1
|
Royet K, Kergoat L, Lutz S, Oriol C, Parisot N, Schori C, Ahrens CH, Rodrigue A, Gueguen E. High-Throughput Tn-Seq Screens Identify Both Known and Novel Pseudomonas putida KT2440 Genes Involved in Metal Tolerance. Environ Microbiol 2025; 27:e70095. [PMID: 40302248 PMCID: PMC12041740 DOI: 10.1111/1462-2920.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/17/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Industrial and urban activities release toxic chemical waste into the environment. Pseudomonas putida, a soil bacterium, is known to degrade hydrocarbons and xenobiotics, and possesses numerous genes associated with heavy metal tolerance. Most studies on metal tolerance in P. putida focus solely on over- or underexpressed genes, potentially overlooking important genes with unchanged expression. This study employed a Tn-seq approach to identify the essential genes required for P. putida growth under metal stress. This method enables the identification of mutants with altered fitness in the presence of excess metals. The screen successfully identified a number of known genes implicated in metal resistance, including czcA-1, cadA-3, cadR, and pcoA2, thereby validating the approach. Further analyses using targeted mutagenesis and complementation assays revealed PP_5337 as a putative transcriptional regulator involved in copper tolerance and the two-component system RoxSR (PP_0887/PP_0888) as a key determinant of cadmium tolerance. Additionally, PP_1663 and PP_5002 were identified as contributing to cadmium and cobalt tolerance, respectively. This study provides the first evidence linking these genes to metal tolerance, highlighting gaps in our understanding of metal tolerance mechanisms in P. putida and demonstrating the utility of Tn-seq for identifying novel tolerance determinants.
Collapse
Affiliation(s)
- Kevin Royet
- INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieUniversité Lyon 1VilleurbanneFrance
| | - Laura Kergoat
- INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieUniversité Lyon 1VilleurbanneFrance
| | - Stefanie Lutz
- Agroscope, Competence Division Method Development and AnalyticsMolecular EcologyZurichSwitzerland
| | - Charlotte Oriol
- INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieUniversité Lyon 1VilleurbanneFrance
| | | | - Christian Schori
- Agroscope, Competence Division Method Development and AnalyticsMolecular EcologyZurichSwitzerland
| | - Christian H. Ahrens
- Agroscope, Competence Division Method Development and AnalyticsMolecular EcologyZurichSwitzerland
- SIB, Swiss Institute of BioinformaticsZürichSwitzerland
| | - Agnes Rodrigue
- INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieUniversité Lyon 1VilleurbanneFrance
| | - Erwan Gueguen
- INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieUniversité Lyon 1VilleurbanneFrance
| |
Collapse
|
2
|
Skog AE, Jones NC, Månsson LK, Morth JP, Vrønning Hoffmann S, Gerelli Y, Skepö M. Assessing the interaction between the N-terminal region of the membrane protein magnesium transporter A and a lipid bilayer. J Colloid Interface Sci 2025; 683:663-674. [PMID: 39706085 DOI: 10.1016/j.jcis.2024.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
This study investigates the interaction of KEIF, the intrinsically disordered N-terminal region of the magnesium transporter MgtA, with lipid bilayers mimicking cell membranes. Combining experimental techniques such as neutron reflectometry (NR), quartz-crystal microbalance with dissipation monitoring (QCM-D), synchrotron radiation circular dichroism (SRCD), and oriented circular dichroism (OCD), with molecular dynamics (MD) simulations, we characterized KEIF's adsorption behavior. HYPOTHESIS KEIF undergoes conformational changes upon interacting with lipid bilayers, potentially influencing MgtA's function within the plasma membrane. EXPERIMENTS The study assessed KEIF's structural transitions and position within lipid bilayers under various conditions, including zwitterionic versus anionic bilayers and different salt concentrations. The techniques analyzed adsorption-induced structural shifts and peptide localization within the bilayer. FINDINGS KEIF transitions from a disordered to a more structured state, notably increasing α-helical content upon adsorption to lipid bilayers. The peptide resides primarily in the hydrophobic tail region of the bilayer, where it may displace lipids. Electrostatic interactions, modulated by bilayer charge and ionic strength, play a critical role. These results suggest that KEIF's conformational changes and bilayer interactions can be integral to its potential modulatory role in MgtA function within the plasma membrane. This research highlights the importance of surface-induced structural transitions in intrinsically disordered proteins and their implications for membrane protein modulation.
Collapse
Affiliation(s)
- Amanda Eriksson Skog
- Division of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Nykola C Jones
- ISA, Department of Physics & Astronomy, Aarhus University, Aarhus C, 8000, Denmark
| | - Linda K Månsson
- Division of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Jens Preben Morth
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby, 2800, Denmark
| | | | - Yuri Gerelli
- Institute for Complex Systems, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, Roma, 00185, Italy; Department of Physics, Sapienza University of Rome,Piazzale Aldo Moro 2, Roma, 00185, Italy
| | - Marie Skepö
- Division of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden.
| |
Collapse
|
3
|
Li YQ, Zhang CM, Liu Y. Antihistamine drug loratadine at environmentally relevant concentrations promotes conjugative transfer of antibiotic resistance genes: Coeffect of oxidative stress and ion transport. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124430. [PMID: 39919578 DOI: 10.1016/j.jenvman.2025.124430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Due to the widespread use of loratadine (LOR) as an antihistamine, it is widely distributed in the environment as an emerging contaminant. However, its impact on the dissemination of antibiotic resistance genes (ARGs) remains unclear. This study investigated the effect of LOR on the conjugative transfer of ARGs and elucidated the potential mechanisms through transcriptome analysis. The results showed that LOR significantly promoted the frequency of conjugative transfer up to 1.5- to 8.6-fold higher compared with the control group. Exposure to LOR increased reactive oxidative species (ROS) and intracellular Ca2+ concentrations, leading to the upregulation of expression of genes related to transmembrane transport and SOS response. Meanwhile, it stimulated the increase of cell membrane permeability. Moreover, LOR exposure could enhance H+ efflux in donor bacteria, resulting in the decrease of intracellular pH and the elevation of transmembrane potential, which could induce the increase of ion transport, thereby promoting plasmid efflux from the cell membrane. Based on this, we inferred that LOR can induce an increase in ROS level and intracellular Ca2+ concentrations, and promoted the efflux of intracellular H+. This, in turn, triggered the intensification of various ion transport processes on the cell membrane, thereby increasing membrane permeability and accelerating plasmid efflux. Ultimately, the coeffect of oxidative stress response and ion transport promoted conjugative transfer. This study demonstrated that LOR significantly promotes plasmid-mediated conjugative transfer of ARGs, providing novel insights into the mechanisms underlying this process.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yi Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
4
|
Mao M, He L, Yan Q. An updated overview on the bacterial PhoP/PhoQ two-component signal transduction system. Front Cell Infect Microbiol 2025; 15:1509037. [PMID: 39958932 PMCID: PMC11825808 DOI: 10.3389/fcimb.2025.1509037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
The PhoP response regulator and the cognate sensor kinase PhoQ form one of the two-component signal transduction systems that is highly conserved in bacteria. The PhoP/PhoQ system is a crucial mediator of signal transduction. It regulates the expression of bacterial environmental tolerance genes, virulence factors, adhesion, and invasion-related genes by sensing various environmental signals in the host, including Mg2+, low pH, antimicrobial peptides, and osmotic pressure. In this review, we describe the PhoP/PhoQ system-induced signal composition and its feedback mechanism, and the abundance of PhoP phosphorylation in the activated state directly or indirectly controls the transcription and expression of related genes, regulating bacterial stability. Then, we discuss the relationship between the PhoP/PhoQ system and other components of the TCS system. Under the same induction conditions, their interaction relationship determines whether bacteria can quickly restore their homeostasis and exert virulence effects. Finally, we investigate the coordinated role of the PhoP/PhoQ system in acquiring pathogenic virulence.
