1
|
Zhang X, Wu J, Min Z, Wang J, Hong X, Pei X, Rao Z, Xu X. Structure of ATP synthase from an early photosynthetic bacterium Chloroflexus aurantiacus. Proc Natl Acad Sci U S A 2025; 122:e2425824122. [PMID: 40131952 PMCID: PMC12002316 DOI: 10.1073/pnas.2425824122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/28/2025] [Indexed: 03/27/2025] Open
Abstract
F-type ATP synthase (F1FO) catalyzes proton motive force-driven ATP synthesis in mitochondria, chloroplasts, and bacteria. Different from the mitochondrial and bacterial enzymes, F1FO from photosynthetic organisms have evolved diverse structural and mechanistic details to adapt to the light-dependent reactions. Although complete structure of chloroplast F1FO has been reported, no high-resolution structure of an F1FO from photosynthetic bacteria has been available. Here, we report cryo-EM structures of an intact and functionally competent F1FO from Chloroflexus aurantiacus (CaF1FO), a filamentous anoxygenic phototrophic bacterium from the earliest branch of photosynthetic organisms. The structures of CaF1FO in its ADP-free and ADP-bound forms for three rotational states reveal a previously unrecognized architecture of ATP synthases. A pair of peripheral stalks connect to the CaF1 head through a dimer of δ-subunits, and associate with two membrane-embedded a-subunits that are asymmetrically positioned outside and clamp CaFO's c10-ring. The two a-subunits constitute two proton inlets on the periplasmic side and two proton outlets on the cytoplasmic side, endowing CaF1FO with unique proton translocation pathways that allow more protons being translocated relative to single a-subunit F1FO. Our findings deepen understanding of the architecture and proton translocation mechanisms of F1FO synthases and suggest innovative strategies for modulating their activities by altering the number of a-subunit.
Collapse
Affiliation(s)
- Xin Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Jingyi Wu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Zhenzhen Min
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Jiamao Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Xin Hong
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Xinkai Pei
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Zihe Rao
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xiaoling Xu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| |
Collapse
|
2
|
Rimle L, Phillips BP, Codo Costa Barra IM, Arnold N, Hennebert C, Meier T, von Ballmoos C. A splendid molecular factory: De- and reconstruction of the mammalian respiratory chain. Proc Natl Acad Sci U S A 2025; 122:e2416162122. [PMID: 40100632 PMCID: PMC11962478 DOI: 10.1073/pnas.2416162122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/26/2025] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial respiratory complexes I to IV and the F1Fo-ATP synthase (complex V) are large protein assemblies producing the universal cellular energy currency adenosine triphosphate (ATP). Individual complexes have been extensively studied in vitro, but functional co-reconstitution of several mammalian complexes into proteoliposomes, in particular, the combination of a primary pump with the ATP synthase, is less well understood. Here, we present a generic and scalable strategy to purify mammalian respiratory complexes I, III and the ATP synthase from enriched mitochondria in enzymatically fully active form, and procedures to reassemble the complexes into liposomes. A robust functionality can be shown by in situ monitoring of ATP synthesis rates and by using selected inhibitors of the respiratory chain complexes. By inclusion of cytochrome c oxidase, our procedures allowed us to reconstruct the entire mitochondrial respiratory chain (complexes I, III, IV, and V) in ubiquinone Q10 containing liposomes, demonstrating oxidative phosphorylation by nicotinamide adenine dinucleotide hydrogen driven ATP synthesis. The system was fully coupled at all levels and was used to probe cardiolipin as an essential component to activate the mammalian respiratory chain. Structural characterization using electron cryomicroscopy allowed us to resolve apo-state complex III and complex V at high and medium resolution, respectively, using in silico particle sorting, confirming the presence of all protein subunits and cofactors in native stoichiometry and conformation. The reported findings will facilitate future endeavors to characterize or modulate these key bioenergetic processes.
Collapse
Affiliation(s)
- Lukas Rimle
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
| | - Ben P. Phillips
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Isabela M. Codo Costa Barra
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Noëlle Arnold
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
| | - Charlie Hennebert
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
- Institute of Biochemistry, ETH Zürich, Zürich8093, Switzerland
| | - Thomas Meier
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, LondonSW7 2AZ, United Kingdom
- Liechtenstein-Institute, Gamprin-Bendern9487, Liechtenstein
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
| |
Collapse
|
3
|
Kumar A, da Fonseca Rezende E Mello J, Wu Y, Morris D, Mezghani I, Smith E, Rombauts S, Bossier P, Krahn J, Sigworth FJ, Mnatsakanyan N. Cryo-EM structure of the brine shrimp mitochondrial ATP synthase suggests an inactivation mechanism for the ATP synthase leak channel. Cell Death Differ 2025:10.1038/s41418-025-01476-w. [PMID: 40108410 DOI: 10.1038/s41418-025-01476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/24/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Mammalian mitochondria undergo Ca2+-induced and cyclosporinA (CsA)-regulated permeability transition (mPT) by activating the mitochondrial permeability transition pore (mPTP) situated in mitochondrial inner membranes. Ca2+-induced prolonged openings of mPTP under certain pathological conditions result in mitochondrial swelling and rupture of the outer membrane, leading to mitochondrial dysfunction and cell death. While the exact molecular composition and structure of mPTP remain unknown, mammalian ATP synthase was reported to form voltage and Ca2+-activated leak channels involved in mPT. Unlike in mammals, mitochondria of the crustacean Artemia franciscana have the ability to accumulate large amounts of Ca2+ without undergoing the mPT. Here, we performed structural and functional analysis of A. franciscana ATP synthase to study the molecular mechanism of mPTP inhibition in this organism. We found that the channel formed by the A. franciscana ATP synthase dwells predominantly in its inactive state and is insensitive to Ca2+, in contrast to porcine heart ATP synthase. Single-particle cryo-electron microscopy (cryo-EM) analysis revealed distinct structural features in A. franciscana ATP synthase compared with mammals. The stronger density of the e-subunit C-terminal region and its enhanced interaction with the c-ring were found in A. franciscana ATP synthase. These data suggest an inactivation mechanism of the ATP synthase leak channel and its possible contribution to the lack of mPT in this organism.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Cell and Biological Systems, Penn State College of Medicine, Hershey, PA, USA
| | | | - Yangyu Wu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel Morris
- Department of Cell and Biological Systems, Penn State College of Medicine, Hershey, PA, USA
| | - Ikram Mezghani
- Department of Cell and Biological Systems, Penn State College of Medicine, Hershey, PA, USA
| | - Erin Smith
- Department of Cell and Biological Systems, Penn State College of Medicine, Hershey, PA, USA
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Peter Bossier
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Juno Krahn
- National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Fred J Sigworth
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nelli Mnatsakanyan
- Department of Cell and Biological Systems, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
4
|
Kubo S, Okada Y. The ATPase asymmetry: Novel computational insight into coupling diverse F O motors with tripartite F 1. Biophys J 2025; 124:891-900. [PMID: 38459696 PMCID: PMC11947463 DOI: 10.1016/j.bpj.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
ATP synthase, a crucial enzyme for cellular bioenergetics, operates via the coordinated coupling of an FO motor, which presents variable symmetry, and a tripartite F1 motor. Despite extensive research, the understanding of their coupling dynamics, especially with non-10-fold symmetrical FO motors, remains incomplete. This study investigates the coupling patterns between eightfold and ninefold FO motors and the constant threefold F1 motor using coarse-grained molecular dynamics simulations. We unveil that in the case of a ninefold FO motor, a 3-3-3 motion is most likely to occur, whereas a 3-3-2 motion predominates with an eightfold FO motor. Furthermore, our findings propose a revised model for the coupling method, elucidating that the pathways' energy usage is primarily influenced by F1 rotation and conformational changes hindered by the b-subunits. Our results present a crucial step toward comprehending the energy landscape and mechanisms governing ATP synthase operation.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Universal Biology Institute and International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan; Laboratory for Cell Polarity Regulation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, Japan
| |
Collapse
|
5
|
Sottatipreedawong M, Kazmi AA, Vercellino I. How Cryo-EM Revolutionized the Field of Bioenergetics. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae089. [PMID: 39298136 DOI: 10.1093/mam/ozae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 08/31/2024] [Indexed: 02/19/2025]
Abstract
Ten years ago, the term "resolution revolution" was used for the first time to describe how cryogenic electron microscopy (cryo-EM) marked the beginning of a new era in the field of structural biology, enabling the investigation of previously unsolvable protein targets. The success of cryo-EM was recognized with the 2017 Chemistry Nobel Prize and has become a widely used method for the structural characterization of biological macromolecules, quickly catching up to x-ray crystallography. Bioenergetics is the division of biochemistry that studies the mechanisms of energy conversion in living organisms, strongly focused on the molecular machines (enzymes) that carry out these processes in cells. As bioenergetic enzymes can be arranged in complexes characterized by conformational heterogeneity/flexibility, they represent challenging targets for structural investigation by crystallography. Over the last decade, cryo-EM has therefore become a powerful tool to investigate the structure and function of bioenergetic complexes; here, we provide an overview of the main achievements enabled by the technique. We first summarize the features of cryo-EM and compare them to x-ray crystallography, and then, we present the exciting discoveries brought about by cryo-EM, particularly but not exclusively focusing on the oxidative phosphorylation system, which is a crucial energy-converting mechanism in humans.
