1
|
Jiang Z, Pan M, Liu Y, Lundh T, Pineda D, Schenk L, Saber AT, Vogel U, Ljunggren S, Ricklund N, Engfeldt M, Krais AM, Broberg K. Integrative analyses of circulating microRNA expression profile in hexavalent chromium exposed workers - A cross-sectional study within the SafeChrom project. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137367. [PMID: 40098212 DOI: 10.1016/j.jhazmat.2025.137367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Exposure to hexavalent chromium (Cr(VI)) can occur during occupational activities and leading lung cancer. MicroRNA (miRNA) plays an important part in carcinogenesis. Whether Cr(VI) exposure causes cancer-related miRNA changes is yet uncharacterized. METHODS This study included 89 Cr(VI) exposed workers and 47 controls. MiRNAs were extracted from plasma followed by library preparations, miRNA sequencing, and differentially expressed miRNAs (DEMs) analysis. To understand the underlying biological functions, we used bioinformatics approaches, and qPCR was performed to validate the expression of potential target genes. RESULTS A total of 2100 miRNAs were detected. In the exposed workers, 59 DEMs were identified: 21 up-regulated and 38 down-regulated. Target genes for both up- and down-regulated DEMs were significantly enriched in: miRNAs in cancer, small cell lung cancer and non-small cell lung cancer. Protein-protein interactions showed a high number of interactions, in which CCNE2, CDK4 and E2F1 were predicted as hub genes, and the messenger RNA expression of those genes was significantly higher in the exposed workers compared with controls. CONCLUSIONS Our study suggests that low-to-moderate Cr(VI) exposure results in differential expression of lung-cancer-related miRNAs and associated target genes. Further studies are needed to validate our findings and clarify whether these changes predict cancer risk.
Collapse
Affiliation(s)
- Zheshun Jiang
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mengyu Pan
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Yishan Liu
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Linda Schenk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anne T Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University
| | - Niklas Ricklund
- Department of Occupational and Environmental Medicine, Örebro University Hospital, Region Örebro County, Sweden
| | - Malin Engfeldt
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
2
|
Wang T, Tian S, Tikhonova EB, Karamyshev AL, Wang JJ, Zhang F, Wang D. The Enrichment of miRNA-Targeted mRNAs in Translationally Less Active over More Active Polysomes. BIOLOGY 2023; 12:1536. [PMID: 38132362 PMCID: PMC10741098 DOI: 10.3390/biology12121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
miRNAs moderately inhibit the translation and enhance the degradation of their target mRNAs via cognate binding sites located predominantly in the 3'-untranslated regions (UTR). Paradoxically, miRNA targets are also polysome-associated. We studied the polysome association by the comparative translationally less-active light- and more-active heavy-polysome profiling of a wild type (WT) human cell line and its isogenic mutant (MT) with a disrupted DICER1 gene and, thus, mature miRNA production. As expected, the open reading frame (ORF) length is a major determinant of light- to heavy-polysome mRNA abundance ratios, but is rendered less powerful in WT than in MT cells by miRNA-regulatory activities. We also observed that miRNAs tend to target mRNAs with longer ORFs, and that adjusting the mRNA abundance ratio with the ORF length improves its correlation with the 3'-UTR miRNA-binding-site count. In WT cells, miRNA-targeted mRNAs exhibit higher abundance in light relative to heavy polysomes, i.e., light-polysome enrichment. In MT cells, the DICER1 disruption not only significantly abrogated the light-polysome enrichment, but also narrowed the mRNA abundance ratio value range. Additionally, the abrogation of the enrichment due to the DICER1 gene disruption, i.e., the decreases of the ORF-length-adjusted mRNA abundance ratio from WT to MT cells, exhibits a nearly perfect linear correlation with the 3'-UTR binding-site count. Transcription factors and protein kinases are the top two most enriched mRNA groups. Taken together, the results provide evidence for the light-polysome enrichment of miRNA-targeted mRNAs to reconcile polysome association and moderate translation inhibition, and that ORF length is an important, though currently under-appreciated, transcriptome regulation parameter.
Collapse
Affiliation(s)
- Tingzeng Wang
- Department of Environmental Toxicology, and The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX 79416, USA; (T.W.); (S.T.)
| | - Shuangmei Tian
- Department of Environmental Toxicology, and The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX 79416, USA; (T.W.); (S.T.)
| | - Elena B. Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (E.B.T.); (A.L.K.)
| | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (E.B.T.); (A.L.K.)
| | - Jing J. Wang
- Department of Cancer Biology and Genetics, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Fangyuan Zhang
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79416, USA;
| | - Degeng Wang
- Department of Environmental Toxicology, and The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX 79416, USA; (T.W.); (S.T.)
