1
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. Cell Rep 2024; 43:115005. [PMID: 39671291 PMCID: PMC11815640 DOI: 10.1016/j.celrep.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024] Open
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can (1) reduce Hsp70 collaboration without enhancing activity, (2) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s, (3) produce Hsp70-independent potentiated variants, or (4) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting an NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS and TDP-43 proteinopathies in human cells. Thus, we establish design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Carman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan M Kendsersky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie N Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam L Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandrea N Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Sarkar A, Hildebrandt ER, Patel KV, Mai ET, Shah SA, Kim JH, Schmidt WK. Comprehensive analysis of CXXX sequence space reveals that Saccharomyces cerevisiae GGTase-I mainly relies on a2X substrate determinants. G3 (BETHESDA, MD.) 2024; 14:jkae121. [PMID: 38839053 PMCID: PMC11304957 DOI: 10.1093/g3journal/jkae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a 3-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C-cysteine, a-aliphatic, L-often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving 2 distinct reporters were employed in this study to assess Saccharomyces cerevisiae GGTase-I specificity, for which limited data exist, toward all 8,000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of noncanonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a nonpolar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.
Collapse
Affiliation(s)
- Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Khushi V Patel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily T Mai
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sumil A Shah
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - June H Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Ashok S, Ramachandra Rao S. Updates on protein-prenylation and associated inherited retinopathies. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1410874. [PMID: 39026984 PMCID: PMC11254824 DOI: 10.3389/fopht.2024.1410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Membrane-anchored proteins play critical roles in cell signaling, cellular architecture, and membrane biology. Hydrophilic proteins are post-translationally modified by a diverse range of lipid molecules such as phospholipids, glycosylphosphatidylinositol, and isoprenes, which allows their partition and anchorage to the cell membrane. In this review article, we discuss the biochemical basis of isoprenoid synthesis, the mechanisms of isoprene conjugation to proteins, and the functions of prenylated proteins in the neural retina. Recent discovery of novel prenyltransferases, prenylated protein chaperones, non-canonical prenylation-target motifs, and reversible prenylation is expected to increase the number of inherited systemic and blinding diseases with aberrant protein prenylation. Recent important investigations have also demonstrated the role of several unexpected regulators (such as protein charge, sequence/protein-chaperone interaction, light exposure history) in the photoreceptor trafficking of prenylated proteins. Technical advances in the investigation of the prenylated proteome and its application in vision research are discussed. Clinical updates and technical insights into known and putative prenylation-associated retinopathies are provided herein. Characterization of non-canonical prenylation mechanisms in the retina and retina-specific prenylated proteome is fundamental to the understanding of the pathogenesis of protein prenylation-associated inherited blinding disorders.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Sriganesh Ramachandra Rao
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Research Service, VA Western New York Healthcare System, Buffalo, NY, United States
| |
Collapse
|
4
|
Omkar S, Shrader C, Hoskins JR, Kline JT, Mitchem MM, Nitika, Fornelli L, Wickner S, Truman AW. Acetylation of the yeast Hsp40 chaperone protein Ydj1 fine-tunes proteostasis and translational fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598777. [PMID: 38915721 PMCID: PMC11195281 DOI: 10.1101/2024.06.13.598777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Proteostasis, the maintenance of cellular protein balance, is essential for cell viability and is highly conserved across all organisms. Newly synthesized proteins, or "clients," undergo sequential processing by Hsp40, Hsp70, and Hsp90 chaperones to achieve proper folding and functionality. Despite extensive characterization of post-translational modifications (PTMs) on Hsp70 and Hsp90, the modifications on Hsp40 remain less understood. This study aims to elucidate the role of lysine acetylation on the yeast Hsp40, Ydj1. By mutating acetylation sites on Ydj1's J-domain to either abolish or mimic constitutive acetylation, we observed that preventing acetylation had no noticeable phenotypic impact, whereas acetyl-mimic mutants exhibited various defects indicative of impaired Ydj1 function. Proteomic analysis revealed several Ydj1 interactions affected by J-domain acetylation, notably with proteins involved in translation. Further investigation uncovered a novel role for Ydj1 acetylation in stabilizing ribosomal subunits and ensuring translational fidelity. Our data suggest that acetylation may facilitate the transfer of Ydj1 between Ssa1 and Hsp82. Collectively, this work highlights the critical role of Ydj1 acetylation in proteostasis and translational fidelity.
Collapse
Affiliation(s)
- Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Joel R. Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake T. Kline
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019 USA
| | - Megan M. Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Luca Fornelli
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019 USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew W. Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| |
Collapse
|
5
|
Hildebrandt ER, Hussain SA, Sieburg MA, Ravishankar R, Asad N, Gore S, Ito T, Hougland JL, Dore TM, Schmidt WK. Targeted genetic and small molecule disruption of N-Ras CaaX cleavage alters its localization and oncogenic potential. Bioorg Chem 2024; 147:107316. [PMID: 38583246 PMCID: PMC11098683 DOI: 10.1016/j.bioorg.2024.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.