Collapse
Affiliation(s)
- Muratha Sottatipreedawong
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| | - Ahad Ali Kazmi
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| | - Irene Vercellino
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| |
Collapse
|
6
|
Nath S. Symmetry breaking and mismatch in the torsional mechanism of ATP synthesis by F OF 1-ATP synthase: mathematical number theory proof and its chemical and biological implications. Theory Biosci 2025; 144:81-93. [PMID: 39709580 DOI: 10.1007/s12064-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Can mathematical proofs be employed for the solution of fundamental molecular-level problems in biology? Recently, I mathematically tackled complex mechanistic problems arising during the synthesis of the universal biological currency, adenosine triphosphate (ATP) by the FOF1-ATP synthase, nature's smallest rotary molecular motor, using graph-theoretical and combinatorial approaches for the membrane-bound FO and water-soluble F1 domains of this fascinating molecule (see Nath in Theory Biosci 141:249‒260, 2022 and Theory Biosci 143:217‒227, 2024). In the third part of this trilogy, I investigate another critical aspect of the molecular mechanism-that of coupling between the FO and F1 domains of the ATP synthase mediated by the central γ-subunit of ∼ 1 nanometer diameter. According to Nath's torsional mechanism of energy transduction and ATP synthesis the γ-subunit twists during ATP synthesis and the release of stored torsional energy in the central γ-stalk causes conformational changes in the catalytic sites that lead to ATP synthesis, with 1 ATP molecule synthesized per discrete 120° rotation. The twisted γ-subunit breaks the symmetry of the molecule, and its residual torsional strain is shown to readily accommodate any symmetry mismatch existing between FO and F1. A mathematical number theory proof is developed to quantify the extent of symmetry mismatch at any angular position during rotation and derive the conditions for the regaining of symmetry at the end of a 360° rotation. The many chemical and biological implications of the mechanism and the mathematical proof are discussed in detail. Finally, suggestions for further mathematical development of the subject based on ideas from symmetry and group theory have been made. In sum, the answer to the question posed at the beginning of the Abstract is a resounding YES. There exists new, relatively unexplored territory at the interface of mathematics and molecular biology, especially at the level of molecular mechanism. It is hoped that more mathematicians and scientists interested in interdisciplinary work are encouraged to include in their research program approaches of this type-a mathematical proofs-inspired molecular biology-that have the power to lead to new vistas. Such molecular-scale mechanistic problems in biology have proved extraordinarily difficult to solve definitively using conventional experimental, theoretical, and computational approaches.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
7
|
Krasnoselska GO, Meier T. Purification and Reconstitution of Ilyobacter tartaricus ATP Synthase. Methods Mol Biol 2025; 2881:65-86. [PMID: 39704938 DOI: 10.1007/978-1-0716-4280-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
F-type Adenosine triphosphate (ATP) synthase is a membrane-bound macromolecular complex, which is responsible for the synthesis of ATP, the universal energy source in living cells. This enzyme uses the proton- or sodium-motive force to power ATP synthesis by a unique rotary mechanism and can also operate in reverse, ATP hydrolysis, to generate ion gradients across membranes. The F1Fo-ATP synthases from bacteria consist of eight different structural subunits, forming a complex of ~550 kDa in size. In the bacterium Ilyobacter tartaricus, the ATP synthase has the stoichiometry α3β3γδεab2c11. This chapter describes a wet-lab working protocol for the purification of several tens of milligrams of pure, heterologously (E. coli-) produced I. tartaricus Na+-driven F1Fo-ATP synthase and its subsequent efficient reconstitution into proteoliposomes. The methods are useful for a broad range of subsequent biochemical and biotechnological applications.
Collapse
Affiliation(s)
- Ganna O Krasnoselska
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Department of Life Sciences, Imperial College London, London, UK.
- Liechtenstein Institute, Gamprin-Bendern, Liechtenstein.
| |
Collapse
|
8
|
Smith CH, Mejia-Trujillo R, Havird JC. Mitonuclear compatibility is maintained despite relaxed selection on male mitochondrial DNA in bivalves with doubly uniparental inheritance. Evolution 2024; 78:1790-1803. [PMID: 38995057 PMCID: PMC11519007 DOI: 10.1093/evolut/qpae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Mitonuclear coevolution is common in eukaryotes, but bivalve lineages that have doubly uniparental inheritance (DUI) of mitochondria may be an interesting example. In this system, females transmit mtDNA (F mtDNA) to all offspring, while males transmit a different mtDNA (M mtDNA) solely to their sons. Molecular evolution and functional data suggest oxidative phosphorylation (OXPHOS) genes encoded in M mtDNA evolve under relaxed selection due to their function being limited to sperm only (vs. all other tissues for F mtDNA). This has led to the hypothesis that mitonuclear coevolution is less important for M mtDNA. Here, we use comparative phylogenetics, transcriptomics, and proteomics to understand mitonuclear interactions in DUI bivalves. We found nuclear OXPHOS proteins coevolve and maintain compatibility similarly with both F and M mtDNA OXPHOS proteins. Mitochondrial recombination did not influence mitonuclear compatibility and nuclear-encoded OXPHOS genes were not upregulated in tissues with M mtDNA to offset dysfunction. Our results support that selection maintains mitonuclear compatibility with F and M mtDNA despite relaxed selection on M mtDNA. Strict sperm transmission, lower effective population size, and higher mutation rates may explain the evolution of M mtDNA. Our study highlights that mitonuclear coevolution and compatibility may be broad features of eukaryotes.
Collapse
Affiliation(s)
- Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Raquel Mejia-Trujillo
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
9
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024; 23:100853. [PMID: 39383946 PMCID: PMC11570944 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Rühle T, Leister D, Pasch V. Chloroplast ATP synthase: From structure to engineering. THE PLANT CELL 2024; 36:3974-3996. [PMID: 38484126 PMCID: PMC11449085 DOI: 10.1093/plcell/koae081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 10/05/2024]
Abstract
F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Viviana Pasch
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Lagunes L, Briggs K, Martin-Holder P, Xu Z, Maurer D, Ghabra K, Deeds EJ. Modeling reveals the strength of weak interactions in stacked-ring assembly. Biophys J 2024; 123:1763-1780. [PMID: 38762753 PMCID: PMC11267433 DOI: 10.1016/j.bpj.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
Cells employ many large macromolecular machines for the execution and regulation of processes that are vital for cell and organismal viability. Interestingly, cells cannot synthesize these machines as functioning units. Instead, cells synthesize the molecular parts that must then assemble into the functional complex. Many important machines, including chaperones such as GroEL and proteases such as the proteasome, comprise protein rings that are stacked on top of one another. While there is some experimental data regarding how stacked-ring complexes such as the proteasome self-assemble, a comprehensive understanding of the dynamics of stacked-ring assembly is currently lacking. Here, we developed a mathematical model of stacked-trimer assembly and performed an analysis of the assembly of the stacked homomeric trimer, which is the simplest stacked-ring architecture. We found that stacked rings are particularly susceptible to a form of kinetic trapping that we term "deadlock," in which the system gets stuck in a state where there are many large intermediates that are not the fully assembled structure but that cannot productively react. When interaction affinities are uniformly strong, deadlock severely limits assembly yield. We thus predicted that stacked rings would avoid situations where all interfaces in the structure have high affinity. Analysis of available crystal structures indicated that indeed the majority-if not all-of stacked trimers do not contain uniformly strong interactions. Finally, to better understand the origins of deadlock, we developed a formal pathway analysis and showed that, when all the binding affinities are strong, many of the possible pathways are utilized. In contrast, optimal assembly strategies utilize only a small number of pathways. Our work suggests that deadlock is a critical factor influencing the evolution of macromolecular machines and provides general principles for understanding the self-assembly efficiency of existing machines.
Collapse
Affiliation(s)
- Leonila Lagunes
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California
| | - Koan Briggs
- Department of Physics, University of Kansas, Lawrence, Kansas
| | - Paige Martin-Holder
- Department of Molecular Immunology, Microbiology and Genetics, UCLA, Los Angeles, California
| | - Zaikun Xu
- Center for Computational Biology, University of Kansas, Lawrence, Kansas
| | - Dustin Maurer
- Center for Computational Biology, University of Kansas, Lawrence, Kansas
| | - Karim Ghabra
- Computational and Systems Biology IDP, UCLA, Los Angeles, California
| | - Eric J Deeds
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California; Center for Computational Biology, University of Kansas, Lawrence, Kansas.
| |
Collapse
|
12
|
Nath S. Thermodynamic analysis of energy coupling by determination of the Onsager phenomenological coefficients for a 3×3 system of coupled chemical reactions and transport in ATP synthesis and its mechanistic implications. Biosystems 2024; 240:105228. [PMID: 38735525 DOI: 10.1016/j.biosystems.2024.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
The nonequilibrium coupled processes of oxidation and ATP synthesis in the fundamental process of oxidative phosphorylation (OXPHOS) are of vital importance in biosystems. These coupled chemical reaction and transport bioenergetic processes using the OXPHOS pathway meet >90% of the ATP demand in aerobic systems. On the basis of experimentally determined thermodynamic OXPHOS flux-force relationships and biochemical data for the ternary system of oxidation, ion transport, and ATP synthesis, the Onsager phenomenological coefficients have been computed, including an estimate of error. A new biothermokinetic theory of energy coupling has been formulated and on its basis the thermodynamic parameters, such as the overall degree of coupling, q and the phenomenological stoichiometry, Z of the coupled system have been evaluated. The amount of ATP produced per oxygen consumed, i.e. the actual, operating P/O ratio in the biosystem, the thermodynamic efficiency of the coupled reactions, η, and the Gibbs free energy dissipation, Φ have been calculated and shown to be in agreement with experimental data. At the concentration gradients of ADP and ATP prevailing under state 3 physiological conditions of OXPHOS that yield Vmax rates of ATP synthesis, a maximum in Φ of ∼0.5J(hmgprotein)-1, corresponding to a thermodynamic efficiency of ∼60% for oxidation on succinate, has been obtained. Novel mechanistic insights arising from the above have been discussed. This is the first report of a 3 × 3 system of coupled chemical reactions with transport in a biological context in which the phenomenological coefficients have been evaluated from experimental data.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
13
|
Sharma S, Luo M, Patel H, Mueller DM, Liao M. Conformational ensemble of yeast ATP synthase at low pH reveals unique intermediates and plasticity in F 1-F o coupling. Nat Struct Mol Biol 2024; 31:657-666. [PMID: 38316880 PMCID: PMC11542105 DOI: 10.1038/s41594-024-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Mitochondrial adenosine triphosphate (ATP) synthase uses the proton gradient across the inner mitochondrial membrane to synthesize ATP. Structural and single molecule studies conducted mostly at neutral or basic pH have provided details of the reaction mechanism of ATP synthesis. However, pH of the mitochondrial matrix is slightly acidic during hypoxia and pH-dependent conformational changes in the ATP synthase have been reported. Here we use single-particle cryo-EM to analyze the conformational ensemble of the yeast (Saccharomyces cerevisiae) ATP synthase at pH 6. Of the four conformations resolved in this study, three are reaction intermediates. In addition to canonical catalytic dwell and binding dwell structures, we identify two unique conformations with nearly identical positions of the central rotor but different catalytic site conformations. These structures provide new insights into the catalytic mechanism of the ATP synthase and highlight elastic coupling between the catalytic and proton translocating domains.
