1
|
Palaniappan M, Bohren KM. Purification and biochemical characterization of mutant ligand binding domain of human estrogen receptor α protein. J Steroid Biochem Mol Biol 2025; 251:106763. [PMID: 40245990 DOI: 10.1016/j.jsbmb.2025.106763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The acquisition of mutations in the estrogen receptor alpha (ERα) gene (ESR1) is a key driver in the development of resistance to current endocrine therapy in breast cancer. Clinical studies have shown that ESR1 mutations are frequently observed in patients with metastatic ER-positive breast cancer and are associated with poor survival. Activating ESR1 somatic mutations, particularly Y537S and D538G, drive estrogen-independent activities in cell-based studies and these mutant receptors are less sensitive to current endocrine therapies. Here, we describe the bacterial expression and purification of the ligand binding domains of wild-type, Y537S, and D538G human ERα proteins. The biochemical activities of these domains were confirmed by homogeneous time-resolved fluorescence and polar screen ERα competition assays. The wild-type domain binds to coactivator peptides only in the presence of the ligand estradiol, whereas the Y537S or D538G domains bind coactivator peptides spontaneously even without estradiol, with the Y537S domain showing higher affinity. Thermal shift assays showed that the mutations stabilized these domains. Our purified human ERα wild-type, Y537S, and D538G ligand binding domains recapitulate the biological activities ascribed to the full-length proteins and can therefore be used for small molecule screens that seek to discriminate between wild-type and mutant ERα.
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, United States; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, United States.
| | - Kurt M Bohren
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
2
|
Venetis K, Cursano G, Scafetta R, Giachetti PPMB, Concardi A, De Camilli E, D'Ercole M, Mane E, Frascarelli C, Marra A, Gandini S, Pepe F, Scagnoli S, Rossi SM, Troiano R, Speziale E, De Angelis C, Troncone G, Malapelle U, Perrone G, Botticelli A, Viale G, Curigliano G, Guerini Rocco E, Criscitiello C, Fusco N. ESR1 testing on FFPE samples from metastatic lesions in HR + /HER2- breast cancer after progression on CDK4/6 inhibitor therapy. Breast Cancer Res 2025; 27:79. [PMID: 40369610 PMCID: PMC12079830 DOI: 10.1186/s13058-025-02020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Mutations in ESR1 play a critical role in resistance to endocrine therapy (ET) in hormone receptor-positive (HR +)/HER2- metastatic breast cancer (MBC). Testing for ESR1 mutations is essential for guiding treatment with novel oral selective estrogen receptor degraders (SERDs) like elacestrant or camizestrant. While most studies have utilized liquid biopsy (LB) for mutation detection, the role of formalin-fixed paraffin-embedded (FFPE) tissue biopsy in this context remains unclear. In this study, we analyzed a cohort of HR + /HER2- MBC patients who experienced resistance to ET and CDK4/6 inhibitors. Next-generation sequencing (NGS) was performed on FFPE biopsy samples obtained from metastatic sites at the time of disease progression. ESR1 mutations were detected in 24 out of 38 patients (63.2%), with p.D538G identified in 10 patients (45.5%) and p.Y537S in 6 patients (27.2%) as the most frequent alterations. One patient exhibited dual ESR1 mutations, and a recurrent ESR1-CCDC170 gene fusion was identified, underscoring the diversity and potential interplay of genetic alterations driving resistance in HR + /HER2- MBC. Notably, lung metastases were significantly more common in ESR1 mutant cases (8/24, 33.3%) compared to wild-type cases (1/14, 7.1%), while liver metastases showed no difference between mutant (12/24, 50.0%) and wild-type groups (7/14, 50.0%). Co-mutations in actionable pathways, particularly PIK3CA, were observed in n = 10 ESR1 mutant tumors (41.6%), highlighting their contribution to resistance mechanisms and posing significant challenges for treatment selection, as these alterations may necessitate combination therapies to effectively target multiple resistance pathways. This study presents new insights into the prevalence and clinical significance of ESR1 mutations in HR + /HER2- MBC, highlighting the potential utility of FFPE biopsy samples as a viable alternative or complementary approach to LB for mutation detection, particularly in resource-limited settings where access to ctDNA analysis may be constrained.
Collapse
Affiliation(s)
| | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberta Scafetta
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Pier Paolo Maria Berton Giachetti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Concardi
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa De Camilli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Marianna D'Ercole
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, IEO, IRCCS, Milan, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Simone Scagnoli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Silvia Maria Rossi
- Operative Research Unit of Anatomical Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine, Research Unit of Anatomical Pathology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Raffaella Troiano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Elena Speziale
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Giuseppe Perrone
- Operative Research Unit of Anatomical Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine, Research Unit of Anatomical Pathology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Viale
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini Rocco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Khan A, Sisodiya S, Aftab M, Tanwar P, Hussain S, Gupta V. Mechanisms and Therapeutic Strategies for Endocrine Resistance in Breast Cancer: A Comprehensive Review and Meta-Analysis. Cancers (Basel) 2025; 17:1653. [PMID: 40427153 DOI: 10.3390/cancers17101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 05/29/2025] Open
Abstract
Background: As per recent scenarios, drug resistance is a significant challenge in treating breast cancer for several reasons, such as genetic mutations, altered signaling pathways, and tumor microenvironment. Endocrine resistance is one of the biggest significant barriers to treatment, particularly in hormone receptor-positive (HR+) breast cancers, which depends on estrogen or progesterone signaling for growth. While therapies such as tamoxifen, aromatase inhibitors, and selective estrogen receptor degraders (SERDs) have effectively targeted these pathways, many patients develop resistance, rendering them less effective over time, which is driving a need for innovative therapeutics to treat breast cancer and overcome drug resistance and better treatment outcomes. Recent studies suggest that combining the different therapies, including immunotherapy, targeted therapy, chemotherapy, etc., with endocrine therapy, may bypass the endocrine resistance. Methodology: We conducted a comprehensive systematic review and meta-analysis examining the molecular mechanisms of endocrine resistance and evaluating randomized clinical trial outcomes, overall survival and progression-free survival in endocrine-resistant breast cancer patients treated with endocrine therapy, targeted therapy, immunotherapy, or chemotherapy. Results: We have analyzed 35 randomized clinical trial studies for different therapies along with combination therapy, and our results demonstrated that supplementary or additional therapies in endocrine resistance breast cancer patients have better progression-free and overall survival. Conclusions: The current study has demonstrated that combination therapies may have good survival results and patient outcomes in endocrine resistance. Also, This review sheds light on current challenges in drug resistance and the future direction of cancer treatment through a comprehensive analysis of these emerging treatment approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Asiya Khan
- Multidisciplinary Research Unit, Government Institute of Medical Sciences, Greater Noida 201310, India
- Department of Pathology, Government Institute of Medical Sciences, Greater Noida 201310, India
| | - Sandeep Sisodiya
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Ministry of Health and Family Welfare, Government of India, Noida 201301, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune 412115, India
| | - Mehreen Aftab
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Ministry of Health and Family Welfare, Government of India, Noida 201301, India
| | - Pranay Tanwar
- Lab Oncology Unit, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Showket Hussain
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Ministry of Health and Family Welfare, Government of India, Noida 201301, India
| | - Vivek Gupta
- Department of Pathology, Government Institute of Medical Sciences, Greater Noida 201310, India
| |
Collapse
|
4
|
Eerlings R, Lee XY, Van Eynde W, Moris L, El Kharraz S, Smeets E, Devlies W, Claessens F, Verstrepen KJ, Voet A, Helsen C. Rewiring Estrogen Receptor α into Bisphenol Selective Receptors Using Darwin Assembly-Based Directed Evolution (DADE) in Saccharomyces cerevisiae. ACS Synth Biol 2025. [PMID: 40347189 DOI: 10.1021/acssynbio.5c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Bisphenols are widely used in manufacturing plastics and resins, but their environmental persistence raises concerns to human health and ecosystems. Accurate measurements for bisphenols are crucial for effective monitoring and regulation. Analytical methods detect only preselected bisphenols, while bioassays assessing estrogen receptor α activation suffer from poor sensitivity and strong background signals due to estrogenic contaminations. To develop a bioassay in Saccharomyces cerevisiae with increased sensitivity and specificity for bisphenols, we performed multi-site directed mutagenesis and directed evolution of more than 108 stably integrated estrogen receptor variants. By mutating the estrogen receptor α towards recognition of bisphenol A in yeast, we determined the preBASE variant (M421G_V422G_V533D_L536G_Y537S) with elevated bisphenol A sensitivity (EC50:329 nM) and lost estrogen responsiveness (EC50:0,17 mM). Further engineering yielded an off-target mutant, identified as the Bisphenol-Affinity and Specificity-Enhanced (BASE) variant (M421G_V422G_V533D_L536G_Y537S_L544I) that uses bisphenols as its primary agonist (EC50:32 mM) and impaired estrogen sensitivity (EC50:85M). The rewiring into a bisphenol receptor was confirmed in ligand binding assays to purified ligand binding domains. Taken together, the identified variants form stepping stones for further protein engineering to generate bisphenol specific high-throughput yeast-based bioassays.
Collapse
Affiliation(s)
- Roy Eerlings
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Heverlee, Belgium
| | - Xiao Yin Lee
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Wout Van Eynde
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
| | - Lisa Moris
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Sarah El Kharraz
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elien Smeets
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Wout Devlies
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory of Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Heverlee, Belgium
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
| | - Christine Helsen
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Kumar A, Purohit N, Singh PP, Jangid K, Kumar V, Bharat JS, Chakraborty S, Kumar V, Jaitak V. Identification of phytochemicals from genus Potentilla as estrogen receptor-α inhibitors through molecular docking, molecular dynamic simulation and DFT calculations. J Biomol Struct Dyn 2025:1-17. [PMID: 40307235 DOI: 10.1080/07391102.2025.2498622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2025]
Abstract
Breast cancer is among the most prevalent causes of death in women worldwide. About 70-75% of these cancers are hormone-dependent, expressing estrogen receptors (ERs), mainly ER-α, making it an essential target for managing breast cancer. Potentilla genus has been traditionally used worldwide for its diverse biological activities, including antidiabetic, anti-inflammatory, antioxidant, etc. In the present study, phytochemicals isolated from various species of the Potentilla species were evaluated for their in silico ER-α inhibitory activity through molecular docking, molecular dynamic simulation, Density Functional Theory calculations and free energy calculations. Four hundred seventy-one molecules were used through ligand preparation and docked inside the generated grid on ER-α protein cavity and the standard drug tamoxifen. Fourteen molecules have shown better dock (-14.42 to -12.57 kcal/mol) scores than tamoxifen (-10.71 kcal/mol). Most of the molecules belong to the category of flavonoid glycosides. Molecules with good binding free energy (-78.81 to -12.94 kcal/mol) indicate stability inside the binding pocket. Further, based on dock score, pharmacokinetic parameters, and binding free energy, two hit molecules, 1 and 2, were selected for their molecular dynamic simulation, MM/PBSA and DFT calculations for assessing their stability and structural dynamics inside the binding cavity as well as their reactivity. Through MD simulation analysis, it was evaluated that Compound 1 could distort the protein to a greater extent. In contrast, compound 2 was stable throughout the simulation time of 150 ns and can be further explored in vitro and in vivo studies as ER-α inhibitors in breast cancer.