Collapse
Affiliation(s)
| | | | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Vitasovic T, Caniglia G, Eghtesadi N, Ceccato M, Bo Jesen ED, Gosewinkel U, Neusser G, Rupp U, Walther P, Kranz C, Ferapontova EE. Antibacterial Action of Zn 2+ Ions Driven by the In Vivo Formed ZnO Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30847-30859. [PMID: 38853353 DOI: 10.1021/acsami.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Antibacterial formulations based on zinc oxide nanoparticles (ZnO NPs) are widely used for antibiotic replacement in veterinary medicine and animal nutrition. However, the undesired environmental impact of ZnO NPs triggers a search for alternative, environmentally safer solutions. Here, we show that Zn2+ in its ionic form is a more eco-friendly antibacterial, and its biocidal action rivals that of ZnO NPs (<100 nm size), with a minimal biocidal concentration being 41(82) μg mL-1 vs 5 μg mL-1 of ZnO NPs, as determined for 103(106) CFU mL-1 E. coli. We demonstrate that the biocidal activity of Zn2+ ions is primarily associated with their uptake by E. coli and spontaneous in vivo transformation into insoluble ZnO nanocomposites at an internal bacterial pH of 7.7. Formed in vivo nanocomposite then damages E. coli membrane and intracellular components from the inside, by forming insoluble biocomposites, whose formation can also trigger ZnO characteristic reactions damaging the cells (e.g., by generation of high-potential reactive oxygen species). Our study defines a special route in which Zn2+ metal ions induce the death of bacterial cells, which might be common to other metal ions capable of forming semiconductor oxides and insoluble hydroxides at a slightly alkaline intracellular pH of some bacteria.
Collapse
Affiliation(s)
- Toni Vitasovic
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
- Aarhus University Center for Water Technology (WATEC), Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | - Neda Eghtesadi
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
- Chemical Engineering Department, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 01000, Kazakhstan
| | - Marcel Ceccato
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
| | - Espen Drath Bo Jesen
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
| | - Ulrich Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Gregor Neusser
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | - Ulrich Rupp
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
- Aarhus University Center for Water Technology (WATEC), Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Vishnu N, Venkatesan M, Madaris TR, Venkateswaran MK, Stanley K, Ramachandran K, Chidambaram A, Madesh AK, Yang W, Nair J, Narkunan M, Muthukumar T, Karanam V, Joseph LC, Le A, Osidele A, Aslam MI, Morrow JP, Malicdan MC, Stathopulos PB, Madesh M. ERMA (TMEM94) is a P-type ATPase transporter for Mg 2+ uptake in the endoplasmic reticulum. Mol Cell 2024; 84:1321-1337.e11. [PMID: 38513662 PMCID: PMC10997467 DOI: 10.1016/j.molcel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.
Collapse
Affiliation(s)
- Neelanjan Vishnu
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Manigandan Venkatesan
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Travis R Madaris
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mridula K Venkateswaran
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kristen Stanley
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Adhishree Chidambaram
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Abitha K Madesh
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jyotsna Nair
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Melanie Narkunan
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Tharani Muthukumar
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Varsha Karanam
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Leroy C Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Amy Le
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ayodeji Osidele
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - M Imran Aslam
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - John P Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - May C Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; NIH Undiagnosed Diseases Program, Office of the Clinical Director, National Human Genome Research Institute, and the Common Fund, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
Zeinert R, Zhou F, Franco P, Zöller J, Lessen HJ, Aravind L, Langer JD, Sodt AJ, Storz G, Matthies D. Magnesium Transporter MgtA revealed as a Dimeric P-type ATPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582502. [PMID: 38464158 PMCID: PMC10925321 DOI: 10.1101/2024.02.28.582502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Magnesium (Mg2+) uptake systems are present in all domains of life given the vital role of this ion. Bacteria acquire Mg2+ via conserved Mg2+ channels and transporters. The transporters are required for growth when Mg2+ is limiting or during bacterial pathogenesis, but, despite their significance, there are no known structures for these transporters. Here we report the first structure of the Mg2+ transporter MgtA solved by single particle cryo-electron microscopy (cryo-EM). Using mild membrane extraction, we obtained high resolution structures of both a homodimeric form (2.9 Å), the first for a P-type ATPase, and a monomeric form (3.6 Å). Each monomer unit of MgtA displays a structural architecture that is similar to other P-type ATPases with a transmembrane domain and two soluble domains. The dimer interface consists of contacts between residues in adjacent soluble nucleotide binding and phosphotransfer regions of the haloacid dehalogenase (HAD) domain. We suggest oligomerization is a conserved structural feature of the diverse family of P-type ATPase transporters. The ATP binding site and conformational dynamics upon nucleotide binding to MgtA were characterized using a combination of cryo-EM, molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and mutagenesis. Our structure also revealed a Mg2+ ion in the transmembrane segments, which, when combined with sequence conservation and mutagenesis studies, allowed us to propose a model for Mg2+ transport across the lipid bilayer. Finally, our work revealed the N-terminal domain structure and cytoplasmic Mg2+ binding sites, which have implications for related P-type ATPases defective in human disease.
Collapse
Affiliation(s)
- Rilee Zeinert
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Fei Zhou
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Pedro Franco
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jonathan Zöller
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Henry J. Lessen
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Institutes of Health, Bethesda MD 20892, USA
| | - Julian D. Langer
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Alexander J. Sodt
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
8
|
Weikum J, van Dyck JF, Subramani S, Klebl DP, Storflor M, Muench SP, Abel S, Sobott F, Morth JP. The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119614. [PMID: 37879515 DOI: 10.1016/j.bbamcr.2023.119614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The bacterial magnesium transporter A (MgtA) is a specialized P-type ATPase important for Mg2+ import into the cytoplasm; disrupted magnesium homeostasis is linked to intrinsic ribosome instability and antibacterial resistance in Salmonella strains. Here, we show that MgtA has functional specificity for cardiolipin 18:1. Still, it reaches maximum activity only in combination with cardiolipin 16:0, equivalent to the major components of native cardiolipin found in E. coli membranes. Native mass spectrometry indicates the presence of two binding sites for cardiolipin, agreeing with the kinetic studies revealing that a cooperative relationship likely exists between the two cardiolipin variants. This is the first experimental evidence of cooperative effects between lipids of the same class, with only minor variations in their acyl chain composition, acting on a membrane protein. In summary, our results reveal that MgtA exhibits a highly complex interaction with one cardiolipin 18:1 and one cardiolipin 16:0, affecting protein activity and stability, contributing to our understanding of the particular interactions between lipid environment and membrane proteins. Further, a better understanding of Mg2+ homeostasis in bacteria, due to its role as a virulence regulator, will provide further insights into the regulation and mechanism of bacterial infections.