Collapse
Affiliation(s)
- Stuti Sharma
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| | - Min Luo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Hiral Patel
- Center for Genetic Diseases, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - David M Mueller
- Center for Genetic Diseases, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.
| | - Maofu Liao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
14
|
Blanc FEC, Hummer G. Mechanism of proton-powered c-ring rotation in a mitochondrial ATP synthase. Proc Natl Acad Sci U S A 2024; 121:e2314199121. [PMID: 38451940 PMCID: PMC10945847 DOI: 10.1073/pnas.2314199121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Abstract
Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton. Our results reveal that rotation proceeds by dynamic sliding of the ring over the a-subunit surface, during which interactions with conserved polar residues stabilize distinct intermediates. Ordered water chains line up for a Grotthuss-type proton transfer in one of these intermediates. After proton transfer, a high barrier prevents backward rotation and an overall drop in free energy favors forward rotation, ensuring the directionality of c-ring rotation required for the thermodynamically disfavored ATP synthesis. The essential arginine of the a-subunit stabilizes the rotated configuration through a salt bridge with the c-ring. Overall, we describe a complete mechanism for the rotation step of the ATP synthase rotor, thereby illuminating a process critical to all life at atomic resolution.
Collapse
Affiliation(s)
- Florian E. C. Blanc
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main60438, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main60438, Germany
- Institute for Biophysics, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| |
Collapse
|
15
|
Nath S. Coupling and biological free-energy transduction processes as a bridge between physics and life: Molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics. Biosystems 2024; 236:105134. [PMID: 38301737 DOI: 10.1016/j.biosystems.2024.105134] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The nonequilibrium coupled processes of oxidation and ATP synthesis in the biological process of oxidative phosphorylation (OXPHOS) are fundamental to all life on our planet. These steady-state energy transduction processes ‒ coupled by proton and anion/counter-cation concentration gradients in the OXPHOS pathway ‒ generate ∼95 % of the ATP requirement of aerobic systems for cellular function. The rapid energy cycling and homeostasis of metabolites involved in this coupling are shown to be responsible for maintenance and regulation of stable nonequilibrium states, the latter first postulated in pioneering biothermodynamics work by Ervin Bauer between 1920 and 1935. How exactly does this occur? This is shown to be answered by molecular considerations arising from Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling developed in 25 years of research work on the subject. A fresh analysis of the biological thermodynamics of coupling that goes beyond the previous work of Stucki and others and shows how the system functions at the molecular level has been carried out. Thermodynamic parameters, such as the overall degree of coupling, q of the coupled system are evaluated for the state 4 to state 3 transition in animal mitochondria with succinate as substrate. The actual or operative P to O ratio, the efficiency of the coupled reactions, η, and the Gibbs energy dissipation, Φ have been calculated and shown to be in good agreement with experimental data. Novel mechanistic insights arising from the above have been discussed. A fourth law/principle of thermodynamics is formulated for a sub-class of physical and biological systems. The critical importance of constraints and time-varying boundary conditions for function and regulation is discussed in detail. Dynamic internal structural changes essential for torsional energy storage within the γ-subunit in a single molecule of the FOF1-ATP synthase and its transduction have been highlighted. These results provide a molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
16
|
Zhang M, Luo X, Zhang B, Luo D, Huang L, Long Q. Unveiling OSCP as the potential therapeutic target for mitochondrial dysfunction-related diseases. Life Sci 2024; 336:122293. [PMID: 38030056 DOI: 10.1016/j.lfs.2023.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Mitochondria are important organelles in cells responsible for energy production and regulation. Mitochondrial dysfunction has been implicated in the pathogenesis of many diseases. Oligomycin sensitivity-conferring protein (OSCP), a component of the inner mitochondrial membrane, has been studied for a long time. OSCP is a component of the F1Fo-ATP synthase in mitochondria and is closely related to the regulation of the mitochondrial permeability transition pore (mPTP). Studies have shown that OSCP plays an important role in cardiovascular disease, neurological disorders, and tumor development. This review summarizes the localization, structure, function, and regulatory mechanisms of OSCP and outlines its role in cardiovascular disease, neurological disease, and tumor development. In addition, this article reviews the research on the interaction between OSCP and mPTP. Finally, the article suggests future research directions, including further exploration of the mechanism of action of OSCP, the interaction between OSCP and other proteins and signaling pathways, and the development of new treatment strategies for mitochondrial dysfunction. In conclusion, in-depth research on OSCP will help to elucidate its importance in cell function and disease and provide new ideas for the treatment and prevention of related diseases.
Collapse
Affiliation(s)
- Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Vuillemot R, Harastani M, Hamitouche I, Jonic S. MDSPACE and MDTOMO Software for Extracting Continuous Conformational Landscapes from Datasets of Single Particle Images and Subtomograms Based on Molecular Dynamics Simulations: Latest Developments in ContinuousFlex Software Package. Int J Mol Sci 2023; 25:20. [PMID: 38203192 PMCID: PMC10779004 DOI: 10.3390/ijms25010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Cryo electron microscopy (cryo-EM) instrumentation allows obtaining 3D reconstruction of the structure of biomolecular complexes in vitro (purified complexes studied by single particle analysis) and in situ (complexes studied in cells by cryo electron tomography). Standard cryo-EM approaches allow high-resolution reconstruction of only a few conformational states of a molecular complex, as they rely on data classification into a given number of classes to increase the resolution of the reconstruction from the most populated classes while discarding all other classes. Such discrete classification approaches result in a partial picture of the full conformational variability of the complex, due to continuous conformational transitions with many, uncountable intermediate states. In this article, we present the software with a user-friendly graphical interface for running two recently introduced methods, namely, MDSPACE and MDTOMO, to obtain continuous conformational landscapes of biomolecules by analyzing in vitro and in situ cryo-EM data (single particle images and subtomograms) based on molecular dynamics simulations of an available atomic model of one of the conformations. The MDSPACE and MDTOMO software is part of the open-source ContinuousFlex software package (starting from version 3.4.2 of ContinuousFlex), which can be run as a plugin of the Scipion software package (version 3.1 and later), broadly used in the cryo-EM field.
Collapse
Affiliation(s)
| | | | | | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, MNHN, 75005 Paris, France
| |
Collapse
|
18
|
Nikolaou PE, Lambrinidis G, Georgiou M, Karagiannis D, Efentakis P, Bessis-Lazarou P, Founta K, Kampoukos S, Konstantin V, Palmeira CM, Davidson SM, Lougiakis N, Marakos P, Pouli N, Mikros E, Andreadou I. Hydrolytic Activity of Mitochondrial F 1F O-ATP Synthase as a Target for Myocardial Ischemia-Reperfusion Injury: Discovery and In Vitro and In Vivo Evaluation of Novel Inhibitors. J Med Chem 2023; 66:15115-15140. [PMID: 37943012 DOI: 10.1021/acs.jmedchem.3c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
F1FO-ATP synthase is the mitochondrial complex responsible for ATP production. During myocardial ischemia, it reverses its activity, hydrolyzing ATP and leading to energetic deficit and cardiac injury. We aimed to discover novel inhibitors of ATP hydrolysis, accessing the druggability of the target within ischemia(I)/reperfusion(R) injury. New molecular scaffolds were revealed using ligand-based virtual screening methods. Fifty-five compounds were tested on isolated murine heart mitochondria and H9c2 cells for their inhibitory activity. A pyrazolo[3,4-c]pyridine hit structure was identified and optimized in a hit-to-lead process synthesizing nine novel derivatives. Three derivatives significantly inhibited ATP hydrolysis in vitro, while in vivo, they reduced myocardial infarct size (IS). The novel compound 31 was the most effective in reducing IS, validating that inhibition of F1FO-ATP hydrolytic activity can serve as a target for cardioprotection during ischemia. Further examination of signaling pathways revealed that the cardioprotection mechanism is related to the increased ATP content in the ischemic myocardium and increased phosphorylation of PKA and phospholamban, leading to the reduction of apoptosis.