Collapse
Affiliation(s)
- Amit Kumar
- Natural Product Chemistry Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Nehal Purohit
- Natural Product Chemistry Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Praval Pratap Singh
- Department of Computational Sciences, Central University of Punjab, Bathinda, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Vijay Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Jare Shrikrushna Bharat
- Natural Product Chemistry Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Sudip Chakraborty
- Department of Computational Sciences, Central University of Punjab, Bathinda, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Vikas Jaitak
- Natural Product Chemistry Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
6
|
Nakashoji A, Bhattacharya A, Ozawa H, Haratake N, Shigeta K, Fushimi A, Yamashita N, Matsui A, Kure S, Kameyama T, Takeuchi M, Fukuda K, Yokoe T, Nagayama A, Hayahsida T, Kitagawa Y, Liu R, Giordano A, Jeselsohn R, Shapiro GI, Kufe D. MUC1-C dependency in drug resistant HR+/HER2- breast cancer identifies a new target for antibody-drug conjugate treatment. NPJ Breast Cancer 2025; 11:39. [PMID: 40287441 PMCID: PMC12033257 DOI: 10.1038/s41523-025-00751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Treatment of hormone receptor (HR)-positive, HER2-negative breast cancer (HR+/HER2- BC) is limited by resistance to endocrine therapy (ET) and CDK4/6 inhibitors. There is no known common pathway that confers resistance to these agents. We report that (i) the MUC1 gene is upregulated in HR+/HER2- BCs and (ii) the MUC1-C protein regulates estrogen receptor alpha (ER)-driven transcriptomes. Mechanistically, we demonstrate that MUC1-C is necessary for expression of SRC-3 and MED1 coactivators that drive ER-mediated target gene transcription. Cells with ESR1 mutations that confer ET resistance, as well as cells with acquired resistance to the CDK4/6 inhibitor abemaciclib, are dependent on MUC1-C for (i) expression of these coactivators and ER target genes, (ii) survival, and (iii) self-renewal capacity. In support of these results, we show that treatment of HR+/HER2- BC cells with an anti-MUC1-C antibody-drug conjugate (ADC) effectively inhibits survival, self-renewal and tumorgenicity. These findings indicate that MUC1-C is a common effector of drug-resistant HR+/HER2- BC cells and is a potential target for their treatment.
Collapse
Affiliation(s)
- Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Akira Matsui
- Department of Breast Surgery, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Shoko Kure
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tomoe Kameyama
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Takeuchi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takamichi Yokoe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Aiko Nagayama
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tetsu Hayahsida
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Renyan Liu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Antonio Giordano
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rinath Jeselsohn
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Arévalo-Salina EL, Nishigaki T, Olvera L, González-Andrade M, Xolalpa-Villanueva W, López-Romero EO, Soberón X, Saab-Rincón G. Change in selectivity of estrogen receptor alpha ligand-binding domain by mutations at residues H524/L525. Biochim Biophys Acta Gen Subj 2025; 1869:130775. [PMID: 39956471 DOI: 10.1016/j.bbagen.2025.130775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/29/2024] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
The estrogen receptor alpha (ERα) features a large ligand-binding pocket capable of accommodating a variety of conformationally diverse molecules, each eliciting unique cellular responses. This structural plasticity facilitates various conformational changes, exposing different interaction surfaces for cellular proteins, triggering a myriad of biological outcomes. Alterations in the ligand-binding domain, particularly through amino acid substitutions, can modify the recognition and selectivity of ERα for agonists versus antagonists. In our study, we engineered a small library of ERα variants by modifying residues 524 and 525. These modifications resulted in variants with up to seventy-fold increased selectivity for the antagonist endoxifen and up to fifty-fold increased selectivity for the antagonist 4-hydroxytamoxifen (4-OHT) over the natural ligand estradiol. Analyzing these variants elucidates the critical roles of residues 524 and 525 in determining agonist specificity for estradiol. This advancement holds significant potential for developing selective recognition molecules, a crucial step towards creating a biosensor for endoxifen, the active metabolite used in breast cancer treatment.
Collapse
Affiliation(s)
- Emma L Arévalo-Salina
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Leticia Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Wendy Xolalpa-Villanueva
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Edith O López-Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Xavier Soberón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
8
|
Fu H, Mo X, Ivanov AA. Decoding the functional impact of the cancer genome through protein-protein interactions. Nat Rev Cancer 2025; 25:189-208. [PMID: 39810024 DOI: 10.1038/s41568-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs). The functional impact of individual genomic alterations could be transmitted through regulated nodes and hubs of PPIs. Oncogenic mutations may lead to modified residues of proteins, enabling interactions with other proteins that the wild-type protein does not typically interact with, or preventing interactions with proteins that the wild-type protein usually interacts with. This can result in the rewiring of molecular signalling cascades and the acquisition of an oncogenic phenotype. Here, we review the altered PPIs driven by oncogenic mutations, discuss technologies for monitoring PPIs and provide a functional analysis of mutation-directed PPIs. These driver mutation-enabled PPIs and mutation-perturbed PPIs present a new paradigm for the development of tumour-specific therapeutics. The intersection of cancer variants and altered PPI interfaces represents a new frontier for understanding oncogenic rewiring and developing tumour-selective therapeutic strategies.
Collapse
Affiliation(s)
- Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Sendanayake LR, Pokhrel R, Holub JM. Surveying helix 12 dynamics within constitutively active estrogen receptors using bipartite tetracysteine display. J Biol Chem 2025; 301:108231. [PMID: 39864623 PMCID: PMC11889964 DOI: 10.1016/j.jbc.2025.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025] Open
Abstract
Somatic Y537S and D538G mutations within the estrogen receptor alpha ligand-binding domain (ERα-LBD) have been linked to enhanced cell proliferation, survival, and metastases in ER-positive breast cancers. Such mutations are thought to confer ligand-independent receptor activation by increasing the flexibility of helix 12 (H12), a segment within the ERα-LBD that acts as a dynamic regulator of ERα activity. We employed bipartite tetracysteine display coupled with the biarsenical profluorophore FlAsH-EDT2 to monitor ligand-independent structural transitions of H12 in ERα-LBDs that include Y537S or D538G mutations. Our results show that in the absence of 17β-estradiol, Y537S and D538G mutations cause H12 to fold into a "stable agonist" conformation that is similar to liganded (17β-estradiol-bound) wildtype ERα-LBDs. We also observed that stable agonist conformations adopted by unliganded Y537S or D538G mutants resist H12 transitions to inactive states. Taken together, these results indicate that Y537S and D538G mutations endow constitutive activity to the ERα by directly influencing H12 dynamics. Furthermore, our findings provide insight into how Y537S and D538G mutations impart resistance to endocrine or antiestrogen therapies in ER-positive breast cancers.
Collapse
Affiliation(s)
| | - Ranju Pokhrel
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, USA
| | - Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, USA; Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA; Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
10
|
Young KS, Hancock GR, Fink EC, Zigrossi A, Flowers B, Cooper DA, Nguyen VT, Martinez MC, Mon KS, Bosland M, Zak DR, Runde AP, Sharifi MN, Kastrati I, Minh DDL, Kregel S, Fanning SW. Targeting unique ligand binding domain structural features downregulates DKK1 in Y537S ESR1 mutant breast cancer cells. Breast Cancer Res 2025; 27:10. [PMID: 39825366 PMCID: PMC11742495 DOI: 10.1186/s13058-024-01945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/08/2024] [Indexed: 01/20/2025] Open
Abstract
Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable. A tyrosine to serine point mutation at position 537 in the ERα ligand binding domain (LBD) is among the most common and most pathogenic alteration in this setting. It enables endocrine therapy resistance by superceding intrinsic structural-energetic gatekeepers of ER hormone-dependence, it enhances metastatic burden by enabling neomorphic ER-dependent transcriptional programs, and it resists SERM and SERD inhibiton by reducing their binding affinities and abilities to antagonize transcriptional coregulator binding. However, a subset of SERMs and SERDs can achieve efficacy by adopting poses that force the mutation to engage in a new interaction that favors the therapeutic receptor antagonist conformation. We previously described a chemically unconventional SERM, T6I-29, that demonstrates significant anti-proliferative activities in Y537S ERα breast cancer cells. Here, we use a comprehensive suite of structural-biochemical, in vitro, and in vivo approaches to better T6I-29's activities in breast cancer cells harboring Y537S ERα. RNA sequencing in cells treated with T6I-29 reveals a neomorphic downregulation of DKK1, a secreted glycoprotein known to play oncogenic roles in other cancers. Importantly, we find that DKK1 is significantly enriched in ER + breast cancer plasma compared to healthy controls. This study shows how new SERMs and SERDs can identify new therapeutic pathways in endocrine-resistant ER + breast cancers.
Collapse
Affiliation(s)
- K S Young
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - G R Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - E C Fink
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - A Zigrossi
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - B Flowers
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - D A Cooper
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - V T Nguyen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - M C Martinez
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - K S Mon
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - M Bosland
- Department of Pathology, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - D R Zak
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - A P Runde
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - M N Sharifi
- Department of Medicine, University of Wisconsin, Madison, WI, 53705, USA
| | - I Kastrati
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - D D L Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - S Kregel
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA.
| |
Collapse
|
11
|
Smilkou S, Ntzifa A, Tserpeli V, Balgkouranidou I, Papatheodoridi A, Razis E, Linardou H, Papadimitriou C, Psyrri A, Zagouri F, Kakolyris S, Lianidou E. Detection rate for ESR1 mutations is higher in circulating-tumor-cell-derived genomic DNA than in paired plasma cell-free DNA samples as revealed by ddPCR. Mol Oncol 2025. [PMID: 39754401 DOI: 10.1002/1878-0261.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Plasma cell-free DNA (cfDNA) analysis to track estrogen receptor 1 (ESR1) mutations is highly beneficial for the identification of tumor molecular dynamics and the improvement of personalized treatments for patients with metastatic breast cancer (MBC). Plasma-cfDNA is, up to now, the most frequent liquid biopsy analyte used to evaluate ESR1 mutational status. Circulating tumor cell (CTC) enumeration and molecular characterization analysis provides important clinical information in patients with MBC. In this study, we investigated whether analysis of CTCs and circulating tumor DNA (ctDNA) provide similar or complementary information for the analysis of ESR1 mutations. We analyzed both plasma-cfDNA (n = 90) and paired CTC-derived genomic DNA (gDNA; n = 42) from 90 MBC patients for seven ESR1 mutations. Eight out of 90 (8.9%) plasma-cfDNA samples tested using the ddPLEX Mutation Detection Assay (Bio-Rad, Hercules, CA, USA), were found positive for one ESR1 mutation, whereas 11/42 (26.2%) CTC-derived gDNA samples were found positive for at least one ESR1 mutation. Direct comparison of paired samples (n = 42) revealed that the ESR1 mutation rate was higher in CTC-derived gDNA (11/42, 26.2%) than in plasma-cfDNA (6/42, 14.3%) samples. Our results, using this highly sensitive ddPLEX assay, reveal a higher percentage of mutations in CTC-derived gDNAs than in paired ctDNA in patients with MBC. CTC-derived gDNA analysis should be further evaluated as an important and complementary tool to ctDNA for identifying patients with ESR1 mutations and for guiding individualized therapy.
