of calcium signals, where all the different calcium sources such as voltage-gated calcium channels, intracellular stores and store-operated calcium entry have dedicated local targets within their nanodomain to ensure precision of action. Here, we discuss synaptic nano-organization from the perspective of calcium signals, where some of the principal findings from early work in the 1980s continue to inspire current studies that exploit new genetic tools and super-resolution imaging technologies.
Collapse
Affiliation(s)
- Clara I. McCarthy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
| |
Collapse
|
10
|
Krystal JH, Kavalali ET, Monteggia LM. Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacology 2024; 49:41-50. [PMID: 37488280 PMCID: PMC10700627 DOI: 10.1038/s41386-023-01629-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 07/26/2023]
Abstract
Ketamine is an open channel blocker of ionotropic glutamatergic N-Methyl-D-Aspartate (NMDA) receptors. The discovery of its rapid antidepressant effects in patients with depression and treatment-resistant depression fostered novel effective treatments for mood disorders. This discovery not only provided new insight into the neurobiology of mood disorders but also uncovered fundamental synaptic plasticity mechanisms that underlie its treatment. In this review, we discuss key clinical aspects of ketamine's effect as a rapidly acting antidepressant, synaptic and circuit mechanisms underlying its action, as well as how these novel perspectives in clinical practice and synapse biology form a road map for future studies aimed at more effective treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Nolan SO, Melugin PR, Erickson KR, Adams WR, Farahbakhsh ZZ, Mcgonigle CE, Kwon MH, Costa VD, Lapish CC, Hackett TA, Cuzon Carlson VC, Constantinidis C, Grant KA, Siciliano CA. Recurrent activity within microcircuits of macaque dorsolateral prefrontal cortex tracks cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559125. [PMID: 38529503 PMCID: PMC10962741 DOI: 10.1101/2023.09.23.559125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Human and non-human primate data clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions 1,2 . It is thought that intracortical synaptic architectures within dlPFC are the integral neurobiological substrate that gives rise to these processes, including working memory, inferential reasoning, and decision-making 3-7 . In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the 'canonical' cortical microcircuit 3,8 . Each cortical microcircuit receives sensory and cognitive information from a variety of sources which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity 4,9 . Via recurrent connections within the microcircuit, activity can propagate for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output 4,5,10 . Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo where intercortical and intracortical computations cannot be fully dissociated 5,9,11,12 . Here, we interrogated the intrinsic features of isolated microcircuit networks using high-density calcium imaging of macaque dlPFC ex vivo . We found that spontaneous activity is intrinsically maintained by microcircuit architecture, persisting at a high rate in the absence of extrinsic connections. Further, using perisulcal stimulation to evoke persistent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks, creating predictable population-level events from largely non-overlapping ensembles. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture.
Collapse
|
12
|
Beccano-Kelly DA, Cherubini M, Mousba Y, Cramb KM, Giussani S, Caiazza MC, Rai P, Vingill S, Bengoa-Vergniory N, Ng B, Corda G, Banerjee A, Vowles J, Cowley S, Wade-Martins R. Calcium dysregulation combined with mitochondrial failure and electrophysiological maturity converge in Parkinson's iPSC-dopamine neurons. iScience 2023; 26:107044. [PMID: 37426342 PMCID: PMC10329047 DOI: 10.1016/j.isci.2023.107044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive deterioration of motor and cognitive functions. Although death of dopamine neurons is the hallmark pathology of PD, this is a late-stage disease process preceded by neuronal dysfunction. Here we describe early physiological perturbations in patient-derived induced pluripotent stem cell (iPSC)-dopamine neurons carrying the GBA-N370S mutation, a strong genetic risk factor for PD. GBA-N370S iPSC-dopamine neurons show an early and persistent calcium dysregulation notably at the mitochondria, followed by reduced mitochondrial membrane potential and oxygen consumption rate, indicating mitochondrial failure. With increased neuronal maturity, we observed decreased synaptic function in PD iPSC-dopamine neurons, consistent with the requirement for ATP and calcium to support the increase in electrophysiological activity over time. Our work demonstrates that calcium dyshomeostasis and mitochondrial failure impair the higher electrophysiological activity of mature neurons and may underlie the vulnerability of dopamine neurons in PD.
Collapse
Affiliation(s)
- Dayne A. Beccano-Kelly
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Marta Cherubini
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Yassine Mousba
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Kaitlyn M.L. Cramb
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Stefania Giussani
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Maria Claudia Caiazza
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Pavandeep Rai
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Siv Vingill
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Nora Bengoa-Vergniory
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Bryan Ng
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Gabriele Corda
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Abhirup Banerjee
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Jane Vowles
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- The James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sally Cowley
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- The James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
13
|
mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function. Nat Commun 2023; 14:244. [PMID: 36646691 PMCID: PMC9842668 DOI: 10.1038/s41467-022-35680-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
The unique perisynaptic distribution of postsynaptic metabotropic glutamate receptors (mGluRs) at excitatory synapses is predicted to directly shape synaptic function, but mechanistic insight into how this distribution is regulated and impacts synaptic signaling is lacking. We used live-cell and super-resolution imaging approaches, and developed molecular tools to resolve and acutely manipulate the dynamic nanoscale distribution of mGluR5. Here we show that mGluR5 is dynamically organized in perisynaptic nanodomains that localize close to, but not in the synapse. The C-terminal domain of mGluR5 critically controlled perisynaptic confinement and prevented synaptic entry. We developed an inducible interaction system to overcome synaptic exclusion of mGluR5 and investigate the impact on synaptic function. We found that mGluR5 recruitment to the synapse acutely increased synaptic calcium responses. Altogether, we propose that transient confinement of mGluR5 in perisynaptic nanodomains allows flexible modulation of synaptic function.
Collapse
|
14
|
Kavalali ET, Monteggia LM. Rapid homeostatic plasticity and neuropsychiatric therapeutics. Neuropsychopharmacology 2023; 48:54-60. [PMID: 35995973 PMCID: PMC9700859 DOI: 10.1038/s41386-022-01411-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/09/2022] [Accepted: 07/23/2022] [Indexed: 11/08/2022]
Abstract
Neuronal and synaptic plasticity are widely used terms in the field of psychiatry. However, cellular neurophysiologists have identified two broad classes of plasticity. Hebbian forms of plasticity alter synaptic strength in a synapse specific manner in the same direction of the initial conditioning stimulation. In contrast, homeostatic plasticities act globally over longer time frames in a negative feedback manner to counter network level changes in activity or synaptic strength. Recent evidence suggests that homeostatic plasticity mechanisms can be rapidly engaged, particularly by fast-acting antidepressants such as ketamine to trigger behavioral effects. There is increasing evidence that several neuropsychoactive compounds either directly elicit changes in synaptic activity or indirectly tap into downstream signaling pathways to trigger homeostatic plasticity and subsequent behavioral effects. In this review, we discuss this recent work in the context of a wider paradigm where homeostatic synaptic plasticity mechanisms may provide novel targets for neuropsychiatric treatment advance.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
15
|
Myeong J, Klyachko VA. Rapid astrocyte-dependent facilitation amplifies multi-vesicular release in hippocampal synapses. Cell Rep 2022; 41:111820. [PMID: 36516768 PMCID: PMC9805313 DOI: 10.1016/j.celrep.2022.111820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Synaptic facilitation is a major form of short-term plasticity typically driven by an increase in residual presynaptic calcium. Using near-total internal reflection fluorescence (near-TIRF) imaging of single vesicle release in cultured hippocampal synapses, we demonstrate a distinctive, release-dependent form of facilitation in which probability of vesicle release is higher following a successful glutamate release event than following a failure. This phenomenon has an onset of ≤500 ms and lasts several seconds, resulting in clusters of successful release events. The release-dependent facilitation requires neuronal contact with astrocytes and astrocytic glutamate uptake by EAAT1. It is not observed in neurons grown alone or in the presence of astrocyte-conditioned media. This form of facilitation dynamically amplifies multi-vesicular release. Facilitation-evoked release events exhibit spatial clustering and have a preferential localization toward the active zone center. These results uncover a rapid astrocyte-dependent form of facilitation acting via modulation of multi-vesicular release and displaying distinctive spatiotemporal properties.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63132, USA
| | - Vitaly A. Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63132, USA,Lead contact,Correspondence:
| |
Collapse
|
16
|
Dean CA, Metzbower SR, Dessain SK, Blanpied TA, Benavides DR. Regulation of NMDA Receptor Signaling at Single Synapses by Human Anti-NMDA Receptor Antibodies. Front Mol Neurosci 2022; 15:940005. [PMID: 35966009 PMCID: PMC9371948 DOI: 10.3389/fnmol.2022.940005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The NMDA receptor (NMDAR) subunit GluN1 is critical for receptor function and plays a pivotal role in synaptic plasticity. Mounting evidence has shown that pathogenic autoantibody targeting of the GluN1 subunit of NMDARs, as in anti-NMDAR encephalitis, leads to altered NMDAR trafficking and synaptic localization. However, the underlying signaling pathways affected by antibodies targeting the NMDAR remain to be fully delineated. It remains unclear whether patient antibodies influence synaptic transmission via direct effects on NMDAR channel function. Here, we show using short-term incubation that GluN1 antibodies derived from patients with anti-NMDAR encephalitis label synapses in mature hippocampal primary neuron culture. Miniature spontaneous calcium transients (mSCaTs) mediated via NMDARs at synaptic spines are not altered in pathogenic GluN1 antibody exposed conditions. Unexpectedly, spine-based and cell-based analyses yielded distinct results. In addition, we show that calcium does not accumulate in neuronal spines following brief exposure to pathogenic GluN1 antibodies. Together, these findings show that pathogenic antibodies targeting NMDARs, under these specific conditions, do not alter synaptic calcium influx following neurotransmitter release. This represents a novel investigation of the molecular effects of anti-NMDAR antibodies associated with autoimmune encephalitis.