| |
Collapse
|
3
|
Zhang H, Li S, Dai N, Zhang L, Mathews DH, Huang L. LinearCoFold and LinearCoPartition: linear-time algorithms for secondary structure prediction of interacting RNA molecules. Nucleic Acids Res 2023; 51:e94. [PMID: 37650626 PMCID: PMC10570024 DOI: 10.1093/nar/gkad664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/15/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Many RNAs function through RNA-RNA interactions. Fast and reliable RNA structure prediction with consideration of RNA-RNA interaction is useful, however, existing tools are either too simplistic or too slow. To address this issue, we present LinearCoFold, which approximates the complete minimum free energy structure of two strands in linear time, and LinearCoPartition, which approximates the cofolding partition function and base pairing probabilities in linear time. LinearCoFold and LinearCoPartition are orders of magnitude faster than RNAcofold. For example, on a sequence pair with combined length of 26,190 nt, LinearCoFold is 86.8× faster than RNAcofold MFE mode, and LinearCoPartition is 642.3× faster than RNAcofold partition function mode. Surprisingly, LinearCoFold and LinearCoPartition's predictions have higher PPV and sensitivity of intermolecular base pairs. Furthermore, we apply LinearCoFold to predict the RNA-RNA interaction between SARS-CoV-2 genomic RNA (gRNA) and human U4 small nuclear RNA (snRNA), which has been experimentally studied, and observe that LinearCoFold's prediction correlates better with the wet lab results than RNAcofold's.
Collapse
Affiliation(s)
- He Zhang
- Baidu Research, Sunnyvale, CA, USA
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR, USA
| | - Sizhen Li
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR, USA
| | - Ning Dai
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR, USA
| | - Liang Zhang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics,Rochester, NY 14642, USA
- Center for RNA Biology, Rochester, NY 14642, USA
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Liang Huang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
4
|
Cacioppo R, Akman HB, Tuncer T, Erson-Bensan AE, Lindon C. Differential translation of mRNA isoforms underlies oncogenic activation of cell cycle kinase Aurora A. eLife 2023; 12:RP87253. [PMID: 37384380 DOI: 10.7554/elife.87253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Aurora Kinase A (AURKA) is an oncogenic kinase with major roles in mitosis, but also exerts cell cycle- and kinase-independent functions linked to cancer. Therefore, control of its expression, as well as its activity, is crucial. A short and a long 3'UTR isoform exist for AURKA mRNA, resulting from alternative polyadenylation (APA). We initially observed that in triple-negative breast cancer, where AURKA is typically overexpressed, the short isoform is predominant and this correlates with faster relapse times of patients. The short isoform is characterized by higher translational efficiency since translation and decay rate of the long isoform are targeted by hsa-let-7a tumor-suppressor miRNA. Additionally, hsa-let-7a regulates the cell cycle periodicity of translation of the long isoform, whereas the short isoform is translated highly and constantly throughout interphase. Finally, disrupted production of the long isoform led to an increase in proliferation and migration rates of cells. In summary, we uncovered a new mechanism dependent on the cooperation between APA and miRNA targeting likely to be a route of oncogenic activation of human AURKA.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Hesna Begum Akman
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Taner Tuncer
- Department of Biology, Ondokuz Mayis Universitesi, Samsun, Turkey
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Dave P, Roth G, Griesbach E, Mateju D, Hochstoeger T, Chao JA. Single-molecule imaging reveals translation-dependent destabilization of mRNAs. Mol Cell 2023; 83:589-606.e6. [PMID: 36731471 PMCID: PMC9957601 DOI: 10.1016/j.molcel.2023.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
The relationship between mRNA translation and decay is incompletely understood, with conflicting reports suggesting that translation can either promote decay or stabilize mRNAs. The effect of translation on mRNA decay has mainly been studied using ensemble measurements and global transcription and translation inhibitors, which can have pleiotropic effects. We developed a single-molecule imaging approach to control the translation of a specific transcript that enabled simultaneous measurement of translation and mRNA decay. Our results demonstrate that mRNA translation reduces mRNA stability, and mathematical modeling suggests that this process is dependent on ribosome flux. Furthermore, our results indicate that miRNAs mediate efficient degradation of both translating and non-translating target mRNAs and reveal a predominant role for mRNA degradation in miRNA-mediated regulation. Simultaneous observation of translation and decay of single mRNAs provides a framework to directly study how these processes are interconnected in cells.
Collapse
Affiliation(s)
- Pratik Dave
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Daniel Mateju
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
6
|
Hu YZ, Li Q, Wang PF, Li XP, Hu ZL. Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front Oncol 2023; 13:1140813. [PMID: 37182123 PMCID: PMC10172652 DOI: 10.3389/fonc.2023.1140813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene expression. Previous studies have shown that miR-150 is a crucial regulator of B cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates the immune homeostasis during the development of obesity and is aberrantly expressed in multiple B-cell-related malignant tumors. Additionally, the altered expression of MIR-150 is a diagnostic biomarker of various autoimmune diseases. Furthermore, exosome-derived miR-150 is considered as prognostic tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders, suggesting miR-150 plays a vital role in disease onset and progression. In this review, we summarized the miR-150-dependent regulation of B cell function in B cell-related immune diseases.
