1
|
Khorev V, Kurkin S, Mayorova L, Portnova G, Kushnir A, Hramov A. Neural Correlates of Social Touch Processing: An fMRI Study on Brain Functional Connectivity. J Integr Neurosci 2025; 24:26280. [PMID: 39862011 DOI: 10.31083/jin26280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch. METHODS A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI. Additionally, 11 healthy controls participated solely in the resting-state fMRI recording. A functional connectivity network analysis was conducted to examine the alterations in connections between different brain regions following massage. RESULTS The findings indicated the involvement of discrete neural networks in the processing of social touch, with notable discrepancies in functional connectivity observed between the experimental and control groups. The study revealed that the control group exhibited a higher degree of connectivity within a subnetwork comprising 25 connections and 23 nodes than the experimental group following the massage intervention. The experimental group showed hypoactivation in this subnetwork following the massage. The left anterior pulvinar thalamus and the right pregenual anterior cingulate cortex, which serve as the key hubs within this subnetwork, exhibited higher clustering and increased node strength in the control group. Relatively small and unequal sample sizes are the limitations of the study that may affect the generalizability of the results. CONCLUSIONS These findings elucidate the neural underpinnings of tactile experiences and their potential impact on behavior and emotional state. Gaining insight into these mechanisms could inform therapeutic approaches that utilize touch to mitigate stress and enhance mental health. From a practical standpoint, our results have significant implications for the development of sensory stimulation strategies for patients with prolonged disorders of consciousness, sensory loss, autism spectrum disorders, or limited access to tactile interaction in their upper extremities.
Collapse
Affiliation(s)
- Vladimir Khorev
- Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 141534 Solnechnogorsk, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Semen Kurkin
- Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 141534 Solnechnogorsk, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Larisa Mayorova
- Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 141534 Solnechnogorsk, Russia
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Science, 117485 Moscow, Russia
| | - Galina Portnova
- Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Science, 117485 Moscow, Russia
| | - Anastasia Kushnir
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 141534 Solnechnogorsk, Russia
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Science, 117485 Moscow, Russia
| | - Alexander Hramov
- Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 141534 Solnechnogorsk, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| |
Collapse
|
2
|
Mayorova L, Portnova G, Skorokhodov I. Cortical Response Variation with Social and Non-Social Affective Touch Processing in the Glabrous and Hairy Skin of the Leg: A Pilot fMRI Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:7881. [PMID: 37765936 PMCID: PMC10538157 DOI: 10.3390/s23187881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Despite the crucial role of touch in social development and its importance for social interactions, there has been very little functional magnetic resonance imaging (fMRI) research on brain mechanisms underlying social touch processing. Moreover, there has been very little research on the perception of social touch in the lower extremities in humans, even though this information could expand our understanding of the mechanisms of the c-tactile system. Here, variations in the neural response to stimulation by social and non-social affective leg touch were investigated using fMRI. Participants were subjected to slow a (at 3-5 cm/s) stroking social touch (hand, skin-to-skin) and a non-social touch (peacock feather) to the hairy skin of the shin and to the glabrous skin of the foot sole. Stimulation of the glabrous skin of the foot sole, regardless of the type of stimulus, elicited a much more widespread cortical response, including structures such as the medial segment of precentral gyri, left precentral gyrus, bilateral putamen, anterior insula, left postcentral gyrus, right thalamus, and pallidum. Stimulation of the hairy skin of the shin elicited a relatively greater response in the left middle cingulate gyrus, left angular gyrus, left frontal eye field, bilateral anterior prefrontal cortex, and left frontal pole. Activation of brain structures, some of which belong to the "social brain"-the pre- and postcentral gyri bilaterally, superior and middle occipital gyri bilaterally, left middle and superior temporal gyri, right anterior cingulate gyrus and caudate, left middle and inferior frontal gyri, and left lateral ventricle area, was associated with the perception of non-social stimuli in the leg. The left medial segment of pre- and postcentral gyri, left postcentral gyrus and precuneus, bilateral parietal operculum, right planum temporale, left central operculum, and left thalamus proper showed greater activation for social tactile touch. There are regions in the cerebral cortex that responded specifically to hand and feather touch in the foot sole region. These areas included the posterior insula, precentral gyrus; putamen, pallidum and anterior insula; superior parietal cortex; transverse temporal gyrus and parietal operculum, supramarginal gyrus and planum temporale. Subjective assessment of stimulus ticklishness was related to activation of the left cuneal region. Our results make some contribution to understanding the physiology of the perception of social and non-social tactile stimuli and the CT system, including its evolution, and they have clinical impact in terms of environmental enrichment.
Collapse
Affiliation(s)
- Larisa Mayorova
- Laboratory of Physiology of Sensory Systems, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Science, 117485 Moscow, Russia
- Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia
| | - Galina Portnova
- Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Science, 117485 Moscow, Russia
| | - Ivan Skorokhodov
- Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia
| |
Collapse
|
3
|
Xie T, Wu Z, Schalk G, Tong Y, Vato A, Raviv N, Guo Q, Ye H, Sheng X, Zhu X, Brunner P, Chen L. Automated intraoperative central sulcus localization and somatotopic mapping using median nerve stimulation. J Neural Eng 2022; 19. [PMID: 35785769 PMCID: PMC9534515 DOI: 10.1088/1741-2552/ac7dfd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/04/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Accurate identification of functional cortical regions is essential in neurological resection. The central sulcus (CS) is an important landmark that delineates functional cortical regions. Median nerve stimulation (MNS) is a standard procedure to identify the position of the CS intraoperatively. In this paper, we introduce an automated procedure that uses MNS to rapidly localize the CS and create functional somatotopic maps. APPROACH We recorded electrocorticographic signals from 13 patients who underwent MNS in the course of an awake craniotomy. We analyzed these signals to develop an automated procedure that determines the location of the CS and that also produces functional somatotopic maps. MAIN RESULTS The comparison between our automated method and visual inspection performed by the neurosurgeon shows that our procedure has a high sensitivity (89%) in identifying the CS. Further, we found substantial concordance between the functional somatotopic maps generated by our method and passive functional mapping (92% sensitivity). SIGNIFICANCE Our automated MNS-based method can rapidly localize the CS and create functional somatotopic maps without imposing additional burden on the clinical procedure. With additional development and validation, our method may lead to a diagnostic tool that guides neurosurgeon and reduces postoperative morbidity in patients undergoing resective brain surgery.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, Washington University School of Medicine in Saint Louis, 660 S. Euclid Avenue, St Louis, Missouri, 63110-1010, UNITED STATES