Collapse
Affiliation(s)
- Emily R Hildebrandt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Shaneela A Hussain
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | | | - Rajani Ravishankar
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Nadeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Sangram Gore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Takahiro Ito
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, USA; Department of Biology, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse, Syracuse University, Syracuse, NY, USA
| | - Timothy M Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE; Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Walter K Schmidt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Schey GL, Hildebrandt ER, Wang Y, Diwan S, Passetti HA, Potts GW, Sprague-Getsy AM, Leoni ER, Kuebler TS, Sham YY, Hougland JL, Beese LS, Schmidt WK, Distefano MD. Library Screening, In Vivo Confirmation, and Structural and Bioinformatic Analysis of Pentapeptide Sequences as Substrates for Protein Farnesyltransferase. Int J Mol Sci 2024; 25:5324. [PMID: 38791363 PMCID: PMC11121372 DOI: 10.3390/ijms25105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.
Collapse
Affiliation(s)
- Garrett L. Schey
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (E.R.L.); (W.K.S.)
| | - You Wang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; (Y.W.); (L.S.B.)
| | - Safwan Diwan
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| | - Holly A. Passetti
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| | - Gavin W. Potts
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| | - Andrea M. Sprague-Getsy
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.M.S.-G.); (J.L.H.)
| | - Ethan R. Leoni
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (E.R.L.); (W.K.S.)
| | - Taylor S. Kuebler
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.K.); (Y.Y.S.)
| | - Yuk Y. Sham
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.K.); (Y.Y.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.M.S.-G.); (J.L.H.)
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Lorena S. Beese
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; (Y.W.); (L.S.B.)
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (E.R.L.); (W.K.S.)
| | - Mark D. Distefano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| |
Collapse
|
7
|
Hildebrandt ER, Sarkar A, Ravishankar R, Kim JH, Schmidt WK. Evaluating protein prenylation of human and viral CaaX sequences using a humanized yeast system. Dis Model Mech 2024; 17:dmm050516. [PMID: 38818856 PMCID: PMC11152559 DOI: 10.1242/dmm.050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Prenylated proteins are prevalent in eukaryotic biology (∼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts. These strains were developed in part to explore human prenyltransferase specificity because of findings that yeast FTase has expanded specificity for sequences deviating from the CaaX consensus (i.e. atypical sequence and length). The humanized yeast strains displayed robust prenyltransferase activity against CaaX sequences derived from human and pathogen proteins containing typical and atypical CaaX sequences. The system also recapitulated prenylation of heterologously expressed human proteins (i.e. HRas and DNAJA2). These results reveal that substrate specificity is conserved for yeast and human farnesyltransferases but is less conserved for type I geranylgeranyltransferases. These yeast systems can be easily adapted for investigating the prenylomes of other organisms and are valuable new tools for helping define the human prenylome, which includes physiologically important proteins for which the CaaX modification status is unknown.
Collapse
Affiliation(s)
- Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rajani Ravishankar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - June H. Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591398. [PMID: 38712168 PMCID: PMC11071516 DOI: 10.1101/2024.04.26.591398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can: (a) reduce Hsp70 collaboration without enhancing activity; (b) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s; (c) produce Hsp70-independent potentiated variants; or (d) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting the NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS proteinopathy in human cells. Thus, we establish important design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Peter J. Carman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Craig W. Gambogi
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Nathan M. Kendsersky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Stephanie N. Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Adam L. Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Alexandrea N. Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94158. U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| |
Collapse
|
9
|
Sarkar A, Hildebrandt ER, Patel KV, Mai ET, Shah SS, Kim JH, Schmidt WK. Comprehensive analysis of CXXX sequence space reveals that S. cerevisiae GGTase-I mainly relies on a 2X substrate determinants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583369. [PMID: 38496651 PMCID: PMC10942308 DOI: 10.1101/2024.03.04.583369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a three-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C - cysteine, a - aliphatic, L - often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving two distinct reporters were employed in this study to assess S. cerevisiae GGTase-I specificity, for which limited data exists, towards all 8000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of non-canonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a non-polar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.