Collapse
Affiliation(s)
- Stavroula Smilkou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | - Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | - Victoria Tserpeli
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | - Ioanna Balgkouranidou
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Greece
| | - Alkistis Papatheodoridi
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, "Attikon" University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos Kakolyris
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| |
Collapse
|
12
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Foo J, Gentile F, Massah S, Morin H, Singh K, Lee J, Smith J, Ban F, LeBlanc E, Young R, Strynadka N, Lallous N, Cherkasov A. Characterization of novel small molecule inhibitors of estrogen receptor-activation function 2 (ER-AF2). Breast Cancer Res 2024; 26:168. [PMID: 39593108 PMCID: PMC11590367 DOI: 10.1186/s13058-024-01926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Up to 40% of patients with estrogen receptor (ER)-positive breast cancer will develop resistance against the majority of current ER-directed therapies. Resistance can arise through various mechanisms such as increased expression levels of coregulators, and key mutations acquired in the receptor's ligand binding domain rendering it constitutively active. To overcome these resistance mechanisms, we explored targeting the ER Activation Function 2 (AF2) site, which is essential for coactivator binding and activation. Using artificial intelligence and the deep docking methodology, we virtually screened > 1 billion small molecules and identified 290 potential AF2 binders that were then characterized and validated through an iterative screening pipeline of cell-based and cell-free assays. We ranked the compounds based on their ability to reduce the transcriptional activity of the estrogen receptor and the viability of ER-positive breast cancer cells. We identified a lead compound, VPC-260724, which inhibits ER activity at low micromolar range. We confirmed its direct binding to the ER-AF2 site through a PGC1α peptide displacement experiment. Using proximity ligation assays, we showed that VPC-260724 disrupts the interaction between ER-AF2 and the coactivator SRC-3 and reduces the expression of ER target genes in various breast cancer models including the tamoxifen resistant cell line TamR3. In conclusion, we developed a novel ER-AF2 binder, VPC-260724, which shows antiproliferative activity in ER-positive breast cancer models. The use of an ER-AF2 inhibitor in combination with current treatments may provide a novel complementary therapeutic approach to target treatment resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Jane Foo
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Francesco Gentile
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Shabnam Massah
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Helene Morin
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Kriti Singh
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Joseph Lee
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Jason Smith
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Fuqiang Ban
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Eric LeBlanc
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Robert Young
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Natalie Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Nada Lallous
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| | - Artem Cherkasov
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
14
|
Palaniappan M. Current Therapeutic Opportunities for Estrogen Receptor Mutant Breast Cancer. Biomedicines 2024; 12:2700. [PMID: 39767607 PMCID: PMC11673253 DOI: 10.3390/biomedicines12122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Estrogen receptor α (ERα) drives two out of three breast cancers and therefore ERα is a major therapeutic target for ER-positive breast cancer patients. Drugs that inhibit ERα activity or block estrogen synthesis in the body are currently being used in the clinic to treat ER-positive breast cancer and have been quite successful in controlling breast cancer progression for the majority of patients. However, ER-positive breast cancer often becomes resistant to these endocrine therapies, leading to endocrine-resistant metastatic breast cancer, a very aggressive cancer that leads to death. Recent large-scale genomic studies have revealed a series of activating somatic mutations in the ERα gene (ESR1) in endocrine-resistant metastatic breast cancer patients. Of these, Y537S and D538G mutations are found at a much higher rate in patients with metastatic breast cancer. Remarkably, these mutations produce an ERα with much higher transcriptional activity than wild type in the absence of estradiol, and traditional endocrine therapy has poor efficacy against ER mutants. Therefore, the development of new drugs that target ER mutants is an unmet clinical need for endocrine-resistant metastatic breast cancer. This review summarizes the recent preclinical and clinical trials targeting estrogen receptor mutant breast cancer.
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA;
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Yayli G, Tokofsky A, Nayar U. The intersection of the HER2-low subtype with endocrine resistance: the role of interconnected signaling pathways. Front Oncol 2024; 14:1461190. [PMID: 39650068 PMCID: PMC11621065 DOI: 10.3389/fonc.2024.1461190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Since its introduction in the 1970s, endocrine therapy that targets the estrogen receptor alpha (ERα) signaling pathway has had tremendous success in the clinic in estrogen receptor positive (ER+) breast cancer. However, resistance to endocrine therapy eventually develops in virtually all patients with metastatic disease. Endocrine resistance is a primary unaddressed medical need for ER+ metastatic breast cancer patients. It has been shown that tumors become resistant through various mechanisms, converging on the acquisition of genetic alterations of ER, components of the MAP kinase pathway, or transcription factors (TFs). For instance, mutations in the human epidermal growth factor receptor-2 (HER2) lead to complete resistance to all current endocrine therapies including aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor degraders, as well as cross-resistance to CDK4/6 inhibitors (CDK4/6is). Emerging evidence points to an intriguing connection between endocrine-resistant tumors and the HER2-low subtype. Specifically, recent studies and our analysis of a publicly available breast cancer dataset both indicate that metastatic ER+ breast cancer with endocrine resistance conferred through acquired genetic alterations can often be classified as HER2-low rather than HER2-0/HER2-negative. Limited data suggest that acquired endocrine resistance can also be accompanied by a subtype switch. Therefore, we suggest that there is an underappreciated association between the HER2-low subtype and endocrine resistance. In this perspective piece, we explore the evidence linking the HER2-low subtype with the various pathways to endocrine resistance and suggest that there are signaling networks in HER2-low tumors that intersect endocrine resistance and can be effectively targeted.
Collapse
Affiliation(s)
- Gizem Yayli
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Alexa Tokofsky
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Utthara Nayar
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
16
|
Gao Y, Yu Y, Zhang M, Yu W, Kang L. Mechanisms of endocrine resistance in hormone receptor-positive breast cancer. Front Oncol 2024; 14:1448687. [PMID: 39544302 PMCID: PMC11560879 DOI: 10.3389/fonc.2024.1448687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
Hormone receptor-positive breast cancer may recur or metastasize years or decades after its diagnosis. Furthermore, hormone receptor expression may persist in relapsed or metastatic cancer cells. Endocrine therapy is one of the most efficacious treatments for hormone receptor-positive breast cancers. Nevertheless, a considerable proportion of patients develop resistance to endocrine therapy. Previous studies have identified numerous mechanisms underlying drug resistance, such as epigenetic abnormalities in the estrogen receptor (ER) genome, activation of ER-independent ligands, and alterations in signaling pathways including PI3K/AKT/mTOR, Notch, NF-κB, FGFR, and IRE1-XBP1. This article reviews the mechanisms of endocrine resistance in hormone receptor-positive advanced breast cancer, drawing from previous studies, and discusses the latest research advancements and prospects.
Collapse
Affiliation(s)
| | | | | | | | - Lihua Kang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Bouricha EM, Hakmi M. Investigating Lasofoxifene Efficacy Against the Y537S + F404V Double-Mutant Estrogen Receptor Alpha Using Molecular Dynamics Simulations. Bioinform Biol Insights 2024; 18:11779322241288703. [PMID: 39386976 PMCID: PMC11462567 DOI: 10.1177/11779322241288703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Estrogen receptor alpha (ERα) plays a critical role in breast cancer (BC) progression, with endocrine therapy being a key treatment for ERα + BC. However, resistance often arises due to somatic mutations in the ERα ligand-binding domain (LBD). Lasofoxifene, a third-generation selective estrogen receptor modulator, has shown promise against Y537S and D538G mutations. However, the emergence of a novel F404 mutation in patients with pre-existing LBD mutations raises concerns about its impact on lasofoxifene efficacy. This study investigates the impact of the dual Y537S and F404V mutations on lasofoxifene's efficacy. Using molecular dynamics simulations and molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) free energy calculations, we found that the dual mutation reduces lasofoxifene binding affinity and binding free energy, disrupts crucial protein-ligand interactions, and induces significant conformational changes in the ligand-binding pocket. These alterations are likely due to the loss of the pi-pi stacking interaction in the F404V mutation. These findings suggest a potential reduction in lasofoxifene efficacy due to the dual mutation. Further experimental validation is required to confirm these results and fully understand the impact of dual mutations on lasofoxifene's effectiveness in ERα + metastatic BC.
Collapse
Affiliation(s)
- El Mehdi Bouricha
- Mohammed VI University of Sciences and Health, Morocco
- Mohammed VI Center for Research and Innovation, Morocco
| | - Mohammed Hakmi
- Mohammed VI University of Sciences and Health, Morocco
- Mohammed VI Center for Research and Innovation, Morocco
| |
Collapse
|
18
|
Alamri AM, Alkhilaiwi FA, Khan NU, Mashat RM, Tasleem M. Exploring pathogenic SNPs and estrogen receptor alpha interactions in breast cancer: An in silico approach. Heliyon 2024; 10:e37297. [PMID: 39286133 PMCID: PMC11403482 DOI: 10.1016/j.heliyon.2024.e37297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
The estrogen receptor 1 gene (ESR1) plays a crucial role in breast and mammary development in humans. Alterations such as gene amplification, genomic rearrangements, and missense mutations in the ESR1 gene are reported to increase the risk of breast cancer in humans. The purpose of this study is to analyze the missense mutations and molecular modeling of ESR1, focusing on the pathogenic SNP H516N, for a better understanding of disease risk and future benefits for therapeutic benefits. This SNP was selected based on its location in the binding pocket of ESR1 and its predicted impact on drug binding. The in silico analysis was performed by applying various computational approaches to identify highly pathogenic SNPs in the binding pocket of ESR1. The effect of the SNP was explored through docking and intra-molecular interaction studies. All SNPs in ESR1 were identified followed by the identification of the highly pathogenic variant located in the binding pocket of ESR1. The mutant model of the pathogenic SNP H516N was generated, and hydroxytamoxifen was docked with the wild-type and the mutant model. The mutant model lost the formation of stable hydrogen bonds with the active site residues and hydroxytamoxifen, which may result in reduced binding affinity and therefore, will predict the patient's response to estrogenic inhibitors.
Collapse
Affiliation(s)
- Ahmad M Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61413, Saudi Arabia
- Cancer Research Unit, King Khalid University, Abha, 61413, Saudi Arabia
| | - Faris A Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar, 25130, Pakistan
| | - Reham Mahmoud Mashat
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia
| | - Munazzah Tasleem
- Center for Global Health and Research, Saveetha Medical College and Hospital, Chennai, 602105, India
| |
Collapse
|
19
|
Zhuang T, Zhang S, Liu D, Li Z, Li X, Li J, Yang P, Zhang C, Cui J, Fu M, Shen F, Yuan L, Zhang Z, Su P, Zhu J, Yang H. USP36 promotes tumorigenesis and tamoxifen resistance in breast cancer by deubiquitinating and stabilizing ERα. J Exp Clin Cancer Res 2024; 43:249. [PMID: 39215346 PMCID: PMC11365244 DOI: 10.1186/s13046-024-03160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer in women globally. Over-activated estrogen receptor (ER) α signaling is considered the main factor in luminal breast cancers, which can be effectively managed with selective estrogen receptor modulators (SERMs) like tamoxifen. However, approximately 30-40% of ER + breast cancer cases are recurrent after tamoxifen therapy. This implies that the treatment of breast cancer is still hindered by resistance to tamoxifen. Recent studies have suggested that post-translational modifications of ERα play a significant role in endocrine resistance. The stability of both ERα protein and its transcriptome is regulated by a balance between E3 ubiquitin ligases and deubiquitinases. According to the current knowledge, approximately 100 deubiquitinases are encoded in the human genome, but it remains unclear which deubiquitinases play a critical role in estrogen signaling and endocrine resistance. Thus, decoding the key deubiquitinases that significantly impact estrogen signaling, including the control of ERα expression and stability, is critical for the improvement of breast cancer therapeutics. METHODS We used several ER positive breast cancer cell lines, DUB siRNA library screening, xenograft models, endocrine-resistant (ERα-Y537S) model and performed immunoblotting, real time PCR, RNA sequencing, immunofluorescence, and luciferase activity assay to investigate the function of USP36 in breast cancer progression and tamoxifen resistance. RESULTS In this study, we identify Ubiquitin-specific peptidase 36 (USP36) as a key deubiquitinase involved in ERα signaling and the advancement of breast cancer by deubiquitinases siRNA library screening. In vitro and in vivo studies showed that USP36, but not its catalytically inactive mutant (C131A), could promote breast cancer progression through ERα signaling. Conversely, silencing USP36 inhibited tumorigenesis. In models resistant to endocrine therapy, silencing USP36 destabilized the resistant form of ERα (Y537S) and restored sensitivity to tamoxifen. Molecular studies indicated that USP36 inhibited K48-linked polyubiquitination of ERα and enhanced the ERα transcriptome. It is interesting to note that our results suggest USP36 as a novel biomarker for treatment of breast cancer. CONCLUSION Our study revealed the possibility that inhibiting USP36 combined with tamoxifen could provide a potential therapy for breast cancer.
Collapse
Affiliation(s)
- Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Shuqing Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Dongyi Liu
- Department of Anaesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Jiaoyan Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Jiayao Cui
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Mingxi Fu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Fangyu Shen
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Lei Yuan
- School of International Education, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Zhao Zhang
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, Henan Province, P.R. China
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| | - Jian Zhu
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China.
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, P.R. China.
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China.