Collapse
Affiliation(s)
- Julia Weikum
- Membrane Transport Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, P.O. Box 1137, Blindern, 0318 Oslo, Norway; Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Jeroen F van Dyck
- Department of Chemistry, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, G.V. 418, 2020 Antwerpen, Belgium
| | - Saranya Subramani
- Membrane Transport Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, P.O. Box 1137, Blindern, 0318 Oslo, Norway
| | - David P Klebl
- School of Biomedical Sciences & The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Merete Storflor
- Infections Biology Lab, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Stephen P Muench
- School of Biomedical Sciences & The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Sören Abel
- Infections Biology Lab, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Frank Sobott
- Department of Chemistry, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, G.V. 418, 2020 Antwerpen, Belgium; School of Molecular and Cellular Biology & The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom.
| | - J Preben Morth
- Membrane Transport Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, P.O. Box 1137, Blindern, 0318 Oslo, Norway; Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark; Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål PB 4956 Nydalen, NO-0424 Oslo, Norway.
| |
Collapse
|
9
|
Elston R, Mulligan C, Thomas GH. Flipping the switch: dynamic modulation of membrane transporter activity in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37948297 DOI: 10.1099/mic.0.001412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The controlled entry and expulsion of small molecules across the bacterial cytoplasmic membrane is essential for efficient cell growth and cellular homeostasis. While much is known about the transcriptional regulation of genes encoding transporters, less is understood about how transporter activity is modulated once the protein is functional in the membrane, a potentially more rapid and dynamic level of control. In this review, we bring together literature from the bacterial transport community exemplifying the extensive and diverse mechanisms that have evolved to rapidly modulate transporter function, predominantly by switching activity off. This includes small molecule feedback, inhibition by interaction with small peptides, regulation through binding larger signal transduction proteins and, finally, the emerging area of controlled proteolysis. Many of these examples have been discovered in the context of metal transport, which has to finely balance active accumulation of elements that are essential for growth but can also quickly become toxic if intracellular homeostasis is not tightly controlled. Consistent with this, these transporters appear to be regulated at multiple levels. Finally, we find common regulatory themes, most often through the fusion of additional regulatory domains to transporters, which suggest the potential for even more widespread regulation of transporter activity in biology.
Collapse
Affiliation(s)
- Rory Elston
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
10
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Kristensen SS, Lukassen MV, Siebenhaar S, Diep DB, Morth JP, Mathiesen G. Lactiplantibacillus plantarum as a novel platform for production and purification of integral membrane proteins using RseP as the benchmark. Sci Rep 2023; 13:14361. [PMID: 37658186 PMCID: PMC10474122 DOI: 10.1038/s41598-023-41559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
The present study describes a detailed procedure for expressing and purifying the integral membrane protein RseP using the pSIP system and Lactiplantibacillus plantarum as an expression host. RseP is a membrane-bound site-2-protease and a known antibacterial target in multiple human pathogens. In the present study, we screened five RseP orthologs from Gram-positive bacteria and found RseP from Enterococcus faecium (EfmRseP) to yield the highest protein levels. The production conditions were optimized and EfmRseP was purified by immobilized metal ion affinity chromatography followed by size-exclusion chromatography. The purification resulted in an overall yield of approximately 1 mg of pure protein per 3 g of wet-weight cell pellet. The structural integrity of the purified protein was confirmed using circular dichroism. We further assessed the expression and purification of RseP from E. faecium in the Gram-negative Escherichia coli. Detection of soluble protein failed in two of the three E. coli strains tested. Purification of EfmRseP expressed in E. coli C43(DE3) resulted in a protein with lower purity compared to EfmRseP expressed in L. plantarum. To our knowledge, this is the first time L. plantarum and the pSIP expression system have been applied for the production of membrane proteins.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Marie V Lukassen
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Suzana Siebenhaar
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
12
|
Huynh U, Nguyen HN, Trinh BK, Elhaj J, Zastrow ML. A bioinformatic analysis of zinc transporters in intestinal Lactobacillaceae. Metallomics 2023; 15:mfad044. [PMID: 37463796 PMCID: PMC10391621 DOI: 10.1093/mtomcs/mfad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
As the second most abundant transition element and a crucial cofactor for many proteins, zinc is essential for the survival of all living organisms. To maintain required zinc levels and prevent toxic overload, cells and organisms have a collection of metal transport proteins for uptake and efflux of zinc. In bacteria, metal transport proteins are well defined for model organisms and many pathogens, but fewer studies have explored metal transport proteins, including those for zinc, in commensal bacteria from the gut microbiota. The healthy human gut microbiota comprises hundreds of species and among these, bacteria from the Lactobacillaceae family are well documented to have various beneficial effects on health. Furthermore, changes in dietary metal intake, such as for zinc and iron, are frequently correlated with changes in abundance of Lactobacillaceae. Few studies have explored zinc requirements and zinc homeostasis mechanisms in Lactobacillaceae, however. Here we applied a bioinformatics approach to identify and compare predicted zinc uptake and efflux proteins in several Lactobacillaceae genera of intestinal relevance. Few Lactobacillaceae had zinc transporters currently annotated in proteomes retrieved from the UniProt database, but protein sequence-based homology searches revealed that high-affinity ABC transporter genes are likely common, albeit with genus-specific domain features. P-type ATPase transporters are probably also common and some Lactobacillaceae genera code for predicted zinc efflux cation diffusion facilitators. This analysis confirms that Lactobacillaceae harbor genes for various zinc transporter homologs, and provides a foundation for systematic experimental studies to elucidate zinc homeostasis mechanisms in these bacteria.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Brittany K Trinh
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Joanna Elhaj
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
13
|
Avram A, Rapuntean S, Gorea M, Tomoaia G, Mocanu A, Horovitz O, Rapuntean G, Tomoaia-Cotisel M. In vitro antibacterial effect of forsterite nanopowder: synthesis and characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77097-77112. [PMID: 35676576 DOI: 10.1007/s11356-022-21280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The aims of this study were the preparation, characterization, and in vitro antibacterial activity evaluation of forsterite (FS, Mg2SiO4) nanopowder obtained by two major methods, namely sol-gel (FSsg) and co-precipitation (FSpp). The main aim was to determine the influence of preparation methodologies on physical properties and in vitro antibacterial activity of obtained forsterite nanopowder. To assess the best working temperature for the preparation of FSsg and FSpp, the synthesis and thermal treatment conditions were optimized on the basis of thermal gravimetric (TG) and differential scanning calorimetric (DSC) analysis performed on the dried gel and dried co-precipitated solid, respectively. The FSsg and FSpp powders were characterized by X-ray powder diffraction (XRD), indicating a high purity for both FSsg and FSpp powders. The morphology of FSsg and FSpp nanopowders was explored by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). In vitro antibacterial activity was investigated using a targeted pathogen, namely Staphylococcus aureus (S. aureus) ATCC 6538 P as tested strain by broth dilution technique and inoculations on nutrient agar to highlight the bactericidal inhibitory effect. FSsg nanopowder has no inhibitory capacity, while FSpp produced inhibition, the effect being bactericidal at a concentration of 10 mg/mL. The superior bactericidal activity of FSpp against FSsg is due to variation in the own surface properties, such as specific surface area (SSA) and nano-regime particle size. The FSpp nanoparticles, NPs, obtained by co-precipitation method are reported for the first time as a novel bactericidal nanomaterial against S. aureus.