Collapse
Affiliation(s)
- Yue-Zi Hu
- Clinical Laboratory, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qiao Li
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Lan Hu,
| |
Collapse
|
7
|
Berry CW, Olivares GH, Gallicchio L, Ramaswami G, Glavic A, Olguín P, Li JB, Fuller MT. Developmentally regulated alternate 3' end cleavage of nascent transcripts controls dynamic changes in protein expression in an adult stem cell lineage. Genes Dev 2022; 36:916-935. [PMID: 36175033 PMCID: PMC9575692 DOI: 10.1101/gad.349689.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.
Collapse
Affiliation(s)
- Cameron W Berry
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gonzalo H Olivares
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Huechuraba 8580745, Chile
- Center of Integrative Biology (CIB), Universidad Mayor, Huechuraba 8580745, Chile
| | - Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alvaro Glavic
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
| | - Patricio Olguín
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
8
|
Cialek CA, Galindo G, Morisaki T, Zhao N, Montgomery TA, Stasevich TJ. Imaging translational control by Argonaute with single-molecule resolution in live cells. Nat Commun 2022; 13:3345. [PMID: 35688806 PMCID: PMC9187665 DOI: 10.1038/s41467-022-30976-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
A major challenge to our understanding of translational control has been deconvolving the individual impact specific regulatory factors have on the complex dynamics of mRNA translation. MicroRNAs (miRNAs), for example, guide Argonaute and associated proteins to target mRNAs, where they direct gene silencing in multiple ways that are not well understood. To better deconvolve these dynamics, we have developed technology to directly visualize and quantify the impact of human Argonaute2 (Ago2) on the translation and subcellular localization of individual reporter mRNAs in living cells. We show that our combined translation and Ago2 tethering sensor reflects endogenous miRNA-mediated gene silencing. Using the sensor, we find that Ago2 association leads to progressive silencing of translation at individual mRNA. Silencing was occasionally interrupted by brief bursts of translational activity and took 3–4 times longer than a single round of translation, consistent with a gradual increase in the inhibition of translation initiation. At later time points, Ago2-tethered mRNAs cluster and coalesce with P-bodies, where a translationally silent state is maintained. These results provide a framework for exploring miRNA-mediated gene regulation in live cells at the single-molecule level. Furthermore, our tethering-based, single-molecule reporter system will likely have wide-ranging application in studying RNA-protein interactions. Guided by miRNA, Argonaute proteins silence mRNA in multiple ways that are not well understood. Here, the authors develop live-cell biosensors to image the impact tethered regulatory factors, such as Argonaute, have on single-mRNA translation dynamics.
Collapse
Affiliation(s)
- Charlotte A Cialek
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tatsuya Morisaki
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ning Zhao
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA. .,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
9
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
10
|
Qiu P, Guo Q, Yao Q, Chen J, Lin J. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer. PLoS One 2021; 16:e0254283. [PMID: 34797837 PMCID: PMC8604295 DOI: 10.1371/journal.pone.0254283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy in female, but the role of androgen receptor (AR) in triple-negative breast cancer (TNBC) is still unclear. This study aimed to exam the performance of innovative biomarkers for AR positive TNBC in diagnosis and therapies. Four datasets (GSE42568, GSE45827, GSE54002 and GSE76124) were analyzed by bioinformatic methods and the differential expression genes (DEGs) between the AR positive TNBC tissues and normal tissues were firstly identified by limma package and Venn diagrams. Next, Gene Ontologies (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to explore the relationship between these DEGs. Then, the Protein-protein interaction (PPI) network was constructed. CytoHubba and bioinformatic approaches including Molecular Complex Detection (MCODE), Gene Expression Profiling Interactive Analysis (GEPIA), the Kaplan–Meier (KM) plotter and The Human Pro-tein Atlas (THPA) were used to identify the hub genes. Lastly, a miRNA-hub-gene regulatory axis was constructed by use of Target Scan database and ENCORI database. As a result, a total of 390 common DEGs were identified, including 250 up-regulated and 140 down-regulated. GO and KEGG enrichment analysis showed that the up-regulated DEGs were mostly enriched in the cell division, mitotic nuclear division, nucleosome, midbody, protein heterodimerization activity, cadherin binding involved in cell−cell adhesion, systemic lupus erythematosus and alcoholism, while the down-regulated DEGs were mainly enriched in carbohydrate metabolic process, extracellular space, extracellular region, zinc ion binding and microRNAs in cancer. Then, 13 hub genes (CCNB2, FOXM1, HMMR, MAD2L1, RRM2, TPX2, TYMS, CEP55, AURKA, CCNB1, CDK1, TOP2A, PBK) were selected. The survival analysis revealed that only CCNB1 was associated with significantly poor survival (P <0.05) in TNBC patients. Finally, we found that hsa-miR-3163 took part in the regulation of CCNB1 and constructed a potential hsa-miR-3163-CCNB1 regulatory axis. The results of current study suggest that CCNB1 and hsa-miR-3163 may serve as highly potential prognostic markers and therapeutic targets for AR positive TNBC. Our findings may make contributions to the diagnosis and therapies of AR positive TNBC.
