1
|
Liu P, Nadeef S, Serag MF, Paytuví-Gallart A, Abadi M, Della Valle F, Radío S, Roda X, Dilmé Capó J, Adroub S, Hosny El Said N, Fallatah B, Celii M, Messa GM, Wang M, Li M, Tognini P, Aguilar-Arnal L, Habuchi S, Masri S, Sassone-Corsi P, Orlando V. PRC2-EZH1 contributes to circadian gene expression by orchestrating chromatin states and RNA polymerase II complex stability. EMBO J 2024; 43:6052-6075. [PMID: 39433902 PMCID: PMC11612306 DOI: 10.1038/s44318-024-00267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Circadian rhythmicity of gene expression is a conserved feature of cell physiology. This involves fine-tuning between transcriptional and post-transcriptional mechanisms and strongly depends on the metabolic state of the cell. Together these processes guarantee an adaptive plasticity of tissue-specific genetic programs. However, it is unclear how the epigenome and RNA Pol II rhythmicity are integrated. Here we show that the PcG protein EZH1 has a gateway bridging function in postmitotic skeletal muscle cells. On the one hand, the circadian clock master regulator BMAL1 directly controls oscillatory behavior and periodic assembly of core components of the PRC2-EZH1 complex. On the other hand, EZH1 is essential for circadian gene expression at alternate Zeitgeber times, through stabilization of RNA Polymerase II preinitiation complexes, thereby controlling nascent transcription. Collectively, our data show that PRC2-EZH1 regulates circadian transcription both negatively and positively by modulating chromatin states and basal transcription complex stability.
Collapse
Affiliation(s)
- Peng Liu
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Seba Nadeef
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maged F Serag
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Maram Abadi
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Francesco Della Valle
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Altos Labs, Institute of Science, San Diego, CA, 92121, USA
| | - Santiago Radío
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Xènia Roda
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Jaïr Dilmé Capó
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Sabir Adroub
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nadine Hosny El Said
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bodor Fallatah
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mirko Celii
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Gian Marco Messa
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mengge Wang
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mo Li
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Paola Tognini
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, 56126, Italy
| | - Lorena Aguilar-Arnal
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Mexico City, 04510, Mexico
| | - Satoshi Habuchi
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Selma Masri
- University of California Irvine, Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, Irvine, CA, 92697, USA
| | - Paolo Sassone-Corsi
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
| | - Valerio Orlando
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Unveiling RCOR1 as a rheostat at transcriptionally permissive chromatin. Nat Commun 2022; 13:1550. [PMID: 35322029 PMCID: PMC8943175 DOI: 10.1038/s41467-022-29261-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2022] [Indexed: 12/23/2022] Open
Abstract
RCOR1 is a known transcription repressor that recruits and positions LSD1 and HDAC1/2 on chromatin to erase histone methylation and acetylation. However, there is currently an incomplete understanding of RCOR1’s range of localization and function. Here, we probe RCOR1’s distribution on a genome-wide scale and unexpectedly find that RCOR1 is predominantly associated with transcriptionally active genes. Biochemical analysis reveals that RCOR1 associates with RNA Polymerase II (POL-II) during transcription and deacetylates its carboxy-terminal domain (CTD) at lysine 7. We provide evidence that this non-canonical RCOR1 activity is linked to dampening of POL-II productive elongation at actively transcribing genes. Thus, RCOR1 represses transcription in two ways—first, via a canonical mechanism by erasing transcriptionally permissive histone modifications through associating with HDACs and, second, via a non-canonical mechanism that deacetylates RNA POL-II’s CTD to inhibit productive elongation. We conclude that RCOR1 is a transcription rheostat. The classical neuronal-gene corepressor RCOR1/CoREST is paradoxically enriched in transcriptionally active chromatin. Here the authors show RCOR1 is recruited during promoter-proximal pausing and negatively regulates the nascent-transcript synthesis. They also show that an RCOR1-LSD1- HDAC1 complex removes lysine acetylation from RNA polymerase II to repress transcription.
