1
|
Wu Z, Guo L, Wu Y, Yang M, Du S, Shao J, Zhang Z, Zhao Y. Novel phage infecting the Roseobacter CHUG lineage reveals a diverse and globally distributed phage family. mSphere 2024; 9:e0045824. [PMID: 38926906 PMCID: PMC11288001 DOI: 10.1128/msphere.00458-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteriophages play an essential role in shaping the diversity and metabolism of bacterial communities. Marine Roseobacter group is an abundant heterotrophic bacterial group that is involved in many major element cycles, especially carbon and sulfur. Members of the Roseobacter CHUG (Clade Hidden and Underappreciated Globally) lineage are globally distributed and are activated in pelagic marine environments. In this study, we isolated and characterized a phage, CRP-810, that infects the CHUG strain FZCC0198. The genome of CRP-810 was dissimilar to those of other known phages. Additionally, 251 uncultured viral genomes (UViGs) closely related to CRP-810 were obtained from the uncultivated marine viral contig databases. Comparative genomic and phylogenetic analyses revealed that CRP-810 and these related UViGs exhibited conserved genome synteny, representing a new phage family with at least eight subgroups. Most of the CRP-810-type phages contain an integrase gene, and CRP-810 can be integrated into the host genome. Further analysis revealed that three CRP-810-type members were prophages found in the genomes of marine SAR11, Poseidonocella, and Sphingomonadaceae. Finally, viromic read-mapping analysis showed that CRP-810-type phages were globally distributed and displayed distinct biogeographic patterns related to temperature and latitude. Many members with a lower G + C content were mainly distributed in the trade station, whereas members with a higher G + C content were mainly distributed in polar and westerlies station, indicating that the niche differentiation of phages was subject to host adaptation. Collectively, these findings identify a novel phage family and expand our understanding of phylogenetic diversity, evolution, and biogeography of marine phages. IMPORTANCE The Roseobacter CHUG lineage, affiliated with the Pelagic Roseobacter Cluster (PRC), is widely distributed in the global oceans and is active in oligotrophic seawater. However, knowledge of the bacteriophages that infect CHUG members is limited. In this study, a CHUG phage, CRP-810, that infects the CHUG strain FZCC0198, was isolated and shown to have a novel genomic architecture. In addition, 251 uncultured viral genomes closely related to CRP-810 were recovered and included in the analyses. Phylogenomic analyses revealed that the CRP-810-type phages represent a new phage family containing at least eight genus-level subgroups. Members of this family were predicted to infect various marine bacteria. We also demonstrated that the CRP-810-type phages are widely distributed in global oceans and display distinct biogeographic patterns related to latitude. Collectively, this study provides important insights into the genomic organization, diversity, and ecology of a novel phage family that infect ecologically important bacteria in the global ocean.
Collapse
Affiliation(s)
- Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyuan Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabing Shao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Xu Q, Tang L, Liu W, Xu N, Hu Y, Zhang Y, Chen S. Phage protein Gp11 blocks Staphylococcus aureus cell division by inhibiting peptidoglycan biosynthesis. mBio 2024; 15:e0067924. [PMID: 38752726 PMCID: PMC11237401 DOI: 10.1128/mbio.00679-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
Phages and bacteria have a long history of co-evolution. However, these dynamics of phage-host interactions are still largely unknown; identification of phage inhibitors that remodel host metabolism will provide valuable information for target development for antimicrobials. Here, we perform a comprehensive screen for early-gene products of ΦNM1 that inhibit cell growth in Staphylococcus aureus. A small membrane protein, Gp11, with inhibitory effects on S. aureus cell division was identified. A bacterial two-hybrid library containing 345 essential S. aureus genes was constructed to screen for targets of Gp11, and Gp11 was found to interact with MurG and DivIC. Defects in cell growth and division caused by Gp11 were dependent on MurG and DivIC, which was further confirmed using CRISPRi hypersensitivity assay. Gp11 interacts with MurG, the protein essential for cell wall formation, by inhibiting the production of lipid II to regulate peptidoglycan (PG) biosynthesis on the cell membrane. Gp11 also interacts with cell division protein DivIC, an essential part of the division machinery necessary for septal cell wall assembly, to disrupt the recruitment of division protein FtsW. Mutations in Gp11 result in loss of its ability to cause growth defects, whereas infection with phage in which the gp11 gene has been deleted showed a significant increase in lipid II production in S. aureus. Together, our findings reveal that a phage early-gene product interacts with essential host proteins to disrupt PG biosynthesis and block S. aureus cell division, suggesting a potential pathway for the development of therapeutic approaches to treat pathogenic bacterial infections. IMPORTANCE Understanding the interplay between phages and their hosts is important for the development of novel therapies against pathogenic bacteria. Although phages have been used to control methicillin-resistant Staphylococcus aureus infections, our knowledge related to the processes in the early stages of phage infection is still limited. Owing to the fact that most of the phage early proteins have been classified as hypothetical proteins with uncertain functions, we screened phage early-gene products that inhibit cell growth in S. aureus, and one protein, Gp11, selectively targets essential host genes to block the synthesis of the peptidoglycan component lipid II, ultimately leading to cell growth arrest in S. aureus. Our study provides a novel insight into the strategy by which Gp11 blocks essential host cellular metabolism to influence phage-host interaction. Importantly, dissecting the interactions between phages and host cells will contribute to the development of new and effective therapies to treat bacterial infections.