Collapse
Affiliation(s)
- Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - Khushi V. Patel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - Emily T. Mai
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - Sumil S. Shah
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - June H. Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602
| |
Collapse
|
10
|
Mitchem MM, Shrader C, Abedi E, Truman AW. Novel insights into the post-translational modifications of Ydj1/DNAJA1 co-chaperones. Cell Stress Chaperones 2024; 29:1-9. [PMID: 38309209 PMCID: PMC10939075 DOI: 10.1016/j.cstres.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 02/05/2024] Open
Abstract
The activity of the Hsp70 molecular chaperone is regulated by a suite of helper co-chaperones that include J-proteins. Studies on J-proteins have historically focused on their expression, localization, and activation of Hsp70. There is growing evidence that the post-translational modifications (PTMs) of chaperones (the chaperone code) fine-tune chaperone function. This mini-review summarizes the current understanding of the role and regulation of PTMs on the major J-proteins Ydj1 and DNAJA1. Understanding these PTMs may provide novel therapeutic avenues for targeting chaperone activity in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Megan M Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Elizabeth Abedi
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
11
|
Hildebrandt ER, Sarkar A, Ravishankar R, Kim JH, Schmidt WK. A Humanized Yeast System for Evaluating the Protein Prenylation of a Wide Range of Human and Viral CaaX Sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558494. [PMID: 37786692 PMCID: PMC10541624 DOI: 10.1101/2023.09.19.558494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The C-terminal CaaX sequence (cysteine-aliphatic-aliphatic-any of several amino acids) is subject to isoprenylation on the conserved cysteine and is estimated to occur in 1-2% of proteins within yeast and human proteomes. Recently, non-canonical CaaX sequences in addition to shorter and longer length CaX and CaaaX sequences have been identified that can be prenylated. Much of the characterization of prenyltransferases has relied on the yeast system because of its genetic tractability and availability of reporter proteins, such as the a-factor mating pheromone, Ras GTPase, and Ydj1 Hsp40 chaperone. To compare the properties of yeast and human prenyltransferases, including the recently expanded target specificity of yeast farnesyltransferase, we have developed yeast strains that express human farnesyltransferase or geranylgeranyltransferase-I in lieu of their yeast counterparts. The humanized yeast strains display robust prenyltransferase activity that functionally replaces yeast prenyltransferase activity in a wide array of tests, including the prenylation of a wide variety of canonical and non-canonical human CaaX sequences, virus encoded CaaX sequences, non-canonical length sequences, and heterologously expressed human proteins HRas and DNAJA2. These results reveal highly overlapping substrate specificity for yeast and human farnesyltransferase, and mostly overlapping substrate specificity for GGTase-I. This yeast system is a valuable tool for further defining the prenylome of humans and other organisms, identifying proteins for which prenylation status has not yet been determined.
Collapse
Affiliation(s)
| | - Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia
| | | | - June H. Kim
- Department of Biochemistry and Molecular Biology, University of Georgia
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia
| |
Collapse
|
12
|
Kim JH, Hildebrandt ER, Sarkar A, Yeung W, Waldon LRA, Kannan N, Schmidt WK. A comprehensive in vivo screen of yeast farnesyltransferase activity reveals broad reactivity across a majority of CXXX sequences. G3 (BETHESDA, MD.) 2023; 13:jkad094. [PMID: 37119806 PMCID: PMC10320760 DOI: 10.1093/g3journal/jkad094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023]
Abstract
The current understanding of farnesyltransferase (FTase) specificity was pioneered through investigations of reporters like Ras and Ras-related proteins that possess a C-terminal CaaX motif that consists of 4 amino acid residues: cysteine-aliphatic1-aliphatic2-variable (X). These studies led to the finding that proteins with the CaaX motif are subject to a 3-step post-translational modification pathway involving farnesylation, proteolysis, and carboxylmethylation. Emerging evidence indicates, however, that FTase can farnesylate sequences outside the CaaX motif and that these sequences do not undergo the canonical 3-step pathway. In this work, we report a comprehensive evaluation of all possible CXXX sequences as FTase targets using the reporter Ydj1, an Hsp40 chaperone that only requires farnesylation for its activity. Our genetic and high-throughput sequencing approach reveals an unprecedented profile of sequences that yeast FTase can recognize in vivo, which effectively expands the potential target space of FTase within the yeast proteome. We also document that yeast FTase specificity is majorly influenced by restrictive amino acids at a2 and X positions as opposed to the resemblance of CaaX motif as previously regarded. This first complete evaluation of CXXX space expands the complexity of protein isoprenylation and marks a key step forward in understanding the potential scope of targets for this isoprenylation pathway.