| | - Zehan Wu
- Dept. of Neurosurgery, Huashan Hospital Fudan University, 12 Wulumuqi Middle Rd, Shanghai, 200040, CHINA
| | - Gerwin Schalk
- National Center for Adaptive Neurotechnologies, 113 Holland Avenue, Albany, New York, 12208, UNITED STATES
| | - Yusheng Tong
- Dept. of Neurosurgery, Huashan Hospital Fudan University, 12 Wulumuqi Middle Rd, Shanghai, 200040, CHINA
| | - Alessandro Vato
- National Center for Adaptive Neurotechnologies, 113 Holland Avenue, Albany, New York, 12208, UNITED STATES
| | - Nataly Raviv
- National Center for Adaptive Neurotechnologies, 113 Holland Avenue, Albany, New York, 12208, UNITED STATES
| | - Qinglong Guo
- Dept. of Neurosurgery, Huashan Hospital Fudan University, 12 Wulumuqi Middle Rd, Shanghai, 200040, CHINA
| | - Huanpeng Ye
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, CHINA
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, CHINA
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, CHINA
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine in Saint Louis, 660 S. Euclid Avenue, St Louis, Missouri, 63110-1010, UNITED STATES
| | - Liang Chen
- Dept. of Neurosurgery, Huashan Hospital Fudan University, 12 Wulumuqi Middle Rd, Shanghai, 200040, CHINA
| |
Collapse
|
4
|
Madsen MAJ, Wiggermann V, Marques MFM, Lundell H, Cerri S, Puonti O, Blinkenberg M, Christensen JR, Sellebjerg F, Siebner HR. Linking lesions in sensorimotor cortex to contralateral hand function in multiple sclerosis: a 7 T MRI study. Brain 2022; 145:3522-3535. [PMID: 35653498 PMCID: PMC9586550 DOI: 10.1093/brain/awac203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cortical lesions constitute a key manifestation of multiple sclerosis and contribute to clinical disability and cognitive impairment. Yet it is unknown whether local cortical lesions and cortical lesion subtypes contribute to domain-specific impairments attributable to the function of the lesioned cortex.
In this cross-sectional study, we assessed how cortical lesions in the primary sensorimotor hand area (SM1-HAND) relate to corticomotor physiology and sensorimotor function of the contralateral hand. 50 relapse-free patients with relapsing-remitting or secondary-progressive multiple sclerosis and 28 healthy age- and sex-matched participants underwent whole-brain 7 T MRI to map cortical lesions. Brain scans were also used to estimate normalized brain volume, pericentral cortical thickness, white matter lesion fraction of the corticospinal tract, infratentorial lesion volume and the cross-sectional area of the upper cervical spinal cord. We tested sensorimotor hand function and calculated a motor and sensory composite score for each hand. In 37 patients and 20 healthy controls, we measured maximal motor evoked potential (MEP) amplitude, resting motor threshold and corticomotor conduction time with transcranial magnetic stimulation (TMS) and the N20 latency from somatosensory evoked potentials (SSEPs).
Patients showed at least one cortical lesion in the SM1-HAND in 47 of 100 hemispheres. The presence of a lesion was associated with worse contralateral sensory (P = 0.014) and motor (P = 0.009) composite scores. TMS of a lesion-positive SM1-HAND revealed a decreased maximal MEP amplitude (P < 0.001) and delayed corticomotor conduction (P = 0.002) relative to a lesion-negative SM1-HAND. Stepwise mixed linear regressions showed that the presence of an SM1-HAND lesion, higher white-matter lesion fraction of the corticospinal tract, reduced spinal cord cross-sectional area and higher infratentorial lesion volume were associated with reduced contralateral motor hand function. Cortical lesions in SM1-HAND, spinal cord cross-sectional area and normalized brain volume were also associated with smaller maximal MEP amplitude and longer corticomotor conduction times. The effect of cortical lesions on sensory function was no longer significant when controlling for MRI-based covariates. Lastly, we found that intracortical and subpial lesions had the largest effect on reduced motor hand function, intracortical lesions on reduced MEP amplitude and leukocortical lesions on delayed corticomotor conduction.
Together, this comprehensive multi-level assessment of sensorimotor brain damage shows that the presence of a cortical lesion in SM1-HAND is associated with impaired corticomotor function of the hand, after accounting for damage at the subcortical level. The results also provide preliminary evidence that cortical lesion types may affect the various facets of corticomotor function differentially.
Collapse
Affiliation(s)
- Mads A. J. Madsen
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Vanessa Wiggermann
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Marta F. M. Marques
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Henrik Lundell
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Stefano Cerri
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
- Technical University of Denmark Department of Health Technology, , 2800 Kgs. Lyngby, Denmark
| | - Oula Puonti
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Morten Blinkenberg
- Copenhagen University Hospital – Rigshospitalet Danish Multiple Sclerosis Center, Department of Neurology, , 2600 Glostrup, Denmark
| | - Jeppe Romme Christensen
- Copenhagen University Hospital – Rigshospitalet Danish Multiple Sclerosis Center, Department of Neurology, , 2600 Glostrup, Denmark
| | - Finn Sellebjerg
- Copenhagen University Hospital – Rigshospitalet Danish Multiple Sclerosis Center, Department of Neurology, , 2600 Glostrup, Denmark
- University of Copenhagen Department of Clinical Medicine, , 2200 Copenhagen, Denmark
| | - Hartwig R. Siebner
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
- Copenhagen University Hospital - Bispebjerg & Frederiksberg Department of Neurology, , 2400 Copenhagen, Denmark
- University of Copenhagen Department of Clinical Medicine, , 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Watkins RH, Amante M, Wasling HB, Wessberg J, Ackerley R. Slowly-adapting type II afferents contribute to conscious touch sensation in humans: evidence from single unit intraneural microstimulation. J Physiol 2022; 600:2939-2952. [PMID: 35569041 PMCID: PMC9328136 DOI: 10.1113/jp282873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
