1
|
Bi S, Wu Y, Ding N, Zhou Y, Liu H, Weng Y, Song Q, Zhang L, Cheng MY, Cui H, Zhang W, Cui Y. Three-dimensional characteristics of T cells and vasculature in the development of mouse esophageal cancer. iScience 2024; 27:111380. [PMID: 39660057 PMCID: PMC11629339 DOI: 10.1016/j.isci.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/26/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignancy, characterized by a multistep pathogenic process regulated spatiotemporally within the esophageal epithelial microenvironment, including vessel normalization and immune infiltration. However, empirical evidence elucidating esophageal vascular remodeling and immune infiltration during ESCC tumorigenesis in situ is lacking. In this study, utilizing a mouse model recapitulating progressive human ESCC stages, we established a tissue clearing workflow for three-dimensional visualization and analysis of esophageal vessels and T cell distribution. Through this workflow, we delineated the spatial dynamics of vascular remodeling, CD3+ T cells, and characteristic T cell aggregates employing high-resolution light-sheet fluorescence microscopy across five ESCC pathogenic stages. Vessel remodeling might be coupled with T cell infiltration, and their interactions predominantly occurred at the inflammatory stage. These findings provided insights into research methodologies of esophageal cancer and spatiotemporal landscapes of vascular and T cell during ESCC initiation and progression.
Collapse
Affiliation(s)
- Shanshan Bi
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Yueguang Wu
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Ning Ding
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Yan Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Huijuan Liu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Yongjia Weng
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Qiqin Song
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Li Zhang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Matthew Yibo Cheng
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Heyang Cui
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Weimin Zhang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, P.R. China
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100142, P.R. China
| | - Yongping Cui
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, P.R. China
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100142, P.R. China
| |
Collapse
|
2
|
Schregel K, Heinz L, Hunger J, Pan C, Bode J, Fischer M, Sturm V, Venkataramani V, Karimian-Jazi K, Agardy DA, Streibel Y, Zerelles R, Wick W, Heiland S, Bunse T, Tews B, Platten M, Winkler F, Bendszus M, Breckwoldt MO. A Cellular Ground Truth to Develop MRI Signatures in Glioma Models by Correlative Light Sheet Microscopy and Atlas-Based Coregistration. J Neurosci 2023; 43:5574-5587. [PMID: 37429718 PMCID: PMC10376935 DOI: 10.1523/jneurosci.1470-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/21/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor with poor overall survival. Magnetic resonance imaging (MRI) is the main imaging modality for glioblastoma but has inherent shortcomings. The molecular and cellular basis of MR signals is incompletely understood. We established a ground truth-based image analysis platform to coregister MRI and light sheet microscopy (LSM) data to each other and to an anatomic reference atlas for quantification of 20 predefined anatomic subregions. Our pipeline also includes a segmentation and quantification approach for single myeloid cells in entire LSM datasets. This method was applied to three preclinical glioma models in male and female mice (GL261, U87MG, and S24), which exhibit different key features of the human glioma. Multiparametric MR data including T2-weighted sequences, diffusion tensor imaging, T2 and T2* relaxometry were acquired. Following tissue clearing, LSM focused on the analysis of tumor cell density, microvasculature, and innate immune cell infiltration. Correlated analysis revealed differences in quantitative MRI metrics between the tumor-bearing and the contralateral hemisphere. LSM identified tumor subregions that differed in their MRI characteristics, indicating tumor heterogeneity. Interestingly, MRI signatures, defined as unique combinations of different MRI parameters, differed greatly between the models. The direct correlation of MRI and LSM allows an in-depth characterization of preclinical glioma and can be used to decipher the structural, cellular, and, likely, molecular basis of tumoral MRI biomarkers. Our approach may be applied in other preclinical brain tumor or neurologic disease models, and the derived MRI signatures could ultimately inform image interpretation in a clinical setting.SIGNIFICANCE STATEMENT We established a histologic ground truth-based approach for MR image analyses and tested this method in three preclinical glioma models exhibiting different features of glioblastoma. Coregistration of light sheet microscopy to MRI allowed for an evaluation of quantitative MRI data in histologically distinct tumor subregions. Coregistration to a mouse brain atlas enabled a regional comparison of MRI parameters with a histologically informed interpretation of the results. Our approach is transferable to other preclinical models of brain tumors and further neurologic disorders. The method can be used to decipher the structural, cellular, and molecular basis of MRI signal characteristics. Ultimately, information derived from such analyses could strengthen the neuroradiological evaluation of glioblastoma as they enhance the interpretation of MRI data.
Collapse
Affiliation(s)
- Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lennart Heinz
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jessica Hunger
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Chenchen Pan
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Julia Bode
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Kianush Karimian-Jazi
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dennis A Agardy
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Yannik Streibel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Roland Zerelles
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Björn Tews
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
4
|
Perens J, Salinas CG, Roostalu U, Skytte JL, Gundlach C, Hecksher-Sørensen J, Dahl AB, Dyrby TB. Multimodal 3D Mouse Brain Atlas Framework with the Skull-Derived Coordinate System. Neuroinformatics 2023; 21:269-286. [PMID: 36809643 DOI: 10.1007/s12021-023-09623-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Magnetic resonance imaging (MRI) and light-sheet fluorescence microscopy (LSFM) are technologies that enable non-disruptive 3-dimensional imaging of whole mouse brains. A combination of complementary information from both modalities is desirable for studying neuroscience in general, disease progression and drug efficacy. Although both technologies rely on atlas mapping for quantitative analyses, the translation of LSFM recorded data to MRI templates has been complicated by the morphological changes inflicted by tissue clearing and the enormous size of the raw data sets. Consequently, there is an unmet need for tools that will facilitate fast and accurate translation of LSFM recorded brains to in vivo, non-distorted templates. In this study, we have developed a bidirectional multimodal atlas framework that includes brain templates based on both imaging modalities, region delineations from the Allen's Common Coordinate Framework, and a skull-derived stereotaxic coordinate system. The framework also provides algorithms for bidirectional transformation of results obtained using either MR or LSFM (iDISCO cleared) mouse brain imaging while the coordinate system enables users to easily assign in vivo coordinates across the different brain templates.