Collapse
Affiliation(s)
- June H Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - La Ryel A Waldon
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Ravishankar R, Hildebrandt ER, Greenway G, Asad N, Gore S, Dore TM, Schmidt WK. Specific Disruption of Ras2 CAAX Proteolysis Alters Its Localization and Function. Microbiol Spectr 2023; 11:e0269222. [PMID: 36602340 PMCID: PMC9927470 DOI: 10.1128/spectrum.02692-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Many CAAX proteins, such as Ras GTPase, undergo a series of posttranslational modifications at their carboxyl terminus (i.e., cysteine prenylation, endoproteolysis of AAX, and carboxylmethylation). Some CAAX proteins, however, undergo prenylation-only modification, such as Saccharomyces cerevisiae Hsp40 Ydj1. We previously observed that altering the CAAX motif of Ydj1 from prenylation-only to canonical resulted in altered Ydj1 function and localization. Here, we investigated the effects of a reciprocal change that altered the well-characterized canonical CAAX motif of S. cerevisiae Ras2 to prenylation-only. We observed that the type of CAAX motif impacted Ras2 protein levels, localization, and function. Moreover, we observed that using a prenylation-only sequence to stage hyperactive Ras2-G19V as a farnesylated and nonproteolyzed intermediate resulted in a different phenotype relative to staging by a genetic RCE1 deletion strategy that simultaneously affected many CAAX proteins. These findings suggested that a prenylation-only CAAX motif is useful for probing the specific impact of CAAX proteolysis on Ras2 under conditions where other CAAX proteins are normally modified. We propose that our strategy could be easily applied to a wide range of CAAX proteins for examining the specific impact of CAAX proteolysis on their functions. IMPORTANCE CAAX proteins are subject to multiple posttranslational modifications: cysteine prenylation, CAAX proteolysis, and carboxylmethylation. For investigations of CAAX proteolysis, this study took the novel approach of using a proteolysis-resistant CAAX sequence to stage Saccharomyces cerevisiae Ras2 GTPase in a farnesylated and nonproteolyzed state. Our approach specifically limited the effects of disrupting CAAX proteolysis to Ras2. This represented an improvement over previous methods where CAAX proteolysis was inhibited by gene knockout, small interfering RNA knockdown, or biochemical inhibition of the Rce1 CAAX protease, which can lead to pleiotropic and unclear attribution of effects due to the action of Rce1 on multiple CAAX proteins. Our approach yielded results that demonstrated specific impacts of CAAX proteolysis on the function, localization, and other properties of Ras2, highlighting the utility of this approach for investigating the impact of CAAX proteolysis in other protein contexts.
Collapse
Affiliation(s)
- Rajani Ravishankar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Grace Greenway
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Nadeem Asad
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sangram Gore
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Timothy M. Dore
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Counihan NA, Chernih HC, de Koning-Ward TF. Post-translational lipid modifications in Plasmodium parasites. Curr Opin Microbiol 2022; 69:102196. [PMID: 36037636 DOI: 10.1016/j.mib.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Most eukaryotic proteins undergo post-translational modifications (PTMs) that significantly alter protein properties, regulate diverse cellular processes and increase proteome complexity. Among these PTMs, lipidation plays a unique and key role in subcellular trafficking, signalling and membrane association of proteins through altering substrate function, and hydrophobicity via the addition and removal of lipid groups. Three prevalent classes of lipid modifications in Plasmodium parasites include prenylation, myristoylation, and palmitoylation that are important for regulating parasite-specific molecular processes. The enzymes that catalyse these lipid attachments have also been explored as potential drug targets for antimalarial development. In this review, we discuss these lipidation processes in Plasmodium spp. and the methodologies that have been used to identify these modifications in the deadliest species of malaria parasite, Plasmodium falciparum. We also discuss the development status of inhibitors that block these pathways.
Collapse
Affiliation(s)
- Natalie A Counihan
- School of Medicine, Deakin University, Geelong, Victoria, Australia; The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Hope C Chernih
- School of Medicine, Deakin University, Geelong, Victoria, Australia; The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia; The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
15
|
Berger BM, Yeung W, Goyal A, Zhou Z, Hildebrandt ER, Kannan N, Schmidt WK. Functional classification and validation of yeast prenylation motifs using machine learning and genetic reporters. PLoS One 2022; 17:e0270128. [PMID: 35749383 PMCID: PMC9231725 DOI: 10.1371/journal.pone.0270128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/05/2022] [Indexed: 11/19/2022] Open
Abstract
Protein prenylation by farnesyltransferase (FTase) is often described as the targeting of a cysteine-containing motif (CaaX) that is enriched for aliphatic amino acids at the a1 and a2 positions, while quite flexible at the X position. Prenylation prediction methods often rely on these features despite emerging evidence that FTase has broader target specificity than previously considered. Using a machine learning approach and training sets based on canonical (prenylated, proteolyzed, and carboxymethylated) and recently identified shunted motifs (prenylation only), this study aims to improve prenylation predictions with the goal of determining the full scope of prenylation potential among the 8000 possible Cxxx sequence combinations. Further, this study aims to subdivide the prenylated sequences as either shunted (i.e., uncleaved) or cleaved (i.e., canonical). Predictions were determined for Saccharomyces cerevisiae FTase and compared to results derived using currently available prenylation prediction methods. In silico predictions were further evaluated using in vivo methods coupled to two yeast reporters, the yeast mating pheromone a-factor and Hsp40 Ydj1p, that represent proteins with canonical and shunted CaaX motifs, respectively. Our machine learning-based approach expands the repertoire of predicted FTase targets and provides a framework for functional classification.