NEW & NOTEWORTHY Slowly-adapting type II mechanoreceptive afferents (SA-II) in glabrous hand skin encode touch force, direction, and velocity, as well as skin stretch/tension. Using single unit intraneural microstimulation, via microneurography in humans, a single mechanoreceptive afferent can be electrically-stimulated, producing a clear percept, yet SA-II stimulation has produced ambiguous results. We show that selective SA-II stimulation produces large pressure sensations, which has implications for their role in perceived touch and generating realistic touch feedback from prosthetics. KEY POINTS Slowly adapting type II mechanoreceptors (SA-IIs) are primary sensory neurons in humans that respond to pressure and stretch applied to the skin. To date, no specific conscious correlate of touch has been linked to SA-II activation Using microneurography and intraneural microstimulation to stimulate single sensory neurons in human subjects, we find a specific sensation linked to the activation of single SA-II afferents. This sensation of touch was reported as gentle pressure and subjects could detect this with a high degree of accuracy. Methods of artificial tactile sensory feedback and computational models of touch should include SA-II s as meaningful contributors to the conscious sensation of touch. ABSTRACT Slowly-adapting type II (SA-II, Ruffini) mechanoreceptive afferents respond well to pressure and stretch, and are regularly encountered in human microneurography studies. Despite an understanding of SA-II response properties, their role in touch perception remains unclear. Specific roles of different myelinated Aβ mechanoreceptive afferents in tactile perception have been revealed using single unit intraneural microstimulation (INMS), via microneurography, recording from and then electrically stimulating individual afferents. This method directly links single afferent artificial activation to perception, where INMS produces specific 'quantal' touch percepts associated with different mechanoreceptive afferent types. However, SA-II afferent stimulation has been ambiguous, producing inconsistent, vague sensations or no clear percept. We physiologically characterized hundreds of individual Aβ mechanoreceptive afferents in the glabrous hand skin and examined the subsequent percepts evoked by trains of low amplitude INMS current pulses (<10 μA). We present 18 SA-II afferents where INMS resulted in a clear, electrically evoked sensation of large (∼36 mm2 ) diffuse pressure, which was projected precisely to their physiologically-defined receptive field in the skin. This sensation was felt as natural, distinctive from other afferents, and showed no indications of multi-afferent stimulation. Stimulus frequency modulated sensation intensity and even brief stimuli (4 pulses, 60 ms) were perceived. These results suggest SA-II afferents contribute to perceived tactile sensations, can signal this rapidly and precisely, and are relevant and important for computational models of touch sensation and artificial prosthetic feedback. Abstract figure legend Using microneurography, recordings were made from single mechanoreceptive afferents in the median nerve of human subjects. After fiber classification, low amplitude (<10 μA) intraneural microstimulation was delivered to evoke sensations of touch. Varied sensations were evoked that could be attributed to selective activation of the recorded afferents. We identify a consistent link between type II slowly adapting mechanoreceptive afferents (SA-IIs) and a specific sensation (light pressure). These sensations matched the afferent properties precisely, indicated sensations were evoked by stimulating single SA-II afferents, and were modified by stimulus train modulations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Roger Holmes Watkins
- Aix Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), Marseille, France
| | - Mario Amante
- Department of Physiology, University of Gothenburg, Gothenburg, 40530, Sweden
| | | | - Johan Wessberg
- Department of Physiology, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Rochelle Ackerley
- Aix Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), Marseille, France
| |
Collapse
|
6
|
Wesselink DB, Sanders ZB, Edmondson LR, Dempsey-Jones H, Kieliba P, Kikkert S, Themistocleous AC, Emir U, Diedrichsen J, Saal HP, Makin TR. Malleability of the cortical hand map following a finger nerve block. SCIENCE ADVANCES 2022; 8:eabk2393. [PMID: 35452294 PMCID: PMC9032959 DOI: 10.1126/sciadv.abk2393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/09/2022] [Indexed: 05/10/2023]
Abstract
Electrophysiological studies in monkeys show that finger amputation triggers local remapping within the deprived primary somatosensory cortex (S1). Human neuroimaging research, however, shows persistent S1 representation of the missing hand's fingers, even decades after amputation. Here, we explore whether this apparent contradiction stems from underestimating the distributed peripheral and central representation of fingers in the hand map. Using pharmacological single-finger nerve block and 7-tesla neuroimaging, we first replicated previous accounts (electrophysiological and other) of local S1 remapping. Local blocking also triggered activity changes to nonblocked fingers across the entire hand area. Using methods exploiting interfinger representational overlap, however, we also show that the blocked finger representation remained persistent despite input loss. Computational modeling suggests that both local stability and global reorganization are driven by distributed processing underlying the topographic map, combined with homeostatic mechanisms. Our findings reveal complex interfinger representational features that play a key role in brain (re)organization, beyond (re)mapping.
Collapse
Affiliation(s)
- Daan B. Wesselink
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Zeena-Britt Sanders
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Laura R. Edmondson
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Harriet Dempsey-Jones
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sanne Kikkert
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Andreas C. Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Brain Function Research Group, University of the Witwatersrand, Johannesburg, South Africa
| | - Uzay Emir
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jörn Diedrichsen
- Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Hannes P. Saal
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Tamar R. Makin
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
7
|
Muret D, Root V, Kieliba P, Clode D, Makin TR. Beyond body maps: Information content of specific body parts is distributed across the somatosensory homunculus. Cell Rep 2022; 38:110523. [PMID: 35294887 PMCID: PMC8938902 DOI: 10.1016/j.celrep.2022.110523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
The homunculus in primary somatosensory cortex (S1) is famous for its body part selectivity, but this dominant feature may eclipse other representational features, e.g., information content, also relevant for S1 organization. Using multivariate fMRI analysis, we ask whether body part information content can be identified in S1 beyond its primary region. Throughout S1, we identify significant representational dissimilarities between body parts but also subparts in distant non-primary regions (e.g., between the hand and the lips in the foot region and between different face parts in the foot region). Two movements performed by one body part (e.g., the hand) could also be dissociated well beyond its primary region (e.g., in the foot and face regions), even within Brodmann area 3b. Our results demonstrate that information content is more distributed across S1 than selectivity maps suggest. This finding reveals underlying information contents in S1 that could be harnessed for rehabilitation and brain-machine interfaces.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK.
