1
|
Toniolo S, Udale R, Klar VS, Maio MR, Attaallah B, Tofaris GK, Hu MT, Manohar SG, Husain M. Working memory filtering at encoding and maintenance in healthy ageing, Alzheimer's and Parkinson's disease. Sci Rep 2025; 15:15922. [PMID: 40335550 PMCID: PMC12059157 DOI: 10.1038/s41598-025-00556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
The differential impact on working memory (WM) performance of distractors presented at encoding or during maintenance was investigated in Alzheimer's Disease (AD), Parkinson's Disease (PD) patients, elderly (EHC) and young healthy controls (YHC), (n = 28 per group). Participants reported the orientation of an arrow from a set of either two or three items, with a distractor present either at encoding or at maintenance. MRI data with hippocampal volumes was also acquired. Mean absolute error and mixture model metrics i.e., memory precision, target detection, misbinding (swapping the features of an object with another probed item) and guessing were computed. EHC and PD patients showed good filtering abilities both at encoding and maintenance. However, AD patients exhibited significant filtering deficits specifically when the distractor appeared during maintenance. In healthy ageing there was a prominent decline in WM memory precision, whilst in AD lower target detection and higher guessing were the main sources of error. Conversely, PD was associated only with higher guessing rates. Hippocampal volume was significantly correlated with filtering during maintenance - but not at encoding. These findings demonstrate how healthy ageing and neurodegenerative diseases exhibit distinct patterns of WM impairment, including when filtering irrelevant material either at encoding and maintenance.
Collapse
Affiliation(s)
- Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, University of Oxford, New Radcliffe House, 1st Floor, Oxford, OX2 6GG, UK.
- Cognitive Disorder Clinic, John Radcliffe Hospital, Oxford, UK.
| | - Robert Udale
- Department of Psychology, University of Sheffield, Sheffield, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Maria Raquel Maio
- Nuffield Department of Clinical Neurosciences, University of Oxford, New Radcliffe House, 1st Floor, Oxford, OX2 6GG, UK
| | - Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, New Radcliffe House, 1st Floor, Oxford, OX2 6GG, UK
- Centre for Preventive Neurology, Queen Mary University of London, London, UK
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, New Radcliffe House, 1st Floor, Oxford, OX2 6GG, UK
- Oxford Parkinson's Disease Centre, John Radcliffe Hospital, Oxford, UK
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, New Radcliffe House, 1st Floor, Oxford, OX2 6GG, UK
- Oxford Parkinson's Disease Centre, John Radcliffe Hospital, Oxford, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, New Radcliffe House, 1st Floor, Oxford, OX2 6GG, UK
- Cognitive Disorder Clinic, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, New Radcliffe House, 1st Floor, Oxford, OX2 6GG, UK
- Cognitive Disorder Clinic, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Huang L, Song D, Zhong L, Liao X, Zhou XM, Ge QM, Ling Q, Zeng YM, Wang XY, Hu JY, Chen C, He LQ, Zhou Q, Shao Y. Central alterations of brain networks in patients with optic neuritis: a resting state fMRI study. Int J Ophthalmol 2025; 18:469-477. [PMID: 40103952 PMCID: PMC11865650 DOI: 10.18240/ijo.2025.03.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/14/2024] [Indexed: 03/20/2025] Open
Abstract
AIM To assess the alterations in the resting-state function connections between the two cerebral hemispheres in patients with optic neuritis (ON) and healthy controls (HCs). METHODS A total of 12 ON patients (six males and six females) and 12 HCs (six males and six females) who were highly matched for sex, age, and educational level were recruited. They underwent functional magnetic resonance imaging (fMRI), testing and brain activities were assessed using the degree centrality (DC) method. Correlation analysis between the mean DC values in specific brain areas and behavior performances was analyzed as well. Linear correlations between A anxiety scale (AS) and depression scale (DS) values and DC values in brain regions of patients with ON were also analyzed. RESULTS The areas that showed a higher DC value in ON patients were the right angular gyrus and bilateral precuneus, while the left insula and left superior temporal gyrus (LSTG) were regions that presented a lower DC value in ON patients. A receiver operating characteristic (ROC) curve analysis confirmed the accuracy of the area under the curve (AUC) assessment. Linear analysis showed anxiety scale (AS) and depression scale (DS) values in the left insula were both negatively correlated with DC values, while best corrected visual acuity logMAR-R (BCVA logMAR-R) showed a negative correlation with DC in the LSTG. CONCLUSION The study explores altered brain activities of specific regions in patients with ON. The results provide clues for revealing the underlying mechanism of ON development.
Collapse
Affiliation(s)
- Liang Huang
- Fuzhou Aier Ophthalmology Hospital, Fuzhou 344000, Jiangxi Province, China
- Department of Ophthalmology, Peking University International Hospital, Beijing 102206, China
| | - Dan Song
- Department of Ophthalmology, Peking University International Hospital, Beijing 102206, China
| | - Lei Zhong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xuan Liao
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xian-Mei Zhou
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Qian-Min Ge
- Department of Ophthalmology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qian Ling
- Department of Ophthalmology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yan-Mei Zeng
- Department of Ophthalmology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Wang
- Department of Ophthalmology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jin-Yu Hu
- Department of Ophthalmology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cheng Chen
- Department of Ophthalmology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang-Qi He
- Department of Ophthalmology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qiong Zhou
- Department of Ophthalmology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Shao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| |
Collapse
|
3
|
Li Y, Wang C, Hu W, Zhang Q, Mei H, Ji S, Li D, Wang Y, Kong Y, Song Y, Dong X. Intersubject neural similarity reveals the development trajectory of recognition memory in children. Dev Cogn Neurosci 2025; 73:101553. [PMID: 40121798 PMCID: PMC11979950 DOI: 10.1016/j.dcn.2025.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Recognition memory improves with child development, but the neural mechanisms underlying such improvement and the developmental variation remain poorly understood. Herein, we investigated how the neural representations during the encoding and retrieval phases of recognition memory change with age, using representational similarity analysis in a sample of children aged 6-13 years (n = 137). Our results indicated that the encoding and retrieval phases have distinct neural patterns of development. Similarly, using a model-free approach, we confirmed that there is a key developmental stage (about 9-10 years old) for the neural representation during the encoding phase, whereas the neural representation during the retrieval phase tends to be stable with child development. Additionally, we identified that the neural similarity between the encoding and retrieval phases in children is primarily located in the left parietal-occipital region. Overall, these findings refine the developmental process underlying memory representation and enhance our understanding of the neural mechanisms of recognition memory.