Collapse
Affiliation(s)
- Brittany M. Berger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Wayland Yeung
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Arnav Goyal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Zhongliang Zhou
- Department of Computer Science, University of Georgia, Athens, Georgia, United States of America
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Schey GL, Buttery PH, Hildebrandt ER, Novak SX, Schmidt WK, Hougland JL, Distefano MD. MALDI-MS Analysis of Peptide Libraries Expands the Scope of Substrates for Farnesyltransferase. Int J Mol Sci 2021; 22:ijms222112042. [PMID: 34769472 PMCID: PMC8584866 DOI: 10.3390/ijms222112042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This modification typically causes proteins to associate with the membrane and allows them to participate in signaling pathways. In the canonical understanding of FTase, the isoprenoids are attached to the cysteine residue of a four-amino-acid CaaX box sequence. However, recent work has shown that five-amino-acid sequences can be recognized, including the pentapeptide CMIIM. This paper describes a new systematic approach to discover novel peptide substrates for FTase by combining the combinatorial power of solid-phase peptide synthesis (SPPS) with the ease of matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). The workflow consists of synthesizing focused libraries containing 10-20 sequences obtained by randomizing a synthetic peptide at a single position. Incubation of the library with FTase and farnesyl pyrophosphate (FPP) followed by mass spectrometric analysis allows the enzymatic products to be clearly resolved from starting peptides due to the increase in mass that occurs upon farnesylation. Using this method, 30 hits were obtained from a series of libraries containing a total of 80 members. Eight of the above peptides were selected for further evaluation, reflecting a mixture that represented a sampling of diverse substrate space. Six of these sequences were found to be bona fide substrates for FTase, with several meeting or surpassing the in vitro efficiency of the benchmark sequence CMIIM. Experiments in yeast demonstrated that proteins bearing these sequences can be efficiently farnesylated within live cells. Additionally, a bioinformatics search showed that a variety of pentapeptide CaaaX sequences can be found in the mammalian genome, and several of these sequences display excellent farnesylation in vitro and in yeast cells, suggesting that the number of farnesylated proteins within mammalian cells may be larger than previously thought.
Collapse
Affiliation(s)
- Garrett L. Schey
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Peter H. Buttery
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (W.K.S.)
| | - Sadie X. Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (S.X.N.); (J.L.H.)
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (W.K.S.)
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (S.X.N.); (J.L.H.)
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Mark D. Distefano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
17
|
Mathews ES, Jezewski AJ, Odom John AR. Protein Prenylation and Hsp40 in Thermotolerance of Plasmodium falciparum Malaria Parasites. mBio 2021; 12:e0076021. [PMID: 34182772 PMCID: PMC8262983 DOI: 10.1128/mbio.00760-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
During its complex life cycle, the malaria parasite survives dramatic environmental stresses, including large temperature shifts. Protein prenylation is required during asexual replication of Plasmodium falciparum, and the canonical heat shock protein 40 protein (HSP40; PF3D7_1437900) is posttranslationally modified with a 15-carbon farnesyl isoprenyl group. In other organisms, farnesylation of Hsp40 orthologs controls their localization and function in resisting environmental stress. In this work, we find that plastidial isopentenyl pyrophosphate (IPP) synthesis and protein farnesylation are required for malaria parasite survival after cold and heat shock. Furthermore, loss of HSP40 farnesylation alters its membrane attachment and interaction with proteins in essential pathways in the parasite. Together, this work reveals that farnesylation is essential for parasite survival during temperature stress. Farnesylation of HSP40 may promote thermotolerance by guiding distinct chaperone-client protein interactions.