| | - Victoria Root
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Centre of Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Danielle Clode
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Dani Clode Design, 40 Hillside Road, London SW2 3HW, UK
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
8
|
Chandrasekaran S, Bickel S, Herrero JL, Kim JW, Markowitz N, Espinal E, Bhagat NA, Ramdeo R, Xu J, Glasser MF, Bouton CE, Mehta AD. Evoking highly focal percepts in the fingertips through targeted stimulation of sulcal regions of the brain for sensory restoration. Brain Stimul 2021; 14:1184-1196. [PMID: 34358704 PMCID: PMC8884403 DOI: 10.1016/j.brs.2021.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Paralysis and neuropathy, affecting millions of people worldwide, can be accompanied by significant loss of somatosensation. With tactile sensation being central to achieving dexterous movement, brain-computer interface (BCI) researchers have used intracortical and cortical surface electrical stimulation to restore somatotopically-relevant sensation to the hand. However, these approaches are restricted to stimulating the gyral areas of the brain. Since representation of distal regions of the hand extends into the sulcal regions of human primary somatosensory cortex (S1), it has been challenging to evoke sensory percepts localized to the fingertips. Objective/hypothesis: Targeted stimulation of sulcal regions of S1, using stereoelectroencephalography (SEEG) depth electrodes, can evoke focal sensory percepts in the fingertips. Methods: Two participants with intractable epilepsy received cortical stimulation both at the gyri via high-density electrocorticography (HD-ECoG) grids and in the sulci via SEEG depth electrode leads. We characterized the evoked sensory percepts localized to the hand. Results: We show that highly focal percepts can be evoked in the fingertips of the hand through sulcal stimulation. fMRI, myelin content, and cortical thickness maps from the Human Connectome Project elucidated specific cortical areas and sub-regions within S1 that evoked these focal percepts. Within-participant comparisons showed that percepts evoked by sulcal stimulation via SEEG electrodes were significantly more focal (80% less area; p = 0.02) and localized to the fingertips more often, than by gyral stimulation via HD-ECoG electrodes. Finally, sulcal locations with consistent modulation of high-frequency neural activity during mechanical tactile stimulation of the fingertips showed the same somatotopic correspondence as cortical stimulation. Conclusions: Our findings indicate minimally invasive sulcal stimulation via SEEG electrodes could be a clinically viable approach to restoring sensation.
Collapse
Affiliation(s)
- Santosh Chandrasekaran
- Neural Bypass and Brain Computer Interface Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| | - Stephan Bickel
- The Human Brain Mapping Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Neurosurgery, Northwell, Manhasset, NY, USA; Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell, Manhasset, NY, USA
| | - Jose L Herrero
- The Human Brain Mapping Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Neurosurgery, Northwell, Manhasset, NY, USA
| | - Joo-Won Kim
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Noah Markowitz
- The Human Brain Mapping Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Elizabeth Espinal
- The Human Brain Mapping Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Nikunj A Bhagat
- Neural Bypass and Brain Computer Interface Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Richard Ramdeo
- Neural Bypass and Brain Computer Interface Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Junqian Xu
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University in St Louis, Saint Louis, MO, USA
| | - Chad E Bouton
- Neural Bypass and Brain Computer Interface Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - Ashesh D Mehta
- The Human Brain Mapping Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Neurosurgery, Northwell, Manhasset, NY, USA
| |
Collapse
|
9
|
Almeida J, Severo F, Nunes D. Impact of the Sound of Magnetic Resonance Imaging Pulse Sequences in Awake Mice. J APPL ANIM WELF SCI 2021; 25:75-88. [PMID: 34286640 DOI: 10.1080/10888705.2021.1941023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Magnetic resonance imaging (MRI) is a research field of high interest as the implementation of new imaging modalities can significantly improve clinical diagnosis of several human pathologies. Awake nonhuman animals in the laboratory are being used in MRI pre-clinical systems for the validation of new imaging techniques, but animal welfare concerns emerge as MRI pulse sequences produce extremely loud sounds, up to 120 dB. Consequently, it is unclear how stressful these sounds are to the animals. Here, the impact of these sounds in the rodent behavior and physiology was evaluated. To achieve this, C57BL6/J mice were divided into two groups: a group exposed to sounds of typical pulse sequences used in imaging and a control group that was not exposed to those sounds. Mice have been tested in the open field and elevated plus maze to monitor baseline behavior and a hormonal stress biomarker was assayed to assess acute stress. The results indicate that the pulse sequences used in MRI are transient stressors that overall do not impact the behavioral status of the animals.
Collapse
Affiliation(s)
- Joana Almeida
- Animal Vivarium, Champalimaud Foundation, Lisbon, Portugal
| | - Frederico Severo
- Neuroplasticity and Neural Activity Lab, Champalimaud Foundation, Lisbon, Portugal
| | - Daniel Nunes
- Neuroplasticity and Neural Activity Lab, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
10
|
A probabilistic atlas of finger dominance in the primary somatosensory cortex. Neuroimage 2020; 217:116880. [PMID: 32376303 PMCID: PMC7339146 DOI: 10.1016/j.neuroimage.2020.116880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/21/2022] Open
Abstract
With the advent of ultra-high field (7T), high spatial resolution functional MRI (fMRI) has allowed the differentiation of the cortical representations of each of the digits at an individual-subject level in human primary somatosensory cortex (S1). Here we generate a probabilistic atlas of the contralateral SI representations of the digits of both the left and right hand in a group of 22 right-handed individuals. The atlas is generated in both volume and surface standardised spaces from somatotopic maps obtained by delivering vibrotactile stimulation to each distal phalangeal digit using a travelling wave paradigm. Metrics quantify the likelihood of a given position being assigned to a digit (full probability map) and the most probable digit for a given spatial location (maximum probability map). The atlas is validated using a leave-one-out cross validation procedure. Anatomical variance across the somatotopic map is also assessed to investigate whether the functional variability across subjects is coupled to structural differences. This probabilistic atlas quantifies the variability in digit representations in healthy subjects, finding some quantifiable separability between digits 2, 3 and 4, a complex overlapping relationship between digits 1 and 2, and little agreement of digit 5 across subjects. The atlas and constituent subject maps are available online for use as a reference in future neuroimaging studies.
Collapse
|
11
|
Fardo F, Beck B, Allen M, Finnerup NB. Beyond labeled lines: A population coding account of the thermal grill illusion. Neurosci Biobehav Rev 2020; 108:472-479. [DOI: 10.1016/j.neubiorev.2019.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
12
|
Abstract
Humans localize touch on hand-held tools by interpreting the unique vibratory patterns elicited by impact to different parts of the tool. This perceptual strategy differs markedly from localizing touch on the skin. A new study shows that, nonetheless, touch location is probably processed similarly for skin and tool already early in somatosensory cortex.