Collapse
Affiliation(s)
- Panagiota-Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Lambrinidis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Georgiou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Dimitrios Karagiannis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Pavlos Bessis-Lazarou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantina Founta
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Stavros Kampoukos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Vasilis Konstantin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra and Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, United Kingdom
| | - Nikolaos Lougiakis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis Marakos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Nicole Pouli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Athena Research and Innovation Center in Information Communication & Knowledge Technologies, 15125 Marousi, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
19
|
Nath S. Elucidating Events within the Black Box of Enzyme Catalysis in Energy Metabolism: Insights into the Molecular Mechanism of ATP Hydrolysis by F 1-ATPase. Biomolecules 2023; 13:1596. [PMID: 38002278 PMCID: PMC10669602 DOI: 10.3390/biom13111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Oxygen exchange reactions occurring at β-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. This work presents a new theory of oxygen exchange and tests it on oxygen exchange data recorded on ATP hydrolysis by mitochondrial F1-ATPase (MF1). The apparent rate constant of oxygen exchange governing the intermediate Pi-HOH exchange accompanying ATP hydrolysis is determined by kinetic analysis over a ~50,000-fold range of substrate ATP concentration (0.1-5000 μM) and a corresponding ~200-fold range of reaction velocity (3.5-650 [moles of Pi/{moles of F1-ATPase}-1 s-1]). Isotopomer distributions of [18O]Pi species containing 0, 1, 2, and 3 labeled oxygen atoms predicted by the theory have been quantified and shown to be in perfect agreement with the experimental distributions over the entire range of medium ATP concentrations without employing adjustable parameters. A novel molecular mechanism of steady-state multisite ATP hydrolysis by the F1-ATPase has been proposed. Our results show that steady-state ATP hydrolysis by F1-ATPase occurs with all three sites occupied by Mg-nucleotide. The various implications arising from models of energy coupling in ATP synthesis/hydrolysis by the ATP synthase/F1-ATPase have been discussed. Current models of ATP hydrolysis by F1-ATPase, including those postulated from single-molecule data, are shown to be effectively bisite models that contradict the data. The trisite catalysis formulated by Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis since its first appearance 25 years ago is shown to be in better accord with the experimental record. The total biochemical information on ATP hydrolysis is integrated into a consistent model by the torsional mechanism of ATP synthesis/hydrolysis and shown to elucidate the elementary chemical and mechanical events within the black box of enzyme catalysis in energy metabolism by F1-ATPase.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; or
- Institute of Molecular Psychiatry, Rheinische-Friedrichs-Wilhelm Universität Bonn, D–53127 Bonn, Germany
| |
Collapse
|
20
|
Kubo S, Niina T, Takada S. F O-F 1 coupling and symmetry mismatch in ATP synthase resolved in every F O rotation step. Biophys J 2023; 122:2898-2909. [PMID: 36171725 PMCID: PMC10397808 DOI: 10.1016/j.bpj.2022.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
FOF1 ATP synthase, a ubiquitous enzyme that synthesizes most ATP in living cells, is composed of two rotary motors: a membrane-embedded proton-driven FO motor and a catalytic F1 motor. These motors share both central and peripheral stalks. Although both FO and F1 have pseudo-symmetric structures, their symmetries do not match. How symmetry mismatch is solved remains elusive because of the missing intermediate structures of the rotational steps. Here, for the case of Bacillus PS3 ATP synthases with three- and 10-fold symmetries in F1 and FO, respectively, we uncovered the mechanical couplings between FO and F1 at every 36° rotation step via molecular dynamics simulations and comparative studies of cryoelectron microscopy (cryo-EM) structures from three species. We found that the mismatch could be solved using several elements: 1) the F1 head partially rotates relative to the FO a subunit via elastic distortion of the b subunits, 2) the rotor is twisted, and 3) comparisons of cryo-EM structures further suggest that the c ring rotary angles can deviate from the symmetric ones. In addition, the F1 motor may have non-canonical structures, relieving stronger frustration. Thus, we provide new insights for solving the symmetry mismatch problem.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada.
| | - Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
21
|
Lai Y, Zhang Y, Zhou S, Xu J, Du Z, Feng Z, Yu L, Zhao Z, Wang W, Tang Y, Yang X, Guddat LW, Liu F, Gao Y, Rao Z, Gong H. Structure of the human ATP synthase. Mol Cell 2023:S1097-2765(23)00324-6. [PMID: 37244256 DOI: 10.1016/j.molcel.2023.04.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
Biological energy currency ATP is produced by F1Fo-ATP synthase. However, the molecular mechanism for human ATP synthase action remains unknown. Here, we present snapshot images for three main rotational states and one substate of human ATP synthase using cryoelectron microscopy. These structures reveal that the release of ADP occurs when the β subunit of F1Fo-ATP synthase is in the open conformation, showing how ADP binding is coordinated during synthesis. The accommodation of the symmetry mismatch between F1 and Fo motors is resolved by the torsional flexing of the entire complex, especially the γ subunit, and the rotational substep of the c subunit. Water molecules are identified in the inlet and outlet half-channels, suggesting that the proton transfer in these two half-channels proceed via a Grotthus mechanism. Clinically relevant mutations are mapped to the structure, showing that they are mainly located at the subunit-subunit interfaces, thus causing instability of the complex.
Collapse
Affiliation(s)
- Yuezheng Lai
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuying Zhang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jinxu Xu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhanqiang Du
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziyan Feng
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Long Yu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziqing Zhao
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanting Tang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China.
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China; Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| | - Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Frigo E, Tommasin L, Lippe G, Carraro M, Bernardi P. The Haves and Have-Nots: The Mitochondrial Permeability Transition Pore across Species. Cells 2023; 12:1409. [PMID: 37408243 PMCID: PMC10216546 DOI: 10.3390/cells12101409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
The demonstration that F1FO (F)-ATP synthase and adenine nucleotide translocase (ANT) can form Ca2+-activated, high-conductance channels in the inner membrane of mitochondria from a variety of eukaryotes led to renewed interest in the permeability transition (PT), a permeability increase mediated by the PT pore (PTP). The PT is a Ca2+-dependent permeability increase in the inner mitochondrial membrane whose function and underlying molecular mechanisms have challenged scientists for the last 70 years. Although most of our knowledge about the PTP comes from studies in mammals, recent data obtained in other species highlighted substantial differences that could be perhaps attributed to specific features of F-ATP synthase and/or ANT. Strikingly, the anoxia and salt-tolerant brine shrimp Artemia franciscana does not undergo a PT in spite of its ability to take up and store Ca2+ in mitochondria, and the anoxia-resistant Drosophila melanogaster displays a low-conductance, selective Ca2+-induced Ca2+ release channel rather than a PTP. In mammals, the PT provides a mechanism for the release of cytochrome c and other proapoptotic proteins and mediates various forms of cell death. In this review, we cover the features of the PT (or lack thereof) in mammals, yeast, Drosophila melanogaster, Artemia franciscana and Caenorhabditis elegans, and we discuss the presence of the intrinsic pathway of apoptosis and of other forms of cell death. We hope that this exercise may help elucidate the function(s) of the PT and its possible role in evolution and inspire further tests to define its molecular nature.
Collapse
Affiliation(s)
- Elena Frigo
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| | - Ludovica Tommasin
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| | - Giovanna Lippe
- Department of Medicine, University of Udine, Piazzale Kolbe 4, I-33100 Udine, Italy;
| | - Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| |
Collapse
|
23
|
Yokoyama K. Rotary mechanism of V/A-ATPases-how is ATP hydrolysis converted into a mechanical step rotation in rotary ATPases? Front Mol Biosci 2023; 10:1176114. [PMID: 37168257 PMCID: PMC10166205 DOI: 10.3389/fmolb.2023.1176114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
V/A-ATPase is a rotary molecular motor protein that produces ATP through the rotation of its central rotor. The soluble part of this protein, the V1 domain, rotates upon ATP hydrolysis. However, the mechanism by which ATP hydrolysis in the V1 domain couples with the mechanical rotation of the rotor is still unclear. Cryo-EM snapshot analysis of V/A-ATPase indicated that three independent and simultaneous catalytic events occurred at the three catalytic dimers (ABopen, ABsemi, and ABclosed), leading to a 120° rotation of the central rotor. Besides the closing motion caused by ATP bound to ABopen, the hydrolysis of ATP bound to ABsemi drives the 120° step. Our recent time-resolved cryo-EM snapshot analysis provides further evidence for this model. This review aimed to provide a comprehensive overview of the structure and function of V/A-ATPase from a thermophilic bacterium, one of the most well-studied rotary ATPases to date.
Collapse
Affiliation(s)
- Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
24
|
Singh V. F 1F o adenosine triphosphate (ATP) synthase is a potential drug target in non-communicable diseases. Mol Biol Rep 2023; 50:3849-3862. [PMID: 36715790 DOI: 10.1007/s11033-023-08299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
F1Fo adenosine triphosphate (ATP) synthase, also known as the complex V, is the central ATP-producing unit in the cells arranged in the mitochondrial and plasma membranes. F1Fo ATP synthase also regulates the central metabolic processes in the human body driven by proton motive force (Δp). Numerous studies have immensely contributed toward highlighting its regulation in improving energy homeostasis and maintaining mitochondrial integrity, which otherwise gets compromised in illnesses. Yet, its role in the implication of non-communicable diseases remains unknown. F1Fo ATP synthase dysregulation at gene level leads to reduced activity and delocalization in the cristae and plasma membranes, which is directly associated with non-communicable diseases: cardiovascular diseases, diabetes, neurodegenerative disorders, cancer, and renal diseases. Individual subunits of the F1Fo ATP synthase target ligand-based competitive or non-competitive inhibition. After performing a systematic literature review to understand its specific functions and its novel drug targets, the present article focuses on the central role of F1Fo ATP synthase in primary non-communicable diseases. Next, it discusses its involvement through various pathways and the effects of multiple inhibitors, activators, and modulators specific to non-communicable diseases with a futuristic outlook.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
25
|
Vuillemot R, Mirzaei A, Harastani M, Hamitouche I, Fréchin L, Klaholz BP, Miyashita O, Tama F, Rouiller I, Jonic S. MDSPACE: Extracting Continuous Conformational Landscapes from Cryo-EM Single Particle Datasets Using 3D-to-2D Flexible Fitting based on Molecular Dynamics Simulation. J Mol Biol 2023; 435:167951. [PMID: 36638910 DOI: 10.1016/j.jmb.2023.167951] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
This article presents an original approach for extracting atomic-resolution landscapes of continuous conformational variability of biomolecular complexes from cryo electron microscopy (cryo-EM) single particle images. This approach is based on a new 3D-to-2D flexible fitting method, which uses molecular dynamics (MD) simulation and is embedded in an iterative conformational-landscape refinement scheme. This new approach is referred to as MDSPACE, which stands for Molecular Dynamics simulation for Single Particle Analysis of Continuous Conformational hEterogeneity. The article describes the MDSPACE approach and shows its performance using synthetic and experimental datasets.