Collapse
Affiliation(s)
- Emily S. Mathews
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew J. Jezewski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Audrey R. Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Disease, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
19
|
CaaX-Like Protease of Cyanobacterial Origin Is Required for Complex Plastid Biogenesis in Malaria Parasites. mBio 2020; 11:mBio.01492-20. [PMID: 33024034 PMCID: PMC7542359 DOI: 10.1128/mbio.01492-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plasmodium parasites, which cause malaria, and related apicomplexans are important human and veterinary pathogens. These parasites represent a highly divergent and understudied branch of eukaryotes, and as such often defy the expectations set by model organisms. One striking example of unique apicomplexan biology is the apicoplast, an essential but nonphotosynthetic plastid derived from an unusual secondary (eukaryote-eukaryote) endosymbiosis. Endosymbioses are a major driver of cellular innovation, and apicoplast biogenesis pathways represent a hot spot for molecular evolution. We previously conducted an unbiased screen for apicoplast biogenesis genes in P. falciparum to uncover these essential and innovative pathways. Here, we validate a novel gene candidate from our screen and show that its role in apicoplast biogenesis does not match its functional annotation predicted by model eukaryotes. Our findings suggest that an uncharacterized chloroplast maintenance pathway has been reused for complex plastid biogenesis in this divergent branch of pathogens. Plasmodium parasites and related apicomplexans contain an essential “complex plastid” organelle of secondary endosymbiotic origin, the apicoplast. Biogenesis of this complex plastid poses a unique challenge requiring evolution of new cellular machinery. We previously conducted a mutagenesis screen for essential apicoplast biogenesis genes to discover organellar pathways with evolutionary and biomedical significance. Here we validate and characterize a gene candidate from our screen, Pf3D7_0913500. Using a conditional knockdown strain, we show that Pf3D7_0913500 depletion causes growth inhibition that is rescued by the sole essential product of the apicoplast, isopentenyl pyrophosphate (IPP), and results in apicoplast loss. Because Pf3D7_0913500 had no previous functional annotation, we name it apicoplast-minus IPP-rescued 4 (AMR4). AMR4 has an annotated CaaX protease and bacteriocin processing (CPBP) domain, which in eukaryotes typically indicates a role in CaaX postprenylation processing. Indeed, AMR4 is the only putative CaaX-like protease in Plasmodium parasites which are known to require protein prenylation, and we confirm that the conserved catalytic residue of AMR4 (E352) is required for its apicoplast function. However, we unexpectedly find that AMR4 does not act in a CaaX postprenylation processing pathway in Plasmodium falciparum. Instead, we find that AMR4 is imported into the apicoplast and is derived from a cyanobacterial CPBP gene which was retained through both primary and secondary endosymbiosis. Our findings suggest that AMR4 is not a true CaaX protease, but instead it performs a conserved, uncharacterized chloroplast function that has been retained for complex plastid biogenesis.
Collapse
|
20
|
Ashok S, Hildebrandt ER, Ruiz CS, Hardgrove DS, Coreno DW, Schmidt WK, Hougland JL. Protein Farnesyltransferase Catalyzes Unanticipated Farnesylation and Geranylgeranylation of Shortened Target Sequences. Biochemistry 2020; 59:1149-1162. [PMID: 32125828 DOI: 10.1021/acs.biochem.0c00081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein prenylation is a posttranslational modification involving the attachment of a C15 or C20 isoprenoid group to a cysteine residue near the C-terminus of the target substrate by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I), respectively. Both of these protein prenyltransferases recognize a C-terminal "CaaX" sequence in their protein substrates, but recent studies in yeast- and mammalian-based systems have demonstrated FTase can also accept sequences that diverge in length from the canonical four-amino acid motif, such as the recently reported five-amino acid C(x)3X motif. In this work, we further expand the substrate scope of FTase by demonstrating sequence-dependent farnesylation of shorter three-amino acid "Cxx" C-terminal sequences using both genetic and biochemical assays. Strikingly, biochemical assays utilizing purified mammalian FTase and Cxx substrates reveal prenyl donor promiscuity leading to both farnesylation and geranylgeranylation of these sequences. These findings expand the substrate pool of sequences that can be potentially prenylated, further refine our understanding of substrate recognition by FTase and GGTase-I, and suggest the possibility of a new class of prenylated proteins within proteomes.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily R Hildebrandt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Colby S Ruiz
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Daniel S Hardgrove
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - David W Coreno
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Walter K Schmidt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
21
|
Storck EM, Morales-Sanfrutos J, Serwa RA, Panyain N, Lanyon-Hogg T, Tolmachova T, Ventimiglia LN, Martin-Serrano J, Seabra MC, Wojciak-Stothard B, Tate EW. Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nat Chem 2019; 11:552-561. [PMID: 30936521 PMCID: PMC6544531 DOI: 10.1038/s41557-019-0237-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Post-translational farnesylation or geranylgeranylation at a C-terminal cysteine residue regulates the localization and function of over 100 proteins, including the Ras isoforms, and is a therapeutic target in diseases including cancer and infection. Here, we report global and selective profiling of prenylated proteins in living cells enabled by the development of isoprenoid analogues YnF and YnGG in combination with quantitative chemical proteomics. Eighty prenylated proteins were identified in a single human cell line, 64 for the first time at endogenous abundance without metabolic perturbation. We further demonstrate that YnF and YnGG enable direct identification of post-translationally processed prenylated peptides, proteome-wide quantitative analysis of prenylation dynamics and alternative prenylation in response to four different prenyltransferase inhibitors, and quantification of defective Rab prenylation in a model of the retinal degenerative disease choroideremia.