Collapse
Affiliation(s)
- Johanna Perens
- Gubra ApS, Hørsholm, Denmark.,Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | | | | | | | - Carsten Gundlach
- Neutrons and X-rays for Materials Physics, Department of Physics, Technical University Denmark, Kongens Lyngby, Denmark
| | | | - Anders Bjorholm Dahl
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark
| | - Tim B Dyrby
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
5
|
Kurz FT, Hahn A. Advanced Computational Methods to Evaluate Vascular Heterogeneity in Tumor Tissue Based on Single Plane Illumination Microscopy. Methods Mol Biol 2023; 2660:283-294. [PMID: 37191805 DOI: 10.1007/978-1-0716-3163-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
During tumor growth, the complex composition of vasculature is prone to dynamic changes due to mechanic and biochemical challenges. Perivascular invasion of tumor cells to co-opt existing vasculature, but also formation of de-novo vasculature and other effects on the vascular network, may lead to altered geometric vessel properties as well as changes in vascular network topology, which is defined by vascular multifurcations and connections between vessel segments. The intricate organization and heterogeneity of the vascular network can be analyzed with advanced computational methods to uncover vascular network signatures that may allow differentiating between pathological and physiological vessel regions. Herein, we present a protocol to evaluate vascular heterogeneity in whole vascular networks, using morphological and topological measures. The protocol was developed for single plane illumination microscopy images of mice brain vasculature but can be applied to any vascular network.
Collapse
Affiliation(s)
- Felix T Kurz
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|
6
|
Hahn A, Bode J, Schuhegger S, Krüwel T, Sturm VJF, Zhang K, Jende JME, Tews B, Heiland S, Bendszus M, Breckwoldt MO, Ziener CH, Kurz FT. Brain tumor classification of virtual NMR voxels based on realistic blood vessel-induced spin dephasing using support vector machines. NMR IN BIOMEDICINE 2022; 35:e4307. [PMID: 32289884 DOI: 10.1002/nbm.4307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 05/28/2023]
Abstract
Remodeling of tissue microvasculature commonly promotes neoplastic growth; however, there is no imaging modality in oncology yet that noninvasively quantifies microvascular changes in clinical routine. Although blood capillaries cannot be resolved in typical magnetic resonance imaging (MRI) measurements, their geometry and distribution influence the integral nuclear magnetic resonance (NMR) signal from each macroscopic MRI voxel. We have numerically simulated the expected transverse relaxation in NMR voxels with different dimensions based on the realistic microvasculature in healthy and tumor-bearing mouse brains (U87 and GL261 glioblastoma). The 3D capillary structure in entire, undissected brains was acquired using light sheet fluorescence microscopy to produce large datasets of the highly resolved cerebrovasculature. Using this data, we trained support vector machines to classify virtual NMR voxels with different dimensions based on the simulated spin dephasing accountable to field inhomogeneities caused by the underlying vasculature. In prediction tests with previously blinded virtual voxels from healthy brain tissue and GL261 tumors, stable classification accuracies above 95% were reached. Our results indicate that high classification accuracies can be stably attained with achievable training set sizes and that larger MRI voxels facilitated increasingly successful classifications, even with small training datasets. We were able to prove that, theoretically, the transverse relaxation process can be harnessed to learn endogenous contrasts for single voxel tissue type classifications on tailored MRI acquisitions. If translatable to experimental MRI, this may augment diagnostic imaging in oncology with automated voxel-by-voxel signal interpretation to detect vascular pathologies.
Collapse
Affiliation(s)
- Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Sarah Schuhegger
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Volker J F Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology E010, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ke Zhang
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology E010, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian H Ziener
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology E010, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology E010, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Blobner J, Kilian M, Tan CL, Aslan K, Sanghvi K, Meyer J, Fischer M, Jähne K, Breckwoldt MO, Sahm F, von Deimling A, Bendszus M, Wick W, Platten M, Green E, Bunse L. Comparative evaluation of T-cell receptors in experimental glioma-draining lymph nodes. Neurooncol Adv 2021; 3:vdab147. [PMID: 34738084 PMCID: PMC8562732 DOI: 10.1093/noajnl/vdab147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Glioblastomas, the most common primary malignant brain tumors, are considered immunologically cold malignancies due to growth in an immune sanctuary site. While peptide vaccines have shown to generate intra-tumoral antigen-specific T cells, the identification of these tumor-specific T cells is challenging and requires detailed analyses of tumor tissue. Several studies have shown that CNS antigens may be transported via lymphatic drainage to cervical lymph nodes, where antigen-specific T-cell responses can be generated. Therefore, we investigated whether glioma-draining lymph nodes (TDLN) may constitute a reservoir of tumor-reactive T cells. Methods We addressed our hypothesis by flow cytometric analyses of chicken ovalbumin (OVA)-specific CD8+ T cells as well as T-cell receptor beta (TCRβ) next-generation-sequencing (TCRβ-NGS) of T cells from tumor tissue, TDLN, spleen, and inguinal lymph nodes harvested from experimental mouse GL261 glioma models. Results Longitudinal dextramer-based assessment of specific CD8+ T cells from TDLN did not show tumor model antigen reactivity. Unbiased immunogenomic analysis revealed a low overlap of TCRβ sequences from glioma-infiltrating CD8+ T cells between mice. Enrichment scores, calculated by the ratio of productive frequencies of the different TCRβ-CDR3 amino-acid (aa) rearrangements of CD8+ T cells derived from tumor, TDLN, inguinal lymph nodes, and spleen demonstrated a higher proportion of tumor-associated TCR in the spleen compared to TDLN. Conclusions In experimental glioblastoma, our data did not provide evidence that glioma-draining cervical lymph nodes are a robust reservoir for spontaneous glioma-specific T cells highlighting the requirement for detailed analyses of glioma-infiltrating T cells for the discovery of tumor-specific TCR.
Collapse
Affiliation(s)
- Jens Blobner
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Michael Kilian
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Chin Leng Tan
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Katrin Aslan
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Khwab Sanghvi
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jochen Meyer
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Kristine Jähne
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Michael O Breckwoldt
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Felix Sahm
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Andreas von Deimling
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Wolfgang Wick
- DKTK Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HI-TRON), Mainz, Germany
| | - Edward Green
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Almagro J, Messal HA, Zaw Thin M, van Rheenen J, Behrens A. Tissue clearing to examine tumour complexity in three dimensions. Nat Rev Cancer 2021; 21:718-730. [PMID: 34331034 DOI: 10.1038/s41568-021-00382-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The visualization of whole organs and organisms through tissue clearing and fluorescence volumetric imaging has revolutionized the way we look at biological samples. Its application to solid tumours is changing our perception of tumour architecture, revealing signalling networks and cell interactions critical in tumour progression, and provides a powerful new strategy for cancer diagnostics. This Review introduces the latest advances in tissue clearing and three-dimensional imaging, examines the challenges in clearing epithelia - the tissue of origin of most malignancies - and discusses the insights that tissue clearing has brought to cancer research, as well as the prospective applications to experimental and clinical oncology.
Collapse
Affiliation(s)
- Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Hendrik A Messal
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - May Zaw Thin
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK.