Collapse
Affiliation(s)
- Tobias Heed
- Faculty of Psychology and Sports Science and Cluster of Excellence "Cognitive Interaction Technology", Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
13
|
Miller LE, Fabio C, Ravenda V, Bahmad S, Koun E, Salemme R, Luauté J, Bolognini N, Hayward V, Farnè A. Somatosensory Cortex Efficiently Processes Touch Located Beyond the Body. Curr Biol 2019; 29:4276-4283.e5. [PMID: 31813607 DOI: 10.1016/j.cub.2019.10.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 01/24/2023]
Abstract
The extent to which a tool is an extension of its user is a question that has fascinated writers and philosophers for centuries [1]. Despite two decades of research [2-7], it remains unknown how this could be instantiated at the neural level. To this aim, the present study combined behavior, electrophysiology and neuronal modeling to characterize how the human brain could treat a tool like an extended sensory "organ." As with the body, participants localize touches on a hand-held tool with near-perfect accuracy [7]. This behavior is owed to the ability of the somatosensory system to rapidly and efficiently use the tool as a tactile extension of the body. Using electroencephalography (EEG), we found that where a hand-held tool was touched was immediately coded in the neural dynamics of primary somatosensory and posterior parietal cortices of healthy participants. We found similar neural responses in a proprioceptively deafferented patient with spared touch perception, suggesting that location information is extracted from the rod's vibrational patterns. Simulations of mechanoreceptor responses [8] suggested that the speed at which these patterns are processed is highly efficient. A second EEG experiment showed that touches on the tool and arm surfaces were localized by similar stages of cortical processing. Multivariate decoding algorithms and cortical source reconstruction provided further evidence that early limb-based processes were repurposed to map touch on a tool. We propose that an elementary strategy the human brain uses to sense with tools is to recruit primary somatosensory dynamics otherwise devoted to the body.
Collapse
Affiliation(s)
- Luke E Miller
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France.
| | - Cécile Fabio
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France
| | - Valeria Ravenda
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Department of Psychology & Milan Center for Neuroscience-NeuroMi, University of Milano Bicocca, Building U6, 1 Piazza dell'Ateneo Nuovo, Milan 20126, Italy
| | - Salam Bahmad
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France
| | - Eric Koun
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France
| | - Romeo Salemme
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France
| | - Jacques Luauté
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France
| | - Nadia Bolognini
- Department of Psychology & Milan Center for Neuroscience-NeuroMi, University of Milano Bicocca, Building U6, 1 Piazza dell'Ateneo Nuovo, Milan 20126, Italy; Laboratory of Neuropsychology, IRCSS Istituto Auxologico Italiano, 28 Via G. Mercalli, Milan 20122, Italy
| | - Vincent Hayward
- Sorbonne Université, Institut des Systèmes Intelligents et de Robotique (ISIR), 4 Place Jussieu, Paris 75005, France; Centre for the Study of the Senses, School of Advanced Study, University of London, Senate House, Malet Street, London WC1E 7HU, UK
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France; Center for Mind/Brain Sciences, University of Trento, 31 Corso Bettini, Rovereto 38068, Italy
| |
Collapse
|
14
|
Eriksson Hagberg E, Ackerley R, Lundqvist D, Schneiderman J, Jousmäki V, Wessberg J. Spatio-temporal profile of brain activity during gentle touch investigated with magnetoencephalography. Neuroimage 2019; 201:116024. [DOI: 10.1016/j.neuroimage.2019.116024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
|
15
|
Nagi SS, Marshall AG, Makdani A, Jarocka E, Liljencrantz J, Ridderström M, Shaikh S, O’Neill F, Saade D, Donkervoort S, Foley AR, Minde J, Trulsson M, Cole J, Bönnemann CG, Chesler AT, Bushnell MC, McGlone F, Olausson H. An ultrafast system for signaling mechanical pain in human skin. SCIENCE ADVANCES 2019; 5:eaaw1297. [PMID: 31281886 PMCID: PMC6609212 DOI: 10.1126/sciadv.aaw1297] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
The canonical view is that touch is signaled by fast-conducting, thickly myelinated afferents, whereas pain is signaled by slow-conducting, thinly myelinated ("fast" pain) or unmyelinated ("slow" pain) afferents. While other mammals have thickly myelinated afferents signaling pain (ultrafast nociceptors), these have not been demonstrated in humans. Here, we performed single-unit axonal recordings (microneurography) from cutaneous mechanoreceptive afferents in healthy participants. We identified A-fiber high-threshold mechanoreceptors (A-HTMRs) that were insensitive to gentle touch, encoded noxious skin indentations, and displayed conduction velocities similar to A-fiber low-threshold mechanoreceptors. Intraneural electrical stimulation of single ultrafast A-HTMRs evoked painful percepts. Testing in patients with selective deafferentation revealed impaired pain judgments to graded mechanical stimuli only when thickly myelinated fibers were absent. This function was preserved in patients with a loss-of-function mutation in mechanotransduction channel PIEZO2. These findings demonstrate that human mechanical pain does not require PIEZO2 and can be signaled by fast-conducting, thickly myelinated afferents.
Collapse
Affiliation(s)
- Saad S. Nagi
- Center for Social and Affective Neuroscience, Linköping University, S-581 85 Linköping, Sweden
- Department of Clinical Neurophysiology, Linköping University Hospital, S-581 85 Linköping, Sweden
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Andrew G. Marshall
- Faculty of Life Sciences, University of Manchester, M13 9PL Manchester, UK
- School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Adarsh Makdani
- School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Ewa Jarocka
- Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Jaquette Liljencrantz
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Mikael Ridderström
- Department of Surgery, Unit of Orthopedics, Perioperative Sciences, Umeå University Hospital, 901 85 Umeå, Sweden
| | - Sumaiya Shaikh
- Center for Social and Affective Neuroscience, Linköping University, S-581 85 Linköping, Sweden
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Francis O’Neill
- School of Dentistry, Institute of Clinical Sciences, University of Liverpool, L3 5PS Liverpool, UK
| | - Dimah Saade
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra Donkervoort
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Reghan Foley
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan Minde
- Department of Surgery, Unit of Orthopedics, Perioperative Sciences, Umeå University Hospital, 901 85 Umeå, Sweden
| | - Mats Trulsson
- Department of Dental Medicine, Karolinska Institute, S-141 04 Huddinge, Sweden
| | - Jonathan Cole
- Centre of Postgraduate Medical Research and Education, Bournemouth University, Poole BH12 5BB, UK
| | - Carsten G. Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander T. Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - M. Catherine Bushnell
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francis McGlone
- School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF Liverpool, UK
- Institute of Psychology, Health and Society, University of Liverpool, L3 5DA Liverpool, UK
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Linköping University, S-581 85 Linköping, Sweden
- Department of Clinical Neurophysiology, Linköping University Hospital, S-581 85 Linköping, Sweden
| |
Collapse
|
16
|
O'Neill GC, Watkins RH, Ackerley R, Barratt EL, Sengupta A, Asghar M, Sanchez Panchuelo RM, Brookes MJ, Glover PM, Wessberg J, Francis ST. Imaging human cortical responses to intraneural microstimulation using magnetoencephalography. Neuroimage 2019; 189:329-340. [PMID: 30639839 PMCID: PMC6435103 DOI: 10.1016/j.neuroimage.2019.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 01/25/2023] Open
Abstract
The sensation of touch in the glabrous skin of the human hand is conveyed by thousands of fast-conducting mechanoreceptive afferents, which can be categorised into four distinct types. The spiking properties of these afferents in the periphery in response to varied tactile stimuli are well-characterised, but relatively little is known about the spatiotemporal properties of the neural representations of these different receptor types in the human cortex. Here, we use the novel methodological combination of single-unit intraneural microstimulation (INMS) with magnetoencephalography (MEG) to localise cortical representations of individual touch afferents in humans, by measuring the extracranial magnetic fields from neural currents. We found that by assessing the modulation of the beta (13-30 Hz) rhythm during single-unit INMS, significant changes in oscillatory amplitude occur in the contralateral primary somatosensory cortex within and across a group of fast adapting type I mechanoreceptive afferents, which corresponded well to the induced response from matched vibrotactile stimulation. Combining the spatiotemporal specificity of MEG with the selective single-unit stimulation of INMS enables the interrogation of the central representations of different aspects of tactile afferent signalling within the human cortices. The fundamental finding that single-unit INMS ERD responses are robust and consistent with natural somatosensory stimuli will permit us to more dynamically probe the central nervous system responses in humans, to address questions about the processing of touch from the different classes of mechanoreceptive afferents and the effects of varying the stimulus frequency and patterning.