Collapse
Affiliation(s)
- Alexandra Avram
- Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str, RO-400028, Cluj-Napoca, Romania
| | - Sorin Rapuntean
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur Str, RO-400372, Cluj-Napoca, Romania
| | - Maria Gorea
- Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str, RO-400028, Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Orthopedics and Traumatology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Traian Mosoiu Str, RO-400132, Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str, RO-050044, Bucharest, Romania
| | - Aurora Mocanu
- Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str, RO-400028, Cluj-Napoca, Romania
| | - Ossi Horovitz
- Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str, RO-400028, Cluj-Napoca, Romania
| | - Gheorghe Rapuntean
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur Str, RO-400372, Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Chemical Engineering Department, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str, RO-400028, Cluj-Napoca, Romania.
- Academy of Romanian Scientists, 3 Ilfov Str, RO-050044, Bucharest, Romania.
| |
Collapse
|
14
|
Koder Hamid M, Månsson LK, Meklesh V, Persson P, Skepö M. Molecular dynamics simulations of the adsorption of an intrinsically disordered protein: Force field and water model evaluation in comparison with experiments. Front Mol Biosci 2022; 9:958175. [PMID: 36387274 PMCID: PMC9644065 DOI: 10.3389/fmolb.2022.958175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022] Open
Abstract
This study investigates possible structural changes of an intrinsically disordered protein (IDP) when it adsorbs to a solid surface. Experiments on IDPs primarily result in ensemble averages due to their high dynamics. Therefore, molecular dynamics (MD) simulations are crucial for obtaining more detailed information on the atomistic and molecular levels. An evaluation of seven different force field and water model combinations have been applied: (A) CHARMM36IDPSFF + CHARMM-modified TIP3P, (B) CHARMM36IDPSFF + TIP4P-D, (C) CHARMM36m + CHARMM-modified TIP3P, (D) AMBER99SB-ILDN + TIP3P, (E) AMBER99SB-ILDN + TIP4P-D, (F) AMBERff03ws + TIP4P/2005, and (G) AMBER99SB-disp + disp-water. The results have been qualitatively compared with those of small-angle X-ray scattering, synchrotron radiation circular dichroism spectroscopy, and attenuated total reflectance Fourier transform infrared spectroscopy. The model IDP corresponds to the first 33 amino acids of the N-terminal of the magnesium transporter A (MgtA) and is denoted as KEIF. With a net charge of +3, KEIF is found to adsorb to the anionic synthetic clay mineral Laponite® due to the increase in entropy from the concomitant release of counterions from the surface. The experimental results show that the peptide is largely disordered with a random coil conformation, whereas the helical content (α- and/or 310-helices) increased upon adsorption. MD simulations corroborate these findings and further reveal an increase in polyproline II helices and an extension of the peptide conformation in the adsorbed state. In addition, the simulations provided atomistic resolution of the adsorbed ensemble of structures, where the arginine residues had a high propensity to form hydrogen bonds with the surface. Simulations B, E, and G showed significantly better agreement with experiments than the other simulations. Particularly noteworthy is the discovery that B and E with TIP4P-D water had superior performance to their corresponding simulations A and D with TIP3P-type water. Thus, this study shows the importance of the water model when simulating IDPs and has also provided an insight into the structural changes of surface-active IDPs induced by adsorption, which may play an important role in their function.
Collapse
Affiliation(s)
- Mona Koder Hamid
- Division of Theoretical Chemistry, Lund University, Lund, Sweden
| | - Linda K. Månsson
- Division of Theoretical Chemistry, Lund University, Lund, Sweden
| | - Viktoriia Meklesh
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Per Persson
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Marie Skepö
- Division of Theoretical Chemistry, Lund University, Lund, Sweden
- Lund Institute of Advanced Neutron and X-ray Science (LINXS), Lund, Sweden
- *Correspondence: Marie Skepö,
| |
Collapse
|
15
|
Xu J, Cotruvo JA. Reconsidering the czcD (NiCo) Riboswitch as an Iron Riboswitch. ACS BIO & MED CHEM AU 2022; 2:376-385. [PMID: 35996475 PMCID: PMC9389577 DOI: 10.1021/acsbiomedchemau.1c00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Recent work has proposed
a new mechanism of bacterial iron regulation:
riboswitches that undergo a conformational change in response to FeII. The czcD (NiCo) riboswitch was initially
proposed to be specific for NiII and CoII, but
we recently showed via a czcD-based fluorescent sensor
that FeII is also a plausible physiological ligand for
this riboswitch class. Here, we provide direct evidence that this
riboswitch class responds to FeII. Isothermal titration
calorimetry studies of the native czcD riboswitches
from three organisms show no response to MnII, a weak response
to ZnII, and similar dissociation constants (∼1
μM) and conformational responses for FeII, CoII, and NiII. Only the iron response is in the physiological
concentration regime; the riboswitches’ responses to CoII, NiII, and ZnII require 103-, 105-, and 106-fold higher “free”
metal ion concentrations, respectively, than the typical availability
of those metal ions in cells. By contrast, the “Sensei”
RNA, recently claimed to be an iron-specific riboswitch, exhibits
no response to FeII. Our results demonstrate that iron
responsiveness is a conserved property of czcD riboswitches
and clarify that this is the only family of iron-responsive riboswitch
identified to date, setting the stage for characterization of their
physiological function.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Microbial Inoculation Improves Growth, Nutritional and Physiological Aspects of Glycine max (L.) Merr. Microorganisms 2022; 10:microorganisms10071386. [PMID: 35889105 PMCID: PMC9316164 DOI: 10.3390/microorganisms10071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Considering a scenario where there is a low availability and increasing costs of fertilizers in the global agricultural market, as well as a finitude of important natural resources, such as phosphorus (P), this study tested the effect of the inoculation of rhizospheric or endophytic microorganisms isolated from Hymenaea courbaril and Butia purpurascens on the growth promotion of Glycine max (L.) Merr. The tests were conducted in a controlled greenhouse system, and the effects of biofertilization were evaluated using the following parameters: dry biomass, nutritional content, and photochemical and photosynthetic performance of plants. Seed biopriming was performed with four bacterial and four fungal isolates, and the results were compared to those of seeds treated with the commercial product Biomaphos®. Overall, microbial inoculation had a positive effect on biomass accumulation in G. max, especially in strains PA12 (Paenibacillus alvei), SC5 (Bacillus cereus), and SC15 (Penicillium sheari). The non-inoculated control plants accumulated less nutrients, both in the whole plant and aerial part, and had reduced chlorophyll index and low photosynthetic rate (A) and photochemical efficiency. Strains PA12 (P. alvei), SC5 (B. cereus), and 328EF (Codinaeopsis sp.) stood out in the optimization of nutrient concentration, transpiration rate, and stomatal conductance. Plants inoculated with the bacterial strains PA12 (P. alvei) and SC5 (B. cereus) and with the fungal strains 328EF (Codinaeopsis sp.) and SC15 (P. sheari) showed the closest pattern to that observed in plants treated with Biomaphos®, with the same trend of direction of the means associated with chlorophyll index, (A), dry mass, and concentration of important nutrients such as N, P, and Mg. We recommend the use of these isolates in field tests to validate these strains for the production of biological inoculants as part of the portfolio of bioinputs available for G. max.