- Convergence Science Centre and Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
9
|
Local blood coagulation drives cancer cell arrest and brain metastasis in a mouse model. Blood 2021; 137:1219-1232. [PMID: 33270819 DOI: 10.1182/blood.2020005710] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Clinically relevant brain metastases (BMs) frequently form in cancer patients, with limited options for effective treatment. Circulating cancer cells must first permanently arrest in brain microvessels to colonize the brain, but the critical factors in this process are not well understood. Here, in vivo multiphoton laser-scanning microscopy of the entire brain metastatic cascade allowed unprecedented insights into how blood clot formation and von Willebrand factor (VWF) deposition determine the arrest of circulating cancer cells and subsequent brain colonization in mice. Clot formation in brain microvessels occurred frequently (>95%) and specifically at intravascularly arrested cancer cells, allowing their long-term arrest. An extensive clot embedded ∼20% of brain-arrested cancer cells, and those were more likely to successfully extravasate and form a macrometastasis. Mechanistically, the generation of tissue factor-mediated thrombin by cancer cells accounted for local activation of plasmatic coagulation in the brain. Thrombin inhibition by treatment with low molecular weight heparin or dabigatran and an anti-VWF antibody prevented clot formation, cancer cell arrest, extravasation, and the formation of brain macrometastases. In contrast, tumor cells were not able to directly activate platelets, and antiplatelet treatments did reduce platelet dispositions at intravascular cancer cells but did not reduce overall formation of BMs. In conclusion, our data show that plasmatic coagulation is activated early by intravascular tumor cells in the brain with subsequent clot formation, which led us to discover a novel and specific mechanism that is crucial for brain colonization. Direct or indirect thrombin and VWF inhibitors emerge as promising drug candidates for trials on prevention of BMs.
Collapse
|
10
|
Hahn A, Bode J, Alexander A, Karimian-Jazi K, Schregel K, Schwarz D, Sommerkamp AC, Krüwel T, Abdollahi A, Wick W, Platten M, Bendszus M, Tews B, Kurz FT, Breckwoldt MO. Large-scale characterization of the microvascular geometry in development and disease by tissue clearing and quantitative ultramicroscopy. J Cereb Blood Flow Metab 2021; 41:1536-1546. [PMID: 33043767 PMCID: PMC8217891 DOI: 10.1177/0271678x20961854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/04/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022]
Abstract
Three-dimensional assessment of optically cleared, entire organs and organisms has recently become possible by tissue clearing and selective plane illumination microscopy ("ultramicroscopy"). Resulting datasets can be highly complex, encompass over a thousand images with millions of objects and data of several gigabytes per acquisition. This constitutes a major challenge for quantitative analysis. We have developed post-processing tools to quantify millions of microvessels and their distribution in three-dimensional datasets from ultramicroscopy and demonstrate the capabilities of our pipeline within entire mouse brains and embryos. Using our developed acquisition, segmentation, and analysis platform, we quantify physiological vascular networks in development and the healthy brain. We compare various geometric vessel parameters (e.g. vessel density, radius, tortuosity) in the embryonic spinal cord and brain as well as in different brain regions (basal ganglia, corpus callosum, cortex). White matter tract structures (corpus callosum, spinal cord) showed lower microvascular branch densities and longer vessel branch length compared to grey matter (cortex, basal ganglia). Furthermore, we assess tumor neoangiogenesis in a mouse glioma model to compare tumor core and tumor border. The developed methodology allows rapid quantification of three-dimensional datasets by semi-automated segmentation of fluorescently labeled objects with conventional computer hardware. Our approach can aid preclinical investigations and paves the way towards "quantitative ultramicroscopy".
Collapse
Affiliation(s)
- Artur Hahn
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Allen Alexander
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Katharina Schregel
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Schwarz
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexander C Sommerkamp
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium and Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany
- Heidelberg University School of Medicine, Heidelberg University, Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Felix T Kurz
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael O Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Schwarz D, Hidmark AS, Sturm V, Fischer M, Milford D, Hausser I, Sahm F, Breckwoldt MO, Agarwal N, Kuner R, Bendszus M, Nawroth PP, Heiland S, Fleming T. Characterization of experimental diabetic neuropathy using multicontrast magnetic resonance neurography at ultra high field strength. Sci Rep 2020; 10:7593. [PMID: 32371885 PMCID: PMC7200726 DOI: 10.1038/s41598-020-64585-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Abstract
In light of the limited treatment options of diabetic polyneuropathy (DPN) available, suitable animal models are essential to investigate pathophysiological mechanisms and to identify potential therapeutic targets. In vivo evaluation with current techniques, however, often provides only restricted information about disease evolution. In the study of patients with DPN, magnetic resonance neurography (MRN) has been introduced as an innovative diagnostic tool detecting characteristic lesions within peripheral nerves. We developed a novel multicontrast ultra high field MRN strategy to examine major peripheral nerve segments in diabetic mice non-invasively. It was first validated in a cross-platform approach on human nerve tissue and then applied to the popular streptozotocin(STZ)-induced mouse model of DPN. In the absence of gross morphologic alterations, a distinct MR-signature within the sciatic nerve was observed mirroring subtle changes of the nerves' fibre composition and ultrastructure, potentially indicating early re-arrangements of DPN. Interestingly, these signal alterations differed from previously reported typical nerve lesions of patients with DPN. The capacity of our approach to non-invasively assess sciatic nerve tissue structure and function within a given mouse model provides a powerful tool for direct translational comparison to human disease hallmarks not only in diabetes but also in other peripheral neuropathic conditions.
Collapse
Affiliation(s)
- Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany.
| | - Asa S Hidmark
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - David Milford
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - Ingrid Hausser
- Institute of Pathology IPH, Heidelberg University Hospital, INF 224, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, INF 224, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - Nitin Agarwal
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, INF 366, Heidelberg, Germany
| | - Rohini Kuner
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, INF 366, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH) and Heidelberg University Hospital University, Heidelberg, Germany
- Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|
12
|
Todorov MI, Paetzold JC, Schoppe O, Tetteh G, Shit S, Efremov V, Todorov-Völgyi K, Düring M, Dichgans M, Piraud M, Menze B, Ertürk A. Machine learning analysis of whole mouse brain vasculature. Nat Methods 2020; 17:442-449. [PMID: 32161395 PMCID: PMC7591801 DOI: 10.1038/s41592-020-0792-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/14/2020] [Indexed: 11/09/2022]
Abstract
Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network (CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. By using VesSAP, we analyzed the vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains at the micrometer scale after registering them to the Allen mouse brain atlas. We report evidence of secondary intracranial collateral vascularization in CD1 mice and find reduced vascularization of the brainstem in comparison to the cerebrum. Thus, VesSAP enables unbiased and scalable quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into the vascular function of the brain.