Collapse
Affiliation(s)
- Charles A. Dean
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sarah R. Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott K. Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - David R. Benavides
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: David R. Benavides,
| |
Collapse
|
17
|
Cherkashin AP, Rogachevskaja OA, Kabanova NV, Kotova PD, Bystrova MF, Kolesnikov SS. Taste Cells of the Type III Employ CASR to Maintain Steady Serotonin Exocytosis at Variable Ca 2+ in the Extracellular Medium. Cells 2022; 11:1369. [PMID: 35456048 PMCID: PMC9030112 DOI: 10.3390/cells11081369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
Type III taste cells are the only taste bud cells which express voltage-gated (VG) Ca2+ channels and employ Ca2+-dependent exocytosis to release neurotransmitters, particularly serotonin. The taste bud is a tightly packed cell population, wherein extracellular Ca2+ is expected to fluctuate markedly due to the electrical activity of taste cells. It is currently unclear whether the Ca2+ entry-driven synapse in type III cells could be reliable enough at unsteady extracellular Ca2. Here we assayed depolarization-induced Ca2+ signals and associated serotonin release in isolated type III cells at varied extracellular Ca2+. It turned out that the same depolarizing stimulus elicited invariant Ca2+ signals in type III cells irrespective of bath Ca2+ varied within 0.5-5 mM. The serotonin release from type III cells was assayed with the biosensor approach by using HEK-293 cells co-expressing the recombinant 5-HT4 receptor and genetically encoded cAMP sensor Pink Flamindo. Consistently with the weak Ca2+ dependence of intracellular Ca2+ transients produced by VG Ca2+ entry, depolarization-triggered serotonin secretion varied negligibly with bath Ca2+. The evidence implicated the extracellular Ca2+-sensing receptor in mediating the negative feedback mechanism that regulates VG Ca2+ entry and levels off serotonin release in type III cells at deviating Ca2+ in the extracellular medium.
Collapse
Affiliation(s)
| | | | | | | | | | - Stanislav S. Kolesnikov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (A.P.C.); (O.A.R.); (N.V.K.); (P.D.K.); (M.F.B.)
| |
Collapse
|
18
|
Chanaday NL, Kavalali ET. Role of the endoplasmic reticulum in synaptic transmission. Curr Opin Neurobiol 2022; 73:102538. [PMID: 35395547 PMCID: PMC9167765 DOI: 10.1016/j.conb.2022.102538] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Neurons possess a complex morphology spanning long distances and a large number of subcellular specializations such as presynaptic terminals and dendritic spines. This structural complexity is essential for maintenance of synaptic junctions and associated electrical as well as biochemical signaling events. Given the structural and functional complexity of neurons, neuronal endoplasmic reticulum is emerging as a key regulator of neuronal function, in particular synaptic signaling. Neuronal endoplasmic reticulum mediates calcium signaling, calcium and lipid homeostasis, vesicular trafficking, and proteostasis events that underlie autonomous functions of numerous subcellular compartments. However, based on its geometric complexity spanning the whole neuron, endoplasmic reticulum also integrates the activity of these autonomous compartments across the neuron and coordinates their interactions with the soma. In this article, we review recent work regarding neuronal endoplasmic reticulum function and its relationship to neurotransmission and plasticity.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
19
|
Alten B, Guzikowski NJ, Zurawski Z, Hamm HE, Kavalali ET. Presynaptic mechanisms underlying GABA B-receptor-mediated inhibition of spontaneous neurotransmitter release. Cell Rep 2022; 38:110255. [PMID: 35045279 PMCID: PMC8793855 DOI: 10.1016/j.celrep.2021.110255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Inhibition of neurotransmitter release by neurotransmitter substances constitutes a fundamental means of neuromodulation. In contrast to well-delineated mechanisms that underlie inhibition of evoked release via suppression of voltage-gated Ca2+ channels, processes that underlie neuromodulatory inhibition of spontaneous release remain unclear. Here, we interrogated inhibition of spontaneous glutamate and GABA release by presynaptic metabotropic GABAB receptors. Our findings show that this inhibition relies on Gβγ subunit action at the membrane, and it is largely independent of presynaptic Ca2+ signaling for both forms of release. In the case of spontaneous glutamate release, inhibition requires Gβγ interaction with the C terminus of the key fusion machinery component SNAP25, and it is modulated by synaptotagmin-1. Inhibition of spontaneous GABA release, on the other hand, is independent of these pathways and likely requires alternative Gβγ targets at the presynaptic terminal.
Collapse
Affiliation(s)
- Baris Alten
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Natalie J. Guzikowski
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA,Lead contact,Correspondence:
| |
Collapse
|
20
|
Murphy JG, Gutzmann JJ, Lin L, Hu J, Petralia RS, Wang YX, Hoffman DA. R-type voltage-gated Ca 2+ channels mediate A-type K + current regulation of synaptic input in hippocampal dendrites. Cell Rep 2022; 38:110264. [PMID: 35045307 PMCID: PMC10496648 DOI: 10.1016/j.celrep.2021.110264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 01/22/2023] Open
Abstract
The subthreshold voltage-gated transient K+ current (IA) carried by pore-forming Kv4.2 subunits regulates the propagation of synaptic input, dendritic excitability, and synaptic plasticity in CA1 pyramidal neuron dendrites of the hippocampus. We report that the Ca2+ channel subunit Cav2.3 regulates IA in this cell type. We initially identified Cav2.3 as a Kv4.2-interacting protein in a proteomic screen and we confirmed Cav2.3-Kv4.2 complex association using multiple techniques. Functionally, Cav2.3 Ca2+-entry increases Kv4.2-mediated whole-cell current due to an increase in Kv4.2 surface expression. Using pharmacology and Cav2.3 knockout mice, we show that Cav2.3 regulates the dendritic gradient of IA. Furthermore, the loss of Cav2.3 function leads to the enhancement of AMPA receptor-mediated synaptic currents and NMDA receptor-mediated spine Ca2+ influx. These results propose that Cav2.3 and Kv4.2 are integral constituents of an ion channel complex that affects synaptic function in the hippocampus.