Collapse
Affiliation(s)
- Yiwen Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Chaoqun Wang
- Children's Health Research Center, Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213000, China
| | - Weiyu Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Qinfen Zhang
- Children's Health Research Center, Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213000, China
| | - Haitian Mei
- Children's Health Research Center, Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213000, China
| | - Shiyan Ji
- Children's Health Research Center, Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213000, China
| | - Dongwei Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yiyang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Xuan Dong
- Children's Health Research Center, Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
4
|
Ladyka-Wojcik N, Schmidt H, Cooper RA, Ritchey M. Neural signatures of recollection are sensitive to memory quality and specific event features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643924. [PMID: 40166213 PMCID: PMC11956928 DOI: 10.1101/2025.03.18.643924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Episodic memories reflect a bound representation of multimodal features that can be recollected with varying levels of precision. Recent fMRI investigations have demonstrated that the precision and content of information retrieved from memory engage a network of posterior medial temporal and parietal regions co-activated with the hippocampus. Yet, comparatively little is known about how memory content and precision affect common neural signatures of memory captured by electroencephalography (EEG), where recollection has been associated with changes in event-related potential (ERP) and oscillatory measures of neural activity. Here, we used a multi-feature paradigm previously reported in Cooper & Ritchey (2019) with continuous measures of memory, in conjunction with scalp EEG, to characterize the content and quality of information that drives ERP and oscillatory markers of episodic memory. A common signature of memory retrieval in left posterior regions, called the late positive component (LPC), was sensitive to overall memory quality and also to precision of recollection for spatial features. Analysis of oscillatory markers during recollection revealed that alpha/beta desynchronization was modulated by overall memory quality and also by individual features in memory. Importantly, we found evidence of a relationship between these two neural markers of memory retrieval, suggesting that they may represent complementary aspects of the recollection experience. These findings demonstrate how time-sensitive and dynamic processes identified with EEG correspond to overall episodic recollection, and also to the retrieval of precise features in memory.
Collapse
Affiliation(s)
| | - Helen Schmidt
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, USA
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Rose A Cooper
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, USA
| | - Maureen Ritchey
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
5
|
Hou M, Hill PF, Aktas ANZ, Ekstrom AD, Rugg MD. Neural Correlates of Retrieval Success and Precision: A Functional Magnetic Resonance Imaging Study. J Cogn Neurosci 2025; 37:680-692. [PMID: 39536157 PMCID: PMC11870802 DOI: 10.1162/jocn_a_02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Prior studies examining the neural mechanisms underlying retrieval success and precision have yielded inconsistent results. Here, the neural correlates of success and precision were examined with a memory task that assessed precision for spatial location. A sample of healthy young adults underwent fMRI scanning during a single study-test cycle. At study, participants viewed a series of object images, each placed at a randomly selected location on an imaginary circle. At test, studied images were intermixed with new images and presented to the participants. The requirement was to move a cursor to the location of the studied image, guessing if necessary. Participants then signaled whether the presented image had been studied. Memory precision was quantified as the angular difference between the studied location and the location selected by the participant. A precision effect was evident in the left angular gyrus, where BOLD activity covaried with location accuracy. In addition, multivoxel pattern analysis revealed a significant item-level reinstatement effect in the angular gyrus for high-precision trials. There was no evidence of a retrieval success effect in this region. BOLD activity in the hippocampus was insensitive to both success and precision. These findings are partially consistent with prior evidence that success and precision are dissociable features of memory retrieval.
Collapse
Affiliation(s)
- Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Paul F. Hill
- Department of Psychology, University of Arizona, USA
| | - Ayse N. Z. Aktas
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Arne D. Ekstrom
- Department of Psychology, University of Arizona, USA
- Evelyn McKnight Brain Institute, University of Arizona, USA
| | - Michael D. Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
6
|
Tomić I, Adamcová D, Fehér M, Bays PM. Dissecting the components of error in analogue report tasks. Behav Res Methods 2024; 56:8196-8213. [PMID: 38977610 PMCID: PMC11525414 DOI: 10.3758/s13428-024-02453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
Over the last two decades, the analogue report task has become a standard method for measuring the fidelity of visual representations across research domains including perception, attention, and memory. Despite its widespread use, there has been no methodical investigation of the different task parameters that might contribute to response variability. To address this gap, we conducted two experiments manipulating components of a typical analogue report test of memory for colour hue. We found that human response errors were independently affected by changes in storage and maintenance requirements of the task, demonstrated by a strong effect of set size even in the absence of a memory delay. In contrast, response variability remained unaffected by physical size of the colour wheel, implying negligible contribution of motor noise to task performance, or by its chroma radius, highlighting non-uniformity of the standard colour space. Comparing analogue report to a matched forced-choice task, we found variation in adjustment criterion made a limited contribution to analogue report variability, becoming meaningful only with low representational noise. Our findings validate the analogue report task as a robust measure of representational fidelity for most purposes, while also quantifying non-representational sources of noise that would limit its reliability in specialized settings.
Collapse
Affiliation(s)
- Ivan Tomić
- Department of Psychology, University of Cambridge, Cambridge, England.
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, Ivana Lucica 3, 10000, Zagreb, Croatia.
| | - Dagmar Adamcová
- Department of Psychology, University of Cambridge, Cambridge, England
| | - Máté Fehér
- Faculty of Biology, University of Cambridge, Cambridge, England
| | - Paul M Bays
- Department of Psychology, University of Cambridge, Cambridge, England
| |
Collapse
|
7
|
Andrade MÂ, Raposo A, Andrade A. Exploring the late maturation of an intrinsic episodic memory network: A resting-state fMRI study. Dev Cogn Neurosci 2024; 70:101453. [PMID: 39368283 PMCID: PMC11490684 DOI: 10.1016/j.dcn.2024.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024] Open
Abstract
Previous research suggests that episodic memory relies on functional neural networks,which are present even in the absence of an explicit task. The regions that integrate.these networks and the developmental changes in intrinsic functional connectivity.remain elusive. In the present study, we outlined an intrinsic episodic memory network.(iEMN) based on a systematic selection of functional connectivity studies, and.inspected network differences in resting-state fMRI between adolescents (13-17 years.old) and adults (23-27 years old) from the publicly available NKI-Rockland Sample.Through a review of brain regions commonly associated with episodic memory.networks, we identified a potential iEMN composed by 14 bilateral ROIs, distributed.across temporal, frontal and parietal lobes. Within this network, we found an increase.in resting-state connectivity from adolescents to adults between the right temporal pole.and two regions in the right lateral prefrontal cortex. We argue that the coordination of.these brain regions, connecting areas of semantic processing and areas of controlled.retrieval, arises as an important feature towards the full maturation of the episodic.memory system. The findings add to evidence suggesting that adolescence is a key.period in memory development and highlights the role of intrinsic functional.connectivity in such development.