Collapse
|
17
|
Xu J, Cotruvo JA. Iron-responsive riboswitches. Curr Opin Chem Biol 2022; 68:102135. [PMID: 35427920 PMCID: PMC9133107 DOI: 10.1016/j.cbpa.2022.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
Abstract
All cells must manage deficiency, sufficiency, and excess of essential metal ions. Although iron has been one of most important metals in biology for billions of years, the mechanisms by which bacteria cope with high intracellular iron concentrations are only recently coming into focus. Recent work has suggested that an RNA riboswitch (czcD or "NiCo"), originally thought to respond specifically to CoII and NiII excess, is more likely a selective regulator of FeII levels in important human gut bacteria and pathogens. We discuss the challenges and controversies encountered in the characterization of iron-responsive riboswitches, and we suggest a physiological role in responding to iron overload, perhaps during anaerobiosis. Finally, we place these riboswitches in the context of the better understood mechanisms of protein-based metal ion regulation, proposing that riboswitch-mediated mechanisms may be particularly important in regulating transport of the weakest-binding biological divalent metal ions, MgII, MnII, and FeII.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph A Cotruvo
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
18
|
Wendel BM, Pi H, Krüger L, Herzberg C, Stülke J, Helmann JD. A Central Role for Magnesium Homeostasis during Adaptation to Osmotic Stress. mBio 2022; 13:e0009222. [PMID: 35164567 PMCID: PMC8844918 DOI: 10.1128/mbio.00092-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Osmotic stress is a significant physical challenge for free-living cells. Cells from all three domains of life maintain viability during osmotic stress by tightly regulating the major cellular osmolyte potassium (K+) and by import or synthesis of compatible solutes. It has been widely established that in response to high salt stress, many bacteria transiently accumulate high levels of K+, leading to bacteriostasis, with growth resuming only when compatible solutes accumulate and K+ levels are restored to biocompatible levels. Using Bacillus subtilis as a model system, we provide evidence that K+ fluxes perturb Mg2+ homeostasis: import of K+ upon osmotic upshift is correlated with Mg2+ efflux, and Mg2+ reimport is critical for adaptation. The transient growth inhibition resulting from hyperosmotic stress is coincident with loss of Mg2+ and a decrease in protein translation. Conversely, the reimport of Mg2+ is a limiting factor during resumption of growth. Furthermore, we show the essential signaling dinucleotide cyclic di-AMP fluctuates dynamically in coordination with Mg2+ and K+ levels, consistent with the proposal that cyclic di-AMP orchestrates the cellular response to osmotic stress. IMPORTANCE Environments with high concentrations of salt or other solutes impose an osmotic stress on cells, ultimately limiting viability by dehydration of the cytosol. A very common cellular response to high osmolarity is to immediately import high levels of potassium ion (K+), which helps prevent dehydration and allows time for the import or synthesis of biocompatible solutes that allow a resumption of growth. Here, using Bacillus subtilis as a model, we demonstrate that concomitant with K+ import there is a large reduction in intracellular magnesium (Mg2+) mediated by specific efflux pumps. Further, it is the reimport of Mg2+ that is rate-limiting for the resumption of growth. These coordinated fluxes of K+ and Mg2+ are orchestrated by cyclic-di-AMP, an essential second messenger in Firmicutes. These findings amend the conventional model for osmoadaptation and reveal that Mg2+ limitation is the proximal cause of the bacteriostasis that precedes resumption of growth.
Collapse
Affiliation(s)
- Brian M. Wendel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Hualiang Pi
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Larissa Krüger
- Department of General Microbiology, GZMB, Georg August University, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, GZMB, Georg August University, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg August University, Göttingen, Germany
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
19
|
Hao J, Lei Y, Gan Z, Zhao W, Shi J, Jia C, Sun A. Synergetic Inactivation Mechanism of Protocatechuic Acid and High Hydrostatic Pressure against Escherichia coli O157:H7. Foods 2021; 10:foods10123053. [PMID: 34945604 PMCID: PMC8701084 DOI: 10.3390/foods10123053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
With the wide application of high hydrostatic pressure (HHP) technology in the food industry, safety issues regarding food products, resulting in potential food safety hazards, have arisen. To address such problems, this study explored the synergetic bactericidal effects and mechanisms of protocatechuic acid (PCA) and HHP against Escherichia coli O157:H7. At greater than 200 MPa, PCA (1.25 mg/mL for 60 min) plus HHP treatments had significant synergetic bactericidal effects that positively correlated with pressure. After a combined treatment at 500 MPa for 5 min, an approximate 9.0 log CFU/mL colony decline occurred, whereas the individual HHP and PCA treatments caused 4.48 and 1.06 log CFU/mL colony decreases, respectively. Mechanistically, membrane integrity and morphology were damaged, and the permeability increased when E. coli O157: H7 was exposed to the synergetic stress of PCA plus HHP. Inside cells, the synergetic treatment additionally targeted the activities of enzymes such as superoxide dismutase, catalase and ATPase, which were inhibited significantly (p ≤ 0.05) when exposed to high pressure. Moreover, an analysis of circular dichroism spectra indicated that the synergetic treatment caused a change in DNA structure, which was expressed as the redshift of the characteristic absorption peak. Thus, the synergetic treatment of PCA plus HHP may be used as a decontamination method owing to the good bactericidal effects on multiple targets.
Collapse
Affiliation(s)
- Jingyi Hao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuqing Lei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhilin Gan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wanbin Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Junyan Shi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chengli Jia
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Aidong Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62336700
| |
Collapse
|
20
|
Abstract
Mg2+ is the most abundant divalent cation in living cells. It is essential for charge neutralization, macromolecule stabilization, and the assembly and activity of ribosomes and as a cofactor for enzymatic reactions. When experiencing low cytoplasmic Mg2+, bacteria adopt two main strategies: They increase the abundance and activity of Mg2+ importers and decrease the abundance of Mg2+-chelating ATP and rRNA. These changes reduce regulated proteolysis by ATP-dependent proteases and protein synthesis in a systemic fashion. In many bacterial species, the transcriptional regulator PhoP controls expression of proteins mediating these changes. The 5' leader region of some mRNAs responds to low cytoplasmic Mg2+ or to disruptions in translation of open reading frames in the leader regions by furthering expression of the associated coding regions, which specify proteins mediating survival when the cytoplasmic Mg2+ concentration is low. Microbial species often utilize similar adaptation strategies to cope with low cytoplasmic Mg2+ despite relying on different genes to do so.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| | - Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA;
| |
Collapse
|
21
|
Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC. Nat Commun 2021; 12:5098. [PMID: 34429416 PMCID: PMC8385062 DOI: 10.1038/s41467-021-25242-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
KdpFABC, a high-affinity K+ pump, combines the ion channel KdpA and the P-type ATPase KdpB to secure survival at K+ limitation. Here, we apply a combination of cryo-EM, biochemical assays, and MD simulations to illuminate the mechanisms underlying transport and the coupling to ATP hydrolysis. We show that ions are transported via an intersubunit tunnel through KdpA and KdpB. At the subunit interface, the tunnel is constricted by a phenylalanine, which, by polarized cation-π stacking, controls K+ entry into the canonical substrate binding site (CBS) of KdpB. Within the CBS, ATPase coupling is mediated by the charge distribution between an aspartate and a lysine. Interestingly, individual elements of the ion translocation mechanism of KdpFABC identified here are conserved among a wide variety of P-type ATPases from different families. This leads us to the hypothesis that KdpB might represent an early descendant of a common ancestor of cation pumps.