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China.
| |
Collapse
|
20
|
Psaltis JB, Wang Q, Yan G, Gahtani R, Huang N, Haddad BR, Martin MB. Cadmium activation of wild-type and constitutively active estrogen receptor alpha. Front Endocrinol (Lausanne) 2024; 15:1380047. [PMID: 39184142 PMCID: PMC11341946 DOI: 10.3389/fendo.2024.1380047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/05/2024] [Indexed: 08/27/2024] Open
Abstract
The estrogen receptor alpha (ERα) plays a central role in the etiology, progression, and treatment of breast cancers. Constitutively activating somatic mutations Y537S and D538G, in the ligand binding domain (LBD) of ESR1, are associated with acquired resistance to endocrine therapies. We have previously shown that the metalloestrogen calcium activates ERα through an interaction with the LBD of the receptor. This study shows that cadmium activates ERα through a mechanism similar to calcium and contributes to, and further increases, the constitutive activity of the ERα mutants Y537S and D538G. Mutational analysis identified C381, N532A, H516A/N519A/E523A, and E542/D545A on the solvent accessible surface of the LBD as possible calcium/metal interaction sites. In contrast to estradiol, which did not increase the activity of the Y537S and D538G mutants, cadmium increased the activity of the constitutive mutants. Mutation of the calcium/metal interaction sites in Y537S and D538G mutants resulted in a significant decrease in constitutive activity and cadmium induced activity. Mutation of calcium/metal interaction sites in wtERα diminished binding of the receptor to the enhancer of estrogen responsive genes and the binding of nuclear receptor coactivator 1 and RNA polymerase II. In contrast to wtERα, mutation of the calcium/metal interaction sites in the Y537S and D538G mutants did not diminish binding to DNA but prevented a stable interaction with the coactivator and polymerase. Growth assays further revealed that calcium channel blockers and chelators significantly decreased the growth of MCF7 cells expressing these constitutively active mutants. Taken together, the results suggest that exposure to cadmium plays a role in the etiology, progression, and response to treatment of breast cancer due, in part, to its ability to activate ERα.
Collapse
Affiliation(s)
- John B. Psaltis
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Qiaochu Wang
- Depatment of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Gai Yan
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Reem Gahtani
- Depatment of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Nanxi Huang
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Bassem R. Haddad
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Mary Beth Martin
- Department of Oncology, Georgetown University, Washington, DC, United States
- Depatment of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
21
|
Lee TK, Kassees K, Chen CY, Viswanadhapalli S, Parra K, Vadlamudi RK, Ahn JM. Structure-Activity Relationship Study of Tris-Benzamides as Estrogen Receptor Coregulator Binding Modulators. ACS Pharmacol Transl Sci 2024; 7:2023-2043. [PMID: 39022350 PMCID: PMC11249634 DOI: 10.1021/acsptsci.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Estrogen receptor coregulator binding modulators (ERXs) are a novel class of molecules targeting the interaction between estrogen receptor α (ERα) and its coregulator proteins, which has proven to be an attractive strategy for overcoming endocrine resistance in breast cancer. We previously reported ERX-11, an orally bioavailable tris-benzamide, that demonstrated promising antitumor activity against ERα-positive breast cancer cells. To comprehend the significance of the substituents in ERX-11, we carried out structure-activity relationship studies. In addition, we introduced additional alkyl substituents at either the N- or C-terminus to improve binding affinity and biological activity. Further optimization guided by conformational restriction led to the identification of a trans-4-phenylcyclcohexyl group at the C-terminus (18h), resulting in a greater than 10-fold increase in binding affinity and cell growth inhibition potency compared to ERX-11. Tris-benzamide 18h disrupted the ERα-coregulator interaction and inhibited the ERα-mediated transcriptional activity. It demonstrated strong antiproliferative activity on ERα-positive breast cancer cells both in vitro and in vivo, offering a promising potential as a therapeutic candidate for treating ERα-positive breast cancer.
Collapse
Affiliation(s)
- Tae-Kyung Lee
- Department
of Chemistry and Biochemistry, University
of Texas at Dallas, Richardson, Texas 75080, United States
| | - Kara Kassees
- Department
of Chemistry and Biochemistry, University
of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chia-Yuan Chen
- Department
of Chemistry and Biochemistry, University
of Texas at Dallas, Richardson, Texas 75080, United States
| | - Suryavathi Viswanadhapalli
- Department
of Obstetrics and Gynecology, University
of Texas Health, San Antonio, Texas 78229, United States
| | - Karla Parra
- Departments
of Urology and Pharmacology, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ratna K. Vadlamudi
- Department
of Obstetrics and Gynecology, University
of Texas Health, San Antonio, Texas 78229, United States
| | - Jung-Mo Ahn
- Department
of Chemistry and Biochemistry, University
of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
22
|
Valentín López JC, Lange CA, Dehm SM. Androgen receptor and estrogen receptor variants in prostate and breast cancers. J Steroid Biochem Mol Biol 2024; 241:106522. [PMID: 38641298 PMCID: PMC11139604 DOI: 10.1016/j.jsbmb.2024.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The androgen receptor (AR) and estrogen receptor alpha (ERα) are steroid receptor transcription factors with critical roles in the development and progression of prostate and breast cancers. Advances in the understanding of mechanisms underlying the ligand-dependent activation of these transcription factors have contributed to the development of small molecule inhibitors that block AR and ERα actions. These inhibitors include competitive antagonists and degraders that directly bind the ligand binding domains of these receptors, luteinizing hormone releasing hormone (LHRH) analogs that suppress gonadal synthesis of testosterone or estrogen, and drugs that block specific enzymes required for biosynthesis of testosterone or estrogen. However, resistance to these therapies is frequent, and is often driven by selection for tumor cells with alterations in the AR or ESR1 genes and/or alternatively spliced AR or ESR1 mRNAs that encode variant forms AR or ERα. While most investigations involving AR have been within the context of prostate cancer, and the majority of investigations involving ERα have been within the context of breast cancer, important roles for AR have been elucidated in breast cancer, and important roles for ERα have been elucidated in prostate cancer. Here, we will discuss the roles of AR and ERα in breast and prostate cancers, outline the effects of gene- and mRNA-level alterations in AR and ESR1 on progression of these diseases, and identify strategies that are being developed to target these alterations therapeutically.
Collapse
Affiliation(s)
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Medicine-Hematology, Oncology & Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA; Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
23
|
Young K, Hancock G, Fink E, Zigrossi A, Flowers B, Cooper D, Nguyen V, Martinez M, Mon K, Bosland M, Zak D, Runde A, Sharifi M, Kastrati I, Minh D, Kregel S, Fanning S. Targeting Unique Ligand Binding Domain Structural Features Downregulates DKK1 in Y537S ESR1 Mutant Breast Cancer Cells. RESEARCH SQUARE 2024:rs.3.rs-4542467. [PMID: 38978585 PMCID: PMC11230492 DOI: 10.21203/rs.3.rs-4542467/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable. A tyrosine to serine point mutation at position 537 in the ERα ligand binding domain (LBD) is among the most common and most pathogenic alteration in this setting. It enables endocrine therapy resistance by superceding intrinsic structural-energetic gatekeepers of ER hormone-dependence, it enhances metastatic burden by enabling neomorphic ER-dependent transcriptional programs, and it resists SERM and SERD inhibiton by reducing their binding affinities and abilities to antagonize transcriptional coregulator binding. However, a subset of SERMs and SERDs can achieve efficacy by adopting poses that force the mutation to engage in a new interaction that favors the therapeutic receptor antagonist conformation. We previously described a chemically unconventional SERM, T6I-29, that demonstrates significant anti-proliferative activities in Y537S ERα breast cancer cells. Here, we use a comprehensive suite of structural-biochemical, in vitro, and in vivo approaches to better T6I-29's activities in breast cancer cells harboring Y537S ERα. RNA sequencing in cells treated with T6I-29 reveals a neomorphic downregulation of DKK1, a secreted glycoprotein known to play oncogenic roles in other cancers. Importantly, we find that DKK1 is significantly enriched in ER+ breast cancer plasma compared to healthy controls. This study shows how new SERMs and SERDs can identify new therapeutic pathways in endocrine-resistant ER+ breast cancers.
Collapse
Affiliation(s)
- K.S. Young
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - G.R. Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - E. Fink
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - A. Zigrossi
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - B. Flowers
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - D.A. Cooper
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - V.T. Nguyen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - M. Martinez
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - K.S. Mon
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - M. Bosland
- Department of Pathology, University of Illinois Chicago, Chicago, IL 60607
| | - D. Zak
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - A. Runde
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - M.N. Sharifi
- Department of Medicine, University of Wisconsin, Madison, WI 53705
| | - I. Kastrati
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - D.D.L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - S. Kregel
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - S.W. Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| |
Collapse
|
24
|
Xin L, Wang C, Cheng Y, Wang H, Guo X, Deng X, Deng X, Xie B, Hu H, Min C, Dong C, Zhou HB. Discovery of Novel ERα and Aromatase Dual-Targeting PROTAC Degraders to Overcome Endocrine-Resistant Breast Cancer. J Med Chem 2024; 67:8913-8931. [PMID: 38809993 DOI: 10.1021/acs.jmedchem.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Estrogen receptor α (ERα) plays a pivotal role in the proliferation, differentiation, and migration of breast cancer (BC) cells, and aromatase (ARO) is a crucial enzyme in estrogen synthesis. Hence, it is necessary to inhibit estrogen production or the activity of ERα for the treatment of estrogen receptor-positive (ER+) BC. Herein, we present a new category of dual-targeting PROTAC degraders designed to specifically target ERα and ARO. Among them, compound 18c bifunctionally degrades and inhibits ERα/ARO, thus effectively suppressing the proliferation of MCF-7 cells while showing negligible cytotoxicity to normal cells. In vivo, 18c promotes the degradation of ERα and ARO and inhibits the growth of MCF-7 xenograft tumors. Finally, compound 18c demonstrates promising antiproliferative and ERα degradation activity against the ERαMUT cells. These findings suggest that 18c, being the inaugural dual-targeting degrader for ERα and ARO, warrants further advancement for the management of BC and the surmounting of endocrine resistance.
Collapse
Affiliation(s)
- Lilan Xin
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chao Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Cheng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongli Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinyi Guo
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaofei Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiangping Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Baohua Xie
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chang Min
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, China
| |
Collapse
|
25
|
Young K, Hancock G, Fink E, Zigrossi A, Flowers B, Cooper D, Nguyen V, Martinez M, Mon K, Bosland M, Zak D, Runde A, Sharifi M, Kastrati I, Minh D, Kregel S, Fanning S. Targeting Unique Ligand Binding Domain Structural Features Downregulates DKK1 in Y537S ESR1 Mutant Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596307. [PMID: 38854123 PMCID: PMC11160638 DOI: 10.1101/2024.05.28.596307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable. A tyrosine to serine point mutation at position 537 in the ERα ligand binding domain (LBD) is among the most common and most pathogenic alteration in this setting. It enables endocrine therapy resistance by superceding intrinsic structural-energetic gatekeepers of ER hormone-dependence, it enhances metastatic burden by enabling neomorphic ER-dependent transcriptional programs, and it resists SERM and SERD inhibiton by reducing their binding affinities and abilities to antagonize transcriptional coregulator binding. However, a subset of SERMs and SERDs can achieve efficacy by adopting poses that force the mutation to engage in a new interaction that favors the therapeutic receptor antagonist conformation. We previously described a chemically unconventional SERM, T6I-29, that demonstrates significant anti-proliferative activities in Y537S ERα breast cancer cells. Here, we use a comprehensive suite of structural-biochemical, in vitro, and in vivo approaches to better T6I-29's activities in breast cancer cells harboring Y537S ERα. RNA sequencing in cells treated with T6I-29 reveals a neomorphic downregulation of DKK1, a secreted glycoprotein known to play oncogenic roles in other cancers. Importantly, we find that DKK1 is significantly enriched in ER+ breast cancer plasma compared to healthy controls. This study shows how new SERMs and SERDs can identify new therapeutic pathways in endocrine-resistant ER+ breast cancers.