Collapse
Affiliation(s)
| | - Ana Raposo
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Portugal
| | - Alexandre Andrade
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| |
Collapse
|
8
|
Chen W, Xu C, Wu W, Li W, Huang W, Li Z, Li X, Xie G, Li X, Zhang C, Liang J. Differences of regional homogeneity and cognitive function between psychotic depression and drug-naïve schizophrenia. BMC Psychiatry 2024; 24:835. [PMID: 39567972 PMCID: PMC11577850 DOI: 10.1186/s12888-024-06283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Psychotic depression (PD) and schizophrenia (SCZ) share overlapping symptoms yet differ in etiology, progression, and treatment approaches. Differentiating these disorders through symptom-based diagnosis is challenging, emphasizing the need for a clearer understanding of their distinct cognitive and neural mechanisms. AIM This study aims to compare cognitive impairments and brain functional activities in PD and SCZ to pinpoint distinguishing characteristics of each disorder. METHODS We evaluated cognitive function in 42 PD and 30 SCZ patients using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and resting-state functional magnetic resonance imaging (rs-fMRI). Regional homogeneity (ReHo) values were derived from rs-fMRI data, and group differences in RBANS scores were analyzed. Additionally, Pearson correlation analysis was performed to assess the relationship between cognitive domains and brain functional metrics. RESULTS (1) The SCZ group showed significantly lower RBANS scores than the PD group across all cognitive domains, particularly in visuospatial/constructional ability and delayed memory (p < 0.05); (2) The SCZ group exhibited a significantly higher ReHo value in the left precuneus compared to the PD group (p < 0.05); (3) A negative correlation was observed between visuospatial construction, delayed memory scores, and the ReHo value of the left precuneus. CONCLUSION Cognitive impairment is more pronounced in SCZ than in PD, with marked deficits in visuospatial and memory domains. Enhanced left precuneus activity further differentiates SCZ from PD and correlates with cognitive impairments in both disorders, providing neuroimaging-based evidence to aid differential diagnosis and insights into cognitive dysfunction mechanisms, while also paving a clearer path for psychiatric research.
Collapse
Affiliation(s)
- Wensheng Chen
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Caixia Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Wenxuan Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Wei Huang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Zhijian Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China.
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China.
| |
Collapse
|
9
|
Constantinou M, Pecchinenda A, Burianová H, Yankouskaya A. The Impact of Ageing on Episodic Memory Retrieval: How Valence Influences Neural Functional Connectivity. NEUROSCI 2024; 5:542-564. [PMID: 39585108 PMCID: PMC11587483 DOI: 10.3390/neurosci5040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Age-related decline in episodic memory is often linked to structural and functional changes in the brain. Here, we investigated how these alterations might affect functional connectivity during memory retrieval following exposure to emotional stimuli. Using functional magnetic resonance imaging (fMRI), participants viewed images with varying emotional valences (positive, negative, and neutral) followed by unrelated non-arousing videos and were then asked to retrieve an episodic detail from the previously shown video. We conducted Multivariate Pattern Analysis (MVPA) to identify regions with divergent responses between age groups, which then served as seeds in Seed-Based Connectivity (SBC) analyses. The results revealed an age-related decline in behavioural performance following exposure to negative stimuli but preserved performance following positive stimuli. Young adults exhibited increased functional connectivity following negative valence. Conversely, old adults displayed increased connectivity more scarcely, and only following positive valence. These findings point to an adaptive response of the impact of emotions on task performance that depends on neural adaptations related to ageing. This suggests that age-related changes in functional connectivity might underlie how emotions influence memory, highlighting the need to tailor memory support strategies in older adulthood.
Collapse
Affiliation(s)
| | - Anna Pecchinenda
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Hana Burianová
- School of Psychology, Swansea University, Swansea SA2 8PQ, UK;
| | - Ala Yankouskaya
- Department of Psychology, Bournemouth University, Bournemouth BH12 5BB, UK;
| |
Collapse
|
10
|
Cabbai G, Racey C, Simner J, Dance C, Ward J, Forster S. Sensory representations in primary visual cortex are not sufficient for subjective imagery. Curr Biol 2024; 34:5073-5082.e5. [PMID: 39419033 DOI: 10.1016/j.cub.2024.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
The contemporary definition of mental imagery is characterized by two aspects: a sensory representation that resembles, but does not result from, perception, and an associated subjective experience. Neuroimaging demonstrated imagery-related sensory representations in primary visual cortex (V1) that show striking parallels to perception. However, it remains unclear whether these representations always reflect subjective experience or if they can be dissociated from it. We addressed this question by comparing sensory representations and subjective imagery among visualizers and aphantasics, the latter with an impaired ability to experience imagery. Importantly, to test for the presence of sensory representations independently of the ability to generate imagery on demand, we examined both spontaneous and voluntary imagery forms. Using multivariate fMRI, we tested for decodable sensory representations in V1 and subjective visual imagery reports that occurred either spontaneously (during passive listening of evocative sounds) or in response to the instruction to voluntarily generate imagery of the sound content (always while blindfolded inside the scanner). Among aphantasics, V1 decoding of sound content was at chance during voluntary imagery, and lower than in visualizers, but it succeeded during passive listening, despite them reporting no imagery. In contrast, in visualizers, decoding accuracy in V1 was greater in voluntary than spontaneous imagery (while being positively associated with the reported vividness of both imagery types). Finally, for both conditions, decoding in precuneus was successful in visualizers but at chance for aphantasics. Together, our findings show that V1 representations can be dissociated from subjective imagery, while implicating a key role of precuneus in the latter.
Collapse
Affiliation(s)
- Giulia Cabbai
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK.
| | - Chris Racey
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Julia Simner
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Carla Dance
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Sophie Forster
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| |
Collapse
|
11
|
Xie W, Ma T, Thakurdesai S, Kim I, Zhang W. Discrimination of mnemonic similarity is associated with short-term and long-term memory precision. Mem Cognit 2024:10.3758/s13421-024-01648-y. [PMID: 39433697 DOI: 10.3758/s13421-024-01648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Remembering specific memories with precision relies on the differentiation of similar memory contents - a process commonly referred to as pattern separation and behaviorally operationalized as lure discrimination in the mnemonic similarity task. Although pattern separation is typically investigated in the context of long-term memory (LTM), recent research extends these findings to short-term memory (STM) within a mixture model framework, emphasizing the distinction between memory quality and quantity. According to this framework, pattern separation is associated with memory precision across STM and LTM, regardless of the overall memory likelihood. However, these associations among memory quality measures may persist without the mixture model assumption. In an alternative model, a unitary memory strength measure quantified as a discrimination score (d') may also capture the association between pattern separation and memory quality, as pattern separation has been previously linked with strength-based memory performance. We tested these possibilities based on individual differences among 132 participants who underwent tasks measuring mnemonic pattern separation and STM/LTM quality. We found that behavioral estimates of pattern separation are significantly correlated with STM and LTM precision, irrespective of the likelihood of STM/LTM recall success. However, these associations are absent when considering the correlation between pattern separation and memory strength under a unitary model framework. By leveraging individual differences to constrain our understanding of cognitive models, our data unravel the intricate relationship between pattern separation and memory quality across timescales. These findings may therefore contribute to identifying sensitive behavioral measures for detecting subtle memory deficits in older adults or clinical populations.