Collapse
Affiliation(s)
- Qi Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Tang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Neng Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yong Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shiyun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Casters Y, Bäcker LE, Broux K, Aertsen A. Phage transmission strategies: are phages farming their host? Curr Opin Microbiol 2024; 79:102481. [PMID: 38677076 DOI: 10.1016/j.mib.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Extensive coevolution has led to utterly intricate interactions between phages and their bacterial hosts. While both the (short-term) intracellular molecular host-subversion mechanisms during a phage infection cycle and the (long-term) mutational arms race between phages and host cells have traditionally received a lot of attention, there has been an underestimating neglect of (mid-term) transmission strategies by which phages manage to cautiously spread throughout their host population. However, recent findings underscore that phages encode mechanisms to avoid host cell scarcity and promote coexistence with the host, giving the impression that some phages manage to 'farm' their host population to ensure access to host cells for lytic consumption. Given the tremendous impact of phages on bacterial ecology, charting and understanding the complexity of such transmission strategies is of key importance.
Collapse
Affiliation(s)
- Yorben Casters
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001, Belgium
| | - Kevin Broux
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001, Belgium.
| |
Collapse
|
4
|
Tominaga K, Ozaki S, Sato S, Katayama T, Nishimura Y, Omae K, Iwasaki W. Frequent nonhomologous replacement of replicative helicase loaders by viruses in Vibrionaceae. Proc Natl Acad Sci U S A 2024; 121:e2317954121. [PMID: 38683976 PMCID: PMC11087808 DOI: 10.1073/pnas.2317954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.
Collapse
Affiliation(s)
- Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Shohei Sato
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Yuki Nishimura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Kimiho Omae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba277-8564, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| |
Collapse
|
5
|
Williams J, Burton N, Dhanoa G, Sagona AP. Host-phage interactions and modeling for therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:127-158. [PMID: 37739552 DOI: 10.1016/bs.pmbts.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Phage are drivers of numerous ecological processes on the planet and have the potential to be developed into a therapy alternative to antibiotics. Phage at all points of their life cycle, from initiation of infection to their release, interact with their host in some manner. More importantly, to harness their antimicrobial potential it is vital to understand how phage interact with the eukaryotic environment in the context of applying phage for therapy. In this chapter, the various mechanisms of phage interplay with their hosts as part of their natural life cycle are discussed in depth for Gram-positive and negative bacteria. Further, the literature surrounding the various models utilized to develop phage as a therapeutic are examined, and how these models may improve our understanding of phage-host interactions and current progress in utilizing phage for therapy in the clinical environment.
Collapse
Affiliation(s)
- Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nathan Burton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gurneet Dhanoa
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
6
|
Ventroux M, Noirot-Gros MF. Prophage-encoded small protein YqaH counteracts the activities of the replication initiator DnaA in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748575 DOI: 10.1099/mic.0.001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacterial genomes harbour cryptic prophages that are mostly transcriptionally silent with many unannotated genes. Still, cryptic prophages may contribute to their host fitness and phenotypes. In Bacillus subtilis, the yqaF-yqaN operon belongs to the prophage element skin, and is tightly repressed by the Xre-like repressor SknR. This operon contains several small ORFs (smORFs) potentially encoding small-sized proteins. The smORF-encoded peptide YqaH was previously reported to bind to the replication initiator DnaA. Here, using a yeast two-hybrid assay, we found that YqaH binds to the DNA binding domain IV of DnaA and interacts with Spo0A, a master regulator of sporulation. We isolated single amino acid substitutions in YqaH that abolished the interaction with DnaA but not with Spo0A. Then, using a plasmid-based inducible system to overexpress yqaH WT and mutant derivatives, we studied in B. subtilis the phenotypes associated with the specific loss-of-interaction with DnaA (DnaA_LOI). We found that expression of yqaH carrying DnaA_LOI mutations abolished the deleterious effects of yqaH WT expression on chromosome segregation, replication initiation and DnaA-regulated transcription. When YqaH was induced after vegetative growth, DnaA_LOI mutations abolished the drastic effects of YqaH WT on sporulation and biofilm formation. Thus, YqaH inhibits replication, sporulation and biofilm formation mainly by antagonizing DnaA in a manner that is independent of the cell cycle checkpoint Sda.