Collapse
Affiliation(s)
- Mihail Ivilinov Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Graduate School of Neuroscience (GSN), Munich, Germany
| | - Johannes Christian Paetzold
- Department of Computer Science, Technical University of Munich (TUM), Munich, Germany
- Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany
- Munich School of Bioengineering, Technical University of Munich (TUM), Munich, Germany
| | - Oliver Schoppe
- Department of Computer Science, Technical University of Munich (TUM), Munich, Germany
- Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany
| | - Giles Tetteh
- Department of Computer Science, Technical University of Munich (TUM), Munich, Germany
| | - Suprosanna Shit
- Department of Computer Science, Technical University of Munich (TUM), Munich, Germany
- Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany
- Munich School of Bioengineering, Technical University of Munich (TUM), Munich, Germany
| | - Velizar Efremov
- Department of Computer Science, Technical University of Munich (TUM), Munich, Germany
- Institute of Pharmacology and Toxicology, University of Zurich (UZH), Zurich, Switzerland
| | - Katalin Todorov-Völgyi
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Marco Düring
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Marie Piraud
- Department of Computer Science, Technical University of Munich (TUM), Munich, Germany
| | - Bjoern Menze
- Department of Computer Science, Technical University of Munich (TUM), Munich, Germany.
- Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany.
- Munich School of Bioengineering, Technical University of Munich (TUM), Munich, Germany.
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany.
- Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
13
|
Hahn A, Bode J, Krüwel T, Kampf T, Buschle LR, Sturm VJF, Zhang K, Tews B, Schlemmer HP, Heiland S, Bendszus M, Ziener CH, Breckwoldt MO, Kurz FT. Gibbs point field model quantifies disorder in microvasculature of U87-glioblastoma. J Theor Biol 2020; 494:110230. [PMID: 32142806 DOI: 10.1016/j.jtbi.2020.110230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 10/28/2019] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
Microvascular proliferation in glioblastoma multiforme is a biological key mechanism to facilitate tumor growth and infiltration and a main target for treatment interventions. The vascular architecture can be obtained by Single Plane Illumination Microscopy (SPIM) to evaluate vascular heterogeneity in tumorous tissue. We make use of the Gibbs point field model to quantify the order of regularity in capillary distributions found in the U87 glioblastoma model in a murine model and to compare tumorous and healthy brain tissue. A single model parameter Γ was assigned that is linked to tissue-specific vascular topology through Monte-Carlo simulations. Distributions of the model parameter Γ differ significantly between glioblastoma tissue with mean 〈ΓG〉=2.1±0.4, as compared to healthy brain tissue with mean 〈ΓH〉=4.9±0.4, suggesting that the average Γ-value allows for tissue differentiation. These results may be used for diagnostic magnetic resonance imaging, where it has been shown recently that Γ is linked to tissue-inherent relaxation parameters.
Collapse
Affiliation(s)
- Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, Heidelberg 69120, Germany
| | - Julia Bode
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Thomas Krüwel
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Thomas Kampf
- Department of Experimental Physics 5, University of Würzburg, Am Hubland, Würzburg 97074, Germany; Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Lukas R Buschle
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Volker J F Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Ke Zhang
- Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Björn Tews
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Heinz-Peter Schlemmer
- Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Christian H Ziener
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
14
|
Kirst C, Skriabine S, Vieites-Prado A, Topilko T, Bertin P, Gerschenfeld G, Verny F, Topilko P, Michalski N, Tessier-Lavigne M, Renier N. Mapping the Fine-Scale Organization and Plasticity of the Brain Vasculature. Cell 2020; 180:780-795.e25. [PMID: 32059781 DOI: 10.1016/j.cell.2020.01.028] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
The cerebral vasculature is a dense network of arteries, capillaries, and veins. Quantifying variations of the vascular organization across individuals, brain regions, or disease models is challenging. We used immunolabeling and tissue clearing to image the vascular network of adult mouse brains and developed a pipeline to segment terabyte-sized multichannel images from light sheet microscopy, enabling the construction, analysis, and visualization of vascular graphs composed of over 100 million vessel segments. We generated datasets from over 20 mouse brains, with labeled arteries, veins, and capillaries according to their anatomical regions. We characterized the organization of the vascular network across brain regions, highlighting local adaptations and functional correlates. We propose a classification of cortical regions based on the vascular topology. Finally, we analysed brain-wide rearrangements of the vasculature in animal models of congenital deafness and ischemic stroke, revealing that vascular plasticity and remodeling adopt diverging rules in different models.
Collapse
Affiliation(s)
- Christoph Kirst
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France; Center for Physics and Biology and Kavli Neural Systems Insittute, The Rockefeller University, 10065 New York, NY, USA; Kavli Institute for Fundamental Neuroscience and Anatomy Department, Sandler Neuroscience Building, Suite 514G, 675 Nelson Rising Lane, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Sophie Skriabine
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Alba Vieites-Prado
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Thomas Topilko
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Paul Bertin
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | | | - Florine Verny
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Piotr Topilko
- Institut Mondor de Recherche Biomédicale, INSERM U955-Team 9, Créteil, France
| | - Nicolas Michalski
- Unité de Génétique et Physiologie de l'Audition, UMRS 1120, Institut Pasteur, INSERM, 75015 Paris, France
| | | | - Nicolas Renier
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, 75013 Paris, France.
| |
Collapse
|
15
|
Yang R, Guo J, Lin Z, Song H, Feng Z, Ou Y, Zhou M, Li Y, Yi G, Li K, Li K, Guo M, Wang X, Huang G, Liu Z, Qi S, Liu Y. The combination of two-dimensional and three-dimensional analysis methods contributes to the understanding of glioblastoma spatial heterogeneity. JOURNAL OF BIOPHOTONICS 2020; 13:e201900196. [PMID: 31743584 DOI: 10.1002/jbio.201900196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Heterogeneity is regarded as the major factor leading to the poor outcomes of glioblastoma (GBM) patients. However, conventional two-dimensional (2D) analysis methods, such as immunohistochemistry and immunofluorescence, have limited capacity to reveal GBM spatial heterogeneity. Thus, we sought to develop an effective analysis strategy to increase the understanding of GBM spatial heterogeneity. Here, 2D and three-dimensional (3D) analysis methods were compared for the examination of cell morphology, cell distribution and large intact structures, and both types of methods were employed to dissect GBM spatial heterogeneity. The results showed that 2D assays showed only cross-sections of specimens but provided a full view. To visualize intact GBM specimens in 3D without sectioning, the optical tissue clearing methods CUBIC and iDISCO+ were used to clear opaque specimens so that they would become more transparent, after which the specimens were imaged with a two-photon microscope. The 3D analysis methods showed specimens at a large spatial scale at cell-level resolution and had overwhelming advantages in comparison to the 2D methods. Furthermore, in 3D, heterogeneity in terms of cell stemness, the microvasculature, and immune cell infiltration within GBM was comprehensively observed and analysed. Overall, we propose that 2D and 3D analysis methods should be combined to provide much greater detail to increase the understanding of GBM spatial heterogeneity.