Collapse
|
3
|
Yamazaki T, Liu L, Manley JL. Oxidative stress induces Ser 2 dephosphorylation of the RNA polymerase II CTD and premature transcription termination. Transcription 2021; 12:277-293. [PMID: 34874799 DOI: 10.1080/21541264.2021.2009421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) consists of YSPTSPS heptapeptide repeats, and the phosphorylation status of the repeats controls multiple transcriptional steps and co-transcriptional events. However, how CTD phosphorylation status responds to distinct environmental stresses is not fully understood. In this study, we found that a drastic reduction in phosphorylation of a subset of Ser2 residues occurs rapidly but transiently following exposure to H2O2. ChIP analysis indicated that Ser2-P, and to a lesser extent Tyr1-P was reduced only at the gene 3' end. Significantly, the levels of polyadenylation factor CstF77, as well as Pol II, were also reduced. However, no increase in uncleaved or readthrough RNA products was observed, suggesting transcribing Pol II prematurely terminates at the gene end in response to H2O2. Further analysis found that the reduction of Ser2-P is, at least in part, regulated by CK2 but independent of FCP1 and other known Ser2 phosphatases. Finally, the H2O2 treatment also affected snRNA 3' processing although surprisingly the U2 processing was not impaired. Together, our data suggest that H2O2 exposure creates a unique CTD phosphorylation state that rapidly alters transcription to deal with acute oxidative stress, perhaps creating a novel "emergency brake" mechanism to transiently dampen gene expression.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY USA
| |
Collapse
|
4
|
Le HQ, Hill MA, Kollak I, Keck M, Schroeder V, Wirth J, Skronska‐Wasek W, Schruf E, Strobel B, Stahl H, Herrmann FE, Campos AR, Li J, Quast K, Knebel D, Viollet C, Thomas MJ, Lamb D, Garnett JP. An EZH2-dependent transcriptional complex promotes aberrant epithelial remodelling after injury. EMBO Rep 2021; 22:e52785. [PMID: 34224201 PMCID: PMC8339687 DOI: 10.15252/embr.202152785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Unveiling the molecular mechanisms of tissue remodelling following injury is imperative to elucidate its regenerative capacity and aberrant repair in disease. Using different omics approaches, we identified enhancer of zester homolog 2 (EZH2) as a key regulator of fibrosis in injured lung epithelium. Epithelial injury drives an enrichment of nuclear transforming growth factor-β-activated kinase 1 (TAK1) that mediates EZH2 phosphorylation to facilitate its liberation from polycomb repressive complex 2 (PRC2). This process results in the establishment of a transcriptional complex of EZH2, RNA-polymerase II (POL2) and nuclear actin, which orchestrates aberrant epithelial repair programmes. The liberation of EZH2 from PRC2 is accompanied by an EZH2-EZH1 switch to preserve H3K27me3 deposition at non-target genes. Loss of epithelial TAK1, EZH2 or blocking nuclear actin influx attenuates the fibrotic cascade and restores respiratory homeostasis. Accordingly, EZH2 inhibition significantly improves outcomes in a pulmonary fibrosis mouse model. Our results reveal an important non-canonical function of EZH2, paving the way for new therapeutic interventions in fibrotic lung diseases.
Collapse
Affiliation(s)
- Huy Q Le
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Matthew A Hill
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
- University of BathBathUK
| | - Ines Kollak
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Martina Keck
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Victoria Schroeder
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Johannes Wirth
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Wioletta Skronska‐Wasek
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Eva Schruf
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Benjamin Strobel
- Drug Discovery SciencesBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Heiko Stahl
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Franziska E Herrmann
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | | | - Jun Li
- Immunology and Respiratory Disease Research DepartmentBoehringer Ingelheim Pharmaceuticals, IncRidgefieldCTUSA
| | - Karsten Quast
- Global Computational Biology and Digital SciencesBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Dagmar Knebel
- Global Computational Biology and Digital SciencesBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Coralie Viollet
- Global Computational Biology and Digital SciencesBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Matthew J Thomas
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
- University of BathBathUK
| | - David Lamb
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - James P Garnett
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
- Translational and Clinical Research InstituteNewcastle UniversityNewcastleUK
| |
Collapse
|
5
|
Venkat Ramani MK, Yang W, Irani S, Zhang Y. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II. J Mol Biol 2021; 433:166912. [PMID: 33676925 PMCID: PMC8184622 DOI: 10.1016/j.jmb.2021.166912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
The highly conserved C-terminal domain (CTD) of the largest subunit of RNA polymerase II comprises a consensus heptad (Y1S2P3T4S5P6S7) repeated multiple times. Despite the simplicity of its sequence, the essential CTD domain orchestrates eukaryotic transcription and co-transcriptional processes, including transcription initiation, elongation, and termination, and mRNA processing. These distinct facets of the transcription cycle rely on specific post-translational modifications (PTM) of the CTD, in which five out of the seven residues in the heptad repeat are subject to phosphorylation. A hypothesis termed the "CTD code" has been proposed in which these PTMs and their combinations generate a sophisticated landscape for spatiotemporal recruitment of transcription regulators to Pol II. In this review, we summarize the recent experimental evidence understanding the biological role of the CTD, implicating a context-dependent theme that significantly enhances the ability of accurate transcription by RNA polymerase II. Furthermore, feedback communication between the CTD and histone modifications coordinates chromatin states with RNA polymerase II-mediated transcription, ensuring the effective and accurate conversion of information into cellular responses.