Collapse
Affiliation(s)
- Elisabeth M Storck
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Julia Morales-Sanfrutos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Remigiusz A Serwa
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Nattawadee Panyain
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Thomas Lanyon-Hogg
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Tanya Tolmachova
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Leandro N Ventimiglia
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Juan Martin-Serrano
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Miguel C Seabra
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Beata Wojciak-Stothard
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
22
|
Protein Isoprenylation in Yeast Targets COOH-Terminal Sequences Not Adhering to the CaaX Consensus. Genetics 2018; 210:1301-1316. [PMID: 30257935 PMCID: PMC6283164 DOI: 10.1534/genetics.118.301454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Protein isoprenylation targets a subset of COOH-terminal Cxxx tetrapeptide sequences that has been operationally defined as a CaaX motif. The specificity of the farnesyl transferase toward each of the possible 8000 combinations of Cxxx sequences, however, remains largely unresolved. In part, it has been difficult to consolidate results stemming from in vitro and in silico approaches that yield a wider array of prenylatable sequences relative to those known in vivo We have investigated whether this disconnect results from the multistep complexity of post-translational modification that occurs in vivo to CaaX proteins. For example, the Ras GTPases undergo isoprenylation followed by additional proteolysis and carboxymethylation events at the COOH-terminus. By contrast, Saccharomyces cerevisiae Hsp40 Ydj1p is isoprenylated but not subject to additional modification. In fact, additional modifications are detrimental to Ydj1p activity in vivo We have taken advantage of the properties of Ydj1p and a Ydj1p-dependent growth assay to identify sequences that permit Ydj1p isoprenylation in vivo while simultaneously selecting against nonprenylatable and more extensively modified sequences. The recovered sequences are largely nonoverlapping with those previously identified using an in vivo Ras-based yeast reporter. Moreover, most of the sequences are not readily predicted as isoprenylation targets by existing prediction algorithms. Our results reveal that the yeast CaaX-type prenyltransferases can utilize a range of sequence combinations that extend beyond the traditional constraints for CaaX proteins, which implies that more proteins may be isoprenylated than previously considered.
Collapse
|
23
|
Jennings BC, Lawton AJ, Rizk Z, Fierke CA. SmgGDS-607 Regulation of RhoA GTPase Prenylation Is Nucleotide-Dependent. Biochemistry 2018; 57:4289-4298. [PMID: 29940100 DOI: 10.1021/acs.biochem.8b00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein prenylation involves the attachment of a hydrophobic isoprenoid moiety to the C-terminus of proteins. Several small GTPases, including members of the Ras and Rho subfamilies, require prenylation for their normal and pathological functions. Recent work has suggested that SmgGDS proteins regulate the prenylation of small GTPases in vivo. Using RhoA as a representative small GTPase, we directly test this hypothesis using biochemical assays and present a mechanism describing the mode of prenylation regulation. SmgGDS-607 completely inhibits RhoA prenylation catalyzed by protein geranylgeranyltransferase I (GGTase-I) in an in vitro radiolabel incorporation assay. SmgGDS-607 inhibits prenylation by binding to and blocking access to the C-terminal tail of the small GTPase (substrate sequestration mechanism) rather than via inhibition of the prenyltransferase activity. The reactivity of GGTase-I with RhoA is unaffected by addition of nucleotides. In contrast, the affinity of SmgGDS-607 for RhoA varies with the nucleotide bound to RhoA; SmgGDS-607 has a higher affinity for RhoA-GDP compared to RhoA-GTP. Consequently, the prenylation blocking function of SmgGDS-607 is regulated by the bound nucleotide. This work provides mechanistic insight into a novel pathway for the regulation of small GTPase protein prenylation by SmgGDS-607 and demonstrates that peptides are a good mimic for full-length proteins when measuring GGTase-I activity.
Collapse
Affiliation(s)
- Benjamin C Jennings
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Alexis J Lawton
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Zeinab Rizk
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Carol A Fierke
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
24
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
25
|
Abstract
Ras converting enzyme 1 (Rce1) is an integral membrane endoprotease localized to the endoplasmic reticulum that mediates the cleavage of the carboxyl-terminal three amino acids from CaaX proteins, whose members play important roles in cell signaling processes. Examples include the Ras family of small GTPases, the γ-subunit of heterotrimeric GTPases, nuclear lamins, and protein kinases and phosphatases. CaaX proteins, especially Ras, have been implicated in cancer, and understanding the post-translational modifications of CaaX proteins would provide insight into their biological function and regulation. Many proteolytic mechanisms have been proposed for Rce1, but sequence alignment, mutational studies, topology, and recent crystallographic data point to a novel mechanism involving a glutamate-activated water and an oxyanion hole. Studies using in vivo and in vitro reporters of Rce1 activity have revealed that the enzyme cleaves only prenylated substrates and the identity of the a2 amino residue in the Ca1a2X sequence is most critical for recognition, preferring Ile, Leu, or Val. Substrate mimetics can be somewhat effective inhibitors of Rce1 in vitro. Small-molecule inhibitor discovery is currently limited by the lack of structural information on a eukaryotic enzyme, but a set of 8-hydroxyquinoline derivatives has demonstrated an ability to mislocalize all three mammalian Ras isoforms, giving optimism that potent, selective inhibitors might be developed. Much remains to be discovered regarding cleavage specificity, the impact of chemical inhibition, and the potential of Rce1 as a therapeutic target, not only for cancer, but also for other diseases.