Collapse
Affiliation(s)
- Jonathan G Murphy
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jakob J Gutzmann
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lin Lin
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiahua Hu
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Guzikowski NJ, Kavalali ET. Nano-Organization at the Synapse: Segregation of Distinct Forms of Neurotransmission. Front Synaptic Neurosci 2022; 13:796498. [PMID: 35002671 PMCID: PMC8727373 DOI: 10.3389/fnsyn.2021.796498] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
Synapses maintain synchronous, asynchronous, and spontaneous modes of neurotransmission through distinct molecular and biochemical pathways. Traditionally a single synapse was assumed to have a homogeneous organization of molecular components both at the active zone and post-synaptically. However, recent advancements in experimental tools and the further elucidation of the physiological significance of distinct forms of release have challenged this notion. In comparison to rapid evoked release, the physiological significance of both spontaneous and asynchronous neurotransmission has only recently been considered in parallel with synaptic structural organization. Active zone nanostructure aligns with postsynaptic nanostructure creating a precise trans-synaptic alignment of release sites and receptors shaping synaptic efficacy, determining neurotransmission reliability, and tuning plasticity. This review will discuss how studies delineating synaptic nanostructure create a picture of a molecularly heterogeneous active zone tuned to distinct forms of release that may dictate diverse synaptic functional outputs.
Collapse
Affiliation(s)
- Natalie J Guzikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
22
|
Suzuki K, Kim JW, Nosyreva E, Kavalali ET, Monteggia LM. Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action. Cell Rep 2021; 37:109918. [PMID: 34731624 PMCID: PMC8590465 DOI: 10.1016/j.celrep.2021.109918] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Ketamine is a noncompetitive glutamatergic N-methyl-d-aspartate receptor (NMDAR) antagonist that exerts rapid antidepressant effects. Preclinical studies identify eukaryotic elongation factor 2 kinase (eEF2K) signaling as essential for the rapid antidepressant action of ketamine. Here, we combine genetic, electrophysiological, and pharmacological strategies to investigate the role of eEF2K in synaptic function and find that acute, but not chronic, inhibition of eEF2K activity induces rapid synaptic scaling in the hippocampus. Retinoic acid (RA) signaling also elicits a similar form of rapid synaptic scaling in the hippocampus, which we observe is independent of eEF2K functioni. The RA signaling pathway is not required for ketamine-mediated antidepressant action; however, direct activation of the retinoic acid receptor α (RARα) evokes rapid antidepressant action resembling ketamine. Our findings show that ketamine and RARα activation independently elicit a similar form of multiplicative synaptic scaling that is causal for rapid antidepressant action.
Collapse
Affiliation(s)
- Kanzo Suzuki
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ji-Woon Kim
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Elena Nosyreva
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
23
|
GluN3-Containing NMDA Receptors in the Rat Nucleus Accumbens Core Contribute to Incubation of Cocaine Craving. J Neurosci 2021; 41:8262-8277. [PMID: 34413203 DOI: 10.1523/jneurosci.0406-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Cue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca2+-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity. This prompted us to conduct the first study of NMDAR transmission in NAc core during incubation, focusing on the GluN3 subunit, which confers atypical properties when incorporated into NMDARs, including insensitivity to Mg2+ block and Ca2+ impermeability. Whole-cell patch-clamp recordings were conducted in MSNs of adult male rats 1-68 d after discontinuing extended-access saline or cocaine self-administration. NMDAR transmission was enhanced after 5 d of cocaine withdrawal, and this persisted for at least 68 d of withdrawal. The earliest functional alterations were mediated through increased contributions of GluN2B-containing NMDARs, followed by increased contributions of GluN3-containing NMDARs. As predicted by GluN3-NMDAR incorporation, fewer MSN spines exhibited NMDAR-mediated Ca2+ entry. GluN3A knockdown in NAc core was sufficient to prevent incubation of craving, consistent with biotinylation studies showing increased GluN3A surface expression, although array tomography studies suggested that adaptations involving GluN3B also occur. Collectively, our data show that a complex cascade of NMDAR and AMPAR plasticity occurs in NAc core, potentially through a homeostatic mechanism, leading to persistent increases in cocaine cue reactivity and relapse vulnerability. This is a remarkable example of experience-dependent glutamatergic plasticity evolving over a protracted window in the adult brain.SIGNIFICANCE STATEMENT "Incubation of craving" is an animal model for the persistence of vulnerability to cue-induced relapse after prolonged drug abstinence. Incubation also occurs in human drug users. AMPAR plasticity in medium spiny neurons (MSNs) of the NAc core is critical for incubation of cocaine craving but occurs only after a delay. Here we found that AMPAR plasticity is preceded by NMDAR plasticity that is essential for incubation and involves GluN3, an atypical NMDAR subunit that markedly alters NMDAR transmission. Together with AMPAR plasticity, this represents profound remodeling of excitatory synaptic transmission onto MSNs. Given the importance of MSNs for translating motivation into action, this plasticity may explain, at least in part, the profound shifts in motivated behavior that characterize addiction.
Collapse
|
24
|
Lin PY, Ma ZZ, Mahgoub M, Kavalali ET, Monteggia LM. A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep 2021; 36:109513. [PMID: 34407417 PMCID: PMC8404212 DOI: 10.1016/j.celrep.2021.109513] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/14/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Ketamine produces rapid antidepressant action in patients with major depression or treatment-resistant depression. Studies have identified brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), as necessary for the antidepressant effects and underlying ketamine-induced synaptic potentiation in the hippocampus. Here, we delete BDNF or TrkB in presynaptic CA3 or postsynaptic CA1 regions of the Schaffer collateral pathway to investigate the rapid antidepressant action of ketamine. The deletion of Bdnf in CA3 or CA1 blocks the ketamine-induced synaptic potentiation. In contrast, ablation of TrkB only in postsynaptic CA1 eliminates the ketamine-induced synaptic potentiation. We confirm BDNF-TrkB signaling in CA1 is required for ketamine's rapid behavioral action. Moreover, ketamine application elicits dynamin1-dependent TrkB activation and downstream signaling to trigger rapid synaptic effects. Taken together, these data demonstrate a requirement for BDNF-TrkB signaling in CA1 neurons in ketamine-induced synaptic potentiation and identify a specific synaptic locus in eliciting ketamine's rapid antidepressant effects.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Z Zack Ma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA
| | - Melissa Mahgoub
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA.
| |
Collapse
|
25
|
Horvath PM, Chanaday NL, Alten B, Kavalali ET, Monteggia LM. A subthreshold synaptic mechanism regulating BDNF expression and resting synaptic strength. Cell Rep 2021; 36:109467. [PMID: 34348149 PMCID: PMC8371576 DOI: 10.1016/j.celrep.2021.109467] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated that protein translation can be regulated by spontaneous excitatory neurotransmission. However, the impact of spontaneous neurotransmitter release on gene transcription remains unclear. Here, we study the effects of the balance between inhibitory and excitatory spontaneous neurotransmission on brain-derived neurotrophic factor (BDNF) regulation and synaptic plasticity. Blockade of spontaneous inhibitory events leads to an increase in the transcription of Bdnf and Npas4 through altered synaptic calcium signaling, which can be blocked by antagonism of NMDA receptors (NMDARs) or L-type voltage-gated calcium channels (VGCCs). Transcription is bidirectionally altered by manipulating spontaneous inhibitory, but not excitatory, currents. Moreover, blocking spontaneous inhibitory events leads to multiplicative downscaling of excitatory synaptic strength in a manner that is dependent on both transcription and BDNF signaling. These results reveal a role for spontaneous inhibitory neurotransmission in BDNF signaling that sets excitatory synaptic strength at rest.