Collapse
Affiliation(s)
- Weizhen Xie
- Department of Psychology, University of Maryland, College Park, MD, USA.
| | - Tianye Ma
- Department of Psychology, University of California, Riverside, CA, USA
| | | | - Inik Kim
- Department of Psychology, University of California, Riverside, CA, USA
| | - Weiwei Zhang
- Department of Psychology, University of California, Riverside, CA, USA
| |
Collapse
|
12
|
Tanase AD, Chen H, Miller ME, Hugenschmidt CE, Williamson JD, Kritchevsky SB, Laurienti PJ, Thompson AC. Visual contrast sensitivity is associated with community structure integrity in cognitively unimpaired older adults: the Brain Networks and Mobility (B-NET) Study. AGING BRAIN 2024; 6:100122. [PMID: 39148934 PMCID: PMC11325069 DOI: 10.1016/j.nbas.2024.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 08/17/2024] Open
Abstract
Older adults with impairment in contrast sensitivity (CS), the ability to visually perceive differences in light and dark, are more likely to demonstrate limitations in mobility function, but the mechanisms underlying this relationship are poorly understood. We sought to determine if functional brain networks important to visual processing and mobility may help elucidate possible neural correlates of this relationship. This cross-sectional analysis utilized functional MRI both at rest and during a motor imagery (MI) task in 192 community-dwelling, cognitively-unimpaired older adults ≥ 70 years of age from the Brain Networks and Mobility study (B-NET). Brain networks were partitioned into network communities, groups of regions that are more interconnected with each other than the rest of the brain, the spatial consistency of the communities for multiple brain subnetworks was assessed. Lower baseline binocular CS was significantly associated with degraded sensorimotor network (SMN) community structure at rest. During the MI task, lower binocular CS was significantly associated with degraded community structure in both the visual (VN) and default mode network (DMN). These findings may suggest shared neural pathways for visual and mobility dysfunction that could be targeted in future studies.
Collapse
Affiliation(s)
- Alexis D Tanase
- Wake Forest University School of Medicine, Department of Radiology, Winston-Salem, NC, USA
| | - Haiying Chen
- Wake Forest University School of Medicine, Department of Biostatistics, Winston-Salem, NC, USA
| | - Michael E Miller
- Wake Forest University School of Medicine, Division of Public Health Sciences, Winston-Salem, NC, USA
- Wake Forest University School of Medicine, Department of Gerontology and Geriatric Medicine, Winston-Salem, NC, USA
| | - Christina E Hugenschmidt
- Wake Forest University School of Medicine, Department of Gerontology and Geriatric Medicine, Winston-Salem, NC, USA
| | - Jeff D Williamson
- Wake Forest University School of Medicine, Department of Gerontology and Geriatric Medicine, Winston-Salem, NC, USA
| | - Stephen B Kritchevsky
- Wake Forest University School of Medicine, Department of Gerontology and Geriatric Medicine, Winston-Salem, NC, USA
| | - Paul J Laurienti
- Wake Forest University School of Medicine, Department of Radiology, Winston-Salem, NC, USA
| | - Atalie C Thompson
- Wake Forest University School of Medicine, Department of Gerontology and Geriatric Medicine, Winston-Salem, NC, USA
- Wake Forest University School of Medicine, Department of Surgical Ophthalmology, Winston-Salem, NC, USA
| |
Collapse
|
13
|
Siena MJ, Simons JS. Metacognitive Awareness and the Subjective Experience of Remembering in Aphantasia. J Cogn Neurosci 2024; 36:1578-1598. [PMID: 38319889 DOI: 10.1162/jocn_a_02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Individuals with aphantasia, a nonclinical condition typically characterized by mental imagery deficits, often report reduced episodic memory. However, findings have hitherto rested largely on subjective self-reports, with few studies experimentally investigating both objective and subjective aspects of episodic memory in aphantasia. In this study, we tested both aspects of remembering in aphantasic individuals using a custom 3-D object and spatial memory task that manipulated visuospatial perspective, which is considered to be a key factor determining the subjective experience of remembering. Objective and subjective measures of memory performance were taken for both object and spatial memory features under different perspective conditions. Surprisingly, aphantasic participants were found to be unimpaired on all objective memory measures, including those for object memory features, despite reporting weaker overall mental imagery experience and lower subjective vividness ratings on the memory task. These results add to newly emerging evidence that aphantasia is a heterogenous condition, where some aphantasic individuals may lack metacognitive awareness of mental imagery rather than mental imagery itself. In addition, we found that both participant groups remembered object memory features with greater precision when encoded and retrieved in the first person versus third person, suggesting a first-person perspective might facilitate subjective memory reliving by enhancing the representational quality of scene contents.
Collapse
|
14
|
Clancy KJ, Devignes Q, Ren B, Pollmann Y, Nielsen SR, Howell K, Kumar P, Belleau EL, Rosso IM. Spatiotemporal dynamics of hippocampal-cortical networks underlying the unique phenomenological properties of trauma-related intrusive memories. Mol Psychiatry 2024; 29:2161-2169. [PMID: 38454081 PMCID: PMC11408261 DOI: 10.1038/s41380-024-02486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Trauma-related intrusive memories (TR-IMs) possess unique phenomenological properties that contribute to adverse post-traumatic outcomes, positioning them as critical intervention targets. However, transdiagnostic treatments for TR-IMs are scarce, as their underlying mechanisms have been investigated separate from their unique phenomenological properties. Extant models of more general episodic memory highlight dynamic hippocampal-cortical interactions that vary along the anterior-posterior axis of the hippocampus (HPC) to support different cognitive-affective and sensory-perceptual features of memory. Extending this work into the unique properties of TR-IMs, we conducted a study of eighty-four trauma-exposed adults who completed daily ecological momentary assessments of TR-IM properties followed by resting-state functional magnetic resonance imaging (rs-fMRI). Spatiotemporal dynamics of anterior and posterior hippocampal (a/pHPC)-cortical networks were assessed using co-activation pattern analysis to investigate their associations with different properties of TR-IMs. Emotional intensity of TR-IMs was inversely associated with the frequency and persistence of an aHPC-default mode network co-activation pattern. Conversely, sensory features of TR-IMs were associated with more frequent co-activation of the HPC with sensory cortices and the ventral attention network, and the reliving of TR-IMs in the "here-and-now" was associated with more persistent co-activation of the pHPC and the visual cortex. Notably, no associations were found between HPC-cortical network dynamics and conventional symptom measures, including TR-IM frequency or retrospective recall, underscoring the utility of ecological assessments of memory properties in identifying their neural substrates. These findings provide novel insights into the neural correlates of the unique features of TR-IMs that are critical for the development of individualized, transdiagnostic treatments for this pervasive, difficult-to-treat symptom.