Collapse
|
22
|
Murovec B, Deutsch L, Stres B. General Unified Microbiome Profiling Pipeline (GUMPP) for Large Scale, Streamlined and Reproducible Analysis of Bacterial 16S rRNA Data to Predicted Microbial Metagenomes, Enzymatic Reactions and Metabolic Pathways. Metabolites 2021; 11:336. [PMID: 34074026 PMCID: PMC8225202 DOI: 10.3390/metabo11060336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 11/23/2022] Open
Abstract
General Unified Microbiome Profiling Pipeline (GUMPP) was developed for large scale, streamlined and reproducible analysis of bacterial 16S rRNA data and prediction of microbial metagenomes, enzymatic reactions and metabolic pathways from amplicon data. GUMPP workflow introduces reproducible data analyses at each of the three levels of resolution (genus; operational taxonomic units (OTUs); amplicon sequence variants (ASVs)). The ability to support reproducible analyses enables production of datasets that ultimately identify the biochemical pathways characteristic of disease pathology. These datasets coupled to biostatistics and mathematical approaches of machine learning can play a significant role in extraction of truly significant and meaningful information from a wide set of 16S rRNA datasets. The adoption of GUMPP in the gut-microbiota related research enables focusing on the generation of novel biomarkers that can lead to the development of mechanistic hypotheses applicable to the development of novel therapies in personalized medicine.
Collapse
Affiliation(s)
- Boštjan Murovec
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia;
| | - Leon Deutsch
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Blaž Stres
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, SI-1000 Ljubljana, Slovenia
- Department of Automation, Jožef Stefan Institute, Biocybernetics and Robotics, Jamova 39, SI-1000 Ljubljana, Slovenia
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
23
|
Nowak J, Visnovsky SB, Pitman AR, Cruz CD, Palmer J, Fletcher GC, Flint S. Biofilm Formation by Listeria monocytogenes 15G01, a Persistent Isolate from a Seafood-Processing Plant, Is Influenced by Inactivation of Multiple Genes Belonging to Different Functional Groups. Appl Environ Microbiol 2021; 87:e02349-20. [PMID: 33741610 PMCID: PMC8117777 DOI: 10.1128/aem.02349-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen that results in a high rate of mortality in sensitive and immunocompromised people. Contamination of food with L. monocytogenes is thought to occur during food processing, most often as a result of the pathogen producing a biofilm that persists in the environment and acting as the source for subsequent dispersal of cells onto food. A survey of seafood-processing plants in New Zealand identified the persistent strain 15G01, which has a high capacity to form biofilms. In this study, a transposon library of L. monocytogenes 15G01 was screened for mutants with altered biofilm formation, assessed by a crystal violet assay, to identify genes involved in biofilm formation. This screen identified 36 transposants that showed a significant change in biofilm formation compared to the wild type. The insertion sites were in 27 genes, 20 of which led to decreased biofilm formation and seven to an increase. Two insertions were in intergenic regions. Annotation of the genes suggested that they are involved in diverse cellular processes, including stress response, autolysis, transporter systems, and cell wall/membrane synthesis. Analysis of the biofilms produced by the transposants using scanning electron microscopy and fluorescence microscopy showed notable differences in the structure of the biofilms compared to the wild type. In particular, inactivation of uvrB and mltD produced coccoid-shaped cells and elongated cells in long chains, respectively, and the mgtB mutant produced a unique biofilm with a sandwich structure which was reversed to the wild-type level upon magnesium addition. The mltD transposant was successfully complemented with the wild-type gene, whereas the phenotypes were not or only partially restored for the remaining mutants.IMPORTANCE The major source of contamination of food with Listeria monocytogenes is thought to be due to biofilm formation and/or persistence in food-processing plants. By establishing as a biofilm, L. monocytogenes cells become harder to eradicate due to their increased resistance to environmental threats. Understanding the genes involved in biofilm formation and their influence on biofilm structure will help identify new ways to eliminate harmful biofilms in food processing environments. To date, multiple genes have been identified as being involved in biofilm formation by L. monocytogenes; however, the exact mechanism remains unclear. This study identified four genes associated with biofilm formation by a persistent strain. Extensive microscopic analysis illustrated the effect of the disruption of mgtB, clsA, uvrB, and mltD and the influence of magnesium on the biofilm structure. The results strongly suggest an involvement in biofilm formation for the four genes and provide a basis for further studies to analyze gene regulation to assess the specific role of these biofilm-associated genes.
Collapse
Affiliation(s)
- Jessika Nowak
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Sandra B Visnovsky
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Andrew R Pitman
- The Foundation for Arable Research, Christchurch, New Zealand
| | - Cristina D Cruz
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jon Palmer
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Steve Flint
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
24
|
Dyla M, Kjærgaard M, Poulsen H, Nissen P. Structure and Mechanism of P-Type ATPase Ion Pumps. Annu Rev Biochem 2020; 89:583-603. [PMID: 31874046 DOI: 10.1146/annurev-biochem-010611-112801] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P-type ATPases are found in all kingdoms of life and constitute a wide range of cation transporters, primarily for H+, Na+, K+, Ca2+, and transition metal ions such as Cu(I), Zn(II), and Cd(II). They have been studied through a wide range of techniques, and research has gained very significant insight on their transport mechanism and regulation. Here, we review the structure, function, and dynamics of P2-ATPases including Ca2+-ATPases and Na,K-ATPase. We highlight mechanisms of functional transitions that are associated with ion exchange on either side of the membrane and how the functional cycle is regulated by interaction partners, autoregulatory domains, and off-cycle states. Finally, we discuss future perspectives based on emerging techniques and insights.
Collapse
Affiliation(s)
- Mateusz Dyla
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| |
Collapse
|
25
|
Du D, Neuberger A, Orr MW, Newman CE, Hsu PC, Samsudin F, Szewczak-Harris A, Ramos LM, Debela M, Khalid S, Storz G, Luisi BF. Interactions of a Bacterial RND Transporter with a Transmembrane Small Protein in a Lipid Environment. Structure 2020; 28:625-634.e6. [PMID: 32348749 PMCID: PMC7267776 DOI: 10.1016/j.str.2020.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/14/2020] [Accepted: 03/27/2020] [Indexed: 12/01/2022]
Abstract
The small protein AcrZ in Escherichia coli interacts with the transmembrane portion of the multidrug efflux pump AcrB and increases resistance of the bacterium to a subset of the antibiotic substrates of that transporter. It is not clear how the physical association of the two proteins selectively changes activity of the pump for defined substrates. Here, we report cryo-EM structures of AcrB and the AcrBZ complex in lipid environments, and comparisons suggest that conformational changes occur in the drug-binding pocket as a result of AcrZ binding. Simulations indicate that cardiolipin preferentially interacts with the AcrBZ complex, due to increased contact surface, and we observe that chloramphenicol sensitivity of bacteria lacking AcrZ is exacerbated when combined with cardiolipin deficiency. Taken together, the data suggest that AcrZ and lipid cooperate to allosterically modulate AcrB activity. This mode of regulation by a small protein and lipid may occur for other membrane proteins.
Collapse
Affiliation(s)
- Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Arthur Neuberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Mona Wu Orr
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Catherine E Newman
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Pin-Chia Hsu
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrzej Szewczak-Harris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Leana M Ramos
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Mekdes Debela
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA.