Collapse
Affiliation(s)
- Patricia M Horvath
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Natali L Chanaday
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Baris Alten
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
26
|
A key requirement for synaptic Reelin signaling in ketamine-mediated behavioral and synaptic action. Proc Natl Acad Sci U S A 2021; 118:2103079118. [PMID: 33975959 PMCID: PMC8157952 DOI: 10.1073/pnas.2103079118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant action in some patients with treatment-resistant depression. However, recent data suggest that ∼50% of patients with treatment-resistant depression do not respond to ketamine. The factors that contribute to the nonresponsiveness to ketamine's antidepressant action remain unclear. Recent studies have reported a role for secreted glycoprotein Reelin in regulating pre- and postsynaptic function, which suggests that Reelin may be involved in ketamine's antidepressant action, although the premise has not been tested. Here, we investigated whether the disruption of Reelin-mediated synaptic signaling alters ketamine-triggered synaptic plasticity and behavioral effects. To this end, we used mouse models with genetic deletion of Reelin or apolipoprotein E receptor 2 (Apoer2), as well as pharmacological inhibition of their downstream effectors, Src family kinases (SFKs) or phosphoinositide 3-kinase. We found that disruption of Reelin, Apoer2, or SFKs blocks ketamine-driven behavioral changes and synaptic plasticity in the hippocampal CA1 region. Although ketamine administration did not affect tyrosine phosphorylation of DAB1, an adaptor protein linked to downstream signaling of Reelin, disruption of Apoer2 or SFKs impaired baseline NMDA receptor-mediated neurotransmission. These results suggest that maintenance of baseline NMDA receptor function by Reelin signaling may be a key permissive factor required for ketamine's antidepressant effects. Taken together, our results suggest that impairments in Reelin-Apoer2-SFK pathway components may in part underlie nonresponsiveness to ketamine's antidepressant action.
Collapse
|
27
|
Shimell JJ, Globa A, Sepers MD, Wild AR, Matin N, Raymond LA, Bamji SX. Regulation of hippocampal excitatory synapses by the Zdhhc5 palmitoyl acyltransferase. J Cell Sci 2021; 134:237816. [PMID: 33758079 PMCID: PMC8182408 DOI: 10.1242/jcs.254276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Palmitoylation is the most common post-translational lipid modification in the brain; however, the role of palmitoylation and palmitoylating enzymes in the nervous system remains elusive. One of these enzymes, Zdhhc5, has previously been shown to regulate synapse plasticity. Here, we report that Zdhhc5 is also essential for the formation of excitatory, but not inhibitory, synapses both in vitro and in vivo. We demonstrate in vitro that this is dependent on the enzymatic activity of Zdhhc5, its localization at the plasma membrane and its C-terminal domain, which has been shown to be truncated in a patient with schizophrenia. Loss of Zdhhc5 in mice results in a decrease in the density of excitatory hippocampal synapses accompanied by alterations in membrane capacitance and synaptic currents, consistent with an overall decrease in spine number and silent synapses. These findings reveal an important role for Zdhhc5 in the formation and/or maintenance of excitatory synapses. Summary: The plasma membrane-associated Zdhhc5 enzyme enhances excitatory synapse formation in vitro and in vivo through motifs at its C-terminal domain.
Collapse
Affiliation(s)
- Jordan J Shimell
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Andrea Globa
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marja D Sepers
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Angela R Wild
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nusrat Matin
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lynn A Raymond
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
28
|
Bourgeois-Jaarsma Q, Miaja Hernandez P, Groffen AJ. Ca 2+ sensor proteins in spontaneous release and synaptic plasticity: Limited contribution of Doc2c, rabphilin-3a and synaptotagmin 7 in hippocampal glutamatergic neurons. Mol Cell Neurosci 2021; 112:103613. [PMID: 33753311 DOI: 10.1016/j.mcn.2021.103613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.
Collapse
Affiliation(s)
- Quentin Bourgeois-Jaarsma
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Pablo Miaja Hernandez
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Alexander J Groffen
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Department of Clinical Genetics, VU Medical Center, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Mechanisms and plasticity of chemogenically induced interneuronal suppression of principal cells. Proc Natl Acad Sci U S A 2020; 118:2014157118. [PMID: 33372130 DOI: 10.1073/pnas.2014157118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How do firing patterns in a cortical circuit change when inhibitory neurons are excited? We virally expressed an excitatory designer receptor exclusively activated by a designer drug (Gq-DREADD) in all inhibitory interneuron types of the CA1 region of the hippocampus in the rat. While clozapine N-oxide (CNO) activation of interneurons suppressed firing of pyramidal cells, unexpectedly the majority of interneurons also decreased their activity. CNO-induced inhibition decreased over repeated sessions, which we attribute to long-term synaptic plasticity between interneurons and pyramidal cells. Individual interneurons did not display sustained firing but instead transiently enhanced their activity, interleaved with suppression of others. The power of the local fields in the theta band was unaffected, while power at higher frequencies was attenuated, likely reflecting reduced pyramidal neuron spiking. The incidence of sharp wave ripples decreased but the surviving ripples were associated with stronger population firing compared with the control condition. These findings demonstrate that DREADD activation of interneurons brings about both short-term and long-term circuit reorganization, which should be taken into account in the interpretation of chemogenic effects on behavior.
Collapse
|
30
|
Kavalali ET, Monteggia LM. Targeting Homeostatic Synaptic Plasticity for Treatment of Mood Disorders. Neuron 2020; 106:715-726. [PMID: 32497508 DOI: 10.1016/j.neuron.2020.05.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023]
Abstract
Ketamine exerts rapid antidepressant action in depressed and treatment-resistant depressed patients within hours. At the same time, ketamine elicits a unique form of functional synaptic plasticity that shares several attributes and molecular mechanisms with well-characterized forms of homeostatic synaptic scaling. Lithium is a widely used mood stabilizer also proposed to act via synaptic scaling for its antimanic effects. Several studies to date have identified specific forms of homeostatic synaptic plasticity that are elicited by these drugs used to treat neuropsychiatric disorders. In the last two decades, extensive work on homeostatic synaptic plasticity mechanisms have shown that they diverge from classical synaptic plasticity mechanisms that process and store information and thus present a novel avenue for synaptic regulation with limited direct interference with cognitive processes. In this review, we discuss the intersection of the findings from neuropsychiatric treatments and homeostatic plasticity studies to highlight a potentially wider paradigm for treatment advance.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA.
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
31
|
Suzuki K, Monteggia LM. The role of eEF2 kinase in the rapid antidepressant actions of ketamine. RAPID ACTING ANTIDEPRESSANTS 2020; 89:79-99. [DOI: 10.1016/bs.apha.2020.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Disruption of NMDAR Function Prevents Normal Experience-Dependent Homeostatic Synaptic Plasticity in Mouse Primary Visual Cortex. J Neurosci 2019; 39:7664-7673. [PMID: 31413075 DOI: 10.1523/jneurosci.2117-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Homeostatic regulation of synaptic strength allows for maintenance of neural activity within a dynamic range for proper circuit function. There are largely two distinct modes of synaptic plasticity that allow for homeostatic adaptation of cortical circuits: synaptic scaling and sliding threshold (BCM theory). Previous findings suggest that the induction of synaptic scaling is not prevented by blocking NMDARs, whereas the sliding threshold model posits that the synaptic modification threshold of LTP and LTD readjusts with activity and thus the outcome of synaptic plasticity is NMDAR dependent. Although synaptic scaling and sliding threshold have been considered two distinct mechanisms, there are indications from recent studies that these two modes of homeostatic plasticity may interact or that they may operate under two distinct activity regimes. Here, we report using both sexes of mouse that acute genetic knock-out of the obligatory subunit of NMDAR or acute pharmacological block of NMDAR prevents experience-dependent homeostatic regulation of AMPAR-mediated miniature EPSCs in layer 2/3 of visual cortex. This was not due to gross changes in postsynaptic neuronal activity with inhibiting NMDAR function as determine by c-Fos expression and two-photon Ca2+ imaging in awake mice. Our results suggest that experience-dependent homeostatic regulation of intact cortical circuits is mediated by NMDAR-dependent plasticity mechanisms, which supports a sliding threshold model of homeostatic adaptation.SIGNIFICANCE STATEMENT Prolonged changes in sensory experience lead to homeostatic adaptation of excitatory synaptic strength in sensory cortices. Both sliding threshold and synaptic scaling models can account for the observed homeostatic synaptic plasticity. Here we report that visual experience-dependent homeostatic plasticity of excitatory synapses observed in superficial layers of visual cortex is dependent on NMDAR function. In particular, both strengthening of synapses induced by visual deprivation and the subsequent weakening by reinstatement of visual experience were prevented in the absence of functional NMDARs. Our results suggest that sensory experience-dependent homeostatic adaptation depends on NMDARs, which supports the sliding threshold model of plasticity and input-specific homeostatic control observed in vivo.