Collapse
Affiliation(s)
- K.S. Young
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - G.R. Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - E. Fink
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - A. Zigrossi
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - B. Flowers
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - D.A. Cooper
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - V.T. Nguyen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - M. Martinez
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - K.S. Mon
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - M. Bosland
- Department of Pathology, University of Illinois Chicago, Chicago, IL 60607
| | - D. Zak
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - A. Runde
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - M.N. Sharifi
- Department of Medicine, University of Wisconsin, Madison, WI 53705
| | - I. Kastrati
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - D.D.L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - S. Kregel
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - S.W. Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| |
Collapse
|
26
|
Schneeweiss A, Brucker SY, Huebner H, Volmer LL, Hack CC, Seitz K, Ruebner M, Heublein S, Thewes V, Lüftner D, Lux MP, Jurhasz-Böss I, Taran FA, Wimberger P, Anetsberger D, Beierlein M, Schmidt M, Radosa J, Müller V, Janni W, Rack B, Belleville E, Untch M, Thill M, Ditsch N, Aktas B, Nel I, Kolberg HC, Engerle T, Tesch H, Roos C, Budden C, Neubauer H, Hartkopf AD, Fehm TN, Fasching PA. CDK4/6 Inhibition - Therapy Sequences and the Quest to Find the Best Biomarkers - an Overview of Current Programs. Geburtshilfe Frauenheilkd 2024; 84:443-458. [PMID: 38817598 PMCID: PMC11136530 DOI: 10.1055/a-2286-6066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/12/2024] [Indexed: 06/01/2024] Open
Abstract
In recent years, new targeted therapies have been developed to treat patients with hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer. Some of these therapies have not just become the new therapy standard but also led to significantly longer overall survival rates. The cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) have become the therapeutic standard for first-line therapy. Around 70 - 80% of patients are treated with a CDK4/6i. In recent years, a number of biomarkers associated with progression, clonal selection or evolution have been reported for CDK4/6i and their endocrine combination partners. Understanding the mechanisms behind treatment efficacy and resistance is important. A better understanding could contribute to planning the most effective therapeutic sequences and utilizing basic molecular information to overcome endocrine resistance. One study with large numbers of patients which aims to elucidate these mechanisms is the Comprehensive Analysis of sPatial, TempORal and molecular patterns of ribociclib efficacy and resistance in advanced Breast Cancer patients (CAPTOR BC) trial. This overview summarizes the latest clinical research on resistance to endocrine therapies, focusing on CDK4/6 inhibitors and discussing current study concepts.
Collapse
Affiliation(s)
- Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Sara Y. Brucker
- Department of Gynecology and Obstetrics, Tübingen University Hospital, Tübingen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Lea L. Volmer
- Department of Gynecology and Obstetrics, Tübingen University Hospital, Tübingen, Germany
| | - Carolin C. Hack
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Katharina Seitz
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Sabine Heublein
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Verena Thewes
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Diana Lüftner
- Immanuel Hospital Märkische Schweiz & Immanuel Campus Rüdersdorf, Medical University of Brandenburg Theodor-Fontane, Rüdersdorf bei Berlin, Germany
| | - Michael P. Lux
- Department of Gynecology and Obstetrics, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, Germany; St. Vincenz Kliniken Salzkotten + Paderborn, Paderborn, Germany
| | - Ingolf Jurhasz-Böss
- Department of Obstetrics and Gynecology, University Medical Center Freiburg, Freiburg, Germany
| | - Florin-Andrei Taran
- Department of Obstetrics and Gynecology, University Medical Center Freiburg, Freiburg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Carl Gustav Carus Faculty of Medicine and University Hospital, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Carl Gustav Carus Faculty of Medicine and University Hospital, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Anetsberger
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Milena Beierlein
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Hospital Mainz, Mainz, Germany
| | - Julia Radosa
- Department of Gynecology and Obstetrics, University Hospital Saarland, Homburg, Germany
| | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Bahriye Aktas
- Department of Gynecology, University Hospital Leipzig, Leipzig, Germany
| | - Ivonne Nel
- Department of Gynecology, University Hospital Leipzig, Leipzig, Germany
| | | | - Tobias Engerle
- Department of Gynecology and Obstetrics, Tübingen University Hospital, Tübingen, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | | | | | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Tübingen University Hospital, Tübingen, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
- Centrum für Integrierte Onkologie, Aachen Bonn Köln Düsseldorf, Düsseldorf, Germany
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Hancock GR, Gertz J, Jeselsohn R, Fanning SW. Estrogen Receptor Alpha Mutations, Truncations, Heterodimers, and Therapies. Endocrinology 2024; 165:bqae051. [PMID: 38643482 PMCID: PMC11075793 DOI: 10.1210/endocr/bqae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Annual breast cancer (BCa) deaths have declined since its apex in 1989 concomitant with widespread adoption of hormone therapies that target estrogen receptor alpha (ERα), the prominent nuclear receptor expressed in ∼80% of BCa. However, up to ∼50% of patients who are ER+ with high-risk disease experience post endocrine therapy relapse and metastasis to distant organs. The vast majority of BCa mortality occurs in this setting, highlighting the inadequacy of current therapies. Genomic abnormalities to ESR1, the gene encoding ERα, emerge under prolonged selective pressure to enable endocrine therapy resistance. These genetic lesions include focal gene amplifications, hotspot missense mutations in the ligand binding domain, truncations, fusions, and complex interactions with other nuclear receptors. Tumor cells utilize aberrant ERα activity to proliferate, spread, and evade therapy in BCa as well as other cancers. Cutting edge studies on ERα structural and transcriptional relationships are being harnessed to produce new therapies that have shown benefits in patients with ESR1 hotspot mutations. In this review we discuss the history of ERα, current research unlocking unknown aspects of ERα signaling including the structural basis for receptor antagonism, and future directions of ESR1 investigation. In addition, we discuss the development of endocrine therapies from their inception to present day and survey new avenues of drug development to improve pharmaceutical profiles, targeting, and efficacy.
Collapse
Affiliation(s)
- Govinda R Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| |
Collapse
|
28
|
de Sena Murteira Pinheiro P, Franco LS, Montagnoli TL, Fraga CAM. Molecular hybridization: a powerful tool for multitarget drug discovery. Expert Opin Drug Discov 2024; 19:451-470. [PMID: 38456452 DOI: 10.1080/17460441.2024.2322990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION The current drug discovery paradigm of 'one drug, multiple targets' has gained attention from both the academic medicinal chemistry community and the pharmaceutical industry. This is in response to the urgent need for effective agents to treat multifactorial chronic diseases. The molecular hybridization strategy is a useful tool that has been widely explored, particularly in the last two decades, for the design of multi-target drugs. AREAS COVERED This review examines the current state of molecular hybridization in guiding the discovery of multitarget small molecules. The article discusses the design strategies and target selection for a multitarget polypharmacology approach to treat various diseases, including cancer, Alzheimer's disease, cardiac arrhythmia, endometriosis, and inflammatory diseases. EXPERT OPINION Although the examples discussed highlight the importance of molecular hybridization for the discovery of multitarget bioactive compounds, it is notorious that the literature has focused on specific classes of targets. This may be due to a deep understanding of the pharmacophore features required for target binding, making targets such as histone deacetylases and cholinesterases frequent starting points. However, it is important to encourage the scientific community to explore diverse combinations of targets using the molecular hybridization strategy.
Collapse
Affiliation(s)
- Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Lima Montagnoli
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Eerlings R, Gupta P, Lee XY, Nguyen T, El Kharraz S, Handle F, Smeets E, Moris L, Devlies W, Vandewinkel B, Thiry I, Ta DT, Gorkovskiy A, Voordeckers K, Henckaerts E, Pinheiro VB, Claessens F, Verstrepen KJ, Voet A, Helsen C. Rational evolution for altering the ligand preference of estrogen receptor alpha. Protein Sci 2024; 33:e4940. [PMID: 38511482 PMCID: PMC10955623 DOI: 10.1002/pro.4940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
Estrogen receptor α is commonly used in synthetic biology to control the activity of genome editing tools. The activating ligands, estrogens, however, interfere with various cellular processes, thereby limiting the applicability of this receptor. Altering its ligand preference to chemicals of choice solves this hurdle but requires adaptation of unspecified ligand-interacting residues. Here, we provide a solution by combining rational protein design with multi-site-directed mutagenesis and directed evolution of stably integrated variants in Saccharomyces cerevisiae. This method yielded an estrogen receptor variant, named TERRA, that lost its estrogen responsiveness and became activated by tamoxifen, an anti-estrogenic drug used for breast cancer treatment. This tamoxifen preference of TERRA was maintained in mammalian cells and mice, even when fused to Cre recombinase, expanding the mammalian synthetic biology toolbox. Not only is our platform transferable to engineer ligand preference of any steroid receptor, it can also profile drug-resistance landscapes for steroid receptor-targeted therapies.
Collapse
Affiliation(s)
- Roy Eerlings
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- Laboratory of Systems BiologyVIB‐KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2SKU LeuvenHeverleeBelgium
| | - Purvi Gupta
- Laboratory of Biomolecular Modelling and Design, Department of ChemistryKU LeuvenHeverleeBelgium
| | - Xiao Yin Lee
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Tien Nguyen
- Laboratory of Biomolecular Modelling and Design, Department of ChemistryKU LeuvenHeverleeBelgium
| | - Sarah El Kharraz
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Florian Handle
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Elien Smeets
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Lisa Moris
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- Department of UrologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Wout Devlies
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- Department of UrologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Bram Vandewinkel
- Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Irina Thiry
- Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Duy Tien Ta
- Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Anton Gorkovskiy
- Laboratory of Systems BiologyVIB‐KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2SKU LeuvenHeverleeBelgium
| | - Karin Voordeckers
- Laboratory of Systems BiologyVIB‐KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2SKU LeuvenHeverleeBelgium
| | - Els Henckaerts
- Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Vitor B. Pinheiro
- KU Leuven, Department of Pharmaceutical and Pharmacological SciencesRega Institute for Medical ResearchLeuvenBelgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Kevin J. Verstrepen
- Laboratory of Systems BiologyVIB‐KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2SKU LeuvenHeverleeBelgium
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of ChemistryKU LeuvenHeverleeBelgium
| | - Christine Helsen
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| |
Collapse
|
30
|
De Marchi T, Lai CF, Simmons GM, Goldsbrough I, Harrod A, Lam T, Buluwela L, Kjellström S, Brueffer C, Saal LH, Malmström J, Ali S, Niméus E. Proteomic profiling reveals that ESR1 mutations enhance cyclin-dependent kinase signaling. Sci Rep 2024; 14:6873. [PMID: 38519482 PMCID: PMC10959978 DOI: 10.1038/s41598-024-56412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Three quarters of all breast cancers express the estrogen receptor (ER, ESR1 gene), which promotes tumor growth and constitutes a direct target for endocrine therapies. ESR1 mutations have been implicated in therapy resistance in metastatic breast cancer, in particular to aromatase inhibitors. ESR1 mutations promote constitutive ER activity and affect other signaling pathways, allowing cancer cells to proliferate by employing mechanisms within and without direct regulation by the ER. Although subjected to extensive genetic and transcriptomic analyses, understanding of protein alterations remains poorly investigated. Towards this, we employed an integrated mass spectrometry based proteomic approach to profile the protein and phosphoprotein differences in breast cancer cell lines expressing the frequent Y537N and Y537S ER mutations. Global proteome analysis revealed enrichment of mitotic and immune signaling pathways in ER mutant cells, while phosphoprotein analysis evidenced enriched activity of proliferation associated kinases, in particular CDKs and mTOR. Integration of protein expression and phosphorylation data revealed pathway-dependent discrepancies (motility vs proliferation) that were observed at varying degrees across mutant and wt ER cells. Additionally, protein expression and phosphorylation patterns, while under different regulation, still recapitulated the estrogen-independent phenotype of ER mutant cells. Our study is the first proteome-centric characterization of ESR1 mutant models, out of which we confirm estrogen independence of ER mutants and reveal the enrichment of immune signaling pathways at the proteomic level.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden.
| | - Chun-Fui Lai
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Georgia M Simmons
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Isabella Goldsbrough
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alison Harrod
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Thai Lam
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden
| | - Lakjaya Buluwela
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sven Kjellström
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Solvegatan 19, 22362, Lund, Sweden
- Swedish National Infrastructure for Biological Mass Spectrometry - BioMS, Lund, Sweden
| | - Christian Brueffer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Lao H Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Klinikgatan 32, 22184, Lund, Sweden
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden.