Collapse
Affiliation(s)
- George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
| | - Roger H Watkins
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Rochelle Ackerley
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden; Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France
| | - Eleanor L Barratt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Ayan Sengupta
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Michael Asghar
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Paul M Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Johan Wessberg
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Davidovic M, Starck G, Olausson H. Processing of affective and emotionally neutral tactile stimuli in the insular cortex. Dev Cogn Neurosci 2019; 35:94-103. [PMID: 29291986 PMCID: PMC6968969 DOI: 10.1016/j.dcn.2017.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 11/15/2017] [Accepted: 12/19/2017] [Indexed: 01/26/2023] Open
Abstract
The insula is important for the processing of pleasant aspects of touch whereas its role in the processing of emotionally neutral touch has been less explored. Here, we used a network approach to investigate the insular processing of pleasant stroking touch and emotionally neutral vibratory touch, analysing functional magnetic resonance imaging data from 23 healthy adult participants. Vibration and skin stroking activated areas in the posterior, middle and anterior insula. Psychophysiological interaction analyses suggested that skin stroking increased functional connectivity between the posterior and ventral anterior insula. Vibration instead increased functional connectivity between the posterior and dorsal anterior insula, and induced a stronger decrease of the default mode network activity compared to stroking. These results confirmed findings from previous studies showing that the posterior insula processes affective touch information. We suggest that this is accomplished by relaying tactile information from the posterior insula to ventral anterior insula, an area tightly connected to the emotional parts of the brain. However, our results also suggested that the insula processes tactile information with less emotional valence. A central hub in this processing seemed to be the right dorsal anterior insula.
Collapse
Affiliation(s)
- Monika Davidovic
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | - Göran Starck
- Department of Radiation Physics at the Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden; Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Håkan Olausson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Potentials of Ultrahigh-Field MRI for the Study of Somatosensory Reorganization in Congenital Hemiplegia. Neural Plast 2018; 2018:8472807. [PMID: 30595689 PMCID: PMC6286762 DOI: 10.1155/2018/8472807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 12/03/2022] Open
Abstract
Reorganization of somatosensory function influences the clinical recovery of subjects with congenital unilateral brain lesions. Ultrahigh-field (UHF) functional MRI (fMRI) with the use of a 7 T magnet has the potential to contribute fundamentally to the current knowledge of such plasticity mechanisms. The purpose of this study was to obtain preliminary information on the possible advantages of the study of somatosensory reorganization at UHF fMRI. We enrolled 6 young adults (mean age 25 ± 6 years) with congenital unilateral brain lesions (4 in the left hemisphere and 2 in the right hemisphere; 4 with perilesional motor reorganization and 2 with contralesional motor reorganization) and 7 healthy age-matched controls. Nondominant hand sensory assessment included stereognosis and 2-point discrimination. Task-dependent fMRI was performed to elicit a somatosensory activation by using a safe and quantitative device developed ad hoc to deliver a reproducible gentle tactile stimulus to the distal phalanx of thumb and index fingers. Group analysis was performed in the control group. Individual analyses in the native space were performed with data of hemiplegic subjects. The gentle tactile stimulus showed great accuracy in determining somatosensory cortex activation. Single-subject gentle tactile stimulus showed an S1 activation in the postcentral gyrus and an S2 activation in the inferior parietal insular cortex. A correlation emerged between an index of S1 reorganization (distance between expected and reorganized S1) and sensory deficit (p < 0.05) in subjects with hemiplegia, with higher distance related to a more severe sensory deficit. Increase in spatial resolution at 7 T allows a better localization of reorganized tactile function validated by its correlation with clinical measures. Our results support the S1 early-determination hypothesis and support the central role of topography of reorganized S1 compared to a less relevant S1-M1 integration.
Collapse
|
19
|
Aquino KM, Sokoliuk R, Pakenham DO, Sanchez-Panchuelo RM, Hanslmayr S, Mayhew SD, Mullinger KJ, Francis ST. Addressing challenges of high spatial resolution UHF fMRI for group analysis of higher-order cognitive tasks: An inter-sensory task directing attention between visual and somatosensory domains. Hum Brain Mapp 2018; 40:1298-1316. [PMID: 30430706 PMCID: PMC6865556 DOI: 10.1002/hbm.24450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 01/20/2023] Open
Abstract
Functional MRI at ultra‐high field (UHF, ≥7 T) provides significant increases in BOLD contrast‐to‐noise ratio (CNR) compared with conventional field strength (3 T), and has been exploited for reduced field‐of‐view, high spatial resolution mapping of primary sensory areas. Applying these high spatial resolution methods to investigate whole brain functional responses to higher‐order cognitive tasks leads to a number of challenges, in particular how to perform robust group‐level statistical analyses. This study addresses these challenges using an inter‐sensory cognitive task which modulates top‐down attention at graded levels between the visual and somatosensory domains. At the individual level, highly focal functional activation to the task and task difficulty (modulated by attention levels) were detectable due to the high CNR at UHF. However, to assess group level effects, both anatomical and functional variability must be considered during analysis. We demonstrate the importance of surface over volume normalisation and the requirement of no spatial smoothing when assessing highly focal activity. Using novel group analysis on anatomically parcellated brain regions, we show that in higher cognitive areas (parietal and dorsal‐lateral‐prefrontal cortex) fMRI responses to graded attention levels were modulated quadratically, whilst in visual cortex and VIP, responses were modulated linearly. These group fMRI responses were not seen clearly using conventional second‐level GLM analyses, illustrating the limitations of a conventional approach when investigating such focal responses in higher cognitive regions which are more anatomically variable. The approaches demonstrated here complement other advanced analysis methods such as multivariate pattern analysis, allowing UHF to be fully exploited in cognitive neuroscience.