Collapse
Affiliation(s)
- Rémi Vuillemot
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France; Department of Biochemistry & Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Alex Mirzaei
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Mohamad Harastani
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Ilyes Hamitouche
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Léo Fréchin
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC-UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC-UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Strasbourg, France
| | | | - Florence Tama
- RIKEN Center for Computational Science, Kobe, Japan; Institute of Transformative Biomolecules, Graduate School of Science, Nagoya University, Nagoya, Japan; Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
26
|
Weaver RJ, Rabinowitz S, Thueson K, Havird JC. Genomic Signatures of Mitonuclear Coevolution in Mammals. Mol Biol Evol 2022; 39:6775223. [PMID: 36288802 PMCID: PMC9641969 DOI: 10.1093/molbev/msac233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial (mt) and nuclear-encoded proteins are integrated in aerobic respiration, requiring co-functionality among gene products from fundamentally different genomes. Different evolutionary rates, inheritance mechanisms, and selection pressures set the stage for incompatibilities between interacting products of the two genomes. The mitonuclear coevolution hypothesis posits that incompatibilities may be avoided if evolution in one genome selects for complementary changes in interacting genes encoded by the other genome. Nuclear compensation, in which deleterious mtDNA changes are offset by compensatory nuclear changes, is often invoked as the primary mechanism for mitonuclear coevolution. Yet, direct evidence supporting nuclear compensation is rare. Here, we used data from 58 mammalian species representing eight orders to show strong correlations between evolutionary rates of mt and nuclear-encoded mt-targeted (N-mt) proteins, but not between mt and non-mt-targeted nuclear proteins, providing strong support for mitonuclear coevolution across mammals. N-mt genes with direct mt interactions also showed the strongest correlations. Although most N-mt genes had elevated dN/dS ratios compared to mt genes (as predicted under nuclear compensation), N-mt sites in close contact with mt proteins were not overrepresented for signs of positive selection compared to noncontact N-mt sites (contrary to predictions of nuclear compensation). Furthermore, temporal patterns of N-mt and mt amino acid substitutions did not support predictions of nuclear compensation, even in positively selected, functionally important residues with direct mitonuclear contacts. Overall, our results strongly support mitonuclear coevolution across ∼170 million years of mammalian evolution but fail to support nuclear compensation as the major mode of mitonuclear coevolution.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA.,Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA
| | | | - Kiley Thueson
- Department of Integrative Biology, University of Texas, Austin, TX
| | - Justin C Havird
- Department of Integrative Biology, University of Texas, Austin, TX
| |
Collapse
|
27
|
Bernardi P, Carraro M, Lippe G. The mitochondrial permeability transition: Recent progress and open questions. FEBS J 2022; 289:7051-7074. [PMID: 34710270 PMCID: PMC9787756 DOI: 10.1111/febs.16254] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023]
Abstract
Major progress has been made in defining the basis of the mitochondrial permeability transition, a Ca2+ -dependent permeability increase of the inner membrane that has puzzled mitochondrial research for almost 70 years. Initially considered an artefact of limited biological interest by most, over the years the permeability transition has raised to the status of regulator of mitochondrial ion homeostasis and of druggable effector mechanism of cell death. The permeability transition is mediated by opening of channel(s) modulated by matrix cyclophilin D, the permeability transition pore(s) (PTP). The field has received new impulse (a) from the hypothesis that the PTP may originate from a Ca2+ -dependent conformational change of F-ATP synthase and (b) from the reevaluation of the long-standing hypothesis that it originates from the adenine nucleotide translocator (ANT). Here, we provide a synthetic account of the structure of ANT and F-ATP synthase to discuss potential and controversial mechanisms through which they may form high-conductance channels; and review some intriguing findings from the wealth of early studies of PTP modulation that still await an explanation. We hope that this review will stimulate new experiments addressing the many outstanding problems, and thus contribute to the eventual solution of the puzzle of the permeability transition.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | - Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | | |
Collapse
|
28
|
Otomo A, Iida T, Okuni Y, Ueno H, Murata T, Iino R. Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between V o and V 1 motors. Proc Natl Acad Sci U S A 2022; 119:e2210204119. [PMID: 36215468 PMCID: PMC9586324 DOI: 10.1073/pnas.2210204119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
V-ATPases are rotary motor proteins that convert the chemical energy of ATP into the electrochemical potential of ions across cell membranes. V-ATPases consist of two rotary motors, Vo and V1, and Enterococcus hirae V-ATPase (EhVoV1) actively transports Na+ in Vo (EhVo) by using torque generated by ATP hydrolysis in V1 (EhV1). Here, we observed ATP-driven stepping rotation of detergent-solubilized EhVoV1 wild-type, aE634A, and BR350K mutants under various Na+ and ATP concentrations ([Na+] and [ATP], respectively) by using a 40-nm gold nanoparticle as a low-load probe. When [Na+] was low and [ATP] was high, under the condition that only Na+ binding to EhVo is rate limiting, wild-type and aE634A exhibited 10 pausing positions reflecting 10-fold symmetry of the EhVo rotor and almost no backward steps. Duration time before the forward steps was inversely proportional to [Na+], confirming that Na+ binding triggers the steps. When both [ATP] and [Na+] were low, under the condition that both Na+ and ATP bindings are rate limiting, aE634A exhibited 13 pausing positions reflecting 10- and 3-fold symmetries of EhVo and EhV1, respectively. The distribution of duration time before the forward step was fitted well by the sum of two exponential decay functions with distinct time constants. Furthermore, occasional backward steps smaller than 36° were observed. Small backward steps were also observed during three long ATP cleavage pauses of BR350K. These results indicate that EhVo and EhV1 do not share pausing positions, Na+ and ATP bindings occur at different angles, and the coupling between EhVo and EhV1 has a rigid component.
Collapse
Affiliation(s)
- Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Yasuko Okuni
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| |
Collapse
|
29
|
Iwamoto-Kihara A. Regulatory Mechanisms and Environmental Adaptation of the F-ATPase Family. Biol Pharm Bull 2022; 45:1412-1418. [PMID: 36184497 DOI: 10.1248/bpb.b22-00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The F-type ATPase family of enzymes, including ATP synthases, are found ubiquitously in biological membranes. ATP synthesis from ADP and inorganic phosphate is driven by an electrochemical H+ gradient or H+ motive force, in which intramolecular rotation of F-type ATPase is generated with H+ transport across the membranes. Because this rotation is essential for energy coupling between catalysis and H+-transport, regulation of the rotation is important to adapt to environmental changes and maintain ATP concentration. Recently, a series of cryo-electron microscopy images provided detailed insights into the structure of the H+ pathway and the multiple subunit arrangement. However, the regulatory mechanism of the rotation has not been clarified. This review describes the inhibition mechanism of ATP hydrolysis in bacterial enzymes. In addition, properties of the F-type ATPase of Streptococcus mutans, which acts as a H+-pump in an acidic environment, are described. These findings may help in the development of novel antimicrobial agents.
Collapse
|
30
|
Bouvier G, Bardiaux B, Pellarin R, Rapisarda C, Nilges M. Building Protein Atomic Models from Cryo-EM Density Maps and Residue Co-Evolution. Biomolecules 2022; 12:biom12091290. [PMID: 36139128 PMCID: PMC9496541 DOI: 10.3390/biom12091290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Electron cryo-microscopy (cryo-EM) has emerged as a powerful method by which to obtain three-dimensional (3D) structures of macromolecular complexes at atomic or near-atomic resolution. However, de novo building of atomic models from near-atomic resolution (3–5 Å) cryo-EM density maps is a challenging task, in particular because poorly resolved side-chain densities hamper sequence assignment by automatic procedures at a lower resolution. Furthermore, segmentation of EM density maps into individual subunits remains a difficult problem when the structure of the subunits is not known, or when significant conformational rearrangement occurs between the isolated and associated form of the subunits. To tackle these issues, we have developed a graph-based method to thread most of the C-α trace of the protein backbone into the EM density map. The EM density is described as a weighted graph such that the resulting minimum spanning tree encompasses the high-density regions of the map. A pruning algorithm cleans the tree and finds the most probable positions of the C-α atoms, by using side-chain density when available, as a collection of C-α trace fragments. By complementing experimental EM maps with contact predictions from sequence co-evolutionary information, we demonstrate that this approach can correctly segment EM maps into individual subunits and assign amino acid sequences to backbone traces to generate atomic models.
Collapse
Affiliation(s)
- Guillaume Bouvier
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
- Correspondence: (G.B.); (B.B.)
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
- Correspondence: (G.B.); (B.B.)
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
| | - Chiara Rapisarda
- Microbiologie Fondamentale et Pathogènicité, University of Bordeaux, CNRS UMR 5234, 33076 Bordeaux, France
- Institut Européen de Chimie et Biologie, University of Bordeaux, 33600 Pessac, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
| |
Collapse
|
31
|
Hamitouche I, Jonic S. DeepHEMNMA: ResNet-based hybrid analysis of continuous conformational heterogeneity in cryo-EM single particle images. Front Mol Biosci 2022; 9:965645. [PMID: 36158571 PMCID: PMC9493108 DOI: 10.3389/fmolb.2022.965645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM) is a technique for biomolecular structure reconstruction from vitrified samples containing many copies of a biomolecular complex (known as single particles) at random unknown 3D orientations and positions. Cryo-EM allows reconstructing multiple conformations of the complexes from images of the same sample, which usually requires many rounds of 2D and 3D classifications to disentangle and interpret the combined conformational, orientational, and translational heterogeneity. The elucidation of different conformations is the key to understand molecular mechanisms behind the biological functions of the complexes and the key to novel drug discovery. Continuous conformational heterogeneity, due to gradual conformational transitions giving raise to many intermediate conformational states of the complexes, is both an obstacle for high-resolution 3D reconstruction of the conformational states and an opportunity to obtain information about multiple coexisting conformational states at once. HEMNMA method, specifically developed for analyzing continuous conformational heterogeneity in cryo-EM, determines the conformation, orientation, and position of the complex in each single particle image by image analysis using normal modes (the motion directions simulated for a given atomic structure or EM map), which in turn allows determining the full conformational space of the complex but at the price of high computational cost. In this article, we present a new method, referred to as DeepHEMNMA, which speeds up HEMNMA by combining it with a residual neural network (ResNet) based deep learning approach. The performance of DeepHEMNMA is shown using synthetic and experimental single particle images.