Collapse
Affiliation(s)
| | - Timothy M Dore
- a New York University Abu Dhabi , Abu Dhabi , United Arab Emirates.,b Department of Chemistry , University of Georgia , Athens , GA , USA
| | - Walter K Schmidt
- c Department of Biochemistry & Molecular Biology , University of Georgia , Athens , GA , USA
| |
Collapse
|
26
|
Blanden MJ, Suazo KF, Hildebrandt ER, Hardgrove DS, Patel M, Saunders WP, Distefano MD, Schmidt WK, Hougland JL. Efficient farnesylation of an extended C-terminal C( x) 3X sequence motif expands the scope of the prenylated proteome. J Biol Chem 2017; 293:2770-2785. [PMID: 29282289 DOI: 10.1074/jbc.m117.805770] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/24/2017] [Indexed: 12/25/2022] Open
Abstract
Protein prenylation is a post-translational modification that has been most commonly associated with enabling protein trafficking to and interaction with cellular membranes. In this process, an isoprenoid group is attached to a cysteine near the C terminus of a substrate protein by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I or II (GGTase-I and GGTase-II). FTase and GGTase-I have long been proposed to specifically recognize a four-amino acid CAAX C-terminal sequence within their substrates. Surprisingly, genetic screening reveals that yeast FTase can modify sequences longer than the canonical CAAX sequence, specifically C(x)3X sequences with four amino acids downstream of the cysteine. Biochemical and cell-based studies using both peptide and protein substrates reveal that mammalian FTase orthologs can also prenylate C(x)3X sequences. As the search to identify physiologically relevant C(x)3X proteins begins, this new prenylation motif nearly doubles the number of proteins within the yeast and human proteomes that can be explored as potential FTase substrates. This work expands our understanding of prenylation's impact within the proteome, establishes the biologically relevant reactivity possible with this new motif, and opens new frontiers in determining the impact of non-canonically prenylated proteins on cell function.
Collapse
Affiliation(s)
- Melanie J Blanden
- Department of Chemistry, Syracuse University, Syracuse, New York 13244
| | - Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Daniel S Hardgrove
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Meet Patel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - William P Saunders
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, New York 13244.
| |
Collapse
|
27
|
Barghetti A, Sjögren L, Floris M, Paredes EB, Wenkel S, Brodersen P. Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Genes Dev 2017; 31:2282-2295. [PMID: 29269486 PMCID: PMC5769771 DOI: 10.1101/gad.301242.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
In this study, Barghetti et al. investigate the functions of protein farnesylation in plants. They show that defective farnesylation of a single factor—heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes—is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. Protein farnesylation is central to molecular cell biology. In plants, protein farnesyl transferase mutants are pleiotropic and exhibit defective meristem organization, hypersensitivity to the hormone abscisic acid, and increased drought resistance. The precise functions of protein farnesylation in plants remain incompletely understood because few relevant farnesylated targets have been identified. Here, we show that defective farnesylation of a single factor—heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes—is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. We also show that expression of an abiotic stress-related microRNA (miRNA) regulon controlled by the transcription factor SPL7 requires HSP40 farnesylation. Expression of a truncated SPL7 form mimicking its activated proteolysis fragment of the membrane-bound SPL7 precursor partially restores accumulation of SPL7-dependent miRNAs in farnesyl transferase mutants. These results implicate the pathway directing SPL7 activation from its membrane-bound precursor as an important target of farnesylated HSP40, consistent with our demonstration that HSP40 farnesylation facilitates its membrane association. The results also suggest that altered gene regulation via select miRNAs contributes to abiotic stress-related phenotypes of farnesyl transferase mutants.
Collapse
Affiliation(s)
- Andrea Barghetti
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lars Sjögren
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Maïna Floris
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Esther Botterweg Paredes
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Stephan Wenkel
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
28
|
Shala-Lawrence A, Blanden MJ, Krylova SM, Gangopadhyay SA, Beloborodov SS, Hougland JL, Krylov SN. Simultaneous Analysis of a Non-Lipidated Protein and Its Lipidated Counterpart: Enabling Quantitative Investigation of Protein Lipidation’s Impact on Cellular Regulation. Anal Chem 2017; 89:13502-13507. [DOI: 10.1021/acs.analchem.7b03846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Agnesa Shala-Lawrence
- Department
of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Melanie J. Blanden
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Svetlana M. Krylova
- Department
of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - Stanislav S. Beloborodov
- Department
of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sergey N. Krylov
- Department
of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|