Collapse
Affiliation(s)
- Kevin M Aquino
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.,Brain and Mental Health Laboratory, Monash University, Clayton, Australia.,School of Physics, University of Sydney, Sydney, Australia
| | - Rodika Sokoliuk
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Daisie O Pakenham
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Rosa Maria Sanchez-Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Simon Hanslmayr
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Stephen D Mayhew
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.,Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
20
|
Walcher J, Ojeda‐Alonso J, Haseleu J, Oosthuizen MK, Rowe AH, Bennett NC, Lewin GR. Specialized mechanoreceptor systems in rodent glabrous skin. J Physiol 2018; 596:4995-5016. [PMID: 30132906 PMCID: PMC6187043 DOI: 10.1113/jp276608] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS An ex vivo preparation was developed to record from single sensory fibres innervating the glabrous skin of the mouse forepaw. The density of mechanoreceptor innervation of the forepaw glabrous skin was found to be three times higher than that of hindpaw glabrous skin. Rapidly adapting mechanoreceptors that innervate Meissner's corpuscles were severalfold more responsive to slowly moving stimuli in the forepaw compared to those innervating hindpaw skin. We found a distinct group of small hairs in the centre of the mouse hindpaw glabrous skin that were exclusively innervated by directionally sensitive D-hair receptors. The directional sensitivity, but not the end-organ anatomy, were the opposite to D-hair receptors in the hairy skin. Glabrous skin hairs in the hindpaw are not ubiquitous in rodents, but occur in African and North American species that diverged more than 65 million years ago. ABSTRACT Rodents use their forepaws to actively interact with their tactile environment. Studies on the physiology and anatomy of glabrous skin that makes up the majority of the forepaw are almost non-existent in the mouse. Here we developed a preparation to record from single sensory fibres of the forepaw and compared anatomical and physiological receptor properties to those of the hindpaw glabrous and hairy skin. We found that the mouse forepaw skin is equipped with a very high density of mechanoreceptors; >3 times more than hindpaw glabrous skin. In addition, rapidly adapting mechanoreceptors that innervate Meissner's corpuscles of the forepaw were severalfold more sensitive to slowly moving mechanical stimuli compared to their counterparts in the hindpaw glabrous skin. All other mechanoreceptor types as well as myelinated nociceptors had physiological properties that were invariant regardless of which skin area they occupied. We discovered a novel D-hair receptor innervating a small group of hairs in the middle of the hindpaw glabrous skin in mice. These glabrous skin D-hair receptors were direction sensitive albeit with an orientation sensitivity opposite to that described for hairy skin D-hair receptors. Glabrous skin hairs do not occur in all rodents, but are present in North American and African rodent species that diverged more than 65 million years ago. The function of these specialized hairs is unknown, but they are nevertheless evolutionarily very ancient. Our study reveals novel physiological specializations of mechanoreceptors in the glabrous skin that likely evolved to facilitate tactile exploration.
Collapse
Affiliation(s)
- Jan Walcher
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Julia Ojeda‐Alonso
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Julia Haseleu
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Maria K. Oosthuizen
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaRepublic of South Africa
| | - Ashlee H. Rowe
- Department of Biology and Program in Cellular and Behavioral NeurobiologyUniversity of OklahomaNormanOKUSA
| | - Nigel C. Bennett
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaRepublic of South Africa
| | - Gary R. Lewin
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
- Excellence Cluster NeurocureCharité Universitätsmedizin10117BerlinGermany
| |
Collapse
|
21
|
Ackerley R, Backlund Wasling H, Ortiz-Catalan M, Brånemark R, Wessberg J. Case Studies in Neuroscience: Sensations elicited and discrimination ability from nerve cuff stimulation in an amputee over time. J Neurophysiol 2018; 120:291-295. [PMID: 29742031 DOI: 10.1152/jn.00909.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present case study details sensations elicited by electrical stimulation of peripheral nerve axons using an implanted nerve cuff electrode, in a participant with a transhumeral amputation. The participant uses an osseointegrated electromechanical interface, which enables skeletal attachment of the prosthesis and long-term, stable, bidirectional communication between the implanted electrodes and prosthetic arm. We focused on evoking somatosensory percepts, where we tracked and quantified the evolution of perceived sensations in the missing hand, which were evoked from electrical stimulation of the nerve, for over 2 yr. These sensations included small, pointlike areas of either vibration or pushing, to larger sensations over wider areas, indicating the recruitment of a few and many afferents, respectively. Furthermore, we used a two-alternative forced choice paradigm to measure the level of discrimination between trains of brief electrical stimuli, to gauge what the participant could reliably distinguish between. At best, the participant was able to distinguish a 0.5-Hz difference and on average acquired a 3.8-Hz just-noticeable difference at a more stringent psychophysical level. The current work shows the feasibility for long-term sensory feedback in prostheses, via electrical axonal stimulation, where small and relatively stable percepts were felt that may be used to deliver graded sensory feedback. This opens up opportunities for signaling feedback during movements (e.g., for precision grip), but also for conveying more complex cutaneous sensations, such as texture. NEW & NOTEWORTHY We demonstrate the long-term stability and generation of sensations from electrical peripheral nerve stimulation in an amputee, through an osseointegrated implant. We find that perceived tactilelike sensations could be generated for over 2 yr, in the missing hand. This is useful for prosthetic development and the implementation of feedback in artificial body parts.