Collapse
Affiliation(s)
| | - Wanjie Yang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Seema Irani
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States; The Institute for Cellular and Molecular Biology. University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
6
|
Dieci G. Removing quote marks from the RNA polymerase II CTD 'code'. Biosystems 2021; 207:104468. [PMID: 34216714 DOI: 10.1016/j.biosystems.2021.104468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 11/27/2022]
Abstract
In eukaryotes, RNA polymerase II (Pol II) is responsible for the synthesis of all mRNAs and myriads of short and long untranslated RNAs, whose fabrication involves close spatiotemporal coordination between transcription, RNA processing and chromatin modification. Crucial for such a coordination is an unusual C-terminal domain (CTD) of the Pol II largest subunit, made of tandem repetitions (26 in yeast, 52 in chordates) of the heptapeptide with the consensus sequence YSPTSPS. Although largely unstructured and with poor sequence content, the Pol II CTD derives its extraordinary functional versatility from the fact that each amino acid in the heptapeptide can be posttranslationally modified, and that different combinations of CTD covalent marks are specifically recognized by different protein binding partners. These features have led to propose the existence of a Pol II CTD code, but this expression is generally used by authors with some caution, revealed by the frequent use of quote marks for the word 'code'. Based on the theoretical framework of code biology, it is argued here that the Pol II CTD modification system meets the requirements of a true organic code, where different CTD modification states represent organic signs whose organic meanings are biological reactions contributing to the many facets of RNA biogenesis in coordination with RNA synthesis by Pol II. Importantly, the Pol II CTD code is instantiated by adaptor proteins possessing at least two distinct domains, one of which devoted to specific recognition of CTD modification profiles. Furthermore, code rules can be altered by experimental interchange of CTD recognition domains of different adaptor proteins, a fact arguing in favor of the arbitrariness, and thus bona fide character, of the Pol II CTD code. Since the growing family of CTD adaptors includes RNA binding proteins and histone modification complexes, the Pol II CTD code is by its nature integrated with other organic codes, in particular the splicing code and the histone code. These issues will be discussed taking into account fascinating developments in Pol II CTD research, like the discovery of novel modifications at non-consensus sites, the recently recognized CTD physicochemical properties favoring liquid-liquid phase separation, and the discovery that the Pol II CTD, originated before the divergence of most extant eukaryotic taxa, has expanded and diversified with developmental complexity in animals and plants.
Collapse
Affiliation(s)
- Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy.
| |
Collapse
|
7
|
Sawicka A, Villamil G, Lidschreiber M, Darzacq X, Dugast-Darzacq C, Schwalb B, Cramer P. Transcription activation depends on the length of the RNA polymerase II C-terminal domain. EMBO J 2021; 40:e107015. [PMID: 33555055 PMCID: PMC8090853 DOI: 10.15252/embj.2020107015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 01/02/2023] Open
Abstract
Eukaryotic RNA polymerase II (Pol II) contains a tail‐like, intrinsically disordered carboxy‐terminal domain (CTD) comprised of heptad‐repeats, that functions in coordination of the transcription cycle and in coupling transcription to co‐transcriptional processes. The CTD repeat number varies between species and generally increases with genome size, but the reasons for this are unclear. Here, we show that shortening the CTD in human cells to half of its length does not generally change pre‐mRNA synthesis or processing in cells. However, CTD shortening decreases the duration of promoter‐proximal Pol II pausing, alters transcription of putative enhancer elements, and delays transcription activation after stimulation of the MAP kinase pathway. We suggest that a long CTD is required for efficient enhancer‐dependent recruitment of Pol II to target genes for their rapid activation.
Collapse
Affiliation(s)
- Anna Sawicka
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gabriel Villamil
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,CIRM Center of Excellence, University of California, Berkeley, CA, USA
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,CIRM Center of Excellence, University of California, Berkeley, CA, USA
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
8
|
Mayfield JE, Irani S, Zhang Y. Electrophoretic Mobility Shift Assay of in vitro Phosphorylated RNA Polymerase II Carboxyl-terminal Domain Substrates. Bio Protoc 2020; 10:e3648. [PMID: 33659319 DOI: 10.21769/bioprotoc.3648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/02/2022] Open
Abstract
Eukaryotic RNA polymerase II transcribes all protein-coding mRNAs and is highly regulated. A key mechanism directing RNA polymerase II and facilitating the co-transcriptional processing of mRNAs is the phosphorylation of its highly repetitive carboxyl-terminal domain (CTD) of its largest subunit, RPB1, at specific residues. A variety of techniques exist to identify and quantify the degree of CTD phosphorylation, including phosphorylation-specific antibodies and mass spectrometry. Electrophoretic mobility shift assays (EMSAs) have been utilized since the discovery of CTD phosphorylation and continue to represent a simple, direct, and widely applicable approach for qualitatively monitoring CTD phosphorylation. We present a standardized method for EMSA analysis of recombinant GST-CTD substrates phosphorylated by a variety of CTD kinases. Strategies to analyze samples under both denatured/reduced and semi-native conditions are provided. This method represents a simple, direct, and reproducible means to monitor CTD phosphorylation in recombinant substrates utilizing equipment common to molecular biology labs and readily applicable to downstream analyses including immunoblotting and mass spectrometry.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX, United States
| | - Seema Irani
- Department of Chemical Engineering, the University of Texas at Austin, Austin, TX, United States
| | - Yan Zhang
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
9
|
Lyons DE, McMahon S, Ott M. A combinatorial view of old and new RNA polymerase II modifications. Transcription 2020; 11:66-82. [PMID: 32401151 DOI: 10.1080/21541264.2020.1762468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The production of mRNA is a dynamic process that is highly regulated by reversible post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II. The CTD is a highly repetitive domain consisting mostly of the consensus heptad sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Phosphorylation of serine residues within this repeat sequence is well studied, but modifications of all residues have been described. Here, we focus on integrating newly identified and lesser-studied CTD post-translational modifications into the existing framework. We also review the growing body of work demonstrating crosstalk between different CTD modifications and the functional consequences of such crosstalk on the dynamics of transcriptional regulation.