Collapse
|
33
|
Mahajan G, Nadkarni S. Intracellular calcium stores mediate metaplasticity at hippocampal dendritic spines. J Physiol 2019; 597:3473-3502. [PMID: 31099020 PMCID: PMC6636706 DOI: 10.1113/jp277726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Key points Calcium (Ca2+) entry mediated by NMDA receptors is considered central to the induction of activity‐dependent synaptic plasticity in hippocampal area CA1; this description does not, however, take into account the potential contribution of endoplasmic reticulum (ER) Ca2+ stores. The ER has a heterogeneous distribution in CA1 dendritic spines, and may introduce localized functional differences in Ca2+ signalling between synapses, as suggested by experiments on metabotropic receptor‐dependent long‐term depression. A physiologically detailed computational model of Ca2+ dynamics at a CA3–CA1 excitatory synapse characterizes the contribution of spine ER via metabotropic signalling during plasticity induction protocols. ER Ca2+ release via IP3 receptors modulates NMDA receptor‐dependent plasticity in a graded manner, to selectively promote synaptic depression with relatively diminished effect on LTP induction; this may temper further strengthening at the stronger synapses which are preferentially associated with ER‐containing spines. Acquisition of spine ER may thus represent a local, biophysically plausible ‘metaplastic switch’ at potentiated CA1 synapses, contributing to the plasticity–stability balance in neural circuits.
Abstract Long‐term plasticity mediated by NMDA receptors supports input‐specific, Hebbian forms of learning at excitatory CA3–CA1 connections in the hippocampus. There exists an additional layer of stabilizing mechanisms that act globally as well as locally over multiple time scales to ensure that plasticity occurs in a constrained manner. Here, we investigated the role of calcium (Ca2+) stores associated with the endoplasmic reticulum (ER) in the local regulation of plasticity at individual CA1 synapses. Our study was spurred by (1) the curious observation that ER is sparsely distributed in dendritic spines, but over‐represented in larger spines that are likely to have undergone activity‐dependent strengthening, and (2) evidence suggesting that ER motility at synapses can be rapid, and accompany activity‐regulated spine remodelling. We constructed a physiologically realistic computational model of an ER‐bearing CA1 spine, and examined how IP3‐sensitive Ca2+ stores affect spine Ca2+ dynamics during activity patterns mimicking the induction of long‐term potentiation and long‐term depression (LTD). Our results suggest that the presence of ER modulates NMDA receptor‐dependent plasticity in a graded manner that selectively enhances LTD induction. We propose that ER may locally tune Ca2+‐based plasticity, providing a braking mechanism to mitigate runaway strengthening at potentiated synapses. Our study provides a biophysically accurate description of postsynaptic Ca2+ regulation, and suggests that ER in the spine may promote the re‐use of hippocampal synapses with saturated strengths. Calcium (Ca2+) entry mediated by NMDA receptors is considered central to the induction of activity‐dependent synaptic plasticity in hippocampal area CA1; this description does not, however, take into account the potential contribution of endoplasmic reticulum (ER) Ca2+ stores. The ER has a heterogeneous distribution in CA1 dendritic spines, and may introduce localized functional differences in Ca2+ signalling between synapses, as suggested by experiments on metabotropic receptor‐dependent long‐term depression. A physiologically detailed computational model of Ca2+ dynamics at a CA3–CA1 excitatory synapse characterizes the contribution of spine ER via metabotropic signalling during plasticity induction protocols. ER Ca2+ release via IP3 receptors modulates NMDA receptor‐dependent plasticity in a graded manner, to selectively promote synaptic depression with relatively diminished effect on LTP induction; this may temper further strengthening at the stronger synapses which are preferentially associated with ER‐containing spines. Acquisition of spine ER may thus represent a local, biophysically plausible ‘metaplastic switch’ at potentiated CA1 synapses, contributing to the plasticity–stability balance in neural circuits.
Collapse
Affiliation(s)
- Gaurang Mahajan
- Indian Institute of Science Education and Research, Pune, 411 008, India
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research, Pune, 411 008, India
| |
Collapse
|
34
|
Metzbower SR, Joo Y, Benavides DR, Blanpied TA. Properties of Individual Hippocampal Synapses Influencing NMDA-Receptor Activation by Spontaneous Neurotransmission. eNeuro 2019; 6:ENEURO.0419-18.2019. [PMID: 31110134 PMCID: PMC6541874 DOI: 10.1523/eneuro.0419-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
NMDA receptor (NMDAR) activation is critical for maintenance and modification of synapse strength. Specifically, NMDAR activation by spontaneous glutamate release has been shown to mediate some forms of synaptic plasticity as well as synaptic development. Interestingly, there is evidence that within individual synapses each release mode may be segregated such that postsynaptically there are distinct pools of responsive receptors. To examine potential regulators of NMDAR activation because of spontaneous glutamate release in cultured hippocampal neurons, we used GCaMP6f imaging at single synapses in concert with confocal and super-resolution imaging. Using these single-spine approaches, we found that Ca2+ entry activated by spontaneous release tends to be carried by GluN2B-NMDARs. Additionally, the amount of NMDAR activation varies greatly both between synapses and within synapses, and is unrelated to spine and synapse size, but does correlate loosely with synapse distance from the soma. Despite the critical role of spontaneous activation of NMDARs in maintaining synaptic function, their activation seems to be controlled factors other than synapse size or synapse distance from the soma. It is most likely that NMDAR activation by spontaneous release influenced variability in subsynaptic receptor position, release site position, vesicle content, and channel properties. Therefore, spontaneous activation of NMDARs appears to be regulated distinctly from other receptor types, notably AMPARs, within individual synapses.
Collapse
Affiliation(s)
| | - Yuyoung Joo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - David R Benavides
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | | |
Collapse
|
35
|
Kavalali ET. Neuronal Ca 2+ signalling at rest and during spontaneous neurotransmission. J Physiol 2019; 598:1649-1654. [PMID: 30735245 DOI: 10.1113/jp276541] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/30/2019] [Indexed: 12/30/2022] Open
Abstract
Action potential driven neuronal signalling drives several electrical and biochemical processes in the nervous system. However, neurons can maintain synaptic communication and signalling under resting conditions independently of activity. Importantly, these processes are regulated by Ca2+ signals that occur at rest. Several studies have suggested that opening of voltage-gated Ca2+ channels near resting membrane potentials, activation of NMDA receptors in the absence of depolarization or Ca2+ release from intracellular stores can drive neurotransmitter release as well as subsequent signalling in the absence of action potentials. Interestingly, recent studies have demonstrated that manipulation of resting neuronal Ca2+ signalling yielded pronounced homeostatic synaptic plasticity, suggesting a critical role for this resting form of signalling in regulation of synaptic efficacy and neuronal homeostasis. Given their robust impact on synaptic efficacy and neuronal signalling, neuronal resting Ca2+ signals warrant further mechanistic analysis that includes the potential role of store-operated Ca2+ entry in these processes.