- Department of Surgery, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
31
|
Parisian AD, Barratt SA, Hodges-Gallagher L, Ortega FE, Peña G, Sapugay J, Robello B, Sun R, Kulp D, Palanisamy GS, Myles DC, Kushner PJ, Harmon CL. Palazestrant (OP-1250), A Complete Estrogen Receptor Antagonist, Inhibits Wild-type and Mutant ER-positive Breast Cancer Models as Monotherapy and in Combination. Mol Cancer Ther 2024; 23:285-300. [PMID: 38102750 PMCID: PMC10911704 DOI: 10.1158/1535-7163.mct-23-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
The estrogen receptor (ER) is a well-established target for the treatment of breast cancer, with the majority of patients presenting as ER-positive (ER+). Endocrine therapy is a mainstay of breast cancer treatment but the development of resistance mutations in response to aromatase inhibitors, poor pharmacokinetic properties of fulvestrant, agonist activity of tamoxifen, and limited benefit for elacestrant leave unmet needs for patients with or without resistance mutations in ESR1, the gene that encodes the ER protein. Here we describe palazestrant (OP-1250), a novel, orally bioavailable complete ER antagonist and selective ER degrader. OP-1250, like fulvestrant, has no agonist activity on the ER and completely blocks estrogen-induced transcriptional activity. In addition, OP-1250 demonstrates favorable biochemical binding affinity, ER degradation, and antiproliferative activity in ER+ breast cancer models that is comparable or superior to other agents of interest. OP-1250 has superior pharmacokinetic properties relative to fulvestrant, including oral bioavailability and brain penetrance, as well as superior performance in wild-type and ESR1-mutant breast cancer xenograft studies. OP-1250 combines well with cyclin-dependent kinase 4 and 6 inhibitors in xenograft studies of ER+ breast cancer models and effectively shrinks intracranially implanted tumors, resulting in prolonged animal survival. With demonstrated preclinical efficacy exceeding fulvestrant in wild-type models, elacestrant in ESR1-mutant models, and tamoxifen in intracranial xenografts, OP-1250 has the potential to benefit patients with ER+ breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Sun
- Olema Pharmaceuticals, San Francisco, California
| | - David Kulp
- Olema Pharmaceuticals, San Francisco, California
| | | | | | | | | |
Collapse
|
32
|
Goldberg J, Qiao N, Guerriero JL, Gross B, Meneksedag Y, Lu YF, Philips AV, Rahman T, Meric-Bernstam F, Roszik J, Chen K, Jeselsohn R, Tolaney SM, Peoples GE, Alatrash G, Mittendorf EA. Estrogen Receptor Mutations as Novel Targets for Immunotherapy in Metastatic Estrogen Receptor-positive Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:496-504. [PMID: 38335301 PMCID: PMC10883292 DOI: 10.1158/2767-9764.crc-23-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Estrogen receptor-positive (ER+) breast cancer is not considered immunogenic and, to date, has been proven resistant to immunotherapy. Endocrine therapy remains the cornerstone of treatment for ER+ breast cancers. However, constitutively activating mutations in the estrogen receptor alpha (ESR1) gene can emerge during treatment, rendering tumors resistant to endocrine therapy. Although these mutations represent a pathway of resistance, they also represent a potential source of neoepitopes that can be targeted by immunotherapy. In this study, we investigated ESR1 mutations as novel targets for breast cancer immunotherapy. Using machine learning algorithms, we identified ESR1-derived peptides predicted to form stable complexes with HLA-A*0201. We then validated the binding affinity and stability of the top predicted peptides through in vitro binding and dissociation assays and showed that these peptides bind HLA-A*0201 with high affinity and stability. Using tetramer assays, we confirmed the presence and expansion potential of antigen-specific CTLs from healthy female donors. Finally, using in vitro cytotoxicity assays, we showed the lysis of peptide-pulsed targets and breast cancer cells expressing common ESR1 mutations by expanded antigen-specific CTLs. Ultimately, we identified five peptides derived from the three most common ESR1 mutations (D538G, Y537S, and E380Q) and their associated wild-type peptides, which were the most immunogenic. Overall, these data confirm the immunogenicity of epitopes derived from ESR1 and highlight the potential of these peptides to be targeted by novel immunotherapy strategies. SIGNIFICANCE Estrogen receptor (ESR1) mutations have emerged as a key factor in endocrine therapy resistance. We identified and validated five novel, immunogenic ESR1-derived peptides that could be targeted through vaccine-based immunotherapy.
Collapse
Affiliation(s)
- Jonathan Goldberg
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Na Qiao
- Department of Hematopoietic Biology & Malignancy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Brett Gross
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | | | - Yoshimi F Lu
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Anne V Philips
- Department of Hematopoietic Biology & Malignancy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tasnim Rahman
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rinath Jeselsohn
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Gheath Alatrash
- Department of Hematopoietic Biology & Malignancy, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Ke CH, Lin CN, Lin CS. Hormone, Targeted, and Combinational Therapies for Breast Cancers: From Humans to Dogs. Int J Mol Sci 2024; 25:732. [PMID: 38255807 PMCID: PMC10815110 DOI: 10.3390/ijms25020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) is the most frequent cancer in women. In female dogs, canine mammary gland tumor (CMT) is also the leading neoplasm. Comparative oncology indicates similar tumor behaviors between human BCs (HBCs) and CMTs. Therefore, this review summarizes the current research in hormone and targeted therapies and describes the future prospects for HBCs and CMTs. For hormone receptor-expressing BCs, the first medical intervention is hormone therapy. Monoclonal antibodies against Her2 are proposed for the treatment of Her2+ BCs. However, the major obstacle in hormone therapy or monoclonal antibodies is drug resistance. Therefore, increasing alternatives have been developed to overcome these difficulties. We systemically reviewed publications that reported inhibitors targeting certain molecules in BC cells. The various treatment choices for humans decrease mortality in females with BC. However, the development of hormone or targeted therapies in veterinary medicine is still limited. Even though some clinical trials have been proposed, severe side effects and insufficient case numbers might restrict further explorations. This difficulty highlights the urgent need to develop updated hormone/targeted therapy or novel immunotherapies. Therefore, exploring new therapies to provide more precise use in dogs with CMTs will be the focus of future research. Furthermore, due to the similarities shared by humans and dogs, well-planned prospective clinical trials on the use of combinational or novel immunotherapies in dogs with CMTs to obtain solid results for both humans and dogs can be reasonably anticipated in the future.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (C.-H.K.); (C.-N.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (C.-H.K.); (C.-N.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
34
|
Irani S, Tan W, Li Q, Toy W, Jones C, Gadiya M, Marra A, Katzenellenbogen JA, Carlson KE, Katzenellenbogen BS, Karimi M, Segu Rajappachetty R, Del Priore IS, Reis-Filho JS, Shen Y, Chandarlapaty S. Somatic estrogen receptor α mutations that induce dimerization promote receptor activity and breast cancer proliferation. J Clin Invest 2024; 134:e163242. [PMID: 37883178 PMCID: PMC10760953 DOI: 10.1172/jci163242] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Physiologic activation of estrogen receptor α (ERα) is mediated by estradiol (E2) binding in the ligand-binding pocket of the receptor, repositioning helix 12 (H12) to facilitate binding of coactivator proteins in the unoccupied coactivator binding groove. In breast cancer, activation of ERα is often observed through point mutations that lead to the same H12 repositioning in the absence of E2. Through expanded genetic sequencing of breast cancer patients, we identified a collection of mutations located far from H12 but nonetheless capable of promoting E2-independent transcription and breast cancer cell growth. Using machine learning and computational structure analyses, this set of mutants was inferred to act distinctly from the H12-repositioning mutants and instead was associated with conformational changes across the ERα dimer interface. Through both in vitro and in-cell assays of full-length ERα protein and isolated ligand-binding domain, we found that these mutants promoted ERα dimerization, stability, and nuclear localization. Point mutations that selectively disrupted dimerization abrogated E2-independent transcriptional activity of these dimer-promoting mutants. The results reveal a distinct mechanism for activation of ERα function through enforced receptor dimerization and suggest dimer disruption as a potential therapeutic strategy to treat ER-dependent cancers.
Collapse
Affiliation(s)
- Seema Irani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Wuwei Tan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Weiyi Toy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Catherine Jones
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mayur Gadiya
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Antonio Marra
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John A. Katzenellenbogen
- Department of Chemistry and Molecular and Integrative Physiology, and the Cancer Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn E. Carlson
- Department of Chemistry and Molecular and Integrative Physiology, and the Cancer Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Benita S. Katzenellenbogen
- Department of Chemistry and Molecular and Integrative Physiology, and the Cancer Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Mostafa Karimi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramya Segu Rajappachetty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Isabella S. Del Priore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
- Department of Computer Science and Engineering and
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
35
|
Bai C, Lv Y, Xiong S, Wu S, Qi L, Ren S, Zhu M, Dong H, Shen H, Li Z, Zhu Y, Ye H, Hao H, Xiao Y, Xiang H, Luo G. X-ray crystallography study and optimization of novel benzothiophene analogs as potent selective estrogen receptor covalent antagonists (SERCAs) with improved potency and safety profiles. Bioorg Chem 2023; 141:106919. [PMID: 37871388 DOI: 10.1016/j.bioorg.2023.106919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Endocrine therapy (ET) is a well-validated strategy for estrogen receptor α positive (ERα + ) breast cancer therapy. Despite the clinical success of current standard of care (SoC), endocrine-resistance inevitably emerges and remains a significant medical challenge. Herein, we describe the structural optimization and evaluation of a new series of selective estrogen receptor covalent antagonists (SERCAs) based on benzothiophene scaffold. Among them, compounds 15b and 39d were identified as two highly potent covalent antagonists, which exhibits superior antiproliferation activity than positive controls against MCF-7 cells and shows high selectivity over ERα negative (ERα-) cells. More importantly, their mode of covalent engagement at Cys530 residue was accurately illustrated by a cocrystal structure of 15b-bound ERαY537S (PDB ID: 7WNV) and intact mass spectrometry, respectively. Further in vivo studies demonstrated potent antitumor activity in MCF-7 xenograft mouse model and an improved safety profile. Collectively, these compounds could be promising candidates for future development of the next generation SERCAs for endocrine-resistant ERα + breast cancer.
Collapse
Affiliation(s)
- Chengfeng Bai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Lv
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuangshuang Xiong
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuangjie Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Qi
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shengnan Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiqi Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 210009, China
| | - Hongtao Shen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaoxing Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yinxue Zhu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
36
|
Wang Y, Min J, Deng X, Feng T, Hu H, Guo X, Cheng Y, Xie B, Yang Y, Chen CC, Guo RT, Dong C, Zhou HB. Discovery of novel covalent selective estrogen receptor degraders against endocrine-resistant breast cancer. Acta Pharm Sin B 2023; 13:4963-4982. [PMID: 38045063 PMCID: PMC10692362 DOI: 10.1016/j.apsb.2023.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 12/05/2023] Open
Abstract
Endocrine-resistance remains a major challenge in estrogen receptor α positive (ERα+) breast cancer (BC) treatment and constitutively active somatic mutations in ERα are a common mechanism. There is an urgent need to develop novel drugs with new mode of mechanism to fight endocrine-resistance. Given aberrant ERα activity, we herein report the identification of novel covalent selective estrogen receptor degraders (cSERDs) possessing the advantages of both covalent and degradation strategies. A highly potent cSERD 29c was identified with superior anti-proliferative activity than fulvestrant against a panel of ERα+ breast cancer cell lines including mutant ERα. Crystal structure of ERα‒29c complex alongside intact mass spectrometry revealed that 29c disrupted ERα protein homeostasis through covalent targeting C530 and strong hydrophobic interaction collied on H11, thus enforcing a unique antagonist conformation and driving the ERα degradation. These significant effects of the cSERD on ERα homeostasis, unlike typical ERα degraders that occur directly via long side chains perturbing the morphology of H12, demonstrating a distinct mechanism of action (MoA). In vivo, 29c showed potent antitumor activity in MCF-7 tumor xenograft models and low toxicity. This proof-of-principle study verifies that novel cSERDs offering new opportunities for the development of innovative therapies for endocrine-resistant BC.