Collapse
Affiliation(s)
- Danielle E Lyons
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Sarah McMahon
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| |
Collapse
|
10
|
Effects of 1,25-dihydroxyvitamin D3 on the Inflammatory Responses of Stromal Vascular Cells and Adipocytes from Lean and Obese Mice. Nutrients 2020; 12:nu12020364. [PMID: 32019160 PMCID: PMC7071143 DOI: 10.3390/nu12020364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D status has been implicated in obesity and adipose tissue inflammation. In the present study, we explored the effects of dietary vitamin D supplementation on adipose tissue inflammation and immune cell population, and the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) treatment on pro-inflammatory cytokine production by stromal vascular cells (SVCs) and adipocytes in lean and high-fat diet-induced obese mice. The results show that epididymal fat Mcp-1 and Rantes mRNA levels, which were higher in obese mice compared with lean mice, were significantly down-regulated by vitamin D supplementation. While obese mice had higher numbers of macrophages and natural killer (NK) cells within adipose tissue, these remained unaltered by vitamin D supplementation. In accordance with these in vivo findings, the in vitro 1,25(OH)2D3 treatment decreased IL-6, MCP-1, and IL-1β production by SVCs from obese mice, but not by adipocytes. In addition, 1,25(OH)2D3 treatment significantly decreased Tlr2 expression and increased mRNA levels of Iκba and Dusp1 in SVCs. These findings suggest that vitamin D supplementation attenuates inflammatory response in adipose tissue, especially in SVCs, possibly through inhibiting NF-κB and MAPK signaling pathways in SVCs but not by the inhibition of macrophage infiltration.
Collapse
|
11
|
Cornett EM, Ferry L, Defossez PA, Rothbart SB. Lysine Methylation Regulators Moonlighting outside the Epigenome. Mol Cell 2020; 75:1092-1101. [PMID: 31539507 DOI: 10.1016/j.molcel.2019.08.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023]
Abstract
Landmark discoveries made nearly two decades ago identified known transcriptional regulators as histone lysine methyltransferases. Since then, the field of lysine methylation signaling has been dominated by studies of how this small chemical posttranslational modification regulates gene expression and other chromatin-based processes. However, recent advances in mass-spectrometry-based proteomics have revealed that histones are just a subset of the thousands of eukaryotic proteins marked by lysine methylation. As the writers, erasers, and readers of histone lysine methylation are emerging as a promising therapeutic target class for cancer and other diseases, a key challenge for the field is to define the full spectrum of activities for these proteins. Here we summarize recent discoveries implicating non-histone lysine methylation as a major regulator of diverse cellular processes. We further discuss recent technological innovations that are enabling the expanded study of lysine methylation signaling. Collectively, these findings are shaping our understanding of the fundamental mechanisms of non-histone protein regulation through this dynamic and multi-functional posttranslational modification.
Collapse
Affiliation(s)
- Evan M Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Laure Ferry
- Université de Paris, Epigenetics and Cell Fate, CNRS, 75013 Paris, France
| | | | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
12
|
Burkholder NT, Sipe SN, Escobar EE, Venkatramani M, Irani S, Yang W, Wu H, Matthews WM, Brodbelt JS, Zhang Y. Mapping RNAPII CTD Phosphorylation Reveals That the Identity and Modification of Seventh Heptad Residues Direct Tyr1 Phosphorylation. ACS Chem Biol 2019; 14:2264-2275. [PMID: 31553563 DOI: 10.1021/acschembio.9b00610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The C-terminal domain (CTD) of the largest subunit in eukaryotic RNA polymerase II has a repetitive heptad sequence of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 which is responsible for recruiting transcriptional regulatory factors. The seventh heptad residues in mammals are less conserved and subject to various post-translational modifications, but the consequences of such variations are not well understood. In this study, we use ultraviolet photodissociation mass spectrometry, kinetic assays, and structural analyses to dissect how different residues or modifications at the seventh heptad position alter Tyr1 phosphorylation. We found that negatively charged residues in this position promote phosphorylation of adjacent Tyr1 sites, whereas positively charged residues discriminate against it. Modifications that alter the charges on seventh heptad residues such as arginine citrullination negate such distinctions. Such specificity can be explained by conserved, positively charged pockets near the active sites of ABL1 and its homologues. Our results reveal a novel mechanism for variations or modifications in the seventh heptad position directing subsequent phosphorylation of other CTD sites, which can contribute to the formation of various modification combinations that likely impact transcriptional regulation.
Collapse
|
13
|
Sato Y, Hilbert L, Oda H, Wan Y, Heddleston JM, Chew TL, Zaburdaev V, Keller P, Lionnet T, Vastenhouw N, Kimura H. Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis. Development 2019; 146:146/19/dev179127. [PMID: 31570370 PMCID: PMC6803375 DOI: 10.1242/dev.179127] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
Histone post-translational modifications are key gene expression regulators, but their rapid dynamics during development remain difficult to capture. We applied a Fab-based live endogenous modification labeling technique to monitor the changes in histone modification levels during zygotic genome activation (ZGA) in living zebrafish embryos. Among various histone modifications, H3 Lys27 acetylation (H3K27ac) exhibited most drastic changes, accumulating in two nuclear foci in the 64- to 1k-cell-stage embryos. The elongating form of RNA polymerase II, which is phosphorylated at Ser2 in heptad repeats within the C-terminal domain (RNAP2 Ser2ph), and miR-430 transcripts were also concentrated in foci closely associated with H3K27ac. When treated with α-amanitin to inhibit transcription or JQ-1 to inhibit binding of acetyl-reader proteins, H3K27ac foci still appeared but RNAP2 Ser2ph and miR-430 morpholino were not concentrated in foci, suggesting that H3K27ac precedes active transcription during ZGA. We anticipate that the method presented here could be applied to a variety of developmental processes in any model and non-model organisms.