Collapse
Affiliation(s)
- Ege T Kavalali
- Vanderbilt Brain Institute and the Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA
| |
Collapse
|
36
|
Kadriu B, Musazzi L, Henter ID, Graves M, Popoli M, Zarate CA. Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments. Int J Neuropsychopharmacol 2019; 22:119-135. [PMID: 30445512 PMCID: PMC6368372 DOI: 10.1093/ijnp/pyy094] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/26/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
The underlying neurobiological basis of major depressive disorder remains elusive due to the severity, complexity, and heterogeneity of the disorder. While the traditional monoaminergic hypothesis has largely fallen short in its ability to provide a complete picture of major depressive disorder, emerging preclinical and clinical findings suggest that dysfunctional glutamatergic neurotransmission may underlie the pathophysiology of both major depressive disorder and bipolar depression. In particular, recent studies showing that a single intravenous infusion of the glutamatergic modulator ketamine elicits fast-acting, robust, and relatively sustained antidepressant, antisuicidal, and antianhedonic effects in individuals with treatment-resistant depression have prompted tremendous interest in understanding the mechanisms responsible for ketamine's clinical efficacy. These results, coupled with new evidence of the mechanistic processes underlying ketamine's effects, have led to inventive ways of investigating, repurposing, and expanding research into novel glutamate-based therapeutic targets with superior antidepressant effects but devoid of dissociative side effects. Ketamine's targets include noncompetitive N-methyl-D-aspartate receptor inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid throughput potentiation coupled with downstream signaling changes, and N-methyl-D-aspartate receptor targets localized on gamma-aminobutyric acid-ergic interneurons. Here, we review ketamine and other potentially novel glutamate-based treatments for treatment-resistant depression, including N-methyl-D-aspartate receptor antagonists, glycine binding site ligands, metabotropic glutamate receptor modulators, and other glutamatergic modulators. Both the putative mechanisms of action of these agents and clinically relevant studies are described.
Collapse
Affiliation(s)
- Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics – Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Ioline D Henter
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Morgan Graves
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics – Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| |
Collapse
|
37
|
SICT: automated detection and supervised inspection of fast Ca 2+ transients. Sci Rep 2018; 8:15523. [PMID: 30341397 PMCID: PMC6195629 DOI: 10.1038/s41598-018-33847-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Recent advances in live Ca2+ imaging with increasing spatial and temporal resolution offer unprecedented opportunities, but also generate an unmet need for data processing. Here we developed SICT, a MATLAB program that automatically identifies rapid Ca2+ rises in time-lapse movies with low signal-to-noise ratios, using fluorescent indicators. A graphical user interface allows visual inspection of automatically detected events, reducing manual labour to less than 10% while maintaining quality control. The detection performance was tested using synthetic data with various signal-to-noise ratios. The event inspection phase was evaluated by four human observers. Reliability of the method was demonstrated in a direct comparison between manual and SICT-aided analysis. As a test case in cultured neurons, SICT detected an increase in frequency and duration of spontaneous Ca2+ transients in the presence of caffeine. This new method speeds up the analysis of elementary Ca2+ transients.
Collapse
|
38
|
Chanaday NL, Kavalali ET. Presynaptic origins of distinct modes of neurotransmitter release. Curr Opin Neurobiol 2018; 51:119-126. [PMID: 29597140 PMCID: PMC6066415 DOI: 10.1016/j.conb.2018.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 11/17/2022]
Abstract
Presynaptic nerve terminals release neurotransmitter synchronously, asynchronously or spontaneously. During synchronous neurotransmission release is precisely coupled to action potentials, in contrast, asynchronous release events show only loose temporal coupling to presynaptic activity whereas spontaneous neurotransmission occurs independent of presynaptic activity. The mechanisms that give rise to this diversity in neurotransmitter release modes are poorly understood. Recent studies have described several presynaptic molecular pathways controlling synaptic vesicle pool segregation and recycling, which in turn may dictate distinct modes of neurotransmitter release. In this article, we review this recent work regarding neurotransmitter release modes and their relationship to synaptic vesicle pool dynamics as well as the molecular machinery that establishes synaptic vesicle pool identity.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
39
|
Stefanik MT, Milovanovic M, Werner CT, Spainhour JCG, Wolf ME. Withdrawal From Cocaine Self-administration Alters the Regulation of Protein Translation in the Nucleus Accumbens. Biol Psychiatry 2018; 84:223-232. [PMID: 29622268 PMCID: PMC6054574 DOI: 10.1016/j.biopsych.2018.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cue-induced cocaine craving incubates during abstinence from cocaine self-administration. Expression of incubation ultimately depends on elevation of homomeric GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors in the nucleus accumbens (NAc). This adaptation requires ongoing protein translation for its maintenance. Aberrant translation is implicated in central nervous system diseases, but nothing is known about glutamatergic regulation of translation in the drug-naïve NAc or after incubation. METHODS NAc tissue was obtained from drug-naïve rats and from rats after 1 or >40 days of abstinence from extended-access cocaine or saline self-administration. Newly translated proteins were labeled using 35S-Met/Cys or puromycin. We compared basal overall translation and its regulation by metabotropic glutamate receptor 1 (mGlu1), mGlu5, and N-methyl-D-aspartate receptors (NMDARs) in drug-naïve, saline control, and cocaine rats, and we compared GluA1 and GluA2 translation by immunoprecipitating puromycin-labeled proteins. RESULTS In all groups, overall translation was unaltered by mGlu1 blockade (LY367385) but increased by mGlu5 blockade (MTEP). NMDAR blockade (AVP) increased overall translation in drug-naïve and saline control rats but not in cocaine/late withdrawal rats. Cocaine/late withdrawal rats exhibited greater translation of GluA1 (but not GluA2), which was not further affected by NMDAR blockade. CONCLUSIONS Our results suggest that increased GluA1 translation contributes to the elevated homomeric GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor levels in the NAc that mediate incubation. Additional contributions to incubation-related plasticity may result from loss of the braking influence on translation normally exerted by NMDARs. Apart from elucidating incubation-related adaptations, we found a suppressive effect of mGlu5 on NAc translation regardless of drug exposure, which is opposite to results obtained in the hippocampus and points to heterogeneity of translational regulation between brain regions.
Collapse
Affiliation(s)
- Michael T Stefanik
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin School of Medicine and Science, North Chicago, Illinois
| | - Mike Milovanovic
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin School of Medicine and Science, North Chicago, Illinois
| | - Craig T Werner
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin School of Medicine and Science, North Chicago, Illinois
| | - John C G Spainhour
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, Georgia
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin School of Medicine and Science, North Chicago, Illinois.
| |
Collapse
|
40
|
Dias RB, Rodrigues TM, Rombo DM, Ribeiro FF, Rodrigues J, McGarvey J, Orcinha C, Henley JM, Sebastião AM. Erythropoietin Induces Homeostatic Plasticity at Hippocampal Synapses. Cereb Cortex 2018; 28:2795-2809. [PMID: 29053799 PMCID: PMC6117472 DOI: 10.1093/cercor/bhx159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 01/30/2023] Open
Abstract
The cytokine erythropoietin (EPO) is the master regulator of erythropoiesis. Intriguingly, many studies have shown that the cognitive performance of patients receiving EPO for its hematopoietic effects is enhanced, which prompted the growing interest in the use of EPO-based strategies to treat neuropsychiatric disorders. EPO plays key roles in brain development and maturation, but also modulates synaptic transmission. However, the mechanisms underlying the latter have remained elusive. Here, we show that acute (40-60 min) exposure to EPO presynaptically downregulates spontaneous and afferent-evoked excitatory transmission, without affecting basal firing of action potentials. Conversely, prolonged (3 h) exposure to EPO, if followed by a recovery period (1 h), is able to elicit a homeostatic increase in excitatory spontaneous, but not in evoked, synaptic transmission. These data lend support to the emerging view that segregated pathways underlie spontaneous and evoked neurotransmitter release. Furthermore, we show that prolonged exposure to EPO facilitates a form of hippocampal long-term potentiation that requires noncanonical recruitment of calcium-permeable AMPA receptors for its maintenance. These findings provide important new insight into the mechanisms by which EPO enhances neuronal function, learning, and memory.