Collapse
Affiliation(s)
- Magali Ventroux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
7
|
Miguel-Romero L, Alqasmi M, Bacarizo J, Tan JA, Cogdell R, Chen J, Byron O, Christie GE, Marina A, Penadés J. Non-canonical Staphylococcus aureus pathogenicity island repression. Nucleic Acids Res 2022; 50:11109-11127. [PMID: 36200825 PMCID: PMC9638917 DOI: 10.1093/nar/gkac855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
Mobile genetic elements control their life cycles by the expression of a master repressor, whose function must be disabled to allow the spread of these elements in nature. Here, we describe an unprecedented repression-derepression mechanism involved in the transfer of Staphylococcus aureus pathogenicity islands (SaPIs). Contrary to the classical phage and SaPI repressors, which are dimers, the SaPI1 repressor StlSaPI1 presents a unique tetrameric conformation never seen before. Importantly, not just one but two tetramers are required for SaPI1 repression, which increases the novelty of the system. To derepress SaPI1, the phage-encoded protein Sri binds to and induces a conformational change in the DNA binding domains of StlSaPI1, preventing the binding of the repressor to its cognate StlSaPI1 sites. Finally, our findings demonstrate that this system is not exclusive to SaPI1 but widespread in nature. Overall, our results characterize a novel repression-induction system involved in the transfer of MGE-encoded virulence factors in nature.
Collapse
Affiliation(s)
- Laura Miguel-Romero
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, SW7 2AZ, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mohammed Alqasmi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- College of Applied Medical Sciences, Shaqra University, Shaqra City 15572, Saudi Arabia
| | - Julio Bacarizo
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, SW7 2AZ, UK
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113 Moncada, Spain
| | - Jason A Tan
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - John Chen
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| | - Olwyn Byron
- School of Life Sciences, University of Glasgow, Glasgow, G12 8QQ,UK
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - José R Penadés
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
8
|
Shim H, Shivram H, Lei S, Doudna JA, Banfield JF. Diverse ATPase Proteins in Mobilomes Constitute a Large Potential Sink for Prokaryotic Host ATP. Front Microbiol 2021; 12:691847. [PMID: 34305853 PMCID: PMC8297831 DOI: 10.3389/fmicb.2021.691847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Prokaryote mobilome genomes rely on host machineries for survival and replication. Given that mobile genetic elements (MGEs) derive their energy from host cells, we investigated the diversity of ATP-utilizing proteins in MGE genomes to determine whether they might be associated with proteins that could suppress related host proteins that consume energy. A comprehensive search of 353 huge phage genomes revealed that up to 9% of the proteins have ATPase domains. For example, ATPase proteins constitute ∼3% of the genomes of Lak phages with ∼550 kbp genomes that occur in the microbiomes of humans and other animals. Statistical analysis shows the number of ATPase proteins increases linearly with genome length, consistent with a large sink for host ATP during replication of megaphages. Using metagenomic data from diverse environments, we found 505 mobilome proteins with ATPase domains fused to diverse functional domains. Among these composite ATPase proteins, 61.6% have known functional domains that could contribute to host energy diversion during the mobilome infection cycle. As many have domains that are known to interact with nucleic acids and proteins, we infer that numerous ATPase proteins are used during replication and for protection from host immune systems. We found a set of uncharacterized ATPase proteins with nuclease and protease activities, displaying unique domain architectures that are energy intensive based on the presence of multiple ATPase domains. In many cases, these composite ATPase proteins genomically co-localize with small proteins in genomic contexts that are reminiscent of toxin-antitoxin systems and phage helicase-antibacterial helicase systems. Small proteins that function as inhibitors may be a common strategy for control of cellular processes, thus could inspire future biochemical experiments for the development of new nucleic acid and protein manipulation tools, with diverse biotechnological applications.