Collapse
Affiliation(s)
- Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Lennart Hilbert
- Center for Systems Biology Dresden, Dresden 01307, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yinan Wan
- Howard Hughes Medical Institute, Janelia Research Campus, VA 20147, USA
| | - John M Heddleston
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, VA 20147, USA
| | - Vasily Zaburdaev
- Center for Systems Biology Dresden, Dresden 01307, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Philipp Keller
- Howard Hughes Medical Institute, Janelia Research Campus, VA 20147, USA
| | - Timothee Lionnet
- Institute for Systems Genetics and Department of Cell Biology, New York University Langone Health, NY 10016, USA
| | - Nadine Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
14
|
Caron P, Pankotai T, Wiegant WW, Tollenaere MAX, Furst A, Bonhomme C, Helfricht A, de Groot A, Pastink A, Vertegaal ACO, Luijsterburg MS, Soutoglou E, van Attikum H. WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent transcription arrest and repair at DNA breaks. Genes Dev 2019; 33:684-704. [PMID: 31048545 PMCID: PMC6546063 DOI: 10.1101/gad.321943.118] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/25/2019] [Indexed: 11/24/2022]
Abstract
Here, Caron et al. show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. Their findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery. DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery.
Collapse
Affiliation(s)
- Pierre Caron
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Tibor Pankotai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France.,UMR7104, Centre National de Recherche Scientifique (CNRS), 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Maxim A X Tollenaere
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Audrey Furst
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France.,UMR7104, Centre National de Recherche Scientifique (CNRS), 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Celine Bonhomme
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France.,UMR7104, Centre National de Recherche Scientifique (CNRS), 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Angela Helfricht
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Anton de Groot
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Albert Pastink
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France.,UMR7104, Centre National de Recherche Scientifique (CNRS), 67404 Illkirch, France.,Université de Strasbourg, 67081 Strasbourg, France
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
15
|
Ali I, Ruiz DG, Ni Z, Johnson JR, Zhang H, Li PC, Khalid MM, Conrad RJ, Guo X, Min J, Greenblatt J, Jacobson M, Krogan NJ, Ott M. Crosstalk between RNA Pol II C-Terminal Domain Acetylation and Phosphorylation via RPRD Proteins. Mol Cell 2019; 74:1164-1174.e4. [PMID: 31054975 DOI: 10.1016/j.molcel.2019.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/26/2019] [Accepted: 03/30/2019] [Indexed: 01/01/2023]
Abstract
Post-translational modifications of the RNA polymerase II C-terminal domain (CTD) coordinate the transcription cycle. Crosstalk between different modifications is poorly understood. Here, we show how acetylation of lysine residues at position 7 of characteristic heptad repeats (K7ac)-only found in higher eukaryotes-regulates phosphorylation of serines at position 5 (S5p), a conserved mark of polymerases initiating transcription. We identified the regulator of pre-mRNA-domain-containing (RPRD) proteins as reader proteins of K7ac. K7ac enhanced CTD peptide binding to the CTD-interacting domain (CID) of RPRD1A and RPRD1B proteins in isothermal calorimetry and molecular modeling experiments. Deacetylase inhibitors increased K7ac- and decreased S5-phosphorylated polymerases, consistent with acetylation-dependent S5 dephosphorylation by an RPRD-associated S5 phosphatase. Consistent with this model, RPRD1B knockdown increased S5p but enhanced K7ac, indicating that RPRD proteins recruit K7 deacetylases, including HDAC1. We also report autoregulatory crosstalk between K7ac and S5p via RPRD proteins and their interactions with acetyl- and phospho-eraser proteins.
Collapse
Affiliation(s)
- Ibraheem Ali
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Heng Zhang
- Structural Genomics Consortium, University of Toronto, ON, Canada
| | - Pao-Chen Li
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mir M Khalid
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ryan J Conrad
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xinghua Guo
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, ON, Canada
| | | | - Matthew Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences (QBC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences (QBC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Lu F, Gilmour DS. Genetic analysis of the RNA polymerase II CTD in Drosophila. Methods 2019; 159-160:129-137. [PMID: 30684537 PMCID: PMC6589110 DOI: 10.1016/j.ymeth.2019.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/03/2023] Open
Abstract
The Carboxy-terminal Domain (CTD) of RNA polymerase II (Pol II) plays essential roles in regulating gene expression in eukaryotes. Here, we describe multiple genetic approaches for studying the CTD in Drosophila that complement pre-existing molecular analyses of the Pol II CTD in other experimental models. These approaches will allow one to assess the effects of any CTD mutations in a developmentally complex organism. The approaches discussed in this work can in principle, be applied to analyze other transcription components in eukaryotes.