Collapse
Affiliation(s)
- Raquel B Dias
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Tiago M Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Diogo M Rombo
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Filipa F Ribeiro
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Joana Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Jennifer McGarvey
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Catarina Orcinha
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| |
Collapse
|
41
|
Böhme MA, Grasskamp AT, Walter AM. Regulation of synaptic release-site Ca 2+ channel coupling as a mechanism to control release probability and short-term plasticity. FEBS Lett 2018; 592:3516-3531. [PMID: 29993122 DOI: 10.1002/1873-3468.13188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Synaptic transmission relies on the rapid fusion of neurotransmitter-containing synaptic vesicles (SVs), which happens in response to action potential (AP)-induced Ca2+ influx at active zones (AZs). A highly conserved molecular machinery cooperates at SV-release sites to mediate SV plasma membrane attachment and maturation, Ca2+ sensing, and membrane fusion. Despite this high degree of conservation, synapses - even within the same organism, organ or neuron - are highly diverse regarding the probability of APs to trigger SV fusion. Additionally, repetitive activation can lead to either strengthening or weakening of transmission. In this review, we discuss mechanisms controlling release probability and this short-term plasticity. We argue that an important layer of control is exerted by evolutionarily conserved AZ scaffolding proteins, which determine the coupling distance between SV fusion sites and voltage-gated Ca2+ channels (VGCC) and, thereby, shape synapse-specific input/output behaviors. We propose that AZ-scaffold modifications may occur to adapt the coupling distance during synapse maturation and plastic regulation of synapse strength.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
42
|
Stefanik MT, Sakas C, Lee D, Wolf ME. Ionotropic and metabotropic glutamate receptors regulate protein translation in co-cultured nucleus accumbens and prefrontal cortex neurons. Neuropharmacology 2018; 140:62-75. [PMID: 30077883 DOI: 10.1016/j.neuropharm.2018.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023]
Abstract
The regulation of protein translation by glutamate receptors and its role in plasticity have been extensively studied in the hippocampus. In contrast, very little is known about glutamatergic regulation of translation in nucleus accumbens (NAc) medium spiny neurons (MSN), despite their critical role in addiction-related plasticity and recent evidence that protein translation contributes to this plasticity. We used a co-culture system, containing NAc MSNs and prefrontal cortex (PFC) neurons, and fluorescent non-canonical amino acid tagging (FUNCAT) to visualize newly synthesized proteins in neuronal processes of NAc MSNs and PFC pyramidal neurons. First, we verified that the FUNCAT signal reflects new protein translation. Next, we examined the regulation of translation by group I metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors by incubating co-cultures with agonists or antagonists during the 2-h period of non-canonical amino acid labeling. In NAc MSNs, basal translation was modestly reduced by blocking Ca2+-permeable AMPARs whereas blocking all AMPARs or suppressing constitutive mGluR5 signaling enhanced translation. Activating group I mGluRs with dihydroxyphenylglycine increased translation in an mGluR1-dependent manner in NAc MSNs and PFC pyramidal neurons. Disinhibiting excitatory transmission with bicuculline also increased translation. In MSNs, this was reversed by antagonists of mGluR1, mGluR5, AMPARs or NMDARs. In PFC neurons, AMPAR or NMDAR antagonists blocked bicuculline-stimulated translation. Our study, the first to examine glutamatergic regulation of translation in MSNs, demonstrates regulatory mechanisms specific to MSNs that depend on the level of neuronal activation. This sets the stage for understanding how translation may be altered in addiction.
Collapse
Affiliation(s)
- Michael T Stefanik
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Courtney Sakas
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Dennis Lee
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
43
|
Kavalali ET. Spontaneous neurotransmission: A form of neural communication comes of age. J Neurosci Res 2017; 96:331-334. [PMID: 29219198 DOI: 10.1002/jnr.24207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Ege T Kavalali
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| |
Collapse
|
44
|
Unconventional NMDA Receptor Signaling. J Neurosci 2017; 37:10800-10807. [PMID: 29118208 DOI: 10.1523/jneurosci.1825-17.2017] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/21/2022] Open
Abstract
In the classical view, NMDA receptors (NMDARs) are stably expressed at the postsynaptic membrane, where they act via Ca2+ to signal coincidence detection in Hebbian plasticity. More recently, it has been established that NMDAR-mediated transmission can be dynamically regulated by neural activity. In addition, NMDARs have been found presynaptically, where they cannot act as conventional coincidence detectors. Unexpectedly, NMDARs have also been shown to signal metabotropically, without the need for Ca2+ This review highlights novel findings concerning these unconventional modes of NMDAR action.
Collapse
|
45
|
Circuit and Synaptic Plasticity Mechanisms of Drug Relapse. J Neurosci 2017; 37:10867-10876. [PMID: 29118216 DOI: 10.1523/jneurosci.1821-17.2017] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/09/2023] Open
Abstract
High rates of relapse to drug use during abstinence is a defining feature of human drug addiction. This clinical scenario has been studied at the preclinical level using different animal models in which relapse to drug seeking is assessed after cessation of operant drug self-administration in rodents and monkeys. In our Society for Neuroscience (SFN) session entitled "Circuit and Synaptic Plasticity Mechanisms of Drug Relapse," we will discuss new developments of our understanding of circuits and synaptic plasticity mechanisms of drug relapse from studies combining established and novel animal models with state-of-the-art cellular, electrophysiology, anatomical, chemogenetic, and optogenetic methods. We will also discuss the translational implications of these new developments. In the mini-review that introduces our SFN session, we summarize results from our laboratories on behavioral, cellular, and circuit mechanisms of drug relapse within the context of our session.
Collapse
|
46
|
Gonzalez-Islas C, Bülow P, Wenner P. Regulation of synaptic scaling by action potential-independent miniature neurotransmission. J Neurosci Res 2017; 96:348-353. [PMID: 28782263 DOI: 10.1002/jnr.24138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022]
Abstract
Synaptic scaling represents a homeostatic adjustment in synaptic strength that was first identified as a cell-wide mechanism to achieve firing rate homeostasis after perturbations to spiking activity levels. In this review, we consider a form of synaptic scaling that is triggered by changes in action potential-independent neurotransmitter release. This plasticity appears to be both triggered and expressed locally at the dendritic site of the synapse that experiences a perturbation. A discussion of different forms of scaling triggered by different perturbations is presented. We consider work from multiple groups supporting this form of scaling, which we call neurotransmission-based scaling. This class of homeostatic synaptic plasticity is compared in studies using hippocampal and cortical cultures, as well as in vivo work in the embryonic chick spinal cord. Despite differences in the tissues examined, there are clear similarities in neurotransmission-based scaling, which appear to be molecularly distinct from the originally described spike-based scaling.