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
26
|
Jephthah S, Månsson LK, Belić D, Morth JP, Skepö M. Physicochemical Characterisation of KEIF-The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A. Biomolecules 2020; 10:biom10040623. [PMID: 32316569 PMCID: PMC7226168 DOI: 10.3390/biom10040623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/23/2022] Open
Abstract
Magnesium transporter A (MgtA) is an active transporter responsible for importing magnesium ions into the cytoplasm of prokaryotic cells. This study focuses on the peptide corresponding to the intrinsically disordered N-terminal region of MgtA, referred to as KEIF. Primary-structure and bioinformatic analyses were performed, followed by studies of the undisturbed single chain using a combination of techniques including small-angle X-ray scattering, circular dichroism spectroscopy, and atomistic molecular-dynamics simulations. Moreover, interactions with large unilamellar vesicles were investigated by using dynamic light scattering, laser Doppler velocimetry, cryogenic transmission electron microscopy, and circular dichroism spectroscopy. KEIF was confirmed to be intrinsically disordered in aqueous solution, although extended and containing little β-structure and possibly PPII structure. An increase of helical content was observed in organic solvent, and a similar effect was also seen in aqueous solution containing anionic vesicles. Interactions of cationic KEIF with anionic vesicles led to the hypothesis that KEIF adsorbs to the vesicle surface through electrostatic and entropic driving forces. Considering this, there is a possibility that the biological role of KEIF is to anchor MgtA in the cell membrane, although further investigation is needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Stéphanie Jephthah
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden; (S.J.); (L.K.M.)
| | - Linda K. Månsson
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden; (S.J.); (L.K.M.)
| | - Domagoj Belić
- Division of Physical Chemistry, Department of Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden;
| | - Jens Preben Morth
- Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark;
| | - Marie Skepö
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden; (S.J.); (L.K.M.)
- Lund Institute of Advanced Neutron and X-ray Science (LINXS), Scheelevägen 19, 233 70 Lund, Sweden
- Correspondence: ; Tel.: +46-46-222-33-66
| |
Collapse
|
27
|
Pohland AC, Schneider D. Mg2+ homeostasis and transport in cyanobacteria - at the crossroads of bacterial and chloroplast Mg2+ import. Biol Chem 2020; 400:1289-1301. [PMID: 30913030 DOI: 10.1515/hsz-2018-0476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
Magnesium cation (Mg2+) is the most abundant divalent cation in living cells, where it is required for various intracellular functions. In chloroplasts and cyanobacteria, established photosynthetic model systems, Mg2+ is the central ion in chlorophylls, and Mg2+ flux across the thylakoid membrane is required for counterbalancing the light-induced generation of a ΔpH across the thylakoid membrane. Yet, not much is known about Mg2+ homoeostasis, transport and distribution within cyanobacteria. However, Mg2+ transport across membranes has been studied in non-photosynthetic bacteria, and first observations and findings are reported for chloroplasts. Cyanobacterial cytoplasmic membranes appear to contain the well-characterized Mg2+ channels CorA and/or MgtE, which both facilitate transmembrane Mg2+ flux down the electrochemical gradient. Both Mg2+ channels are typical for non-photosynthetic bacteria. Furthermore, Mg2+ transporters of the MgtA/B family are also present in the cytoplasmic membrane to mediate active Mg2+ import into the bacterial cell. While the cytoplasmic membrane of cyanobacteria resembles a 'classical' bacterial membrane, essentially nothing is known about Mg2+ channels and/or transporters in thylakoid membranes of cyanobacteria or chloroplasts. As discussed here, at least one Mg2+ channelling protein must be localized within thylakoid membranes. Thus, either one of the 'typical' bacterial Mg2+ channels has a dual localization in the cytoplasmic plus the thylakoid membrane, or another, yet unidentified channel is present in cyanobacterial thylakoid membranes.
Collapse
Affiliation(s)
- Anne-Christin Pohland
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| | - Dirk Schneider
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| |
Collapse
|
28
|
Korshunov S, Imlay KRC, Imlay JA. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Mol Microbiol 2019; 113:22-39. [PMID: 31612555 PMCID: PMC7007315 DOI: 10.1111/mmi.14403] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2019] [Indexed: 12/24/2022]
Abstract
The structure of free cysteine makes it vulnerable to oxidation by molecular oxygen; consequently, organisms that live in oxic habitats have acquired the ability to import cystine as a sulfur source. We show that cystine imported into Escherichia coli can transfer disulfide bonds to cytoplasmic proteins. To minimize this problem, the imported cystine is rapidly reduced. However, this conversion of cystine to cysteine precludes product inhibition of the importer, so cystine import continues into cells that are already sated with cysteine. The burgeoning cysteine pool is itself hazardous, as cysteine promotes the formation of reactive oxygen species, triggers sulfide production and competitively inhibits a key enzyme in the isoleucine biosynthetic pathway. The Lrp transcription factor senses the excess cysteine and induces AlaE, an export protein that pumps cysteine back out of the cell until transcriptional controls succeed in lowering the amount of the importer. While it lasts, the overall phenomenon roughly doubles the NADPH demand of the cell. It comprises another example of the incompatibility of the reduced cytoplasms of microbes with the oxic world in which they dwell. It also reveals one natural source of cytoplasmic disulfide stress and sheds light on a role for broad-spectrum amino acid exporters.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | | | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
29
|
Ebrahimi A, Csonka LN, Alam MA. Analyzing Thermal Stability of Cell Membrane of Salmonella Using Time-Multiplexed Impedance Sensing. Biophys J 2019; 114:609-618. [PMID: 29414707 DOI: 10.1016/j.bpj.2017.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/12/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023] Open
Abstract
Heat treatment is one of the most widely used methods for inactivation of bacteria in food products. Heat-induced loss of bacterial viability has been variously attributed to protein denaturation, oxidative stress, or membrane leakage; indeed, it is likely to involve a combination of these processes. We examine the effect of mild heat stress (50-55°C for ≤12 min) on cell permeability by directly measuring the electrical conductance of samples of Salmonella enterica serovar Typhimurium to answer a fundamental biophysical question, namely, how bacteria die under mild heat stress. Our results show that when exposed to heat shock, the cell membrane is damaged and cells die mainly due to the leakage of small cytoplasmic species to the surrounding media without lysis (confirmed by fluorescent imaging). We measured the conductance change, ΔY, of wild-type versus genetically modified heat-resistant (HR) cells in response to pulse and ramp heating profiles with different thermal time constants. In addition, we developed a phenomenological model to correlate the membrane damage, cytoplasmic leakage, and cell viability. This model traces the differential viability and ΔY of wild-type and HR cells to the difference in the effective activation energies needed to permeabilize the cells, implying that HR cells are characterized by stronger lateral interactions between molecules, such as lipids, in their cell envelope.
Collapse
Affiliation(s)
- Aida Ebrahimi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana; Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana
| | - Laszlo N Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Muhammad A Alam
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana; Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
30
|
In vitro synthesis of the human calcium transporter Letm1 within cell-sized liposomes and investigation of its lipid dependency. J Biosci Bioeng 2018; 127:544-548. [PMID: 30503650 DOI: 10.1016/j.jbiosc.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/21/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023]
Abstract
The human mitochondrion-derived calcium transporter Letm1 was synthesized by reconstituted in vitro transcription-translation (IVTT) in cell-sized liposomes and the dependency of Letm1 on phospholipid composition was investigated. Components for IVTT were encapsulated into cell-sized vesicles together with the DNA encoding Letm1, thereby preparing proteoliposomes. The synthesis of Letm1 and pH-dependent calcium transport activity were confirmed by flow cytometry. Finally, we investigated the effect of phospholipid composition on Letm1 transport activity and found that cardiolipin present in the mitochondrial membrane plays an important role on the transport activity of Letm1.