Collapse
Affiliation(s)
- Kevin J Clancy
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Quentin Devignes
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA
| | - Yara Pollmann
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Sienna R Nielsen
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Kristin Howell
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Poornima Kumar
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emily L Belleau
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Hou M, Hill PF, Aktas ANZ, Ekstrom AD, Rugg MD. Neural correlates of retrieval success and precision: an fMRI study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598309. [PMID: 38915680 PMCID: PMC11195065 DOI: 10.1101/2024.06.10.598309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Prior studies examining the neural mechanisms underlying retrieval success and precision have yielded inconsistent results. Here, their neural correlates were examined using a memory task that assessed precision for spatial location. A sample of healthy young adults underwent fMRI scanning during a single study-test cycle. At study, participants viewed a series of object images, each placed at a randomly selected location on an imaginary circle. At test, studied images were intermixed with new images and presented to the participants. The requirement was to move a cursor to the location of the studied image, guessing if necessary. Participants then signaled whether the presented image as having been studied. Memory precision was quantified as the angle between the studied location and the location selected by the participant. A precision effect was evident in the left angular gyrus, where BOLD activity covaried across trials with location accuracy. Multi-voxel pattern analysis also revealed a significant item-level reinstatement effect for high-precision trials. There was no evidence of a retrieval success effect in the angular gyrus. BOLD activity in the hippocampus was insensitive to both success and precision. These findings are partially consistent with prior evidence that success and precision are dissociable features of memory retrieval.
Collapse
Affiliation(s)
- Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Paul F. Hill
- Department of Psychology, University of Arizona, USA
| | - Ayse N. Z. Aktas
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Arne D. Ekstrom
- Department of Psychology, University of Arizona, USA
- Evelyn McKnight Brain Institute, University of Arizona, USA
| | - Michael D. Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
16
|
Joensen BH, Ashton JE, Berens SC, Gaskell MG, Horner AJ. An Enduring Role for Hippocampal Pattern Completion in Addition to an Emergent Nonhippocampal Contribution to Holistic Episodic Retrieval after a 24 h Delay. J Neurosci 2024; 44:e1740232024. [PMID: 38527810 PMCID: PMC11063816 DOI: 10.1523/jneurosci.1740-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Episodic memory retrieval is associated with the holistic neocortical reinstatement of all event information, an effect driven by hippocampal pattern completion. However, whether holistic reinstatement occurs, and whether hippocampal pattern completion continues to drive reinstatement, after a period of consolidation is unclear. Theories of systems consolidation predict either a time-variant or time-invariant role of the hippocampus in the holistic retrieval of episodic events. Here, we assessed whether episodic events continue to be reinstated holistically and whether hippocampal pattern completion continues to facilitate holistic reinstatement following a period of consolidation. Female and male human participants learned "events" that comprised multiple overlapping pairs of event elements (e.g., person-location, object-location, location-person). Importantly, encoding occurred either immediately before or 24 h before retrieval. Using fMRI during the retrieval of events, we show evidence for holistic reinstatement, as well as a correlation between reinstatement and hippocampal pattern completion, regardless of whether retrieval occurred immediately or 24 h after encoding. Thus, hippocampal pattern completion continues to contribute to holistic reinstatement after a delay. However, our results also revealed that some holistic reinstatement can occur without evidence for a corresponding signature of hippocampal pattern completion after a delay (but not immediately after encoding). We therefore show that hippocampal pattern completion, in addition to a nonhippocampal process, has a role in holistic reinstatement following a period of consolidation. Our results point to a consolidation process where the hippocampus and neocortex may work in an additive, rather than compensatory, manner to support episodic memory retrieval.
Collapse
Affiliation(s)
- Bárður H Joensen
- Department of Psychology, Lund University, Lund 221 00, Sweden
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | - Jennifer E Ashton
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | - Sam C Berens
- School of Psychology, University of Sussex, Falmer BN1 9QH, United Kingdom
| | - M Gareth Gaskell
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York YO10 5NG, United Kingdom
| | - Aidan J Horner
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York YO10 5NG, United Kingdom
| |
Collapse
|
17
|
Foudil SA, Macaluso E. The influence of the precuneus on the medial temporal cortex determines the subjective quality of memory during the retrieval of naturalistic episodes. Sci Rep 2024; 14:7943. [PMID: 38575698 PMCID: PMC10995201 DOI: 10.1038/s41598-024-58298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Memory retrieval entails dynamic interactions between the medial temporal lobe and areas in the parietal and frontal cortices. Here, we tested the hypothesis that effective connectivity between the precuneus, in the medial parietal cortex, and the medial temporal cortex contributes to the subjective quality of remembering objects together with information about their rich spatio-temporal encoding context. During a 45 min encoding session, the participants were presented with pictures of objects while they actively explored a virtual town. The following day, under fMRI, participants were presented with images of objects and had to report whether: they recognized the object and could remember the place/time of encoding, the object was familiar only, or the object was new. The hippocampus/parahippocampus, the precuneus and the ventro-medial prefrontal cortex activated when the participants successfully recognized objects they had seen in the virtual town and reported that they could remember the place/time of these events. Analyses of effective connectivity showed that the influence exerted by the precuneus on the medial temporal cortex mediates this effect of episodic recollection. Our findings demonstrate the role of the inter-regional connectivity in mediating the subjective experience of remembering and underline the relevance of studying memory in contextually-rich conditions.
Collapse
Affiliation(s)
- Samy-Adrien Foudil
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), U1028 UMR5292, IMPACT, 69500, Bron, France.
- Lyon Neuroscience Research Center (ImpAct Team), 16 Avenue Doyen Lépine, 69500, Bron, France.
| | - Emiliano Macaluso
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), U1028 UMR5292, IMPACT, 69500, Bron, France
- Lyon Neuroscience Research Center (ImpAct Team), 16 Avenue Doyen Lépine, 69500, Bron, France
| |
Collapse
|
18
|
Zhang Y, Wu W, Mirman D, Hoffman P. Representation of event and object concepts in ventral anterior temporal lobe and angular gyrus. Cereb Cortex 2024; 34:bhad519. [PMID: 38185997 PMCID: PMC10839851 DOI: 10.1093/cercor/bhad519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Semantic knowledge includes understanding of objects and their features and also understanding of the characteristics of events. The hub-and-spoke theory holds that these conceptual representations rely on multiple information sources that are integrated in a central hub in the ventral anterior temporal lobes. The dual-hub theory expands this framework with the claim that the ventral anterior temporal lobe hub is specialized for object representation, while a second hub in angular gyrus is specialized for event representation. To test these ideas, we used representational similarity analysis, univariate and psychophysiological interaction analyses of fMRI data collected while participants processed object and event concepts (e.g. "an apple," "a wedding") presented as images and written words. Representational similarity analysis showed that angular gyrus encoded event concept similarity more than object similarity, although the left angular gyrus also encoded object similarity. Bilateral ventral anterior temporal lobes encoded both object and event concept structure, and left ventral anterior temporal lobe exhibited stronger coding for events. Psychophysiological interaction analysis revealed greater connectivity between left ventral anterior temporal lobe and right pMTG, and between right angular gyrus and bilateral ITG and middle occipital gyrus, for event concepts compared to object concepts. These findings support the specialization of angular gyrus for event semantics, though with some involvement in object coding, but do not support ventral anterior temporal lobe specialization for object concepts.