Collapse
Affiliation(s)
- Carlos Gonzalez-Islas
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia.,Doctorado en Ciencias Biológicas, Univerisdad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Pernille Bülow
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia.,Cell Biology Department, Emory University School of Medicine, Atlanta, GA
| | - Peter Wenner
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia
| |
Collapse
|
47
|
Complexin Mutants Reveal Partial Segregation between Recycling Pathways That Drive Evoked and Spontaneous Neurotransmission. J Neurosci 2017; 37:383-396. [PMID: 28077717 DOI: 10.1523/jneurosci.1854-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles fuse at morphological specializations in the presynaptic terminal termed active zones (AZs). Vesicle fusion can occur spontaneously or in response to an action potential. Following fusion, vesicles are retrieved and recycled within nerve terminals. It is still unclear whether vesicles that fuse spontaneously or following evoked release share similar recycling mechanisms. Genetic deletion of the SNARE-binding protein complexin dramatically increases spontaneous fusion, with the protein serving as the synaptic vesicle fusion clamp at Drosophila synapses. We examined synaptic vesicle recycling pathways at complexin null neuromuscular junctions, where spontaneous release is dramatically enhanced. We combined loading of the lipophilic dye FM1-43 with photoconversion, electron microscopy, and electrophysiology to monitor evoked and spontaneous recycling vesicle pools. We found that the total number of recycling vesicles was equal to those retrieved through spontaneous and evoked pools, suggesting that retrieval following fusion is partially segregated for spontaneous and evoked release. In addition, the kinetics of FM1-43 destaining and synaptic depression measured in the presence of the vesicle-refilling blocker bafilomycin indicated that spontaneous and evoked recycling pools partially intermix during the release process. Finally, FM1-43 photoconversion combined with electron microscopy analysis indicated that spontaneous recycling preferentially involves synaptic vesicles in the vicinity of AZs, whereas vesicles recycled following evoked release involve a larger intraterminal pool. Together, these results suggest that spontaneous and evoked vesicles use separable recycling pathways and then partially intermix during subsequent rounds of fusion. SIGNIFICANCE STATEMENT Neurotransmitter release involves fusion of synaptic vesicles with the plasma membrane in response to an action potential, or spontaneously in the absence of stimulation. Upon fusion, vesicles are retrieved and recycled, and it is unclear whether recycling pathways for evoked and spontaneous vesicles are segregated after fusion. We addressed this question by taking advantage of preparations lacking the synaptic protein complexin, which have elevated spontaneous release that enables reliable tracking of the spontaneous recycling pool. Our results suggest that spontaneous and evoked recycling pathways are segregated during the retrieval process but can partially intermix during stimulation.
Collapse
|
48
|
Spontaneous Release Regulates Synaptic Scaling in the Embryonic Spinal Network In Vivo. J Neurosci 2017; 36:7268-82. [PMID: 27383600 DOI: 10.1523/jneurosci.4066-15.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Homeostatic plasticity mechanisms maintain cellular or network spiking activity within a physiologically functional range through compensatory changes in synaptic strength or intrinsic cellular excitability. Synaptic scaling is one form of homeostatic plasticity that is triggered after blockade of spiking or neurotransmission in which the strengths of all synaptic inputs to a cell are multiplicatively scaled upward or downward in a compensatory fashion. We have shown previously that synaptic upscaling could be triggered in chick embryo spinal motoneurons by complete blockade of spiking or GABAA receptor (GABAAR) activation for 2 d in vivo Here, we alter GABAAR activation in a more physiologically relevant manner by chronically adjusting presynaptic GABA release in vivo using nicotinic modulators or an mGluR2 agonist. Manipulating GABAAR activation in this way triggered scaling in a mechanistically similar manner to scaling induced by complete blockade of GABAARs. Remarkably, we find that altering action-potential (AP)-independent spontaneous release was able to fully account for the observed bidirectional scaling, whereas dramatic changes in spiking activity associated with spontaneous network activity had little effect on quantal amplitude. The reliance of scaling on an AP-independent process challenges the plasticity's relatedness to spiking in the living embryonic spinal network. Our findings have implications for the trigger and function of synaptic scaling and suggest that spontaneous release functions to regulate synaptic strength homeostatically in vivo SIGNIFICANCE STATEMENT Homeostatic synaptic scaling is thought to prevent inappropriate levels of spiking activity through compensatory adjustments in the strength of synaptic inputs. Therefore, it is thought that perturbations in spike rate trigger scaling. Here, we find that dramatic changes in spiking activity in the embryonic spinal cord have little effect on synaptic scaling; conversely, alterations in GABAA receptor activation due to action-potential-independent GABA vesicle release can trigger scaling. The findings suggest that scaling in the living embryonic spinal cord functions to maintain synaptic strength and challenge the view that scaling acts to regulate spiking activity homeostatically. Finally, the results indicate that fetal exposure to drugs that influence GABA spontaneous release, such as nicotine, could profoundly affect synaptic maturation.
Collapse
|
49
|
Local and Use-Dependent Effects of β-Amyloid Oligomers on NMDA Receptor Function Revealed by Optical Quantal Analysis. J Neurosci 2017; 36:11532-11543. [PMID: 27911757 DOI: 10.1523/jneurosci.1603-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/20/2016] [Accepted: 09/25/2016] [Indexed: 12/23/2022] Open
Abstract
Beta amyloid (Aβ) triggers the elimination of excitatory synaptic connections in the CNS, an early manifestation of Alzheimer's disease. Oligomeric assemblies of Aβ peptide associate with excitatory synapses resulting in synapse elimination through a process that requires NMDA-type glutamate receptor activation. Whether Aβ affects synaptic NMDA receptor (NMDAR) function directly and acts locally at synapses to which it has bound and whether synaptic activity influences Aβ synaptic binding and synaptotoxicity have remained fundamental questions. Here, we used subcellular Ca2+ imaging in rat hippocampal neurons to visualize NMDAR function at individual synapses before and after Aβ application. Aβ triggered a robust impairment of NMDAR Ca2+ entry at most, but not all, synapses. NMDAR function was more severely impaired at highly active synapses and synapses with bound Aβ, but activity was not required for Aβ synapse binding. Blocking NMDARs during Aβ exposure prevented Aβ-mediated impairment. Finally, Aβ impaired NMDAR Ca2+ entry at doses much lower than those required for NMDAR internalization, revealing a novel, potent mode of NMDAR regulation by Aβ. SIGNIFICANCE STATEMENT Amyloid β (Aβ) is strongly implicated in Alzheimer's disease. Aβ triggers the elimination of excitatory synapses through a mechanism that requires NMDA receptors (NMDARs). However, little is known about how or whether Aβ influences synaptic NMDAR function. We used an imaging-based assay to investigate the relationship among Aβ binding, activity, and NMDAR function at individual synapses. Aβ triggered a robust impairment of NMDAR Ca2+ entry at most, but not all, synapses. NMDAR function was more severely impaired at highly active synapses and synapses with bound Aβ. Blocking NMDARs during Aβ exposure prevented Aβ-mediated impairment. Together, our experiments reveal a novel use-dependent, potent, and local mode of Aβ-mediated NMDAR impairment.
Collapse
|
50
|
Gideons ES, Lin PY, Mahgoub M, Kavalali ET, Monteggia LM. Chronic lithium treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic downscaling. eLife 2017; 6:e25480. [PMID: 28621662 PMCID: PMC5499943 DOI: 10.7554/elife.25480] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022] Open
Abstract
Lithium is widely used as a treatment for Bipolar Disorder although the molecular mechanisms that underlie its therapeutic effects are under debate. In this study, we show brain-derived neurotrophic factor (BDNF) is required for the antimanic-like effects of lithium but not the antidepressant-like effects in mice. We performed whole cell patch clamp recordings of hippocampal neurons to determine the impact of lithium on synaptic transmission that may underlie the behavioral effects. Lithium produced a significant decrease in α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated miniature excitatory postsynaptic current (mEPSC) amplitudes due to postsynaptic homeostatic plasticity that was dependent on BDNF and its receptor tropomyosin receptor kinase B (TrkB). The decrease in AMPAR function was due to reduced surface expression of GluA1 subunits through dynamin-dependent endocytosis. Collectively, these findings demonstrate a requirement for BDNF in the antimanic action of lithium and identify enhanced dynamin-dependent endocytosis of AMPARs as a potential mechanism underlying the therapeutic effects of lithium.
Collapse
Affiliation(s)
- Erinn S Gideons
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Pei-Yi Lin
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Melissa Mahgoub
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Ege T Kavalali
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Lisa M Monteggia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|