Collapse
Affiliation(s)
- Pengjun Qiu
- Thyroid & Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiaonan Guo
- Thyroid & Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingzhi Yao
- Thyroid & Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianpeng Chen
- Thyroid & Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianqing Lin
- Thyroid & Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- * E-mail:
| |
Collapse
|
11
|
Morris C, Cluet D, Ricci EP. Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1658. [PMID: 33949788 PMCID: PMC8519046 DOI: 10.1002/wrna.1658] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/01/2022]
Abstract
Eukaryotic gene expression is closely regulated by translation and turnover of mRNAs. Recent advances highlight the importance of translation in the control of mRNA degradation, both for aberrant and apparently normal mRNAs. During translation, the information contained in mRNAs is decoded by ribosomes, one codon at a time, and tRNAs, by specifically recognizing codons, translate the nucleotide code into amino acids. Such a decoding step does not process regularly, with various obstacles that can hinder ribosome progression, then leading to ribosome stalling or collisions. The progression of ribosomes is constantly monitored by the cell which has evolved several translation-dependent mRNA surveillance pathways, including nonsense-mediated decay (NMD), no-go decay (NGD), and non-stop decay (NSD), to degrade certain problematic mRNAs and the incomplete protein products. Recent progress in sequencing and ribosome profiling has made it possible to discover new mechanisms controlling ribosome dynamics, with numerous crosstalks between translation and mRNA decay. We discuss here various translation features critical for mRNA decay, with particular focus on current insights from the complexity of the genetic code and also the emerging role for the ribosome as a regulatory hub orchestrating mRNA decay, quality control, and stress signaling. Even if the interplay between mRNA translation and degradation is no longer to be demonstrated, a better understanding of their precise coordination is worthy of further investigation. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Christelle Morris
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - David Cluet
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - Emiliano P. Ricci
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| |
Collapse
|
12
|
Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeffrey H S Man
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Respirology, University Health Network, Latner Thoracic Research Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Philip A Marsden
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Biasini A, Abdulkarim B, de Pretis S, Tan JY, Arora R, Wischnewski H, Dreos R, Pelizzola M, Ciaudo C, Marques AC. Translation is required for miRNA-dependent decay of endogenous transcripts. EMBO J 2021; 40:e104569. [PMID: 33300180 PMCID: PMC7849302 DOI: 10.15252/embj.2020104569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Post-transcriptional repression of gene expression by miRNAs occurs through transcript destabilization or translation inhibition. mRNA decay is known to account for most miRNA-dependent repression. However, because transcript decay occurs co-translationally, whether target translation is a requirement for miRNA-dependent transcript destabilization remains unknown. To decouple these two molecular processes, we used cytosolic long noncoding RNAs (lncRNAs) as models for endogenous transcripts that are not translated. We show that, despite interacting with the miRNA-loaded RNA-induced silencing complex, the steady-state abundance and decay rates of these transcripts are minimally affected by miRNA loss. To further validate the apparent requirement of translation for miRNA-dependent decay, we fused two lncRNA candidates to the 3'-end of a protein-coding gene reporter and found this results in their miRNA-dependent destabilization. Further analysis revealed that the few natural lncRNAs whose levels are regulated by miRNAs in mESCs tend to associate with translating ribosomes, and possibly represent misannotated micropeptides, further substantiating the necessity of target translation for miRNA-dependent transcript decay. In summary, our analyses suggest that translation is required for miRNA-dependent transcript destabilization, and demonstrate that the levels of coding and noncoding transcripts are differently affected by miRNAs.
Collapse
Affiliation(s)
- Adriano Biasini
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Baroj Abdulkarim
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Stefano de Pretis
- Center for Genomic SciencesIstituto Italiano di Tecnologia (IIT)MilanoItaly
| | - Jennifer Y Tan
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Rajika Arora
- Institute of Molecular Health SciencesETHZZurichSwitzerland
| | | | - Rene Dreos
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Mattia Pelizzola
- Center for Genomic SciencesIstituto Italiano di Tecnologia (IIT)MilanoItaly
| | | | - Ana Claudia Marques
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
14
|
Wu D, Huo C, Jiang S, Huang Y, Fang X, Liu J, Yang M, Ren J, Xu B, Liu Y. Exostosin1 as a novel prognostic and predictive biomarker for squamous cell lung carcinoma: A study based on bioinformatics analysis. Cancer Med 2020; 10:2787-2801. [PMID: 33314711 PMCID: PMC8026939 DOI: 10.1002/cam4.3643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
The exostosin (EXT) protein family is involved in diverse human diseases. However, the expression and prognostic value of EXT genes in human lung squamous cell carcinoma (LUSC) is not well understood. In this study, we analyzed the association between expression of EXT1 and EXT2 genes and survival in patients with LUSC using bioinformatics resources such as Oncomine and The Cancer Genome Atlas (TCGA) databases, the Gene Expression Profiling Interactive Analysis (GEPIA) server and Kaplan–Meier plotter. Furthermore, regulatory microRNAs (miRNAs) were predicted for EXT1 and used to establish a potential miRNA‐messenger RNA (mRNA) regulation network for LUSC using the ENCORI platform. We observed that EXT1 and EXT2 expression levels were higher in LUSC than those in normal tissues. However, only EXT1 expression was significantly associated with poor overall survival (OS) in LUSC patients. Functional annotation enrichment analysis showed that genes co‐expressed with the EXT1 gene were enriched in biological processes such as cell adhesion and migration, and KEGG pathways such as extracellular matrix receptor interactions, complement and coagulation cascades, and cell death. Furthermore, three miRNAs, hsa‐mir‐190a‐5p, hsa‐mir‐195‐5p, and hsa‐mir‐490‐3p, were identified to be potentially involved in the regulation of EXT1. In summary, we identified EXT1 expression as a novel potential prognostic marker for human LUSC and the regulatory miRNAs that could possibly contribute to the prognosis of the disease.