Collapse
Affiliation(s)
- Yueyang Zhang
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Wei Wu
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Daniel Mirman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
19
|
Lloyd B, Nieuwenhuis S. The effect of reward-induced arousal on the success and precision of episodic memory retrieval. Sci Rep 2024; 14:2105. [PMID: 38267573 PMCID: PMC10808342 DOI: 10.1038/s41598-024-52486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Moment-to-moment fluctuations in arousal can have large effects on learning and memory. For example, when neutral items are predictive of a later reward, they are often remembered better than neutral items without a reward association. This reward anticipation manipulation is thought to induce a heightened state of arousal, resulting in stronger encoding. It is unclear, however, whether these arousal-induced effects on encoding are 'all-or-none', or whether encoding precision varies from trial to trial with degree of arousal. Here, we examined whether trial-to-trial variability in reward-related pupil-linked arousal might correspond to variability in participants' long-term memory encoding precision. We tested this using a location memory paradigm in which half of the to-be-encoded neutral items were linked to later monetary reward, while the other half had no reward association. After the encoding phase, we measured immediate item location memory on a continuous scale, allowing us to assess both memory success and memory precision. We found that pre-item baseline pupil size and pupil size during item encoding were not related to subsequent memory performance. In contrast, the anticipation of instrumental reward increased pupil size, and a smaller anticipatory increase in pupil size was linked to greater subsequent memory success but not memory precision.
Collapse
Affiliation(s)
- Beth Lloyd
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
20
|
Gellersen HM, McMaster J, Abdurahman A, Simons JS. Demands on perceptual and mnemonic fidelity are a key determinant of age-related cognitive decline throughout the lifespan. J Exp Psychol Gen 2024; 153:200-223. [PMID: 38236240 PMCID: PMC10795485 DOI: 10.1037/xge0001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 01/19/2024]
Abstract
Aging results in less detailed memories, reflecting reduced fidelity of remembered compared to real-world representations. We tested whether poorer representational fidelity across perception, short-term memory (STM), and long-term memory (LTM) are among the earliest signs of cognitive aging. Our paradigm probed target-lure object mnemonic discrimination and precision of object-location binding. Across the lifespan, cognitive deficits were observed in midlife when detailed stimulus representations were required for perceptual and short/long-term forced choice mnemonic discrimination. A continuous metric of object-location source memory combined with computational modeling demonstrated that errors in STM and LTM in middle-aged adults were largely driven by a loss of precision for retrieved memories, not necessarily by forgetting. On a trial-by-trial basis, fidelity of item and spatial information was more tightly bound in LTM compared to STM with this association being unaffected by age. Standard neuropsychological tests without demands on memory quality (digit span, verbal learning) were less sensitive to age effects than STM and LTM precision. Perceptual discrimination predicted mnemonic discrimination. Neuropsychological proxies for prefrontal executive functions correlated with STM, but not LTM fidelity. Conversely, neuropsychological indicators of hippocampal integrity correlated with mnemonic discrimination and precision of both STM and LTM, suggesting partially dissociable mechanisms of interindividual variability in STM and LTM fidelity. These findings suggest that reduced representational fidelity is a hallmark of cognitive aging across perception, STM, and LTM and can be observed from midlife onward. Continuous memory precision tasks may be promising for the early detection of subtle age-related cognitive decline. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Jon S Simons
- Department of Psychology, University of Cambridge
| |
Collapse
|
21
|
Yelhekar TD, Meng M, Doupe J, Lin Y. All IEGs Are Not Created Equal-Molecular Sorting Within the Memory Engram. ADVANCES IN NEUROBIOLOGY 2024; 38:81-109. [PMID: 39008012 DOI: 10.1007/978-3-031-62983-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
When neurons are recruited to form the memory engram, they are driven to activate the expression of a series of immediate-early genes (IEGs). While these IEGs have been used relatively indiscriminately to identify the so-called engram neurons, recent research has demonstrated that different IEG ensembles can be physically and functionally distinct within the memory engram. This inherent heterogeneity of the memory engram is driven by the diversity in the functions and distributions of different IEGs. This process, which we call molecular sorting, is analogous to sorting the entire population of engram neurons into different sub-engrams molecularly defined by different IEGs. In this chapter, we will describe the molecular sorting process by systematically reviewing published work on engram ensemble cells defined by the following four major IEGs: Fos, Npas4, Arc, and Egr1. By comparing and contrasting these likely different components of the memory engram, we hope to gain a better understanding of the logic and significance behind the molecular sorting process for memory functions.
Collapse
Affiliation(s)
- Tushar D Yelhekar
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meizhen Meng
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joslyn Doupe
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yingxi Lin
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
Martarelli CS, Ovalle-Fresa R. In sight, out of mind? Disengagement at encoding gradually reduces recall of location. Q J Exp Psychol (Hove) 2024; 77:42-56. [PMID: 36803300 DOI: 10.1177/17470218231159656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Disengaging from the external world-a phenomenon referred to as mind wandering-is a common experience that has been shown to be associated with detriments in cognitive performance across a large range of tasks. In the current web-based study, we used a continuous delayed estimation paradigm to investigate the impact of task disengagement at encoding on subsequent recall of location. Task disengagement was assessed with thought probes on a dichotomous (off- vs. on-task) and a continuous response scale (from 0% to 100% on-task). This approach allowed us to consider perceptual decoupling in both a dichotomous and a graded manner. In the first study (n = 54), we found a negative relationship between levels of task disengagement at encoding and subsequent recall of location measured in degrees. This finding supports a graded perceptual decoupling process rather than a decoupling that happens in an all-or-none manner. In the second study (n = 104), we replicated this finding. An analysis of 22 participants showing enough off-task trials to fit the data with the standard mixture model revealed that in this particular subsample, being disengaged from the task at encoding was related to worse long-term memory performance in terms of likelihood to recall but not in terms of precision with which information is recalled. Overall, the findings suggest a graded nature of task disengagement that covaries with fine-grained differences in subsequent recall of location. Going forwards, it will be important to test the validity of continuous measures of mind-wandering.