Collapse
Affiliation(s)
- Feiyue Lu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
17
|
Burriss KH, Mosley AL. Methods review: Mass spectrometry analysis of RNAPII complexes. Methods 2019; 159-160:105-114. [PMID: 30902665 DOI: 10.1016/j.ymeth.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022] Open
Abstract
RNA Polymerase II (RNAPII) is responsible for transcribing multiple RNA species throughout eukaryotes. A variety of protein-protein interactions occur throughout the transcription cycle for coordinated regulation of transcription initiation, elongation, and/or termination. Taking a proteomics approach to study RNAPII transcription thereby offers a comprehensive view of both RNAPII biology and the variety of proteins that regulate the process itself. This review will focus on how mass spectrometry (MS) methods have expanded understanding of RNAPII and its transcription-regulatory interaction partners. The application of affinity purification mass spectrometry has led to the discovery of a number of novel groups of proteins that regulate an array of RNAPII biology ranging from nuclear import to regulation of phosphorylation state. Additionally, a number of methods have been developed using mass spectrometry to measure protein subunit stoichiometry within and across protein complexes and to perform various types of architectural analysis using structural proteomics approaches. The key methods that we will focus on related to RNAPII mass spectrometry analyses include: affinity purification mass spectrometry, protein post-translational modification analysis, crosslinking mass spectrometry, and native mass spectrometry.
Collapse
Affiliation(s)
- Katlyn Hughes Burriss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46402, United States
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46402, United States; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46402, United States.
| |
Collapse
|
18
|
Lu F, Portz B, Gilmour DS. The C-Terminal Domain of RNA Polymerase II Is a Multivalent Targeting Sequence that Supports Drosophila Development with Only Consensus Heptads. Mol Cell 2019; 73:1232-1242.e4. [PMID: 30765194 DOI: 10.1016/j.molcel.2019.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/03/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) is composed of repeats of the consensus YSPTSPS and is an essential binding scaffold for transcription-associated factors. Metazoan CTDs have well-conserved lengths and sequence compositions arising from the evolution of divergent motifs, features thought to be essential for development. On the contrary, we show that a truncated CTD composed solely of YSPTSPS repeats supports Drosophila viability but that a CTD with enough YSPTSPS repeats to match the length of the wild-type Drosophila CTD is defective. Furthermore, a fluorescently tagged CTD lacking the rest of Pol II dynamically enters transcription compartments, indicating that the CTD functions as a signal sequence. However, CTDs with too many YSPTSPS repeats are more prone to localize to static nuclear foci separate from the chromosomes. We propose that the sequence complexity of the CTD offsets aberrant behavior caused by excessive repetitive sequences without compromising its targeting function.
Collapse
Affiliation(s)
- Feiyue Lu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bede Portz
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
19
|
Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A. R-Loops Enhance Polycomb Repression at a Subset of Developmental Regulator Genes. Mol Cell 2019; 73:930-945.e4. [PMID: 30709709 PMCID: PMC6414425 DOI: 10.1016/j.molcel.2018.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/14/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
R-loops are three-stranded nucleic acid structures that form during transcription, especially over unmethylated CpG-rich promoters of active genes. In mouse embryonic stem cells (mESCs), CpG-rich developmental regulator genes are repressed by the Polycomb complexes PRC1 and PRC2. Here, we show that R-loops form at a subset of Polycomb target genes, and we investigate their contribution to Polycomb repression. At R-loop-positive genes, R-loop removal leads to decreased PRC1 and PRC2 recruitment and Pol II activation into a productive elongation state, accompanied by gene derepression at nascent and processed transcript levels. Stable removal of PRC2 derepresses R-loop-negative genes, as expected, but does not affect R-loops, PRC1 recruitment, or transcriptional repression of R-loop-positive genes. Our results highlight that Polycomb repression does not occur via one mechanism but consists of different layers of repression, some of which are gene specific. We uncover that one such mechanism is mediated by an interplay between R-loops and RING1B recruitment. R-loops form at a subset of PcG target genes R-loops contribute to PcG recruitment genome-wide Loss of R-loops leads to transcriptional activation of R-loop-positive PcG targets R-loops and PRC1 contribute to transcriptional repression of PcG targets
Collapse
Affiliation(s)
- Konstantina Skourti-Stathaki
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK; Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany.
| | - Elena Torlai Triglia
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany
| | - Marie Warburton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany; Berlin Institute of Health, Berlin, Germany; Institute for Biology, Humboldt-Universitat zu Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Sharma P, Lioutas A, Fernandez-Fuentes N, Quilez J, Carbonell-Caballero J, Wright RHG, Di Vona C, Le Dily F, Schüller R, Eick D, Oliva B, Beato M. Arginine Citrullination at the C-Terminal Domain Controls RNA Polymerase II Transcription. Mol Cell 2018; 73:84-96.e7. [PMID: 30472187 DOI: 10.1016/j.molcel.2018.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022]
Abstract
The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify a new modification at the CTD, the deimination of arginine and its conversion to citrulline by peptidyl arginine deiminase 2 (PADI2), an enzyme that has been associated with several diseases, including cancer. We show that, among PADI family members, only PADI2 citrullinates R1810 (Cit1810) at repeat 31 of the CTD. Depletion of PADI2 or loss of R1810 results in accumulation of RNAP2 at transcription start sites, reduced gene expression, and inhibition of cell proliferation. Cit1810 is needed for interaction with the P-TEFb (positive transcription elongation factor b) kinase complex and for its recruitment to chromatin. In this way, CTD-Cit1810 favors RNAP2 pause release and efficient transcription in breast cancer cells.