Collapse
Affiliation(s)
| | - Slavica Jonic
- IMPMC - UMR 7590 CNRS, Sorbonne Université, MNHN, Paris, France
| |
Collapse
|
32
|
Mnatsakanyan N, Park HA, Wu J, He X, Llaguno MC, Latta M, Miranda P, Murtishi B, Graham M, Weber J, Levy RJ, Pavlov EV, Jonas EA. Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F 1 subcomplex. Cell Death Differ 2022; 29:1874-1887. [PMID: 35322203 PMCID: PMC9433415 DOI: 10.1038/s41418-022-00972-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial ATP synthase is vital not only for cellular energy production but also for energy dissipation and cell death. ATP synthase c-ring was suggested to house the leak channel of mitochondrial permeability transition (mPT), which activates during excitotoxic ischemic insult. In this present study, we purified human c-ring from both eukaryotic and prokaryotic hosts to biophysically characterize its channel activity. We show that purified c-ring forms a large multi-conductance, voltage-gated ion channel that is inhibited by the addition of ATP synthase F1 subcomplex. In contrast, dissociation of F1 from FO occurs during excitotoxic neuronal death suggesting that the F1 constitutes the gate of the channel. mPT is known to dissipate the osmotic gradient across the inner membrane during cell death. We show that ATP synthase c-subunit knock down (KD) prevents the osmotic change in response to high calcium and eliminates large conductance, Ca2+ and CsA sensitive channel activity of mPT. These findings elucidate the gating mechanism of the ATP synthase c-subunit leak channel (ACLC) and suggest how ACLC opening is regulated by cell stress in a CypD-dependent manner.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Section of Endocrinology, Department of Internal Medicine, Yale University, PO Box 208020, New Haven, CT, USA.
| | - Han-A Park
- Department of Human Nutrition & Hospitality Management, University of Alabama, Tuscaloosa, AL, USA
| | - Jing Wu
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xiang He
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Marc C Llaguno
- Center for Cellular and Molecular Imaging, Yale University, New Haven, CT, USA
| | - Maria Latta
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Paige Miranda
- Center for Neural Science, New York University, New York, NY, USA
| | - Besnik Murtishi
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Morven Graham
- Center for Cellular and Molecular Imaging, Yale University, New Haven, CT, USA
| | - Joachim Weber
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, USA
| | - Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Evgeny V Pavlov
- Department of Basic Sciences, New York University, New York, NY, USA
| | - Elizabeth A Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, PO Box 208020, New Haven, CT, USA.
| |
Collapse
|
33
|
Frasch WD, Bukhari ZA, Yanagisawa S. F1FO ATP synthase molecular motor mechanisms. Front Microbiol 2022; 13:965620. [PMID: 36081786 PMCID: PMC9447477 DOI: 10.3389/fmicb.2022.965620] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The F-ATP synthase, consisting of F1 and FO motors connected by a central rotor and the stators, is the enzyme responsible for synthesizing the majority of ATP in all organisms. The F1 (αβ)3 ring stator contains three catalytic sites. Single-molecule F1 rotation studies revealed that ATP hydrolysis at each catalytic site (0°) precedes a power-stroke that rotates subunit-γ 120° with angular velocities that vary with rotational position. Catalytic site conformations vary relative to subunit-γ position (βE, empty; βD, ADP bound; βT, ATP-bound). During a power stroke, βE binds ATP (0°–60°) and βD releases ADP (60°–120°). Årrhenius analysis of the power stroke revealed that elastic energy powers rotation via unwinding the γ-subunit coiled-coil. Energy from ATP binding at 34° closes βE upon subunit-γ to drive rotation to 120° and forcing the subunit-γ to exchange its tether from βE to βD, which changes catalytic site conformations. In F1FO, the membrane-bound FO complex contains a ring of c-subunits that is attached to subunit-γ. This c-ring rotates relative to the subunit-a stator in response to transmembrane proton flow driven by a pH gradient, which drives subunit-γ rotation in the opposite direction to force ATP synthesis in F1. Single-molecule studies of F1FO embedded in lipid bilayer nanodisks showed that the c-ring transiently stopped F1-ATPase-driven rotation every 36° (at each c-subunit in the c10-ring of E. coli F1FO) and was able to rotate 11° in the direction of ATP synthesis. Protonation and deprotonation of the conserved carboxyl group on each c-subunit is facilitated by separate groups of subunit-a residues, which were determined to have different pKa’s. Mutations of any of any residue from either group changed both pKa values, which changed the occurrence of the 11° rotation proportionately. This supports a Grotthuss mechanism for proton translocation and indicates that proton translocation occurs during the 11° steps. This is consistent with a mechanism in which each 36° of rotation the c-ring during ATP synthesis involves a proton translocation-dependent 11° rotation of the c-ring, followed by a 25° rotation driven by electrostatic interaction of the negatively charged unprotonated carboxyl group to the positively charged essential arginine in subunit-a.
Collapse
|
34
|
Ciprich JF, Buckhalt AJE, Carroll LL, Chen D, DeFiglia SA, McConnell RS, Parmar DJ, Pistor OL, Rao AB, Rubin ML, Volk GE, Steed PR, Wolfe AL. Synthesis and Evaluation of Pseudomonas aeruginosa ATP Synthase Inhibitors. ACS OMEGA 2022; 7:28434-28444. [PMID: 35990476 PMCID: PMC9386795 DOI: 10.1021/acsomega.2c03127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
New antibiotics with unique biological targets are desperately needed to combat the growing number of resistant bacterial pathogens. ATP synthase, a critical protein found in all life, has recently become a target of interest for antibiotic development due to the success of the anti-tuberculosis drug bedaquiline, and while many groups have worked on developing drugs to target bacterial ATP synthase, few have been successful at inhibiting Pseudomonas aeruginosa (PA) ATP synthase specifically. PA is one of the leading causes of resistant nosocomial infections across the world and is extremely challenging to treat due to its various antibiotic resistance mechanisms for most commonly used antibiotics. Herein, we detail the synthesis and evaluation of a series of C1/C2 quinoline analogues for their ability to inhibit PA ATP synthase and act as antibiotics against wild-type PA. From this survey, we found six compounds capable of inhibiting PA ATP synthase in vitro showing that bulky/hydrophobic C1/C2 substitutions are preferred. The strongest inhibitor showed an IC50 of 10 μg/mL and decreased activity of PA ATP synthase to 24% relative to the control. While none of the compounds were able to inhibit wild-type PA in cell culture, two showed improved inhibition of PA growth when permeability of the outer membrane was increased or efflux was knocked out, thus demonstrating that these compounds could be further developed into efficacious antibiotics.
Collapse
|
35
|
Miranda-Astudillo H, Ostolga-Chavarría M, Cardol P, González-Halphen D. Beyond being an energy supplier, ATP synthase is a sculptor of mitochondrial cristae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148569. [PMID: 35577152 DOI: 10.1016/j.bbabio.2022.148569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcos Ostolga-Chavarría
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pierre Cardol
- InBios/Phytosystems, Institut de Botanique, Université de Liège, Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
36
|
Todokoro Y, Kang SJ, Suzuki T, Ikegami T, Kainosho M, Yoshida M, Fujiwara T, Akutsu H. Chemical Conformation of the Essential Glutamate Site of the c-Ring within Thermophilic Bacillus F oF 1-ATP Synthase Determined by Solid-State NMR Based on its Isolated c-Ring Structure. J Am Chem Soc 2022; 144:14132-14139. [PMID: 35905443 DOI: 10.1021/jacs.2c03580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton translocation through the membrane-embedded Fo component of F-type ATP synthase (FoF1) is facilitated by the rotation of the Fo c-subunit ring (c-ring), carrying protons at essential acidic amino acid residues. Cryo-electron microscopy (Cryo-EM) structures of FoF1 suggest a unique proton translocation mechanism. To elucidate it based on the chemical conformation of the essential acidic residues of the c-ring in FoF1, we determined the structure of the isolated thermophilic Bacillus Fo (tFo) c-ring, consisting of 10 subunits, in membranes by solid-state NMR. This structure contains a distinct proton-locking conformation, wherein Asn23 (cN23) CγO and Glu56 (cE56) CδOH form a hydrogen bond in a closed form. We introduced stereo-array-isotope-labeled (SAIL) Glu and Asn into the tFoc-ring to clarify the chemical conformation of these residues in tFoF1-ATP synthase (tFoF1). Two well-separated 13C signals could be detected for cN23 and cE56 in a 505 kDa membrane protein complex, respectively, thereby suggesting the presence of two distinct chemical conformations. Based on the signal intensity and structure of the tFoc-ring and tFoF1, six pairs of cN23 and cE56 surrounded by membrane lipids take the closed form, whereas the other four in the a-c interface employ the deprotonated open form at a proportion of 87%. This indicates that the a-c interface is highly hydrophilic. The pKa values of the four cE56 residues in the a-c interface were estimated from the cN23 signal intensity in the open and closed forms and distribution of polar residues around each cE56. The results favor a rotation of the c-ring for ATP synthesis.
Collapse
Affiliation(s)
- Yasuto Todokoro
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan.,Technical Support Division, School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Su-Jin Kang
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan.,Department of Biophysics and Chemical Biology, Seoul National University, Gwanak-Gu, Seoul 151-742, Republic of Korea.,College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Toshiharu Suzuki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-0026, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masatsune Kainosho
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masasuke Yoshida
- Department of Molecular Bioscience, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Hideo Akutsu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan.,Department of Biophysics and Chemical Biology, Seoul National University, Gwanak-Gu, Seoul 151-742, Republic of Korea.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
37
|
Trivedi A, Gosai J, Nakane D, Shrivastava A. Design Principles of the Rotary Type 9 Secretion System. Front Microbiol 2022; 13:845563. [PMID: 35620107 PMCID: PMC9127263 DOI: 10.3389/fmicb.2022.845563] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/05/2023] Open
Abstract
The Fo ATP synthase, the bacterial flagellar motor, and the bacterial type 9 secretion system (T9SS) are the three known proton motive force driven biological rotary motors. In this review, we summarize the current information on the nuts and bolts of T9SS. Torque generation by T9SS, its role in gliding motility of bacteria, and the mechanism via which a T9SS-driven swarm shapes the microbiota are discussed. The knowledge gaps in our current understanding of the T9SS machinery are outlined.