Collapse
|
23
|
Ben-Zvi Feldman S, Soroker N, Levy DA. Lesion-behavior mapping indicates a strategic role for parietal substrates of associative memory. Cortex 2023; 167:148-166. [PMID: 37562150 DOI: 10.1016/j.cortex.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023]
Abstract
Numerous neuroimaging studies indicate that ventral parietal cortex (VPC), especially angular gyrus, plays an important role in episodic memory. However, the nature of the mnemonic processes supported by this region is far from clear. We previously found that stroke lesions in VPC and lateral temporal cortex caused deficits in cued recall of unimodal word pairs and picture pairs, and cross-modal picture-sound pairs, with larger deficits in the cross-modal task. However, those findings leave open the question whether those regions' integrity is necessary for maintenance of associative representations, or for strategic processes required for their recall. We addressed this question using associative recognition versions of those tasks. We additionally manipulated semantic relatedness of the associated memoranda, to assess VPC's involvement in semantic processing in the context of episodic memory. We analyzed performance of 62 first-event, sub-acute phase stroke patients (31 right- and 31 left-hemisphere damage) relative to 65 healthy participants, and employed voxel-based lesion-behavior mapping (VLBM) to identify task-relevant structures. Patients displayed greater false associative recognition of semantically related compared to unrelated recombined pairs. VLBM analysis implicated right lateral temporo-parietal regions in associative recognition deficits in the cross-modal pairs task, specifically for related recombined and new pairs, seemingly because of difficulty overcoming semantic relatedness bias effects on episodic discrimination. In contrast, damage to ventral parietal and lateral temporal cortex was not implicated in memory for unrelated memoranda. We interpret this pattern of lesion-behavior effects as indicating lateral temporo-parietal cortex involvement in strategic, rather than representational, roles in episodic associative memory.
Collapse
Affiliation(s)
- Shir Ben-Zvi Feldman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | - Nachum Soroker
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Loewenstein Rehabilitation Medical Center, Raanana, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel.
| |
Collapse
|
24
|
Lee H, Keene PA, Sweigart SC, Hutchinson JB, Kuhl BA. Adding Meaning to Memories: How Parietal Cortex Combines Semantic Content with Episodic Experience. J Neurosci 2023; 43:6525-6537. [PMID: 37596054 PMCID: PMC10513070 DOI: 10.1523/jneurosci.1919-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023] Open
Abstract
Neuroimaging studies of human memory have consistently found that univariate responses in parietal cortex track episodic experience with stimuli (whether stimuli are 'old' or 'new'). More recently, pattern-based fMRI studies have shown that parietal cortex also carries information about the semantic content of remembered experiences. However, it is not well understood how memory-based and content-based signals are integrated within parietal cortex. Here, in humans (males and females), we used voxel-wise encoding models and a recognition memory task to predict the fMRI activity patterns evoked by complex natural scene images based on (1) the episodic history and (2) the semantic content of each image. Models were generated and compared across distinct subregions of parietal cortex and for occipitotemporal cortex. We show that parietal and occipitotemporal regions each encode memory and content information, but they differ in how they combine this information. Among parietal subregions, angular gyrus was characterized by robust and overlapping effects of memory and content. Moreover, subject-specific semantic tuning functions revealed that successful recognition shifted the amplitude of tuning functions in angular gyrus but did not change the selectivity of tuning. In other words, effects of memory and content were additive in angular gyrus. This pattern of data contrasted with occipitotemporal cortex where memory and content effects were interactive: memory effects were preferentially expressed by voxels tuned to the content of a remembered image. Collectively, these findings provide unique insight into how parietal cortex combines information about episodic memory and semantic content.SIGNIFICANCE STATEMENT Neuroimaging studies of human memory have identified multiple brain regions that not only carry information about "whether" a visual stimulus is successfully recognized but also "what" the content of that stimulus includes. However, a fundamental and open question concerns how the brain integrates these two types of information (memory and content). Here, using a powerful combination of fMRI analysis methods, we show that parietal cortex, particularly the angular gyrus, robustly combines memory- and content-related information, but these two forms of information are represented via additive, independent signals. In contrast, memory effects in high-level visual cortex critically depend on (and interact with) content representations. Together, these findings reveal multiple and distinct ways in which the brain combines memory- and content-related information.
Collapse
Affiliation(s)
- Hongmi Lee
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218
| | - Paul A Keene
- Department of Psychology, University of Oregon, Eugene, OR 97403
| | - Sarah C Sweigart
- Department of Psychology, University of California-Davis, Davis, California 95616
| | | | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR 97403
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| |
Collapse
|
25
|
Abstract
Perception and memory are traditionally thought of as separate cognitive functions, supported by distinct brain regions. The canonical perspective is that perceptual processing of visual information is supported by the ventral visual stream, whereas long-term declarative memory is supported by the medial temporal lobe. However, this modular framework cannot account for the increasingly large body of evidence that reveals a role for early visual areas in long-term recognition memory and a role for medial temporal lobe structures in high-level perceptual processing. In this article, we review relevant research conducted in humans, nonhuman primates, and rodents. We conclude that the evidence is largely inconsistent with theoretical proposals that draw sharp functional boundaries between perceptual and memory systems in the brain. Instead, the weight of the empirical findings is best captured by a representational-hierarchical model that emphasizes differences in content, rather than in cognitive processes within the ventral visual stream and medial temporal lobe.
Collapse
Affiliation(s)
- Chris B Martin
- Department of Psychology, Florida State University, Tallahassee, Florida, USA;
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada;
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Hebscher M, Bainbridge WA, Voss JL. Neural similarity between overlapping events at learning differentially affects reinstatement across the cortex. Neuroimage 2023; 277:120220. [PMID: 37321360 PMCID: PMC10468827 DOI: 10.1016/j.neuroimage.2023.120220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Episodic memory often involves high overlap between the actors, locations, and objects of everyday events. Under some circumstances, it may be beneficial to distinguish, or differentiate, neural representations of similar events to avoid interference at recall. Alternatively, forming overlapping representations of similar events, or integration, may aid recall by linking shared information between memories. It is currently unclear how the brain supports these seemingly conflicting functions of differentiation and integration. We used multivoxel pattern similarity analysis (MVPA) of fMRI data and neural-network analysis of visual similarity to examine how highly overlapping naturalistic events are encoded in patterns of cortical activity, and how the degree of differentiation versus integration at encoding affects later retrieval. Participants performed an episodic memory task in which they learned and recalled naturalistic video stimuli with high feature overlap. Visually similar videos were encoded in overlapping patterns of neural activity in temporal, parietal, and occipital regions, suggesting integration. We further found that encoding processes differentially predicted later reinstatement across the cortex. In visual processing regions in occipital cortex, greater differentiation at encoding predicted later reinstatement. Higher-level sensory processing regions in temporal and parietal lobes showed the opposite pattern, whereby highly integrated stimuli showed greater reinstatement. Moreover, integration in high-level sensory processing regions during encoding predicted greater accuracy and vividness at recall. These findings provide novel evidence that encoding-related differentiation and integration processes across the cortex have divergent effects on later recall of highly similar naturalistic events.