Collapse
Affiliation(s)
- Disheng Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Marine Medicine Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chao Huo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Marine Medicine Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China.,Department of Anus and Intestines, Shenzhen Nanshan District People's Hospital, Shenzhen, Guangdong, China
| | - Siyu Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Marine Medicine Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanxia Huang
- Department of Pharmacy, The Third People's Hospital of Shantou, Shantou, Guangdong, China
| | - Xuehong Fang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Marine Medicine Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jun Liu
- Shenzhen Ritzcon Biological Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Min Yang
- Shenzhen Ritzcon Biological Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Jianwei Ren
- Shenzhen Ritzcon Biological Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Marine Medicine Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
15
|
Ouyang X, Wang Z, Yao L, Zhang G. Elevated CELSR3 expression is associated with hepatocarcinogenesis and poor prognosis. Oncol Lett 2020; 20:1083-1092. [PMID: 32724347 PMCID: PMC7377182 DOI: 10.3892/ol.2020.11671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) has been reported to exhibit a cancer-specific pattern. The present study aimed to investigate the clinical value and functional role of CELSR3 in hepatocellular carcinoma (HCC), and determine the underlying molecular mechanism in patients with HCC. CELSR3 expression in tumor and paracancerous HCC tissues was obtained from The Cancer Genome Atlas. Differential expression analysis was performed using the edgeR package. Pearson correlation analysis was used to analyze the correlation between methylation and mRNA levels of CELSR3. Pathways affected by aberrant CELSR3 expression were identified through Gene Set Enrichment Analysis. The results demonstrated that CELSR3 was highly expressed in the early stage of cancer and was present throughout the entire cancer process, which suggested that CELSR3 may serve a key role in the carcinogenesis of HCC. In addition, upregulation of CELSR3 was associated with its methylation level; high CELSR3 expression indicated a shorter overall survival time. Multiple candidate genes were screened by integrating differentially expressed (DE) mRNAs and target genes of DE microRNAs (miRs). Subsequent pathway enrichment analysis demonstrated that the upregulated genes were predominantly enriched in the ‘Neuroactive ligand-receptor interaction’ and ‘Cell cycle’ pathways, whereas the downregulated genes were primarily enriched in ‘Cytokine-cytokine receptor interaction’ and ‘Metabolic pathways’. CELSR3 and its connected nodes and edges were initially removed from the miRNA-mRNA regulatory network in order to prevent bias and compared with the network containing CELSR3 alone. The frequently dysregulated miRNAs were identified as miR-181 family members, and the results suggested that miR-181 and the Wnt/β-catenin signaling pathway influenced CELSR3 expression.
Collapse
Affiliation(s)
- Xiwu Ouyang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Gewen Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
16
|
Sirey TM, Roberts K, Haerty W, Bedoya-Reina O, Rogatti-Granados S, Tan JY, Li N, Heather LC, Carter RN, Cooper S, Finch AJ, Wills J, Morton NM, Marques AC, Ponting CP. The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity. eLife 2019; 8:e45051. [PMID: 31045494 PMCID: PMC6542586 DOI: 10.7554/elife.45051] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
To generate energy efficiently, the cell is uniquely challenged to co-ordinate the abundance of electron transport chain protein subunits expressed from both nuclear and mitochondrial genomes. How an effective stoichiometry of this many constituent subunits is co-ordinated post-transcriptionally remains poorly understood. Here we show that Cerox1, an unusually abundant cytoplasmic long noncoding RNA (lncRNA), modulates the levels of mitochondrial complex I subunit transcripts in a manner that requires binding to microRNA-488-3p. Increased abundance of Cerox1 cooperatively elevates complex I subunit protein abundance and enzymatic activity, decreases reactive oxygen species production, and protects against the complex I inhibitor rotenone. Cerox1 function is conserved across placental mammals: human and mouse orthologues effectively modulate complex I enzymatic activity in mouse and human cells, respectively. Cerox1 is the first lncRNA demonstrated, to our knowledge, to regulate mitochondrial oxidative phosphorylation and, with miR-488-3p, represent novel targets for the modulation of complex I activity.