Collapse
Affiliation(s)
- Hyunjin Shim
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | - Haridha Shivram
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Shufei Lei
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States.,School of Earth Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Phage-based target discovery and its exploitation towards novel antibacterial molecules. Curr Opin Biotechnol 2020; 68:1-7. [PMID: 33007632 DOI: 10.1016/j.copbio.2020.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023]
Abstract
The deeply intertwined evolutionary history between bacteriophages and bacteria has endowed phages with highly specific mechanisms to hijack bacterial cell metabolism for their propagation. Here, we present a comprehensive, phage-driven strategy to reveal novel antibacterial targets by the exploitation of phage-bacteria interactions. This strategy will enable the design of small molecules, which mimic the inhibitory phage proteins, and allow the subsequent hit-to-lead development of these antimicrobial compounds. This proposed small molecule approach is distinct from phage therapy and phage enzyme-based antimicrobials and may produce a more sustainable generation of new antibiotics that exploit novel bacterial targets and act in a pathogen-specific manner.
Collapse
|
10
|
Barth ZK, Silvas TV, Angermeyer A, Seed KD. Genome replication dynamics of a bacteriophage and its satellite reveal strategies for parasitism and viral restriction. Nucleic Acids Res 2020; 48:249-263. [PMID: 31667508 PMCID: PMC7145576 DOI: 10.1093/nar/gkz1005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Phage-inducible chromosomal island-like elements (PLEs) are bacteriophage satellites found in Vibrio cholerae. PLEs parasitize the lytic phage ICP1, excising from the bacterial chromosome, replicating, and mobilizing to new host cells following cell lysis. PLEs protect their host cell populations by completely restricting the production of ICP1 progeny. Previously, it was found that ICP1 replication was reduced during PLE(+) infection. Despite robust replication of the PLE genome, relatively few transducing units are produced. We investigated if PLE DNA replication itself is antagonistic to ICP1 replication. Here we identify key constituents of PLE replication and assess their role in interference of ICP1. PLE encodes a RepA_N initiation factor that is sufficient to drive replication from the PLE origin of replication during ICP1 infection. In contrast to previously characterized bacteriophage satellites, expression of the PLE initiation factor was not sufficient for PLE replication in the absence of phage. Replication of PLE was necessary for interference of ICP1 DNA replication, but replication of a minimalized PLE replicon was not sufficient for ICP1 DNA replication interference. Despite restoration of ICP1 DNA replication, non-replicating PLE remained broadly inhibitory against ICP1. These results suggest that PLE DNA replication is one of multiple mechanisms contributing to ICP1 restriction.
Collapse
Affiliation(s)
- Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tania V Silvas
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Cui Z, Guo X, Feng T, Li L. Exploring the whole standard operating procedure for phage therapy in clinical practice. J Transl Med 2019; 17:373. [PMID: 31727099 PMCID: PMC6857313 DOI: 10.1186/s12967-019-2120-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022] Open
Abstract
We have entered the post-antibiotic era. Phage therapy has recently been given renewed attention because bacteriophages are easily available and can kill bacteria. Many reports have demonstrated successful phage treatment of bacterial infection, whereas some studies have shown that phage therapy is not as effective as expected. In general, establishment of a standard operating procedure will ensure the success of phage therapy. In this paper, the whole operating procedure for phage therapy in clinical practice is explored and analyzed to comprehensively understand the success of using phage for the treatment of bacterial infectious disease in the future. The procedure includes the following: enrollment of patients for phage therapy; establishment of phage libraries; pathogenic bacterial isolation and identification; screening for effective phages against pathogenic bacteria; phage formulation preparation; phage preparation administration strategy and route; monitoring the efficacy of phage therapy; and detection of the emergence of phage-resistant strains. Finally, we outline the whole standard operating procedure for phage therapy in clinical practice. It is believed that phage therapy will be used successfully, especially in personalized medicine for the treatment of bacterial infectious diseases. Hopefully, this procedure will provide support for the entry of phage therapy into the clinic as soon as possible.
Collapse
Affiliation(s)
- Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, 6th Floor, No. 3 Building, 100# Haining Road, Shanghai, 200080, China. .,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA.
| | - Xiaokui Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingting Feng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai, 200080, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, 6th Floor, No. 3 Building, 100# Haining Road, Shanghai, 200080, China.
| |
Collapse
|
12
|
Neamah MM, Mir-Sanchis I, López-Sanz M, Acosta S, Baquedano I, Haag AF, Marina A, Ayora S, Penadés JR. Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus. Nucleic Acids Res 2017; 45:6507-6519. [PMID: 28475766 PMCID: PMC5499656 DOI: 10.1093/nar/gkx308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages.