Collapse
|
31
|
Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U. A conserved motif promotes HpaB-regulated export of type III effectors from Xanthomonas. MOLECULAR PLANT PATHOLOGY 2018; 19:2473-2487. [PMID: 30073738 PMCID: PMC6638074 DOI: 10.1111/mpp.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The type III secretion (T3S) system, an essential pathogenicity factor in most Gram-negative plant-pathogenic bacteria, injects bacterial effector proteins directly into the plant cell cytosol. Here, the type III effectors (T3Es) manipulate host cell processes to suppress defence and establish appropriate conditions for bacterial multiplication in the intercellular spaces of the plant tissue. T3E export depends on a secretion signal which is also present in 'non-effectors'. The latter are secreted extracellular components of the T3S apparatus, but are not translocated into the plant cell. How the T3S system discriminates between T3Es and non-effectors is still enigmatic. Previously, we have identified a putative translocation motif (TrM) in several T3Es from Xanthomonas campestris pv. vesicatoria (Xcv). Here, we analysed the TrM of the Xcv effector XopB in detail. Mutation studies showed that the proline/arginine-rich motif is required for efficient type III-dependent secretion and translocation of XopB and determines the dependence of XopB transport on the general T3S chaperone HpaB. Similar results were obtained for other effectors from Xcv. As the arginine residues of the TrM mediate specific binding of XopB to cardiolipin, one of the major lipid components in Xanthomonas membranes, we assume that the association of T3Es to the bacterial membrane prior to secretion supports type III-dependent export.
Collapse
Affiliation(s)
- Heike Prochaska
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Sabine Thieme
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Sebastian Daum
- Institute for Chemistry, Department of Biophysical ChemistryMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Jan Grau
- Institute for Informatics, Department of BioinformaticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Cornelius Schmidtke
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Magnus Hallensleben
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Peter John
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Kirsten Bacia
- Institute for Chemistry, Department of Biophysical ChemistryMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Ulla Bonas
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| |
Collapse
|
32
|
Gagné-Thivierge C, Barbeau J, Levesque RC, Charette SJ. A new approach to study attached biofilms and floating communities from Pseudomonas aeruginosa strains of various origins reveals diverse effects of divalent ions. FEMS Microbiol Lett 2018; 365:5044545. [DOI: 10.1093/femsle/fny155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/24/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Cynthia Gagné-Thivierge
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec G1V 0A6, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec G1V 4G5, Canada
| | - Jean Barbeau
- Faculté de Médecine Dentaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec G1V 0A6, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université Laval, Quebec city, Quebec G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec G1V 0A6, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec G1V 4G5, Canada
| |
Collapse
|
33
|
Autzen HE, Koldsø H, Stansfeld PJ, Gourdon P, Sansom MSP, Nissen P. Interactions of a Bacterial Cu(I)-ATPase with a Complex Lipid Environment. Biochemistry 2018; 57:4063-4073. [DOI: 10.1021/acs.biochem.8b00326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Henriette E. Autzen
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, 8000 Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, 8000 Aarhus C, Denmark
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, 8000 Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, 8000 Aarhus C, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Abstract
The bacterial cytoplasmic membrane is composed of roughly equal proportions of lipids and proteins. The main lipid components are phospholipids, which vary in acyl chain length, saturation, and branching and carry head groups that vary in size and charge. Phospholipid variants determine membrane properties such as fluidity and charge that in turn modulate interactions with membrane-associated proteins. We summarize recent advances in understanding bacterial membrane structure and function, focusing particularly on the possible existence and significance of specialized membrane domains. We review the role of membrane curvature as a spatial cue for recruitment and regulation of proteins involved in morphogenic functions, especially elongation and division. Finally, we examine the role of the membrane, especially regulation of synthesis and fluid properties, in the life cycle of cell wall-deficient L-form bacteria.
Collapse
Affiliation(s)
- Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX United Kingdom; ,
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX United Kingdom; ,
| |
Collapse
|
35
|
Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. Proc Natl Acad Sci U S A 2017; 114:5689-5694. [PMID: 28512220 DOI: 10.1073/pnas.1703415114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthesis of the 31-amino acid, inner membrane protein MgtS (formerly denoted YneM) is induced by very low Mg2+ in a PhoPQ-dependent manner in Escherichia coli Here we report that MgtS acts to increase intracellular Mg2+ levels and maintain cell integrity upon Mg2+ depletion. Upon development of a functional tagged derivative of MgtS, we found that MgtS interacts with MgtA to increase the levels of this P-type ATPase Mg2+ transporter under Mg2+-limiting conditions. Correspondingly, the effects of MgtS upon Mg2+ limitation are lost in a ∆mgtA mutant, and MgtA overexpression can suppress the ∆mgtS phenotype. MgtS stabilization of MgtA provides an additional layer of regulation of this tightly controlled Mg2+ transporter and adds to the list of small proteins that regulate inner membrane transporters.
Collapse
|
36
|
Go KL, Lee S, Behrns KE, Kim JS. Mitochondrial Damage and Mitophagy in Ischemia/Reperfusion-Induced Liver Injury. MOLECULES, SYSTEMS AND SIGNALING IN LIVER INJURY 2017:183-219. [DOI: 10.1007/978-3-319-58106-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
37
|
Flores-Toro JA, Go KL, Leeuwenburgh C, Kim JS. Autophagy in the liver: cell's cannibalism and beyond. Arch Pharm Res 2016; 39:1050-61. [PMID: 27515049 DOI: 10.1007/s12272-016-0807-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Chronic liver disease and its progression to liver failure are induced by various etiologies including viral infection, alcoholic and nonalcoholic hepatosteatosis. It is anticipated that the prevalence of fatty liver disease will continue to rise due to the growing incidence of obesity and metabolic disorder. Evidence is accumulating to indicate that the onset of fatty liver disease is causatively linked to mitochondrial dysfunction and abnormal lipid accumulation. Current treatment options for this disease are limited. Autophagy is an integral catabolic pathway that maintains cellular homeostasis both selectively and nonselectively. As mitophagy and lipophagy selectively remove dysfunctional mitochondria and excess lipids, respectively, stimulation of autophagy could have therapeutic potential to ameliorate liver function in steatotic patients. This review highlights our up-to-date knowledge on mechanistic roles of autophagy in the pathogenesis of fatty liver disease and its vulnerability to surgical stress, with an emphasis on mitophagy and lipophagy.
Collapse
Affiliation(s)
- Joseph A Flores-Toro
- Department of Surgery, University of Florida, R4-204 ARB, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Kristina L Go
- Department of Surgery, University of Florida, R4-204 ARB, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32610, USA
- Institute on Aging, University of Florida, Gainesville, FL, 32610, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, R4-204 ARB, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
- Institute on Aging, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
38
|
Subramani S, Morth J. Heterologous Expression and Purification of the Magnesium Transporter A (MgtA) in Escherichia coli. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|