Collapse
Affiliation(s)
- Priyanka Sharma
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Antonios Lioutas
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Narcis Fernandez-Fuentes
- IBERS, Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth SY23 3EB, UK
| | - Javier Quilez
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - José Carbonell-Caballero
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Roni H G Wright
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Chiara Di Vona
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - François Le Dily
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Roland Schüller
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science, Munich, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science, Munich, Germany
| | - Baldomero Oliva
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Structural Bioinformatics Laboratory (GRIB-IMIM), Department of Experimental and Health Sciences, Barcelona 08003, Spain
| | - Miguel Beato
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
21
|
Ferrai C, Torlai Triglia E, Risner-Janiczek JR, Rito T, Rackham OJ, de Santiago I, Kukalev A, Nicodemi M, Akalin A, Li M, Ungless MA, Pombo A. RNA polymerase II primes Polycomb-repressed developmental genes throughout terminal neuronal differentiation. Mol Syst Biol 2017; 13:946. [PMID: 29038337 PMCID: PMC5658700 DOI: 10.15252/msb.20177754] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polycomb repression in mouse embryonic stem cells (ESCs) is tightly associated with promoter co‐occupancy of RNA polymerase II (RNAPII) which is thought to prime genes for activation during early development. However, it is unknown whether RNAPII poising is a general feature of Polycomb repression, or is lost during differentiation. Here, we map the genome‐wide occupancy of RNAPII and Polycomb from pluripotent ESCs to non‐dividing functional dopaminergic neurons. We find that poised RNAPII complexes are ubiquitously present at Polycomb‐repressed genes at all stages of neuronal differentiation. We observe both loss and acquisition of RNAPII and Polycomb at specific groups of genes reflecting their silencing or activation. Strikingly, RNAPII remains poised at transcription factor genes which are silenced in neurons through Polycomb repression, and have major roles in specifying other, non‐neuronal lineages. We conclude that RNAPII poising is intrinsically associated with Polycomb repression throughout differentiation. Our work suggests that the tight interplay between RNAPII poising and Polycomb repression not only instructs promoter state transitions, but also may enable promoter plasticity in differentiated cells.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Epigenetic Regulation and Chromatin Architecture, Max Delbrück Center for Molecular Medicine, Berlin, Germany .,Genome Function, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Elena Torlai Triglia
- Epigenetic Regulation and Chromatin Architecture, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jessica R Risner-Janiczek
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,Stem Cell Neurogenesis, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK.,Neurophysiology Group, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK
| | - Tiago Rito
- Epigenetic Regulation and Chromatin Architecture, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Inês de Santiago
- Genome Function, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Alexander Kukalev
- Epigenetic Regulation and Chromatin Architecture, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Altuna Akalin
- Scientific Bioinformatics Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Meng Li
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,Stem Cell Neurogenesis, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK
| | - Mark A Ungless
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK .,Neurophysiology Group, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture, Max Delbrück Center for Molecular Medicine, Berlin, Germany .,Genome Function, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,Institute for Biology, Humboldt-Universität zu Berlin, Berlin Germany
| |
Collapse
|
22
|
Yurko NM, Manley JL. The RNA polymerase II CTD "orphan" residues: Emerging insights into the functions of Tyr-1, Thr-4, and Ser-7. Transcription 2017; 9:30-40. [PMID: 28771071 DOI: 10.1080/21541264.2017.1338176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of a unique repeated heptad sequence of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. An important function of the CTD is to couple transcription with RNA processing reactions that occur during the initiation, elongation, and termination phases of transcription. During this transcription cycle, the CTD is subject to extensive modification, primarily phosphorylation, on its non-proline residues. Reversible phosphorylation of Ser2 and Ser5 is well known to play important and general functions during transcription in all eukaryotes. More recent studies have enhanced our understanding of Tyr1, Thr4, and Ser7, and what have been previously characterized as unknown or specialized functions for these residues has changed to a more fine-detailed map of transcriptional regulation that highlights similarities as well as significant differences between organisms. Here, we review recent findings on the function and modification of these three residues, which further illustrate the importance of the CTD in precisely modulating gene expression.
Collapse
Affiliation(s)
- Nathan M Yurko
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - James L Manley
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| |
Collapse
|
23
|
Gibbs EB, Lu F, Portz B, Fisher MJ, Medellin BP, Laremore TN, Zhang YJ, Gilmour DS, Showalter SA. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain. Nat Commun 2017; 8:15233. [PMID: 28497798 PMCID: PMC5437310 DOI: 10.1038/ncomms15233] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/09/2017] [Indexed: 01/25/2023] Open
Abstract
The carboxy-terminal domain (CTD) of the RNA polymerase II (Pol II) large subunit cycles through phosphorylation states that correlate with progression through the transcription cycle and regulate nascent mRNA processing. Structural analyses of yeast and mammalian CTD are hampered by their repetitive sequences. Here we identify a region of the Drosophila melanogaster CTD that is essential for Pol II function in vivo and capitalize on natural sequence variations within it to facilitate structural analysis. Mass spectrometry and NMR spectroscopy reveal that hyper-Ser5 phosphorylation transforms the local structure of this region via proline isomerization. The sequence context of this switch tunes the activity of the phosphatase Ssu72, leading to the preferential de-phosphorylation of specific heptads. Together, context-dependent conformational switches and biased dephosphorylation suggest a mechanism for the selective recruitment of cis-proline-specific regulatory factors and region-specific modulation of the CTD code that may augment gene regulation in developmentally complex organisms.