Collapse
Affiliation(s)
- Runwei Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinglin Guo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiying Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haimin Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yichao Ou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaomin Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Li
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaishu Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manlan Guo
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiran Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
| | - Zhifeng Liu
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Karimian-Jazi K, Münch P, Alexander A, Fischer M, Pfleiderer K, Piechutta M, Karreman MA, Solecki GM, Berghoff AS, Friedrich M, Deumelandt K, Kurz FT, Wick W, Heiland S, Bendszus M, Winkler F, Platten M, Breckwoldt MO. Monitoring innate immune cell dynamics in the glioma microenvironment by magnetic resonance imaging and multiphoton microscopy (MR-MPM). Theranostics 2020; 10:1873-1883. [PMID: 32042342 PMCID: PMC6993231 DOI: 10.7150/thno.38659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Glioblastoma is the most frequent, primary brain tumor that is characterized by a highly immunosuppressive tumor microenvironment (TME). The TME plays a key role for tumor biology and the effectiveness of immunotherapies. Composition of the TME correlates with overall survival and governs therapy response. Non invasive assessment of the TME has been notoriously difficult. Methods: We have designed an in vivo imaging approach to non invasively visualize innate immune cell dynamics in the TME in a mouse glioma model by correlated MRI and multiphoton microscopy (MR-MPM) using a bimodal, fluorescently labeled iron oxide nanoparticle (NP). The introduction of Teflon cranial windows instead of conventional Titanium rings dramatically reduced susceptibility artifacts on MRI and allowed longitudinal MR-MPM imaging for innate immune cell tracking in the same animal. Results: We visualized tumor associated macrophage and microglia (TAM) dynamics in the TME and dissect the single steps of NP uptake by blood-born monocytes that give rise to tumor-associated macrophages. Next to peripheral NP-loading, we identified a second route of direct nanoparticle uptake via the disrupted blood-brain barrier to directly label tissue resident TAMs. Conclusion: Our approach allows innate immune cell tracking by MRI and multiphoton microscopy in the same animal to longitudinally investigate innate immune cell dynamics in the TME.
Collapse
|
17
|
Foster DS, Nguyen AT, Chinta M, Salhotra A, Jones RE, Mascharak S, Titan AL, Ransom RC, da Silva OL, Foley E, Briger E, Longaker MT. A Clearing Technique to Enhance Endogenous Fluorophores in Skin and Soft Tissue. Sci Rep 2019; 9:15791. [PMID: 31673001 PMCID: PMC6823366 DOI: 10.1038/s41598-019-50359-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescent proteins are used extensively in transgenic animal models to label and study specific cell and tissue types. Expression of these proteins can be imaged and analyzed using fluorescent and confocal microscopy. Conventional confocal microscopes cannot penetrate through tissue more than 4–6 μm thick. Tissue clearing procedures overcome this challenge by rendering thick specimens into translucent tissue. However, most tissue clearing techniques do not satisfactorily preserve expression of endogenous fluorophores. Using simple adjustments to the BABB (Benzoic Acid Benzyl Benzoate) clearing methodology, preservation of fluorophore expression can be maintained. Modified BABB tissue clearing is a reliable technique to clear skin and soft tissue specimens for the study of dermal biology, wound healing and fibrotic pathologies.
Collapse
Affiliation(s)
- Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alan T Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Malini Chinta
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ankit Salhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ashley L Titan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - R Chase Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Oscar L da Silva
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Eliza Foley
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emma Briger
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Glioblastoma multiforme restructures the topological connectivity of cerebrovascular networks. Sci Rep 2019; 9:11757. [PMID: 31409816 PMCID: PMC6692362 DOI: 10.1038/s41598-019-47567-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme alters healthy tissue vasculature by inducing angiogenesis and vascular remodeling. To fully comprehend the structural and functional properties of the resulting vascular network, it needs to be studied collectively by considering both geometric and topological properties. Utilizing Single Plane Illumination Microscopy (SPIM), the detailed capillary structure in entire healthy and tumor-bearing mouse brains could be resolved in three dimensions. At the scale of the smallest capillaries, the entire vascular systems of bulk U87- and GL261-glioblastoma xenografts, their respective cores, and healthy brain hemispheres were modeled as complex networks and quantified with fundamental topological measures. All individual vessel segments were further quantified geometrically and modular clusters were uncovered and characterized as meta-networks, facilitating an analysis of large-scale connectivity. An inclusive comparison of large tissue sections revealed that geometric properties of individual vessels were altered in glioblastoma in a relatively subtle way, with high intra- and inter-tumor heterogeneity, compared to the impact on the vessel connectivity. A network topology analysis revealed a clear decomposition of large modular structures and hierarchical network organization, while preserving most fundamental topological classifications, in both tumor models with distinct growth patterns. These results augment our understanding of cerebrovascular networks and offer a topological assessment of glioma-induced vascular remodeling. The findings may help understand the emergence of hypoxia and necrosis, and prove valuable for therapeutic interventions such as radiation or antiangiogenic therapy.
Collapse
|
19
|
RhoA regulates translation of the Nogo-A decoy SPARC in white matter-invading glioblastomas. Acta Neuropathol 2019; 138:275-293. [PMID: 31062076 PMCID: PMC6660512 DOI: 10.1007/s00401-019-02021-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/09/2023]
Abstract
Glioblastomas strongly invade the brain by infiltrating into the white matter along myelinated nerve fiber tracts even though the myelin protein Nogo-A prevents cell migration by activating inhibitory RhoA signaling. The mechanisms behind this long-known phenomenon remained elusive so far, precluding a targeted therapeutic intervention. This study demonstrates that the prevalent activation of AKT in gliomas increases the ER protein-folding capacity and enables tumor cells to utilize a side effect of RhoA activation: the perturbation of the IRE1α-mediated decay of SPARC mRNA. Once translation is initiated, glioblastoma cells rapidly secrete SPARC to block Nogo-A from inhibiting migration via RhoA. By advanced ultramicroscopy for studying single-cell invasion in whole, undissected mouse brains, we show that gliomas require SPARC for invading into white matter structures. SPARC depletion reduces tumor dissemination that significantly prolongs survival and improves response to cytostatic therapy. Our finding of a novel RhoA-IRE1 axis provides a druggable target for interfering with SPARC production and underscores its therapeutic value.