Collapse
Affiliation(s)
- Yubo Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiangping Deng
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tian Feng
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hebing Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xinyi Guo
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Cheng
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Baohua Xie
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chune Dong
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, China
| | - Hai-Bing Zhou
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
37
|
Venetis K, Pepe F, Pescia C, Cursano G, Criscitiello C, Frascarelli C, Mane E, Russo G, Taurelli Salimbeni B, Troncone G, Guerini Rocco E, Curigliano G, Fusco N, Malapelle U. ESR1 mutations in HR+/HER2-metastatic breast cancer: Enhancing the accuracy of ctDNA testing. Cancer Treat Rev 2023; 121:102642. [PMID: 37864956 DOI: 10.1016/j.ctrv.2023.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Activating mutations of the estrogen receptor alpha gene (ESR1) are common mechanisms of endocrine therapy (ET) resistance in hormone receptor-positive (HR + )/Human Epidermal Growth Factor Receptor 2 (HER2)-negative metastatic breast cancer (MBC). Recent clinical findings emphasize that both old and new generations of selective ER degraders (SERDs) demonstrate enhanced clinical effectiveness in patients with MBC who have detectable ESR1 mutations via liquid biopsy. This stands in contrast to individuals with MBC carrying these mutations and undergoing conventional endocrine monotherapies like aromatase inhibitors (AIs). Liquid biopsy, particularly the analysis of circulating tumor DNA (ctDNA), has emerged as a promising, minimally invasive alternative to conventional tissue-based testing for identifying ESR1 mutations. Within the context of the PADA-1 and EMERALD trials, distinct molecular methodologies and assays, specifically digital droplet PCR (ddPCR) and next-generation sequencing (NGS), have been employed to evaluate the mutational status of ESR1 within ctDNA. This manuscript critically examines the advantages and indications of various ctDNA testing methods on liquid biopsy for HR+/HER2-negative MBC. Specifically, we delve into the capabilities of ddPCR and NGS in identifying ESR1 mutations. Each methodology boasts unique strengths and limitations: ddPCR excels in its analytical sensitivity for pinpointing hotspot mutations, while NGS offers comprehensive coverage of the spectrum of ESR1 mutations. The significance of meticulous sample handling and timely analysis is emphasized, acknowledging the transient nature of cfDNA. Furthermore, we underscore the importance of detecting sub-clonal ESR1 mutations, as these variants can exert a pivotal influence on predicting both endocrine therapy resistance and responsiveness to SERDs. In essence, this work discusses the role of ctDNA analysis for detecting ESR1 mutations and their implications in tailoring effective therapeutic strategies for HR+/HER2- MBC.
Collapse
Affiliation(s)
| | - Francesco Pepe
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Carlo Pescia
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy; School of Pathology, University of Milan, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eltjona Mane
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | | | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Elena Guerini Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Naples, Italy
| |
Collapse
|
38
|
Huggins RJ, Greene GL. ERα/PR crosstalk is altered in the context of the ERα Y537S mutation and contributes to endocrine therapy-resistant tumor proliferation. NPJ Breast Cancer 2023; 9:96. [PMID: 38036546 PMCID: PMC10689488 DOI: 10.1038/s41523-023-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
The constitutively active ESR1 Y537S mutation is associated with endocrine therapy (ET) resistance and progression of metastatic breast cancer through its effects on estrogen receptor (ERα) gene regulatory functions. However, the complex relationship between ERα and the progesterone receptor (PR), known as ERα/PR crosstalk, has yet to be characterized in the context of the ERα Y537S mutation. Using proximity ligation assays, we identify an increased physical interaction of ERα and PR in the context of the ERα Y537S mutation, including in the nucleus where this interaction may translate to altered gene expression. As such, more than 30 genes were differentially expressed in both patient tumor and cell line data (MCF7 and/or T47D cells) in the context of the ERα Y537S mutation compared to ERα WT. Of these, IRS1 stood out as a gene of interest, and ERα and PR occupancy at chromatin binding sites along IRS1 were uniquely altered in the context of ERα Y537S. Furthermore, siRNA knockdown of IRS1 or treatment with the IRS1 inhibitor NT-157 had a significant anti-proliferative effect in ERα Y537S cell lines, implicating IRS1 as a potential therapeutic target for restoring treatment sensitivity to patients with breast cancers harboring ERα Y537S mutations.
Collapse
Affiliation(s)
- Rosemary J Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
39
|
Batra H, Mouabbi JA, Ding Q, Sahin AA, Raso MG. Lobular Carcinoma of the Breast: A Comprehensive Review with Translational Insights. Cancers (Basel) 2023; 15:5491. [PMID: 38001750 PMCID: PMC10670219 DOI: 10.3390/cancers15225491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The second most common breast carcinoma, invasive lobular carcinoma, accounts for approximately 15% of tumors of breast origin. Its incidence has increased in recent times due in part to hormone replacement therapy and improvement in diagnostic modalities. Although believed to arise from the same cell type as their ductal counterpart, invasive lobular carcinomas (ILCs) are a distinct entity with different regulating genetic pathways, characteristic histologies, and different biology. The features most unique to lobular carcinomas include loss of E-Cadherin leading to discohesion and formation of a characteristic single file pattern on histology. Because most of these tumors exhibit estrogen receptor positivity and Her2 neu negativity, endocrine therapy has predominated to treat these tumors. However novel treatments like CDK4/6 inhibitors have shown importance and antibody drug conjugates may be instrumental considering newer categories of Her 2 Low breast tumors. In this narrative review, we explore multiple pathological aspects and translational features of this unique entity. In addition, due to advancement in technologies like spatial transcriptomics and other hi-plex technologies, we have tried to enlist upon the characteristics of the tumor microenvironment and the latest associated findings to better understand the new prospective therapeutic options in the current era of personalized treatment.
Collapse
Affiliation(s)
- Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jason Aboudi Mouabbi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.D.); (A.A.S.)
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.D.); (A.A.S.)
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
40
|
Varisli L, Dancik GM, Tolan V, Vlahopoulos S. Critical Roles of SRC-3 in the Development and Progression of Breast Cancer, Rendering It a Prospective Clinical Target. Cancers (Basel) 2023; 15:5242. [PMID: 37958417 PMCID: PMC10648290 DOI: 10.3390/cancers15215242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BCa) is the most frequently diagnosed malignant tumor in women and is also one of the leading causes of cancer-related death. Most breast tumors are hormone-dependent and estrogen signaling plays a critical role in promoting the survival and malignant behaviors of these cells. Estrogen signaling involves ligand-activated cytoplasmic estrogen receptors that translocate to the nucleus with various co-regulators, such as steroid receptor co-activator (SRC) family members, and bind to the promoters of target genes and regulate their expression. SRC-3 is a member of this family that interacts with, and enhances, the transcriptional activity of the ligand activated estrogen receptor. Although SRC-3 has important roles in normal homeostasis and developmental processes, it has been shown to be amplified and overexpressed in breast cancer and to promote malignancy. The malignancy-promoting potential of SRC-3 is diverse and involves both promoting malignant behavior of tumor cells and creating a tumor microenvironment that has an immunosuppressive phenotype. SRC-3 also inhibits the recruitment of tumor-infiltrating lymphocytes with effector function and promotes stemness. Furthermore, SRC-3 is also involved in the development of resistance to hormone therapy and immunotherapy during breast cancer treatment. The versatility of SRC-3 in promoting breast cancer malignancy in this way makes it a good target, and methodical targeting of SRC-3 probably will be important for the success of breast cancer treatment.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Veysel Tolan
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
41
|
Betz M, Massard V, Gilson P, Witz A, Dardare J, Harlé A, Merlin JL. ESR1 Gene Mutations and Liquid Biopsy in ER-Positive Breast Cancers: A Small Step Forward, a Giant Leap for Personalization of Endocrine Therapy? Cancers (Basel) 2023; 15:5169. [PMID: 37958343 PMCID: PMC10649433 DOI: 10.3390/cancers15215169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The predominant forms of breast cancer (BC) are hormone receptor-positive (HR+) tumors characterized by the expression of estrogen receptors (ERs) and/or progesterone receptors (PRs). Patients with HR+ tumors can benefit from endocrine therapy (ET). Three types of ET are approved for the treatment of HR+ BCs and include selective ER modulators, aromatase inhibitors, and selective ER downregulators. ET is the mainstay of adjuvant treatment in the early setting and the backbone of the first-line treatment in an advanced setting; however, the emergence of acquired resistance can lead to cancer recurrence or progression. The mechanisms of ET resistance are often related to the occurrence of mutations in the ESR1 gene, which encodes the ER-alpha protein. As ESR1 mutations are hardly detectable at diagnosis but are present in 30% to 40% of advanced BC (ABC) after treatment, the timeline of testing is crucial. To manage this resistance, ESR1 testing has recently been recommended; in ER+ HER2- ABC and circulating cell-free DNA, so-called liquid biopsy appears to be the most convenient way to detect the emergence of ESR1 mutations. Technically, several options exist, including Next Generation Sequencing and ultra-sensitive PCR-based techniques. In this context, personalization of ET through the surveillance of ESR1 mutations in the plasma of HR+ BC patients throughout the disease course represents an innovative way to improve the standard of care.
Collapse
Affiliation(s)
- Margaux Betz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Vincent Massard
- Département d’Oncologie Médicale, Institut de Cancérologie de Lorraine, 54519 Vandœuvre-lès-Nancy, France;
| | - Pauline Gilson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Andréa Witz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Julie Dardare
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Alexandre Harlé
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 54519 Vandœuvre-lès-Nancy, France
| |
Collapse
|
42
|
Blanchard Z, Rush CM, Arnesen S, Vahrenkamp JM, Rodriguez AC, Jarboe EA, Brown C, Chang MEK, Flory MR, Mohammed H, Modzelewska K, Lum DH, Gertz J. Allele-Specific Gene Regulation, Phenotypes, and Therapeutic Vulnerabilities in Estrogen Receptor Alpha-Mutant Endometrial Cancer. Mol Cancer Res 2023; 21:1023-1036. [PMID: 37363949 DOI: 10.1158/1541-7786.mcr-22-0848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Activating estrogen receptor alpha (ER; also known as ESR1) mutations are present in primary endometrial and metastatic breast cancers, promoting estrogen-independent activation of the receptor. Functional characterizations in breast cancer have established unique molecular and phenotypic consequences of the receptor, yet the impact of ER mutations in endometrial cancer has not been fully explored. In this study, we used CRISPR-Cas9 to model the clinically prevalent ER-Y537S mutation and compared results with ER-D538G to discover allele-specific differences between ER mutations in endometrial cancer. We found that constitutive activity of mutant ER resulted in changes in the expression of thousands of genes, stemming from combined alterations to ER binding and chromatin accessibility. The unique gene expression programs resulted in ER-mutant cells developing increased cancer-associated phenotypes, including migration, invasion, anchorage-independent growth, and growth in vivo. To uncover potential treatment strategies, we identified ER-associated proteins via Rapid Immunoprecipitation and Mass Spectrometry of Endogenous Proteins and interrogated two candidates, CDK9 and NCOA3. Inhibition of these regulatory proteins resulted in decreased growth and migration, representing potential novel treatment strategies for ER-mutant endometrial cancer. IMPLICATIONS This study provides insight into mutant ER activity in endometrial cancer and identifies potential therapies for women with ER-mutant endometrial cancer.