Collapse
Affiliation(s)
- Abhishek Trivedi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Jitendrapuri Gosai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Daisuke Nakane
- Department of Engineering Science, The University of Electro-Communications, Tokyo, Japan
| | - Abhishek Shrivastava
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
38
|
Abstract
ATP synthases are macromolecular machines consisting of an ATP-hydrolysis-driven F1 motor and a proton-translocation-driven FO motor. The F1 and FO motors oppose each other’s action on a shared rotor subcomplex and are held stationary relative to each other by a peripheral stalk. Structures of resting mitochondrial ATP synthases revealed a left-handed curvature of the peripheral stalk even though rotation of the rotor, driven by either ATP hydrolysis in F1 or proton translocation through FO, would apply a right-handed bending force to the stalk. We used cryoEM to image yeast mitochondrial ATP synthase under strain during ATP-hydrolysis-driven rotary catalysis, revealing a large deformation of the peripheral stalk. The structures show how the peripheral stalk opposes the bending force and suggests that during ATP synthesis proton translocation causes accumulation of strain in the stalk, which relaxes by driving the relative rotation of the rotor through six sub-steps within F1, leading to catalysis. CryoEM of mitochondrial ATP synthase frozen during rotary catalysis reveals dramatic conformational changes in the peripheral stalk subcomplex, which enable the enzyme’s efficient synthesis of ATP.
Collapse
|
39
|
Vlasov AV, Osipov SD, Bondarev NA, Uversky VN, Borshchevskiy VI, Yanyushin MF, Manukhov IV, Rogachev AV, Vlasova AD, Ilyinsky NS, Kuklin AI, Dencher NA, Gordeliy VI. ATP synthase F OF 1 structure, function, and structure-based drug design. Cell Mol Life Sci 2022; 79:179. [PMID: 35253091 PMCID: PMC11072866 DOI: 10.1007/s00018-022-04153-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
Abstract
ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)-the universal "currency", which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FOF1) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential. Although the key subunits of the enzyme remain highly conserved, subunit composition and structural organization of ATP synthases and their assemblies are significantly different. In addition, there are hypotheses that the enzyme might be involved in the formation of the mitochondrial permeability transition pore and play a role in regulation of the cell death processes. Dysfunctions of this enzyme lead to numerous severe disorders with high fatality levels. In our review, we focus on FOF1-structure-based approach towards development of new therapies by using FOF1 structural features inherited by the representatives of this enzyme family from different taxonomy groups. We analyzed and systematized the most relevant information about the structural organization of FOF1 to discuss how this approach might help in the development of new therapies targeting ATP synthases and design tools for cellular bioenergetics control.
Collapse
Affiliation(s)
- Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - Stepan D Osipov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Nikolay A Bondarev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Mikhail F Yanyushin
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow region, Russia
| | - Ilya V Manukhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Andrey V Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Alexandr I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - Norbert A Dencher
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Physical Biochemistry, Department Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia.
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425, Jülich, Germany.
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany.
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027, Grenoble, France.
| |
Collapse
|
40
|
Mitome N, Kubo S, Ohta S, Takashima H, Shigefuji Y, Niina T, Takada S. Cooperation among c-subunits of F oF 1-ATP synthase in rotation-coupled proton translocation. eLife 2022; 11:69096. [PMID: 35107420 PMCID: PMC8809890 DOI: 10.7554/elife.69096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 12/21/2021] [Indexed: 01/23/2023] Open
Abstract
In FoF1-ATP synthase, proton translocation through Fo drives rotation of the c-subunit oligomeric ring relative to the a-subunit. Recent studies suggest that in each step of the rotation, key glutamic acid residues in different c-subunits contribute to proton release to and proton uptake from the a-subunit. However, no studies have demonstrated cooperativity among c-subunits toward FoF1-ATP synthase activity. Here, we addressed this using Bacillus PS3 ATP synthase harboring a c-ring with various combinations of wild-type and cE56D, enabled by genetically fused single-chain c-ring. ATP synthesis and proton pump activities were decreased by a single cE56D mutation and further decreased by double cE56D mutations. Moreover, activity further decreased as the two mutation sites were separated, indicating cooperation among c-subunits. Similar results were obtained for proton transfer-coupled molecular simulations. The simulations revealed that prolonged proton uptake in mutated c-subunits is shared between two c-subunits, explaining the cooperation observed in biochemical assays. Cells need to be able to store and transfer energy to fuel their various activities. To do this, they produce a small molecule called ATP to carry the energy, which is then released when the ATP is broken down. An enzyme found in plants, animals and bacteria, called FoF1 ATP synthase, can both create and use ATP. When it does this, protons, or positive hydrogen ions, are transported across cellular boundaries called membranes. The region of the enzyme that is responsible for pumping the protons contains different parts known as the c-ring and the a-subunit. The movement of protons drives the c-ring to rotate relative to the a-subunit, which leads to producing ATP. Previous research using simulations and the protein structures found there are two or three neighbouring amino acids in the c-ring that face the a-subunit, suggesting that these amino acids act together to drive the rotation. To test this hypothesis, Mitome et al. mutated these amino acids to examine the effect on the enzyme’s ability to produce ATP. A single mutation reduced the production of ATP, which decreased even further with mutations in two of the amino acids. The extent of this decrease depended on the distance between the two mutations in the c-ring. Simulations of these changes also found similar results. This indicates there is coordination between different parts of the c-ring to increase the rate of ATP production. This study offers new insights into the molecular processes controlling ATP synthesis and confirms previous theoretical research. This will interest specialists in bioenergetics because it addresses a fundamental biological question with broad impact.
Collapse
Affiliation(s)
- Noriyo Mitome
- Faculty of Education, Tokoha University, Shizuoka, Japan.,Department of Chemistry and Biochemistry, National Institute of Technology, Numazu College, Numazu, Japan.,Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, Ube, Japan
| | - Shintaroh Kubo
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sumie Ohta
- Department of Chemistry and Biochemistry, National Institute of Technology, Numazu College, Numazu, Japan
| | - Hikaru Takashima
- Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, Ube, Japan
| | - Yuto Shigefuji
- Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, Ube, Japan
| | - Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Davoli R, Vegni J, Cesarani A, Dimauro C, Zappaterra M, Zambonelli P. Identification of differentially expressed genes in early-postmortem Semimembranosus muscle of Italian Large White heavy pigs divergent for glycolytic potential. Meat Sci 2022; 187:108754. [DOI: 10.1016/j.meatsci.2022.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
42
|
Divergent effects of HIV reverse transcriptase inhibitors on pancreatic beta-cell function and survival: Potential role of oxidative stress and mitochondrial dysfunction. Life Sci 2022; 294:120329. [PMID: 35090905 DOI: 10.1016/j.lfs.2022.120329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022]
Abstract
Antiretroviral therapy (ART), a life-saving treatment strategy in HIV/AIDS, has been implicated in increasing the risk of type 2 diabetes mellitus (T2DM). Direct damaging effects on beta-cell function and survival by either non-nucleoside reverse transcriptase inhibitors (NNRTIs) or nucleoside/tide reverse transcriptase inhibitors (NRTIs) may predispose individuals to developing T2DM or if already type 2 diabetic, to insulin dependency. The aim of this study was to investigate the effects of the NNRTIs efavirenz, rilpivirine and doravirine, and the NRTIs tenofovir disoproxil fumarate and emtricitabine, on beta-cell function and survival while suggesting potential cellular and molecular mechanism(s). Our results show contrasting effects within the NNRTI class as doravirine did not cause damaging effects in the rat insulinoma INS-1E cells while efavirenz and rilpivirine reduced insulin release and cell viability, and induced apoptosis in INS-1E cells. Additionally, efavirenz and rilpivirine increased ROS generation, disrupted Δψm and upregulated the mRNA and protein expression of CHOP and GRP78, key markers of endoplasmic reticulum stress. In silico docking studies predict a possible inhibition of the mitochondrial ATP synthase by rilpivirine. On the contrary, both the NRTIs tenofovir disoproxil fumarate and emtricitabine did not affect GSIS, cell viability and apoptosis/necrosis levels in INS-1E cells. The deleterious effects observed in beta-cells exposed to efavirenz or rilpivirine may be, at least partially, mediated by oxidative stress and mitochondrial toxicity. These findings provide potential mechanism(s) by which efavirenz and rilpivirine may contribute to the pathogenesis of T2DM and the progression of T2DM to insulin dependency in HIV-infected type 2 diabetics.
Collapse
|
43
|
|
44
|
Yanagisawa S, Frasch WD. pH-dependent 11° F 1F O ATP synthase sub-steps reveal insight into the F O torque generating mechanism. eLife 2021; 10:70016. [PMID: 34970963 PMCID: PMC8754430 DOI: 10.7554/elife.70016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Most cellular ATP is made by rotary F1FO ATP synthases using proton translocation-generated clockwise torque on the FO c-ring rotor, while F1-ATP hydrolysis can force counterclockwise rotation and proton pumping. The FO torque-generating mechanism remains elusive even though the FO interface of stator subunit-a, which contains the transmembrane proton half-channels, and the c-ring is known from recent F1FO structures. Here, single-molecule F1FO rotation studies determined that the pKa values of the half-channels differ, show that mutations of residues in these channels change the pKa values of both half-channels, and reveal the ability of FO to undergo single c-subunit rotational stepping. These experiments provide evidence to support the hypothesis that proton translocation through FO operates via a Grotthuss mechanism involving a column of single water molecules in each half-channel linked by proton translocation-dependent c-ring rotation. We also observed pH-dependent 11° ATP synthase-direction sub-steps of the Escherichia coli c10-ring of F1FO against the torque of F1-ATPase-dependent rotation that result from H+ transfer events from FO subunit-a groups with a low pKa to one c-subunit in the c-ring, and from an adjacent c-subunit to stator groups with a high pKa. These results support a mechanism in which alternating proton translocation-dependent 11° and 25° synthase-direction rotational sub-steps of the c10-ring occur to sustain F1FO ATP synthesis.