Collapse
Affiliation(s)
- Tamara M Sirey
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Kenny Roberts
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Wilfried Haerty
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Oscar Bedoya-Reina
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Sebastian Rogatti-Granados
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Jennifer Y Tan
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Nick Li
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Roderick N Carter
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - Sarah Cooper
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Andrew J Finch
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
| | - Jimi Wills
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
| | - Nicholas M Morton
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | | | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
17
|
Structure of the 80S ribosome-Xrn1 nuclease complex. Nat Struct Mol Biol 2019; 26:275-280. [PMID: 30911188 DOI: 10.1038/s41594-019-0202-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/14/2019] [Indexed: 11/08/2022]
Abstract
Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5'-to-3' exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed Saccharomyces cerevisiae 80S ribosome-Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5'-to-3' mRNA degradation is coupled efficiently to its final round of mRNA translation.
Collapse
|
18
|
Precise tuning of gene expression levels in mammalian cells. Nat Commun 2019; 10:818. [PMID: 30778069 PMCID: PMC6379387 DOI: 10.1038/s41467-019-08777-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Precise, analogue regulation of gene expression is critical for cellular function in mammals. In contrast, widely employed experimental and therapeutic approaches such as knock-in/out strategies are more suitable for binary control of gene activity. Here we report on a method for precise control of gene expression levels in mammalian cells using engineered microRNA response elements (MREs). First, we measure the efficacy of thousands of synthetic MRE variants under the control of an endogenous microRNA by high-throughput sequencing. Guided by this data, we establish a library of microRNA silencing-mediated fine-tuners (miSFITs) of varying strength that can be employed to precisely control the expression of user-specified genes. We apply this technology to tune the T-cell co-inhibitory receptor PD-1 and to explore how antigen expression influences T-cell activation and tumour growth. Finally, we employ CRISPR/Cas9 mediated homology directed repair to introduce miSFITs into the BRCA1 3′UTR, demonstrating that this versatile tool can be used to tune endogenous genes. Analogue regulation of gene expression is important for normal function in mammals but existing genetic technologies are designed to achieve ON/OFF control. Here the authors develop synthetic microRNA silencing-mediated fine-tuners (miSFITs) to precisely control target gene expression levels.
Collapse
|
19
|
Menzel P, McCorkindale AL, Stefanov SR, Zinzen RP, Meyer IM. Transcriptional dynamics of microRNAs and their targets during Drosophila neurogenesis. RNA Biol 2019; 16:69-81. [PMID: 30582411 PMCID: PMC6380339 DOI: 10.1080/15476286.2018.1558907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/20/2023] Open
Abstract
During Drosophila melanogaster embryogenesis, tight regulation of gene expression in time and space is required for the orderly emergence of specific cell types. While the general importance of microRNAs in regulating eukaryotic gene expression has been well-established, their role in early neurogenesis remains to be addressed. In this survey, we investigate the transcriptional dynamics of microRNAs and their target transcripts during neurogenesis of Drosophila melanogaster. To this end, we use the recently developed DIV-MARIS protocol, a method for enriching specific cell types from the Drosophila embryo in vivo, to sequence cell type-specific transcriptomes. We generate dedicated small and total RNA-seq libraries for neuroblasts, neurons and glia cells at early (6-8 h after egg laying (AEL)) and late (18-22 h AEL) stage. This allows us to directly compare these transcriptomes and investigate the potential functional roles of individual microRNAs with spatiotemporal resolution genome-wide, which is beyond the capabilities of existing in situ hybridization methods. Overall, we identify 74 microRNAs that are significantly differentially expressed between the three cell types and the two developmental stages. In all cell types, predicted target genes of down-regulated microRNAs show a significant enrichment of Gene Ontology terms related to neurogenesis. We also investigate how microRNAs regulate the transcriptome by targeting transcription factors and find many candidate microRNAs with putative roles in neurogenesis. Our survey highlights the roles of microRNAs as regulators of differentiation and glioneurognesis in the fruit fly and provides distinct starting points for dedicated functional follow-up studies.
Collapse
Affiliation(s)
- Peter Menzel
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexandra L. McCorkindale
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefan R. Stefanov
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biochemistry, Department of Biology, Chemistry, and Pharmacology, Freie Universität Berlin, Berlin, Germany
| | - Robert P. Zinzen
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Irmtraud M. Meyer
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biochemistry, Department of Biology, Chemistry, and Pharmacology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Mugridge JS, Coller J, Gross JD. Structural and molecular mechanisms for the control of eukaryotic 5'-3' mRNA decay. Nat Struct Mol Biol 2018; 25:1077-1085. [PMID: 30518847 DOI: 10.1038/s41594-018-0164-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
5'-3' RNA decay pathways are critical for quality control and regulation of gene expression. Structural and biochemical studies have provided insights into the key nucleases that carry out deadenylation, decapping, and exonucleolysis during 5'-3' decay, but detailed understanding of how these activities are coordinated is only beginning to emerge. Here we review recent mechanistic insights into the control of 5'-3' RNA decay, including coupling between translation and decay, coordination between the complexes and activities that process 5' and 3' RNA termini, conformational control of enzymatic activity, liquid phase separation, and RNA modifications.