Collapse
|
20
|
Voxel-size dependent quantitative susceptibility mapping of blood vessel networks: A simulation study. Z Med Phys 2019; 29:282-291. [DOI: 10.1016/j.zemedi.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/23/2018] [Accepted: 09/18/2018] [Indexed: 11/22/2022]
|
21
|
Buschle LR, Kurz FT, Kampf T, Schlemmer HP, Ziener CH. Spin dephasing around randomly distributed vessels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 299:12-20. [PMID: 30529850 DOI: 10.1016/j.jmr.2018.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
We analyze the gradient echo signal in the presence of blood vessel networks. Both, diffusion and susceptibility effects are analytically emphasized within the Bloch-Torrey equation. Solving this equation, we present the first exact description of the local magnetization around a single vessel. This allows us to deduce the gradient echo signal of parallel vessels randomly distributed in a plane, which is valid for arbitrary mean vessel diameters in the range of physiological relevant blood volume fractions. Thus, the results are potentially relevant for gradient echo measurements of blood vessel networks with arbitrary vessel size.
Collapse
Affiliation(s)
- L R Buschle
- German Cancer Research Center - DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Heidelberg University, Faculty of Physics and Astronomy, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - F T Kurz
- German Cancer Research Center - DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - T Kampf
- University of Würzburg, Department of Experimental Physics 5, Am Hubland, 97074 Würzburg, Germany; Würzburg University Hospital, Department of Neuroradiology, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - H P Schlemmer
- German Cancer Research Center - DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - C H Ziener
- German Cancer Research Center - DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Breckwoldt MO, Bode J, Sahm F, Krüwel T, Solecki G, Hahn A, Wirthschaft P, Berghoff AS, Haas M, Venkataramani V, von Deimling A, Wick W, Herold-Mende C, Heiland S, Platten M, Bendszus M, Kurz FT, Winkler F, Tews B. Correlated MRI and Ultramicroscopy (MR-UM) of Brain Tumors Reveals Vast Heterogeneity of Tumor Infiltration and Neoangiogenesis in Preclinical Models and Human Disease. Front Neurosci 2019; 12:1004. [PMID: 30686972 PMCID: PMC6335617 DOI: 10.3389/fnins.2018.01004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
Diffuse tumor infiltration into the adjacent parenchyma is an effective dissemination mechanism of brain tumors. We have previously developed correlated high field magnetic resonance imaging and ultramicroscopy (MR-UM) to study neonangiogenesis in a glioma model. In the present study we used MR-UM to investigate tumor infiltration and neoangiogenesis in a translational approach. We compare infiltration and neoangiogenesis patterns in four brain tumor models and the human disease: whereas the U87MG glioma model resembles brain metastases with an encapsulated growth and extensive neoangiogenesis, S24 experimental gliomas mimic IDH1 wildtype glioblastomas, exhibiting infiltration into the adjacent parenchyma and along white matter tracts to the contralateral hemisphere. MR-UM resolves tumor infiltration and neoangiogenesis longitudinally based on the expression of fluorescent proteins, intravital dyes or endogenous contrasts. Our study demonstrates the huge morphological diversity of brain tumor models regarding their infiltrative and neoangiogenic capacities and further establishes MR-UM as a platform for translational neuroimaging.
Collapse
Affiliation(s)
- Michael O Breckwoldt
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Gergely Solecki
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany
| | - Artur Hahn
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Wirthschaft
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Anna S Berghoff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany
| | - Maximilian Haas
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Varun Venkataramani
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany.,Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Sabine Heiland
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Bendszus
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T Kurz
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| |
Collapse
|
23
|
Kannan P, Kretzschmar WW, Winter H, Warren D, Bates R, Allen PD, Syed N, Irving B, Papiez BW, Kaeppler J, Markelc B, Kinchesh P, Gilchrist S, Smart S, Schnabel JA, Maughan T, Harris AL, Muschel RJ, Partridge M, Sharma RA, Kersemans V. Functional Parameters Derived from Magnetic Resonance Imaging Reflect Vascular Morphology in Preclinical Tumors and in Human Liver Metastases. Clin Cancer Res 2018; 24:4694-4704. [PMID: 29959141 PMCID: PMC6171743 DOI: 10.1158/1078-0432.ccr-18-0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/11/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Purpose: Tumor vessels influence the growth and response of tumors to therapy. Imaging vascular changes in vivo using dynamic contrast-enhanced MRI (DCE-MRI) has shown potential to guide clinical decision making for treatment. However, quantitative MR imaging biomarkers of vascular function have not been widely adopted, partly because their relationship to structural changes in vessels remains unclear. We aimed to elucidate the relationships between vessel function and morphology in vivo Experimental Design: Untreated preclinical tumors with different levels of vascularization were imaged sequentially using DCE-MRI and CT. Relationships between functional parameters from MR (iAUC, K trans, and BATfrac) and structural parameters from CT (vessel volume, radius, and tortuosity) were assessed using linear models. Tumors treated with anti-VEGFR2 antibody were then imaged to determine whether antiangiogenic therapy altered these relationships. Finally, functional-structural relationships were measured in 10 patients with liver metastases from colorectal cancer.Results: Functional parameters iAUC and K trans primarily reflected vessel volume in untreated preclinical tumors. The relationships varied spatially and with tumor vascularity, and were altered by antiangiogenic treatment. In human liver metastases, all three structural parameters were linearly correlated with iAUC and K trans For iAUC, structural parameters also modified each other's effect.Conclusions: Our findings suggest that MR imaging biomarkers of vascular function are linked to structural changes in tumor vessels and that antiangiogenic therapy can affect this link. Our work also demonstrates the feasibility of three-dimensional functional-structural validation of MR biomarkers in vivo to improve their biological interpretation and clinical utility. Clin Cancer Res; 24(19); 4694-704. ©2018 AACR.
Collapse
Affiliation(s)
- Pavitra Kannan
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom.