Collapse
Affiliation(s)
- Rochelle Ackerley
- Department of Physiology, University of Gothenburg , Gothenburg , Sweden.,Aix Marseille University, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives-UMR 7260), Marseille , France
| | | | - Max Ortiz-Catalan
- Biomechatronics and Neurorehabilitation Laboratory, Department of Electrical Engineering, Chalmers University of Technology , Gothenburg , Sweden.,Integrum AB, Mölndal , Sweden
| | - Rickard Brånemark
- International Centre for Osseointegration Research, Education and Surgery (iCORES), Department of Orthopaedics, University of California , San Francisco, California
| | - Johan Wessberg
- Department of Physiology, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
22
|
Avanzini P, Pelliccia V, Lo Russo G, Orban GA, Rizzolatti G. Multiple time courses of somatosensory responses in human cortex. Neuroimage 2018; 169:212-226. [PMID: 29248698 PMCID: PMC5864517 DOI: 10.1016/j.neuroimage.2017.12.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/22/2017] [Accepted: 12/13/2017] [Indexed: 02/04/2023] Open
Abstract
Here we show how anatomical and functional data recorded from patients undergoing stereo-EEG can be used to decompose the cortical processing following nerve stimulation in different stages characterized by specific topography and time course. Tibial, median and trigeminal nerves were stimulated in 96 patients, and the increase in gamma power was evaluated over 11878 cortical sites. All three nerve datasets exhibited similar clusters of time courses: phasic, delayed/prolonged and tonic, which differed in topography, temporal organization and degree of spatial overlap. Strong phasic responses of the three nerves followed the classical somatotopic organization of SI, with no overlap in either time or space. Delayed responses presented overlaps between pairs of body parts in both time and space, and were confined to the dorsal motor cortices. Finally, tonic responses occurred in the perisylvian region including posterior insular cortex and were evoked by the stimulation of all three nerves, lacking any spatial and temporal specificity. These data indicate that the somatosensory processing following nerve stimulation is a multi-stage hierarchical process common to all three nerves, with the different stages likely subserving different functions. While phasic responses represent the neural basis of tactile perception, multi-nerve tonic responses may represent the neural signature of processes sustaining the capacity to become aware of tactile stimuli.
Collapse
Affiliation(s)
- P Avanzini
- Istituto di Neuroscienze, Consiglio nazionale delle Ricerche - CNR, Parma, Italy; Dipartimento di Medicina e Chirurgia, University of Parma, Italy.
| | - V Pelliccia
- Dipartimento di Medicina e Chirurgia, University of Parma, Italy; Centro per la chirurgia dell'Epilessia "Claudio Munari", Ospedale Ca'Granda-Niguarda, Milano, Italy
| | - G Lo Russo
- Centro per la chirurgia dell'Epilessia "Claudio Munari", Ospedale Ca'Granda-Niguarda, Milano, Italy
| | - G A Orban
- Dipartimento di Medicina e Chirurgia, University of Parma, Italy
| | - G Rizzolatti
- Istituto di Neuroscienze, Consiglio nazionale delle Ricerche - CNR, Parma, Italy; Dipartimento di Medicina e Chirurgia, University of Parma, Italy
| |
Collapse
|
23
|
An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography. J Neurosci Methods 2017; 290:69-78. [PMID: 28743633 PMCID: PMC5594527 DOI: 10.1016/j.jneumeth.2017.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 11/23/2022]
Abstract
We propose an intra-neural microstimulation system for 7 T fMRI and MEG. This custom-built system removes issues with existing equipment. It provides efficient work-flow and improved participant comfort and safety. Stimulating single mechanoreceptors evokes activity in 7 T fMRI and MEG. Responses to unitary stimulation are shown for the first time in MEG.
Background Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution. New method INMS systems suitable for use within electrophysiology laboratories have been available for many years. We describe an INMS system specifically designed to provide compatibility with both ultra-high field (7 T) fMRI and MEG. Numerous technical and safety issues are addressed. The system is fully analogue, allowing for arbitrary frequency and amplitude INMS stimulation. Results Unitary recordings obtained within both the MRI and MEG screened-room environments are comparable with those obtained in ‘clean’ electrophysiology recording environments. Single unit INMS (current <7 μA, 200 μs pulses) of individual mechanoreceptive afferents produces appropriate and robust responses during fMRI and MEG. Comparison with existing method(s) This custom-built MRI- and MEG-compatible stimulator overcomes issues with existing INMS approaches; it allows well-controlled switching between recording and stimulus mode, prevents electrical shocks because of long cable lengths, permits unlimited patterns of stimulation, and provides a system with improved work-flow and participant comfort. Conclusions We demonstrate that the requirements for an INMS-integrated system, which can be used with both fMRI and MEG imaging systems, have been fully met.
Collapse
|
24
|
Schluppeck D, Sanchez-Panchuelo RM, Francis ST. Exploring structure and function of sensory cortex with 7T MRI. Neuroimage 2017; 164:10-17. [PMID: 28161312 DOI: 10.1016/j.neuroimage.2017.01.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/18/2022] Open
Abstract
In this paper, we present an overview of 7T magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) - defined here as 7T and above - has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area.
Collapse
Affiliation(s)
- Denis Schluppeck
- School of Psychology, University of Nottingham University Park, Nottingham NG7 2RD, UK.
| | - Rosa-Maria Sanchez-Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
25
|
Filingeri D, Ackerley R. The biology of skin wetness perception and its implications in manual function and for reproducing complex somatosensory signals in neuroprosthetics. J Neurophysiol 2017; 117:1761-1775. [PMID: 28123008 DOI: 10.1152/jn.00883.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 01/11/2023] Open
Abstract
Our perception of skin wetness is generated readily, yet humans have no known receptor (hygroreceptor) to signal this directly. It is easy to imagine the sensation of water running over our hands or the feel of rain on our skin. The synthetic sensation of wetness is thought to be produced from a combination of specific skin thermal and tactile inputs, registered through thermoreceptors and mechanoreceptors, respectively. The present review explores how thermal and tactile afference from the periphery can generate the percept of wetness centrally. We propose that the main signals include information about skin cooling, signaled primarily by thinly myelinated thermoreceptors, and rapid changes in touch, through fast-conducting, myelinated mechanoreceptors. Potential central sites for integration of these signals, and thus the perception of skin wetness, include the primary and secondary somatosensory cortices and the insula cortex. The interactions underlying these processes can also be modeled to aid in understanding and engineering the mechanisms. Furthermore, we discuss the role that sensing wetness could play in precision grip and the dexterous manipulation of objects. We expand on these lines of inquiry to the application of the knowledge in designing and creating skin sensory feedback in prosthetics. The addition of real-time, complex sensory signals would mark a significant advance in the use and incorporation of prosthetic body parts for amputees in everyday life.NEW & NOTEWORTHY Little is known about the underlying mechanisms that generate the perception of skin wetness. Humans have no specific hygroreceptor, and thus temperature and touch information combine to produce wetness sensations. The present review covers the potential mechanisms leading to the perception of wetness, both peripherally and centrally, along with their implications for manual function. These insights are relevant to inform the design of neuroengineering interfaces, such as sensory prostheses for amputees.
Collapse
Affiliation(s)
- Davide Filingeri
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, United Kingdom;
| | - Rochelle Ackerley
- Department of Physiology, University of Gothenburg, Göteborg, Sweden; and.,Laboratoire Neurosciences Intégratives et Adaptatives (UMR 7260), Aix Marseille Université-Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|