Collapse
Affiliation(s)
- Jeffrey S Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Jeff Coller
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Polypyrimidine tract-binding protein blocks miRNA-124 biogenesis to enforce its neuronal-specific expression in the mouse. Proc Natl Acad Sci U S A 2018; 115:E11061-E11070. [PMID: 30401736 DOI: 10.1073/pnas.1809609115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNA (miRNA)-124 is expressed in neurons, where it represses genes inhibitory for neuronal differentiation, including the RNA binding protein PTBP1. PTBP1 maintains nonneuronal splicing patterns of mRNAs that switch to neuronal isoforms upon neuronal differentiation. We find that primary (pri)-miR-124-1 is expressed in mouse embryonic stem cells where mature miR-124 is absent. PTBP1 binds to this precursor RNA upstream of the miRNA stem-loop to inhibit mature miR-124 expression in vivo and DROSHA cleavage of pri-miR-124-1 in vitro. This function for PTBP1 in repressing miR-124 biogenesis defines an additional regulatory loop in the already intricate interplay between these two molecules. Applying mathematical modeling to examine the dynamics of this regulation, we find that the pool of pri-miR-124 whose maturation is blocked by PTBP1 creates a robust and self-reinforcing transition in gene expression as PTBP1 is depleted during early neuronal differentiation. While interlocking regulatory loops are often found between miRNAs and transcriptional regulators, our results indicate that miRNA targeting of posttranscriptional regulators also reinforces developmental decisions. Notably, induction of neuronal differentiation observed upon PTBP1 knockdown likely results from direct derepression of miR-124, in addition to indirect effects previously described.
Collapse
|
22
|
A novel class of microRNA-recognition elements that function only within open reading frames. Nat Struct Mol Biol 2018; 25:1019-1027. [PMID: 30297778 PMCID: PMC6219929 DOI: 10.1038/s41594-018-0136-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/29/2018] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells.
Collapse
|
23
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
24
|
Martinez-Nunez RT, Rupani H, Platé M, Niranjan M, Chambers RC, Howarth PH, Sanchez-Elsner T. Genome-Wide Posttranscriptional Dysregulation by MicroRNAs in Human Asthma as Revealed by Frac-seq. THE JOURNAL OF IMMUNOLOGY 2018; 201:251-263. [PMID: 29769273 DOI: 10.4049/jimmunol.1701798] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/17/2018] [Indexed: 12/07/2022]
Abstract
MicroRNAs are small noncoding RNAs that inhibit gene expression posttranscriptionally, implicated in virtually all biological processes. Although the effect of individual microRNAs is generally studied, the genome-wide role of multiple microRNAs is less investigated. We assessed paired genome-wide expression of microRNAs with total (cytoplasmic) and translational (polyribosome-bound) mRNA levels employing subcellular fractionation and RNA sequencing (Frac-seq) in human primary bronchoepithelium from healthy controls and severe asthmatics. Severe asthma is a chronic inflammatory disease of the airways characterized by poor response to therapy. We found genes (i.e., isoforms of a gene) and mRNA isoforms differentially expressed in asthma, with novel inflammatory and structural pathophysiological mechanisms related to bronchoepithelium disclosed solely by polyribosome-bound mRNAs (e.g., IL1A and LTB genes or ITGA6 and ITGA2 alternatively spliced isoforms). Gene expression (i.e., isoforms of a gene) and mRNA expression analysis revealed different molecular candidates and biological pathways, with differentially expressed polyribosome-bound and total mRNAs also showing little overlap. We reveal a hub of six dysregulated microRNAs accounting for ∼90% of all microRNA targeting, displaying preference for polyribosome-bound mRNAs. Transfection of this hub in bronchial epithelial cells from healthy donors mimicked asthma characteristics. Our work demonstrates extensive posttranscriptional gene dysregulation in human asthma, in which microRNAs play a central role, illustrating the feasibility and importance of assessing posttranscriptional gene expression when investigating human disease.
Collapse
Affiliation(s)
- Rocio T Martinez-Nunez
- School of Immunology and Microbial Sciences, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE19RT, United Kingdom; .,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Hitasha Rupani
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.,Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, United Kingdom
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, Department of Respiratory Medicine, Rayne Institute, University College London, London WC1E 6JF, United Kingdom; and
| | - Mahesan Niranjan
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, Department of Respiratory Medicine, Rayne Institute, University College London, London WC1E 6JF, United Kingdom; and
| | - Peter H Howarth
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.,Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, United Kingdom
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
25
|
Translation efficiency is a determinant of the magnitude of miRNA-mediated repression. Sci Rep 2017; 7:14884. [PMID: 29097662 PMCID: PMC5668238 DOI: 10.1038/s41598-017-13851-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are well known regulators of mRNA stability and translation. However, the magnitude of both translational repression and mRNA decay induced by miRNA binding varies greatly between miRNA targets. This can be the result of cis and trans factors that affect miRNA binding or action. We set out to address this issue by studying how various mRNA characteristics affect miRNA-mediated repression. Using a dual luciferase reporter system, we systematically analyzed the ability of selected mRNA elements to modulate miRNA-mediated repression. We found that changing the 3'UTR of a miRNA-targeted reporter modulates translational repression by affecting the translation efficiency. This 3'UTR dependent modulation can be further altered by changing the codon-optimality or 5'UTR of the luciferase reporter. We observed maximal repression with intermediate codon optimality and weak repression with very high or low codon optimality. Analysis of ribosome profiling and RNA-seq data for endogenous miRNA targets revealed translation efficiency as a key determinant of the magnitude of miRNA-mediated translational repression. Messages with high translation efficiency were more robustly repressed. Together our results reveal modulation of miRNA-mediated repression by characteristics and features of the 5'UTR, CDS and 3'UTR.