| | - Warren W Kretzschmar
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Helen Winter
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Daniel Warren
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Russell Bates
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Philip D Allen
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nigar Syed
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
- NHS, Department of Radiology, Churchill Hospital, Oxford, United Kingdom
| | - Benjamin Irving
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Bartlomiej W Papiez
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Jakob Kaeppler
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bosjtan Markelc
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul Kinchesh
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stuart Gilchrist
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Julia A Schnabel
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tim Maughan
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruth J Muschel
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mike Partridge
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ricky A Sharma
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, University College London, London, United Kingdom
| | - Veerle Kersemans
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Hoffmann A, Dege T, Kunze R, Ernst AS, Lorenz H, Böhler LI, Korff T, Marti HH, Heiland S, Bendszus M, Helluy X, Pham M. Early Blood-Brain Barrier Disruption in Ischemic Stroke Initiates Multifocally Around Capillaries/Venules. Stroke 2018; 49:1479-1487. [PMID: 29760276 DOI: 10.1161/strokeaha.118.020927] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/29/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Detection and localization of the early phase of blood-brain barrier disruption (BBBD) in vivo during cerebral ischemia/reperfusion injury remain a major challenge but may be a relevant outcome parameter in stroke. METHODS We studied early BBBD in mice after transient middle cerebral artery occlusion by multimodal, high-field (9.4T) in vivo magnetic resonance imaging, including the contrast agent gadofluorineM as an albumin-binding tracer. GadofluorineM contrast-enhanced magnetic resonance imaging was performed to determine BBBD at 2, 6, and 24 hours after reperfusion. BBBD was confirmed and localized along the microvascular tree by using fluorescent gadofluorineM and immunofluorescence stainings (cluster of differentiation 31, ephrin type-B receptor 4, alpha smooth muscle actin, ionized calcium binding adaptor molecule 1). RESULTS GadofluorineM contrast-enhanced magnetic resonance imaging revealed a multifocal spatial distribution of early BBBD and its close association with the microvasculature at a resolution of 40 μm. GadofluorineM leakage was closely associated with ephrin type-B receptor 4-positive but not alpha smooth muscle actin-positive vessels. The multifocal pattern of early BBBD (already at 2 hours after reperfusion) thus occurred in the distal capillary and venular microvascular bed. These multifocal zones showed distinct imaging signs indicative of early vasogenic edema. The total volume of multifocal early BBBD accurately predicted infarct size at 24 hours after reperfusion. CONCLUSIONS Early BBBD in focal cerebral ischemia initiates multifocally in the distal capillary and venular bed of the cerebral microvasculature. It is closely associated with perimicrovascular vasogenic edema and microglial activation and predicts the extent of final infarction.
Collapse
Affiliation(s)
- Angelika Hoffmann
- From the Department of Neuroradiology, Heidelberg University Hospital, Germany (A.H., T.D., S.H., M.B., M.P.)
| | - Tassilo Dege
- From the Department of Neuroradiology, Heidelberg University Hospital, Germany (A.H., T.D., S.H., M.B., M.P.)
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology (R.K., A.-S.E., L.-I.B., T.K., H.H.M., X.H.)
| | - Anne-Sophie Ernst
- Institute of Physiology and Pathophysiology (R.K., A.-S.E., L.-I.B., T.K., H.H.M., X.H.).,Heidelberg Biosciences International Graduate School (A.-S.E., L.-I.B.)
| | - Holger Lorenz
- Center of Molecular Biology, University of Heidelberg (ZMBH) (H.L.), Heidelberg University, Germany
| | - Laura-Inés Böhler
- Institute of Physiology and Pathophysiology (R.K., A.-S.E., L.-I.B., T.K., H.H.M., X.H.).,Heidelberg Biosciences International Graduate School (A.-S.E., L.-I.B.)
| | - Thomas Korff
- Institute of Physiology and Pathophysiology (R.K., A.-S.E., L.-I.B., T.K., H.H.M., X.H.)
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology (R.K., A.-S.E., L.-I.B., T.K., H.H.M., X.H.)
| | - Sabine Heiland
- From the Department of Neuroradiology, Heidelberg University Hospital, Germany (A.H., T.D., S.H., M.B., M.P.)
| | - Martin Bendszus
- From the Department of Neuroradiology, Heidelberg University Hospital, Germany (A.H., T.D., S.H., M.B., M.P.)
| | - Xavier Helluy
- Institute of Physiology and Pathophysiology (R.K., A.-S.E., L.-I.B., T.K., H.H.M., X.H.).,Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology (X.H.).,Department of Neurophysiology (X.H.), Ruhr University Bochum, Germany
| | - Mirko Pham
- From the Department of Neuroradiology, Heidelberg University Hospital, Germany (A.H., T.D., S.H., M.B., M.P.).,Department of Neuroradiology, Würzburg University Hospital, Germany (M.P.)
| |
Collapse
|
25
|
Wirthschaft P, Bode J, Simon AEM, Hoffmann E, van Laack R, Krüwel T, Dietrich F, Bucher D, Hahn A, Sahm F, Breckwoldt MO, Kurz FT, Hielscher T, Fischer B, Dross N, Ruiz de Almodovar C, von Deimling A, Herold-Mende C, Plass C, Boulant S, Wiestler B, Reifenberger G, Lichter P, Wick W, Tews B. A PRDX1-p38α heterodimer amplifies MET-driven invasion of IDH-wildtype and IDH-mutant gliomas. Int J Cancer 2018; 143:1176-1187. [PMID: 29582423 DOI: 10.1002/ijc.31404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/12/2018] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
Abstract
The Peroxiredoxin 1 (PRDX1) gene maps to chromosome arm 1p and is hemizygously deleted and epigenetically silenced in isocitrate dehydrogenase 1 or 2 (IDH)-mutant and 1p/19q-codeleted oligodendroglial tumors. In contrast, IDH-wildtype astrocytic gliomas including glioblastomas mostly lack epigenetic silencing and express PRDX1 protein. In our study, we investigated how PRDX1 contributes to the infiltrative growth of IDH-wildtype gliomas. Focusing on p38α-dependent pathways, we analyzed clinical data from 133 patients of the NOA-04 trial cohort to look for differences in the gene expression profiles of gliomas with wildtype or mutant IDH. Biochemical interaction studies as well as in vitro and ex vivo migration studies were used to establish a biological role of PRDX1 in maintaining pathway activity. Whole-brain high-resolution ultramicroscopy and survival analyses of pre-clinical mouse models for IDH-wildtype gliomas were then used for in vivo confirmation. Based on clinical data, we found that the absence of PRDX1 is associated with changes in the expression of MET/HGF signaling components. PRDX1 forms a heterodimer with p38α mitogen-activated protein kinase 14 (MAPK14), stabilizing phospho-p38α in glioma cells. This process amplifies hepatocyte growth factor (HGF)-mediated signaling and stimulates actin cytoskeleton dynamics that promote glioma cell migration. Whole-brain high-resolution ultramicroscopy confirms these findings, indicating that PRDX1 promotes glioma brain invasion in vivo. Finally, reduced expression of PRDX1 increased survival in mouse glioma models. Thus, our preclinical findings suggest that PRDX1 expression levels may serve as a molecular marker for patients who could benefit from targeted inhibition of MET/HGF signaling.