Collapse
Affiliation(s)
- Maan M Neamah
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Microbiology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | - Ignacio Mir-Sanchis
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Sonia Acosta
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ignacio Baquedano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Andreas F Haag
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
13
|
Virus-host protein-protein interactions of mycobacteriophage Giles. Sci Rep 2017; 7:16514. [PMID: 29184079 PMCID: PMC5705681 DOI: 10.1038/s41598-017-16303-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/31/2017] [Indexed: 01/21/2023] Open
Abstract
Mycobacteriophage are viruses that infect mycobacteria. More than 1,400 mycobacteriophage genomes have been sequenced, coding for over one hundred thousand proteins of unknown functions. Here we investigate mycobacteriophage Giles-host protein-protein interactions (PPIs) using yeast two-hybrid screening (Y2H). A total of 25 reproducible PPIs were found for a selected set of 10 Giles proteins, including a putative virion assembly protein (gp17), the phage integrase (gp29), the endolysin (gp31), the phage repressor (gp47), and six proteins of unknown function (gp34, gp35, gp54, gp56, gp64, and gp65). We note that overexpression of the proteins is toxic to M. smegmatis, although whether this toxicity and the associated changes in cellular morphology are related to the putative interactions revealed in the Y2H screen is unclear.
Collapse
|
14
|
Donderis J, Bowring J, Maiques E, Ciges-Tomas JR, Alite C, Mehmedov I, Tormo-Mas MA, Penadés JR, Marina A. Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization. PLoS Pathog 2017; 13:e1006581. [PMID: 28892519 PMCID: PMC5608427 DOI: 10.1371/journal.ppat.1006581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/21/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules.
Collapse
Affiliation(s)
- Jorge Donderis
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Janine Bowring
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elisa Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - J. Rafael Ciges-Tomas
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Christian Alite
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Iltyar Mehmedov
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - María Angeles Tormo-Mas
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
| | - José R. Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (AM); (JRP)
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- * E-mail: (AM); (JRP)
| |
Collapse
|
15
|
Zhao X, Shen M, Jiang X, Shen W, Zhong Q, Yang Y, Tan Y, Agnello M, He X, Hu F, Le S. Transcriptomic and Metabolomics Profiling of Phage-Host Interactions between Phage PaP1 and Pseudomonas aeruginosa. Front Microbiol 2017; 8:548. [PMID: 28421049 PMCID: PMC5377924 DOI: 10.3389/fmicb.2017.00548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
The basic biology of bacteriophage–host interactions has attracted increasing attention due to a renewed interest in the therapeutic potential of bacteriophages. In addition, knowledge of the host pathways inhibited by phage may provide clues to novel drug targets. However, the effect of phage on bacterial gene expression and metabolism is still poorly understood. In this study, we tracked phage–host interactions by combining transcriptomic and metabolomic analyses in Pseudomonas aeruginosa infected with a lytic bacteriophage, PaP1. Compared with the uninfected host, 7.1% (399/5655) of the genes of the phage-infected host were differentially expressed genes (DEGs); of those, 354 DEGs were downregulated at the late infection phase. Many of the downregulated DEGs were found in amino acid and energy metabolism pathways. Using metabolomics approach, we then analyzed the changes in metabolite levels in the PaP1-infected host compared to un-infected controls. Thymidine was significantly increased in the host after PaP1 infection, results that were further supported by increased expression of a PaP1-encoded thymidylate synthase gene. Furthermore, the intracellular betaine concentration was drastically reduced, whereas choline increased, presumably due to downregulation of the choline–glycine betaine pathway. Interestingly, the choline–glycine betaine pathway is a potential antimicrobial target; previous studies have shown that betB inhibition results in the depletion of betaine and the accumulation of betaine aldehyde, the combination of which is toxic to P. aeruginosa. These results present a detailed description of an example of phage-directed metabolism in P. aeruginosa. Both phage-encoded auxiliary metabolic genes and phage-directed host gene expression may contribute to the metabolic changes observed in the host.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Microbiology, Third Military Medical University, Chongqing, China.,Department of Bioinformatics, Third Military Medical UniversityChongqing, China
| | - Mengyu Shen
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Xingyu Jiang
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical UniversityChongqing, China
| | - Wei Shen
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Clinical Laboratory, Daping Hospital, Third Military Medical UniversityChongqing, China
| | - Yuhui Yang
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Melissa Agnello
- School of Dentistry, University of California, Los Angeles, Los AngelesCA, USA
| | - Xuesong He
- School of Dentistry, University of California, Los Angeles, Los AngelesCA, USA
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, China
| |
Collapse
|