Collapse
Affiliation(s)
- Seiga Yanagisawa
- 1School of Life Sciences, Arizona State University, Tempe, United States
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
45
|
Ng KY, Richter U, Jackson CB, Seneca S, Battersby BJ. Translation of MT-ATP6 pathogenic variants reveals distinct regulatory consequences from the co-translational quality control of mitochondrial protein synthesis. Hum Mol Genet 2021; 31:1230-1241. [PMID: 34718584 PMCID: PMC9029222 DOI: 10.1093/hmg/ddab314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pathogenic variants that disrupt human mitochondrial protein synthesis are associated with a clinically heterogeneous group of diseases. Despite an impairment in oxidative phosphorylation being a common phenotype, the underlying molecular pathogenesis is more complex than simply a bioenergetic deficiency. Currently, we have limited mechanistic understanding on the scope by which a primary defect in mitochondrial protein synthesis contributes to organelle dysfunction. Since the proteins encoded in the mitochondrial genome are hydrophobic and need co-translational insertion into a lipid bilayer, responsive quality control mechanisms are required to resolve aberrations that arise with the synthesis of truncated and misfolded proteins. Here, we show that defects in the OXA1L-mediated insertion of MT-ATP6 nascent chains into the mitochondrial inner membrane are rapidly resolved by the AFG3L2 protease complex. Using pathogenic MT-ATP6 variants, we then reveal discrete steps in this quality control mechanism and the differential functional consequences to mitochondrial gene expression. The inherent ability of a given cell type to recognize and resolve impairments in mitochondrial protein synthesis may in part contribute at the molecular level to the wide clinical spectrum of these disorders.
Collapse
Affiliation(s)
- Kah Ying Ng
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Uwe Richter
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher B Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sara Seneca
- Center for Medical Genetics/Research Center Reproduction and Genetics, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | |
Collapse
|
46
|
Carrer A, Laquatra C, Tommasin L, Carraro M. Modulation and Pharmacology of the Mitochondrial Permeability Transition: A Journey from F-ATP Synthase to ANT. Molecules 2021; 26:molecules26216463. [PMID: 34770872 PMCID: PMC8587538 DOI: 10.3390/molecules26216463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The permeability transition (PT) is an increased permeation of the inner mitochondrial membrane due to the opening of the PT pore (PTP), a Ca2+-activated high conductance channel involved in Ca2+ homeostasis and cell death. Alterations of the PTP have been associated with many pathological conditions and its targeting represents an incessant challenge in the field. Although the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular nature increases the degree of complexity for any target-based approach. Recent advances suggest the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase and the ANT, although the exact molecular mechanism leading to channel formation remains elusive for both. A full comprehension of this to-pore conversion will help to assist in drug design and to develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds with particular attention to F-ATP synthase and ANT.
Collapse
|
47
|
Aliyari E, Konermann L. Atomistic Insights into the Formation of Nonspecific Protein Complexes during Electrospray Ionization. Anal Chem 2021; 93:12748-12757. [PMID: 34494821 DOI: 10.1021/acs.analchem.1c02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Native electrospray ionization (ESI)-mass spectrometry (MS) is widely used for the detection and characterization of multi-protein complexes. A well-known problem with this approach is the possible occurrence of nonspecific protein clustering in the ESI plume. This effect can distort the results of binding affinity measurements, and it can even generate gas-phase complexes from proteins that are strictly monomeric in bulk solution. By combining experiments and molecular dynamics (MD) simulations, the current work for the first time provides detailed insights into the ESI clustering of proteins. Using ubiquitin as a model system, we demonstrate how the entrapment of more than one protein molecule in an ESI droplet can generate nonspecific clusters (e.g., dimers or trimers) via solvent evaporation to dryness. These events are in line with earlier proposals, according to which protein clustering is associated with the charged residue model (CRM). MD simulations on cytochrome c (which carries a large intrinsic positive charge) confirmed the viability of this CRM avenue. In addition, the cytochrome c data uncovered an alternative mechanism where protein-protein contacts were formed early within ESI droplets, followed by cluster ejection from the droplet surface. This second pathway is consistent with the ion evaporation model (IEM). The observation of these IEM events for large protein clusters is unexpected because the IEM has been thought to be associated primarily with low-molecular-weight analytes. In all cases, our MD simulations produced protein clusters that were stabilized by intermolecular salt bridges. The MD-generated charge states agreed with experiments. Overall, this work reveals that ESI-induced protein clustering does not follow a tightly orchestrated pathway but can proceed along different avenues.
Collapse
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
48
|
Maeda GP, Iannello M, McConie HJ, Ghiselli F, Havird JC. Relaxed selection on male mitochondrial genes in DUI bivalves eases the need for mitonuclear coevolution. J Evol Biol 2021; 34:1722-1736. [PMID: 34533872 DOI: 10.1111/jeb.13931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/21/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022]
Abstract
Mitonuclear coevolution is an important prerequisite for efficient energy production in eukaryotes. However, many bivalve taxa experience doubly uniparental inheritance (DUI) and have sex-specific mitochondrial (mt) genomes, providing a challenge for mitonuclear coevolution. We examined possible mechanisms to reconcile mitonuclear coevolution with DUI. No nuclear-encoded, sex-specific OXPHOS paralogs were found in the DUI clam Ruditapes philippinarum, refuting OXPHOS paralogy as a solution in this species. It is also unlikely that mt changes causing disruption of nuclear interactions are strongly selected against because sex-specific mt-residues or those under positive selection in M mt genes were not depleted for contacting nuclear-encoded residues. However, M genomes showed consistently higher dN /dS ratios compared to putatively ancestral F genomes in all mt OXPHOS genes and across all DUI species. Further analyses indicated that this was consistently due to relaxed, not positive selection on M vs. F mt OXPHOS genes. Similarly, selection was relaxed on the F genome of DUI species compared to species with strict maternal inheritance. Coupled with recent physiological and molecular evolution studies, we suggest that relaxed selection on M mt function limits the need to maintain mitonuclear interactions in M genomes compared to F genomes. We discuss our findings with regard to OXPHOS function and the origin of DUI.
Collapse
Affiliation(s)
- Gerald P Maeda
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Hunter J McConie
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
49
|
Almendro-Vedia V, Natale P, Valdivieso González D, Lillo MP, Aragones JL, López-Montero I. How rotating ATP synthases can modulate membrane structure. Arch Biochem Biophys 2021; 708:108939. [PMID: 34052190 DOI: 10.1016/j.abb.2021.108939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023]
Abstract
F1Fo-ATP synthase (ATP synthase) is a central membrane protein that synthetizes most of the ATP in the cell through a rotational movement driven by a proton gradient across the hosting membrane. In mitochondria, ATP synthases can form dimers through specific interactions between some subunits of the protein. The dimeric form of ATP synthase provides the protein with a spontaneous curvature that sustain their arrangement at the rim of the high-curvature edges of mitochondrial membrane (cristae). Also, a direct interaction with cardiolipin, a lipid present in the inner mitochondrial membrane, induces the dimerization of ATP synthase molecules along cristae. The deletion of those biochemical interactions abolishes the protein dimerization producing an altered mitochondrial function and morphology. Mechanically, membrane bending is one of the key deformation modes by which mitochondrial membranes can be shaped. In particular, bending rigidity and spontaneous curvature are important physical factors for membrane remodelling. Here, we discuss a complementary mechanism whereby the rotatory movement of the ATP synthase might modify the mechanical properties of lipid bilayers and contribute to the formation and regulation of the membrane invaginations.
Collapse
Affiliation(s)
- Víctor Almendro-Vedia
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Paolo Natale
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - David Valdivieso González
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - M Pilar Lillo
- Departamento Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Juan L Aragones
- Departamento de Física Teórica de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Centre (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
50
|
Nirody JA, Budin I, Rangamani P. ATP synthase: Evolution, energetics, and membrane interactions. J Gen Physiol 2021; 152:152111. [PMID: 32966553 PMCID: PMC7594442 DOI: 10.1085/jgp.201912475] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The synthesis of ATP, life’s “universal energy currency,” is the most prevalent chemical reaction in biological systems and is responsible for fueling nearly all cellular processes, from nerve impulse propagation to DNA synthesis. ATP synthases, the family of enzymes that carry out this endless task, are nearly as ubiquitous as the energy-laden molecule they are responsible for making. The F-type ATP synthase (F-ATPase) is found in every domain of life and has facilitated the survival of organisms in a wide range of habitats, ranging from the deep-sea thermal vents to the human intestine. Accordingly, there has been a large amount of work dedicated toward understanding the structural and functional details of ATP synthases in a wide range of species. Less attention, however, has been paid toward integrating these advances in ATP synthase molecular biology within the context of its evolutionary history. In this review, we present an overview of several structural and functional features of the F-type ATPases that vary across taxa and are purported to be adaptive or otherwise evolutionarily significant: ion channel selectivity, rotor ring size and stoichiometry, ATPase dimeric structure and localization in the mitochondrial inner membrane, and interactions with membrane lipids. We emphasize the importance of studying these features within the context of the enzyme’s particular lipid environment. Just as the interactions between an organism and its physical environment shape its evolutionary trajectory, ATPases are impacted by the membranes within which they reside. We argue that a comprehensive understanding of the structure, function, and evolution of membrane proteins—including ATP synthase—requires such an integrative approach.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY.,All Souls College, University of Oxford, Oxford, UK
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|