Collapse
|
26
|
The roles of the exoribonucleases DIS3L2 and XRN1 in human disease. Biochem Soc Trans 2017; 44:1377-1384. [PMID: 27911720 DOI: 10.1042/bst20160107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
RNA degradation is a vital post-transcriptional process which ensures that transcripts are maintained at the correct level within the cell. DIS3L2 and XRN1 are conserved exoribonucleases that are critical for the degradation of cytoplasmic RNAs. Although the molecular mechanisms of RNA degradation by DIS3L2 and XRN1 have been well studied, less is known about their specific roles in the development of multicellular organisms or human disease. This review focusses on the roles of DIS3L2 and XRN1 in the pathogenesis of human disease, particularly in relation to phenotypes seen in model organisms. The known diseases associated with loss of activity of DIS3L2 and XRN1 are discussed, together with possible mechanisms and cellular pathways leading to these disease conditions.
Collapse
|
27
|
When mRNA translation meets decay. Biochem Soc Trans 2017; 45:339-351. [DOI: 10.1042/bst20160243] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/19/2016] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
Abstract
Messenger RNA (mRNA) translation and mRNA degradation are important determinants of protein output, and they are interconnected. Previously, it was thought that translation of an mRNA, as a rule, prevents its degradation. mRNA surveillance mechanisms, which degrade mRNAs as a consequence of their translation, were considered to be exceptions to this rule. Recently, however, it has become clear that many mRNAs are degraded co-translationally, and it has emerged that codon choice, by influencing the rate of ribosome elongation, affects the rate of mRNA decay. In this review, we discuss the links between translation and mRNA stability, with an emphasis on emerging data suggesting that codon optimality may regulate mRNA degradation.
Collapse
|
28
|
Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem 2017; 8:45-56. [PMID: 28289518 PMCID: PMC5329714 DOI: 10.4331/wjbc.v8.i1.45] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/20/2016] [Accepted: 01/18/2017] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are pervasively expressed and regulate most biological functions. They function by modulating transcriptional and translational programs and therefore they orchestrate both physiological and pathological processes, such as development, cell differentiation, proliferation, apoptosis and tumor growth. miRNAs work as small guide molecules in RNA silencing, by negatively regulating the expression of several genes both at mRNA and protein level, by degrading their mRNA target and/or by silencing translation. One of the most recent advances in the field is the comprehension of their role in oncogenesis. The number of miRNA genes is increasing and an alteration in the level of miRNAs is involved in the initiation, progression and metastases formation of several tumors. Some tumor types show a distinct miRNA signature that distinguishes them from normal tissues and from other cancer types. Genetic and biochemical evidence supports the essential role of miRNAs in tumor development. Although the abnormal expression of miRNAs in cancer cells is a widely accepted phenomenon, the cause of this dysregulation is still unknown. Here, we discuss the biogenesis of miRNAs, focusing on the mechanisms by which they regulate protein synthesis. In addition we debate on their role in cancer, highlighting their potential to become therapeutic targets.
Collapse
|
29
|
Spatiotemporal Uncoupling of MicroRNA-Mediated Translational Repression and Target RNA Degradation Controls MicroRNP Recycling in Mammalian Cells. Mol Cell Biol 2017; 37:MCB.00464-16. [PMID: 27895152 DOI: 10.1128/mcb.00464-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miRNA)-mediated repression controls expression of more than half of protein-coding genes in metazoan animals. Translation repression is associated with target mRNA degradation initiated by decapping and deadenylation of the repressed mRNAs. Earlier evidence suggests the endoplasmic reticulum (ER) as the site where microRNPs (miRNPs) interact with their targets before translation repression sets in, but the subcellular location of subsequent degradation of miRNA-repressed messages is largely unidentified. Here, we explore the subcellular distribution of essential components of degradation machineries of miRNA-targeted mRNAs. We have noted that interaction of target mRNAs with AGO2 protein on the ER precedes the relocalization of repressed messages to multivesicular bodies (MVBs). The repressed messages subsequently get deadenylated, lose their interaction with AGO2, and become decapped. Blocking maturation of endosomes to late endosome and MVBs by targeting the endosomal protein HRS uncouples miRNA-mediated translation repression from target RNA degradation. HRS is also targeted by the intracellular parasite Leishmania donovani, which curtails the HRS level in infected cells to prevent uncoupling of mRNA-AGO2 interaction, preventing degradation of translationally repressed messages, and thus stops recycling of miRNPs preengaged in repression.
Collapse
|