Collapse
Affiliation(s)
- Peter Wirthschaft
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Anika E M Simon
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Elisa Hoffmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Rebecca van Laack
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Fabio Dietrich
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| | - Delia Bucher
- Schaller Research Group at Cell Networks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, DKFZ, Heidelberg, Germany
| | - Artur Hahn
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Michael O Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Felix T Kurz
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernd Fischer
- Junior Research Group Computational Genome Biology, DKFZ, Heidelberg, Germany
| | - Nicolas Dross
- Centre for Organismal Studies, Nikon Imaging Center at the University of Heidelberg, Heidelberg, Germany
| | - Carmen Ruiz de Almodovar
- Heidelberg University Biochemistry Center BZH, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, DKTK, DKFZ, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Germany
| | - Steeve Boulant
- Schaller Research Group at Cell Networks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, DKFZ, Heidelberg, Germany
| | - Benedikt Wiestler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Hospital Düsseldorf, and DKTK, DKFZ Heidelberg, Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Peter Lichter
- Division of Molecular Genetics, DKFZ, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, Heidelberg, Germany
| |
Collapse
|
26
|
Vessel radius mapping in an extended model of transverse relaxation. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:531-551. [DOI: 10.1007/s10334-018-0677-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
27
|
Kurz FT, Buschle LR, Kampf T, Zhang K, Schlemmer HP, Heiland S, Bendszus M, Ziener CH. Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 273:83-97. [PMID: 27794269 DOI: 10.1016/j.jmr.2016.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
We present an analytical solution of the Bloch-Torrey equation for local spin dephasing in the magnetic dipole field around a capillary and for ensembles of capillaries, and adapt this solution for the study of spin dephasing around large capillaries. In addition, we provide a rigorous mathematical derivation of the slow diffusion approximation for the spin-bearing particles that is used in this regime. We further show that, in analogy to the local magnetization, the transverse magnetization of one MR imaging voxel in the regime of static dephasing (where diffusion effects are not considered) is merely the first term of a series expansion that constitutes the signal in the slow diffusion approximation. Theoretical results are in agreement with experimental data for capillaries in rat muscle at 7T.
Collapse
Affiliation(s)
- F T Kurz
- Heidelberg University Hospital, INF 400, D-69120 Heidelberg, Germany; German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany.
| | - L R Buschle
- German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany
| | - T Kampf
- University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - K Zhang
- German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany
| | - H P Schlemmer
- German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany
| | - S Heiland
- Heidelberg University Hospital, INF 400, D-69120 Heidelberg, Germany
| | - M Bendszus
- Heidelberg University Hospital, INF 400, D-69120 Heidelberg, Germany
| | - C H Ziener
- Heidelberg University Hospital, INF 400, D-69120 Heidelberg, Germany; German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany
| |
Collapse
|
28
|
Kirschbaum K, Sonner JK, Zeller MW, Deumelandt K, Bode J, Sharma R, Krüwel T, Fischer M, Hoffmann A, Costa da Silva M, Muckenthaler MU, Wick W, Tews B, Chen JW, Heiland S, Bendszus M, Platten M, Breckwoldt MO. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A 2016; 113:13227-13232. [PMID: 27799546 PMCID: PMC5135308 DOI: 10.1073/pnas.1609397113] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Innate immune cells play a key role in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Current clinical imaging is restricted to visualizing secondary effects of inflammation, such as gliosis and blood-brain barrier disruption. Advanced molecular imaging, such as iron oxide nanoparticle imaging, can allow direct imaging of cellular and molecular activity, but the exact cell types that phagocytose nanoparticles in vivo and how phagocytic activity relates to disease severity is not well understood. In this study we used MRI to map inflammatory infiltrates using high-field MRI and fluorescently labeled cross-linked iron oxide nanoparticles for cell tracking. We confirmed nanoparticle uptake and MR detectability ex vivo. Using in vivo MRI, we identified extensive nanoparticle signal in the cerebellar white matter and circumscribed cortical gray matter lesions that developed during the disease course (4.6-fold increase of nanoparticle accumulation in EAE compared with healthy controls, P < 0.001). Nanoparticles showed good cellular specificity for innate immune cells in vivo, labeling activated microglia, infiltrating macrophages, and neutrophils, whereas there was only sparse uptake by adaptive immune cells. Importantly, nanoparticle signal correlated better with clinical disease than conventional gadolinium (Gd) imaging (r, 0.83 for nanoparticles vs. 0.71 for Gd-imaging, P < 0.001). We validated our approach using the Food and Drug Administration-approved iron oxide nanoparticle ferumoxytol. Our results show that noninvasive molecular imaging of innate immune responses can serve as an imaging biomarker of disease activity in autoimmune-mediated neuroinflammation with potential clinical applications in a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Klara Kirschbaum
- German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jana K Sonner
- German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias W Zeller
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
| | - Katrin Deumelandt
- German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group, University of Heidelberg and DKFZ, 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, DKFZ, 69120 Heidelberg, Germany
| | - Rakesh Sharma
- Schaller Research Group, University of Heidelberg and DKFZ, 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, DKFZ, 69120 Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group, University of Heidelberg and DKFZ, 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, DKFZ, 69120 Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Angelika Hoffmann
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Milene Costa da Silva
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium, Clinical Cooperation Unit Neurooncology, DKFZ, 69120 Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group, University of Heidelberg and DKFZ, 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, DKFZ, 69120 Heidelberg, Germany
| | - John W Chen
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Platten
- German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael O Breckwoldt
- German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Feuchtinger A, Walch A, Dobosz M. Deep tissue imaging: a review from a preclinical cancer research perspective. Histochem Cell Biol 2016; 146:781-806. [DOI: 10.1007/s00418-016-1495-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 10/20/2022]
|
30
|
Alves S, Bode J, Bemelmans AP, von Kalle C, Cartier N, Tews B. Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain. Sci Rep 2016; 6:28272. [PMID: 27320056 PMCID: PMC4913310 DOI: 10.1038/srep28272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors have advanced to the vanguard of gene therapy. Numerous naturally occurring serotypes have been used to target cells in various tissues. There is a strong need for fast and dynamic methods which efficiently unravel viral tropism in whole organs. Ultramicroscopy (UM) is a novel fluorescence microscopy technique that images optically cleared undissected specimens, achieving good resolutions at high penetration depths while being non-destructive. UM was applied to obtain high-resolution 3D analysis of AAV transduction in adult mouse brains, especially in the hippocampus, a region of interest for Alzheimer’s disease therapy. We separately or simultaneously compared transduction efficacies for commonly used serotypes (AAV9 and AAVrh10) using fluorescent reporter expression. We provide a detailed comparative and quantitative analysis of the transduction profiles. UM allowed a rapid analysis of marker fluorescence expression in neurons with intact projections deep inside the brain, in defined anatomical structures. Major hippocampal neuronal transduction was observed with both vectors, with slightly better efficacy for AAV9 in UM. Glial response and synaptic marker expression did not change post transduction.We propose UM as a novel valuable complementary tool to efficiently and simultaneously unravel tropism of different viruses in a single non-dissected adult rodent brain.
Collapse
Affiliation(s)
- Sandro Alves
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
| | - Julia Bode
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion (V077), DKFZ, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Alexis-Pierre Bemelmans
- Commissariat à l´Energie Atomique et aux Energies Alternatives (CEA), Départment de la Recherche Fondamentale (DRF), Institut d´Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux Roses, France
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nathalie Cartier
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion (V077), DKFZ, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| |
Collapse
|