Collapse
Affiliation(s)
- Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Feiyue Lu
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bede Portz
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Fisher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Brenda P Medellin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Tatiana N Laremore
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
24
|
The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat Rev Mol Cell Biol 2017; 18:263-273. [PMID: 28248323 DOI: 10.1038/nrm.2017.10] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The carboxy-terminal domain (CTD) extends from the largest subunit of RNA polymerase II (Pol II) as a long, repetitive and largely unstructured polypeptide chain. Throughout the transcription process, the CTD is dynamically modified by post-translational modifications, many of which facilitate or hinder the recruitment of key regulatory factors of Pol II that collectively constitute the 'CTD code'. Recent studies have revealed how the physicochemical properties of the CTD promote phase separation in the presence of other low-complexity domains. Here, we discuss the intricacies of the CTD code and how the newly characterized physicochemical properties of the CTD expand the function of the CTD beyond the code.
Collapse
|
25
|
Abstract
Transcription and splicing are fundamental steps in gene expression. These processes have been studied intensively over the past four decades, and very recent findings are challenging some of the formerly established ideas. In particular, splicing was shown to occur much faster than previously thought, with the first spliced products observed as soon as splice junctions emerge from RNA polymerase II (Pol II). Splicing was also found coupled to a specific phosphorylation pattern of Pol II carboxyl-terminal domain (CTD), suggesting a new layer of complexity in the CTD code. Moreover, phosphorylation of the CTD may be scarcer than expected, and other post-translational modifications of the CTD are emerging with unanticipated roles in gene expression regulation.
Collapse
Affiliation(s)
- Noélia Custódio
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| | - Maria Carmo-Fonseca
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
26
|
The pol II CTD: new twists in the tail. Nat Struct Mol Biol 2016; 23:771-7. [DOI: 10.1038/nsmb.3285] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022]
|
27
|
Abstract
In this issue of Molecular Cell, Schüller et al. (2016) and Suh et al. (2016) describe genetic and mass spectrometry methodologies for mapping phosphorylation sites on the tandem repeats of the RNA polymerase II CTD. The results suggest that the CTD Code may be simpler than expected.
Collapse
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Hintermair C, Voß K, Forné I, Heidemann M, Flatley A, Kremmer E, Imhof A, Eick D. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci Rep 2016; 6:27401. [PMID: 27264542 PMCID: PMC4893663 DOI: 10.1038/srep27401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/18/2016] [Indexed: 11/08/2022] Open
Abstract
Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner.
Collapse
Affiliation(s)
- Corinna Hintermair
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Kirsten Voß
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Center of Integrated Protein Science (CIPSM), ZFP, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Martin Heidemann
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Andrew Flatley
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Axel Imhof
- Biomedical Center Munich, Center of Integrated Protein Science (CIPSM), ZFP, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| |
Collapse
|
29
|
Jeronimo C, Collin P, Robert F. The RNA Polymerase II CTD: The Increasing Complexity of a Low-Complexity Protein Domain. J Mol Biol 2016; 428:2607-2622. [DOI: 10.1016/j.jmb.2016.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/18/2023]
|
30
|
Histone H4 lysine 20 acetylation is associated with gene repression in human cells. Sci Rep 2016; 6:24318. [PMID: 27064113 PMCID: PMC4827026 DOI: 10.1038/srep24318] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/24/2016] [Indexed: 01/03/2023] Open
Abstract
Histone acetylation is generally associated with gene activation and chromatin decondensation. Recent mass spectrometry analysis has revealed that histone H4 lysine 20, a major methylation site, can also be acetylated. To understand the function of H4 lysine 20 acetylation (H4K20ac), we have developed a specific monoclonal antibody and performed ChIP-seq analysis using HeLa-S3 cells. H4K20ac was enriched around the transcription start sites (TSSs) of minimally expressed genes and in the gene body of expressed genes, in contrast to most histone acetylation being enriched around the TSSs of expressed genes. The distribution of H4K20ac showed little correlation with known histone modifications, including histone H3 methylations. A motif search in H4K20ac-enriched sequences, together with transcription factor binding profiles based on ENCODE ChIP-seq data, revealed that most transcription activators are excluded from H4K20ac-enriched genes and a transcription repressor NRSF/REST co-localized with H4K20ac. These results suggest that H4K20ac is a unique acetylation mark associated with gene repression.
Collapse
|
31
|
Abstract
The RNAPII-CTD functions as a binding platform for coordinating the recruitment of transcription associated factors. Altering CTD function results in gene expression defects, although mounting evidence suggests that these effects likely vary among species and loci. Here we highlight emerging evidence of species- and loci-specific functions for the RNAPII-CTD.
Collapse
Affiliation(s)
- Maria J Aristizabal
- a Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia , Vancouver , British Columbia , Canada
| | - Michael S Kobor
- a Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia , Vancouver , British Columbia , Canada
| |
Collapse
|
32
|
Abstract
Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle.
Collapse
Affiliation(s)
- Klara Weipoltshammer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|