Collapse
Affiliation(s)
- Zannel Blanchard
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Craig M Rush
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Adriana C Rodriguez
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Elke A Jarboe
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Callie Brown
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Matthew E K Chang
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Mark R Flory
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Hisham Mohammed
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Katarzyna Modzelewska
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - David H Lum
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
43
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
44
|
Khan S, Lokman NA, Oehler MK, Ricciardelli C, Yool AJ. Reducing the Invasiveness of Low- and High-Grade Endometrial Cancers in Both Primary Human Cancer Biopsies and Cell Lines by the Inhibition of Aquaporin-1 Channels. Cancers (Basel) 2023; 15:4507. [PMID: 37760476 PMCID: PMC10526386 DOI: 10.3390/cancers15184507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporin (AQP) channels in endometrial cancer (EC) cells are of interest as pharmacological targets to reduce tumor progression. A panel of compounds, including AQP1 ion channel inhibitors (AqB011 and 5-(phenoxymethyl) furan-2-carbaldehyde, PMFC), were used to test the hypothesis that inhibition of key AQPs can limit the invasiveness of low- and high-grade EC cells. We evaluated the effects on transwell migration in EC cell lines (Ishikawa, MFE-280) and primary EC cells established from surgical tissues (n = 8). Quantitative PCR uncovered classes of AQPs not previously reported in EC that are differentially regulated by hormonal signaling. With estradiol, Ishikawa showed increased AQPs 5, 11, 12, and decreased AQPs 0 and 4; MFE-280 showed increased AQPs 0, 1, 3, 4, 8, and decreased AQP11. Protein expression was confirmed by Western blot and immunocytochemistry. AQPs 1, 4, and 11 were colocalized with plasma membrane marker; AQP8 was intracellular in Ishikawa and not detectable in MFE-280. AQP1 ion channel inhibitors (AqB011; PMFC) reduced invasiveness of EC cell lines in transwell chamber and spheroid dispersal assays. In Ishikawa cells, transwell invasiveness was reduced ~41% by 80 µM AqB011 and ~55% by 0.5 mM 5-PMFC. In MFE-280, 5-PMFC inhibited invasion by ~77%. In contrast, proposed inhibitors of AQP water pores (acetazolamide, ginsenoside, KeenMind, TGN-020, IMD-0354) were not effective. Treatments of cultured primary EC cells with AqB011 or PMFC significantly reduced the invasiveness of both low- and high-grade primary EC cells in transwell chambers. We confirmed the tumors expressed moderate to high levels of AQP1 detected by immunohistochemistry, whereas expression levels of AQP4, AQP8, and AQP11 were substantially lower. The anti-invasive potency of AqB011 treatment for EC tumor tissues showed a positive linear correlation with AQP1 expression levels. In summary, AQP1 ion channels are important for motility in both low- and high-grade EC subtypes. Inhibition of AQP1 is a promising strategy to inhibit EC invasiveness and improve patient outcomes.
Collapse
Affiliation(s)
- Sidra Khan
- School of Biomedicine, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Noor A. Lokman
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
| | - Martin K. Oehler
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Carmela Ricciardelli
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5000, Australia;
| |
Collapse
|
45
|
Phoenix JT, Budreika A, Kostlan RJ, Hwang JH, Fanning SW, Kregel S. Editorial: Hormone resistance in cancer. Front Endocrinol (Lausanne) 2023; 14:1272932. [PMID: 37693345 PMCID: PMC10484586 DOI: 10.3389/fendo.2023.1272932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- John T. Phoenix
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, United States
| | - Audris Budreika
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Raymond J. Kostlan
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, United States
| | - Justin H. Hwang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Sean W. Fanning
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Steven Kregel
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
46
|
Huggins RJ, Hosfield D, Ishag-Osman A, Lee K, Ton-That E, Greene GL. Evaluating steroid hormone receptor interactions using the live-cell NanoBRET proximity assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550078. [PMID: 37546915 PMCID: PMC10402027 DOI: 10.1101/2023.07.25.550078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Steroid hormone receptors play a crucial role in the development and characterization of the majority of breast cancers. These receptors canonically function through homodimerization, but physical interactions between different hormone receptors play a key role in cell functions as well. The estrogen receptor (ERα) and progesterone receptor (PR), for example, are involved in a complex set of interactions known as ERα/PR crosstalk. Here, we developed a valuable panel of nuclear receptor expression plasmids specifically for use in NanoBRET assays to assess nuclear receptor homo- and heterodimerization. We demonstrate the utility of this assay system by assessing ERα/PR physical interaction in the context of the endocrine therapy resistance-associated ERα Y537S mutation. We identify a role of the ERα Y537S mutation beyond that of constitutive activity of the receptor; it also increases ERα/PR crosstalk. In total, the NanoBRET assay provides a novel avenue for investigating hormone receptor crosstalk. Future research may use this system to assess the effects of other clinically significant hormone receptor mutations on hormone receptor crosstalk.
Collapse
Affiliation(s)
- Rosemary J Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - David Hosfield
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Amira Ishag-Osman
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Keemin Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Elia Ton-That
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| |
Collapse
|
47
|
Ferro A, Generali D, Caffo O, Caldara A, De Lisi D, Dipasquale M, Lorenzi M, Monteverdi S, Fedele P, Ciribilli Y. Oral selective estrogen receptor degraders (SERDs): The new emperors in breast cancer clinical practice? Semin Oncol 2023; 50:90-101. [PMID: 37673696 DOI: 10.1053/j.seminoncol.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Endocrine therapy (ET) targeting estrogen receptor (ER) signaling is still the mainstay treatment option for early or advanced ER-positive breast cancer (BC) and may involve suppressing estrogen production by means of aromatase inhibitors or directly blocking the ER pathway through selective estrogen receptor modulators such as tamoxifen or selective estrogen receptor degraders such as fulvestrant. However, despite the availability of this armamentarium in clinical practice, de novo or acquired resistance to ET is the main cause of endocrine-based treatment failure leading to the progression of the BC. Recent advances in targeting, modulating, and degrading ERs have led to the development of new drugs capable of overcoming intrinsic or acquired ET resistance related to alterations in the ESR1 gene. The new oral selective estrogen receptor degraders, which are capable of reducing ER protein expression and blocking estrogen-dependent and -independent ER signaling, have a broader spectrum of activity against ESR1 mutations and seem to be a promising means of overcoming the failure of standard ET. The aim of this review is to summarize the development of oral selective estrogen receptor degraders, their current status, and their future perspectives.
Collapse
Affiliation(s)
- Antonella Ferro
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy.
| | - Daniele Generali
- UO Patologia Mammaria, Cremona Hospital, ASST Cremona, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Orazio Caffo
- Medical Oncology Unit, Santa Chiara Hospital, APSS Trento, Italy
| | - Alessia Caldara
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy
| | - Delia De Lisi
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy
| | - Mariachiara Dipasquale
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy
| | - Martina Lorenzi
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy
| | - Sara Monteverdi
- Medical Oncology, Breast Unit Santa Chiara Hospital, APSS Trento, Largo Medaglie D'Oro, Trento, Italy
| | - Palma Fedele
- Oncology Unit, Dario Camberlingo Hospital, ASL Brindisi, Francavilla Fontana, Italy
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo, Italy.
| |
Collapse
|
48
|
Wu Y, Li Z, Wedn AM, Casey AN, Brown D, Rao SV, Omarjee S, Hooda J, Carroll JS, Gertz J, Atkinson JM, Lee AV, Oesterreich S. FOXA1 Reprogramming Dictates Retinoid X Receptor Response in ESR1-Mutant Breast Cancer. Mol Cancer Res 2023; 21:591-604. [PMID: 36930833 PMCID: PMC10239325 DOI: 10.1158/1541-7786.mcr-22-0516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/27/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Estrogen receptor alpha (ER/ESR1) mutations occur in 30% to 40% of endocrine resistant ER-positive (ER+) breast cancer. Forkhead box A1 (FOXA1) is a key pioneer factor mediating ER-chromatin interactions and endocrine response in ER+ breast cancer, but its role in ESR1-mutant breast cancer remains unclear. Our previous FOXA1 chromatin immunoprecipitation sequencing (ChIP-seq) identified a large portion of redistributed binding sites in T47D genome-edited Y537S and D538G ESR1-mutant cells. Here, we further integrated FOXA1 genomic binding profile with the isogenic ER cistrome, accessible genome, and transcriptome data of T47D cell model. FOXA1 redistribution was significantly associated with transcriptomic alterations caused by ESR1 mutations. Furthermore, in ESR1-mutant cells, FOXA1-binding sites less frequently overlapped with ER, and differential gene expression was less associated with the canonical FOXA1-ER axis. Motif analysis revealed a unique enrichment of retinoid X receptor (RXR) motifs in FOXA1-binding sites of ESR1-mutant cells. Consistently, ESR1-mutant cells were more sensitive to growth stimulation with the RXR agonist LG268. The mutant-specific response was dependent on two RXR isoforms, RXR-α and RXR-β, with a stronger dependency on the latter. In addition, T3, the agonist of thyroid receptor (TR) also showed a similar growth-promoting effect in ESR1-mutant cells. Importantly, RXR antagonist HX531 blocked growth of ESR1-mutant cells and a patient-derived xenograft (PDX)-derived organoid with an ESR1 D538G mutation. Collectively, our data support the evidence for a stronger RXR response associated with FOXA1 reprograming in ESR1-mutant cells, suggesting development of therapeutic strategies targeting RXR pathways in breast tumors with ESR1 mutation. IMPLICATIONS It provides comprehensive characterization of the role of FOXA1 in ESR1-mutant breast cancer and potential therapeutic strategy through blocking RXR activation.
Collapse
Affiliation(s)
- Yang Wu
- School of Medicine, Tsinghua University, Beijing, China
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
| | - Zheqi Li
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Abdalla M. Wedn
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Allison N. Casey
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Daniel Brown
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Shalini V. Rao
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Soleilmane Omarjee
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jagmohan Hooda
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Jason S. Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer M. Atkinson
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Adrian V. Lee
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
49
|
Arnesen S, Polaski J, Blanchard Z, Osborne K, Welm A, O’Connell R, Gertz J. Estrogen receptor alpha mutations regulate gene expression and cell growth in breast cancer through microRNAs. NAR Cancer 2023; 5:zcad027. [PMID: 37275275 PMCID: PMC10233889 DOI: 10.1093/narcan/zcad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Estrogen receptor α (ER) mutations occur in up to 30% of metastatic ER-positive breast cancers. Recent data has shown that ER mutations impact the expression of thousands of genes not typically regulated by wildtype ER. While the majority of these altered genes can be explained by constant activity of mutant ER or genomic changes such as altered ER binding and chromatin accessibility, as much as 33% remain unexplained, indicating the potential for post-transcriptional effects. Here, we explored the role of microRNAs in mutant ER-driven gene regulation and identified several microRNAs that are dysregulated in ER mutant cells. These differentially regulated microRNAs target a significant portion of mutant-specific genes involved in key cellular processes. When the activity of microRNAs is altered using mimics or inhibitors, significant changes are observed in gene expression and cellular proliferation related to mutant ER. An in-depth evaluation of miR-301b led us to discover an important role for PRKD3 in the proliferation of ER mutant cells. Our findings show that microRNAs contribute to mutant ER gene regulation and cellular effects in breast cancer cells.
Collapse
Affiliation(s)
- Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob T Polaski
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Zannel Blanchard
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle S Osborne
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M O’Connell
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
50
|
Somsen BA, Sijbesma E, Leysen S, Honzejkova K, Visser EJ, Cossar PJ, Obšil T, Brunsveld L, Ottmann C. Molecular basis and dual ligand regulation of tetrameric Estrogen Receptor α/14-3-3ζ protein complex. J Biol Chem 2023:104855. [PMID: 37224961 PMCID: PMC10302166 DOI: 10.1016/j.jbc.2023.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Therapeutic strategies targeting Nuclear Receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest, driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the Estrogen Receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα, however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its Ligand Binding Domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.
Collapse
Affiliation(s)
- Bente A Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tomáš Obšil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|