Collapse
Affiliation(s)
- Melissa Hebscher
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA.
| | - Wilma A Bainbridge
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA; The Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Joel L Voss
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Wang Y, Lee H, Kuhl BA. Mapping multidimensional content representations to neural and behavioral expressions of episodic memory. Neuroimage 2023; 277:120222. [PMID: 37327954 PMCID: PMC10424734 DOI: 10.1016/j.neuroimage.2023.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Human neuroimaging studies have shown that the contents of episodic memories are represented in distributed patterns of neural activity. However, these studies have mostly been limited to decoding simple, unidimensional properties of stimuli. Semantic encoding models, in contrast, offer a means for characterizing the rich, multidimensional information that comprises episodic memories. Here, we extensively sampled four human fMRI subjects to build semantic encoding models and then applied these models to reconstruct content from natural scene images as they were viewed and recalled from memory. First, we found that multidimensional semantic information was successfully reconstructed from activity patterns across visual and lateral parietal cortices, both when viewing scenes and when recalling them from memory. Second, whereas visual cortical reconstructions were much more accurate when images were viewed versus recalled from memory, lateral parietal reconstructions were comparably accurate across visual perception and memory. Third, by applying natural language processing methods to verbal recall data, we showed that fMRI-based reconstructions reliably matched subjects' verbal descriptions of their memories. In fact, reconstructions from ventral temporal cortex more closely matched subjects' own verbal recall than other subjects' verbal recall of the same images. Fourth, encoding models reliably transferred across subjects: memories were successfully reconstructed using encoding models trained on data from entirely independent subjects. Together, these findings provide evidence for successful reconstructions of multidimensional and idiosyncratic memory representations and highlight the differential sensitivity of visual cortical and lateral parietal regions to information derived from the external visual environment versus internally-generated memories.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China; Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - Hongmi Lee
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
28
|
Tang Y, Xu L, Zhu T, Cui H, Qian Z, Kong G, Tang X, Wei Y, Zhang T, Hu Y, Sheng J, Wang J. Visuospatial Learning Selectively Enhanced by Personalized Transcranial Magnetic Stimulation over Parieto-Hippocampal Network among Patients at Clinical High-Risk for Psychosis. Schizophr Bull 2023; 49:923-932. [PMID: 36841956 PMCID: PMC10318868 DOI: 10.1093/schbul/sbad015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive deficits in visuospatial learning (VSL) are highly associated with an increased risk of developing psychosis among populations with clinical high risk (CHR) for psychosis. Early interventions targeting VSL enhancement are warranted in CHR but remain rudimentary. We investigated whether personalized transcranial magnetic stimulation (TMS) over the left parieto-hippocampal network could improve VSL performance in CHR patients and if it could reduce the risk of psychosis conversion within 1 year. STUDY DESIGN Sixty-five CHR patients were randomized to receive active or sham TMS treatments using an accelerated TMS protocol, consisting of 10 sessions of 20 Hz TMS treatments within 2 days. TMS target was defined by individual parieto-hippocampal functional connectivity and precisely localized by individual structural magnetic resonance imaging. VSL performance was measured using Brief Visuospatial Memory Test-Revised included in measurement and treatment research to improve cognition in schizophrenia consensus cognitive battery (MCCB). Fifty-eight CHR patients completed the TMS treatments and MCCB assessments and were included in the data analysis. STUDY RESULTS We observed significant VSL improvements in the active TMS subgroup (Cohen's d = 0.71, P < .001) but not in the sham TMS subgroup (Cohen's d = 0.07, P = .70). In addition, active TMS improved the precision of VSL performance. At a 1-year follow-up, CHR patients who received active TMS showed a lower psychosis conversion rate than those who received sham TMS (6.7% vs 28.0%, χ2 = 4.45, P = .03). CONCLUSIONS Our findings demonstrate that personalized TMS in the left parieto-hippocampal network may be a promising preventive intervention that improves VSL in CHR patients and reduces the risk of psychosis conversion at follow-up.
Collapse
Affiliation(s)
- Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai Kong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yegang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
| |
Collapse
|
29
|
Daviddi S, Pedale T, St Jacques PL, Schacter DL, Santangelo V. Common and distinct correlates of construction and elaboration of episodic-autobiographical memory: An ALE meta-analysis. Cortex 2023; 163:123-138. [PMID: 37104887 PMCID: PMC10192150 DOI: 10.1016/j.cortex.2023.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/18/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
The recollection of episodic-autobiographical memories (EAMs) entails a complex temporal dynamic, from initial "construction" to subsequent "elaboration" of memories. While there is consensus that EAM retrieval involves a distributed network of brain regions, it is still largely debated which regions specifically contribute to EAM construction and/or elaboration. To clarify this issue, we conducted an Activation Likelihood Estimation (ALE) meta-analysis based on the Preferred Reporting Items for Systematic-Reviews and Meta-Analyses (PRISMA) method. We found common recruitment of the left hippocampus and posterior cingulate cortex (PCC) during both phases. Additionally, EAM construction led to activations in the ventromedial prefrontal cortex, left angular gyrus (AG), right hippocampus, and precuneus, while the right inferior frontal gyrus was activated by EAM elaboration. Although most of these regions are distributed over the default mode network, the current findings highlight a differential contribution according to early (midline regions, left/right hippocampus, and left AG) versus later (left hippocampus, and PCC) recollection. Overall, these findings contribute to clarify the neural correlates that support the temporal dynamics of EAM recollection.
Collapse
Affiliation(s)
- Sarah Daviddi
- Department of Philosophy, Social Sciences & Education, University of Perugia, Italy.
| | - Tiziana Pedale
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; Functional Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | | | | | - Valerio Santangelo
- Department of Philosophy, Social Sciences & Education, University of Perugia, Italy; Functional Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy.
| |
Collapse
|
30
|
He BJ. Towards a pluralistic neurobiological understanding of consciousness. Trends Cogn Sci 2023; 27:420-432. [PMID: 36842851 PMCID: PMC10101889 DOI: 10.1016/j.tics.2023.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Theories of consciousness are often based on the assumption that a single, unified neurobiological account will explain different types of conscious awareness. However, recent findings show that, even within a single modality such as conscious visual perception, the anatomical location, timing, and information flow of neural activity related to conscious awareness vary depending on both external and internal factors. This suggests that the search for generic neural correlates of consciousness may not be fruitful. I argue that consciousness science requires a more pluralistic approach and propose a new framework: joint determinant theory (JDT). This theory may be capable of accommodating different brain circuit mechanisms for conscious contents as varied as percepts, wills, memories, emotions, and thoughts, as well as their integrated experience.
Collapse
Affiliation(s)
- Biyu J He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Departments of Neurology, Neuroscience and Physiology, Radiology, New York University Grossman School of Medicine, New York, NY 10016.
| |
Collapse
|
31
|
Korkki SM, Richter FR, Gellersen HM, Simons JS. Reduced memory precision in older age is associated with functional and structural differences in the angular gyrus. Neurobiol Aging 2023; 129:109-120. [PMID: 37300913 DOI: 10.1016/j.neurobiolaging.2023.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 06/12/2023]
Abstract
Decreased fidelity of mnemonic representations plays a critical role in age-related episodic memory deficits, yet the brain mechanisms underlying such reductions remain unclear. Using functional and structural neuroimaging, we examined how changes in two key nodes of the posterior-medial network, the hippocampus and the angular gyrus (AG), might underpin loss of memory precision in older age. Healthy young and older adults completed a memory task that involved reconstructing object features on a continuous scale. Investigation of blood-oxygen-level-dependent (BOLD) activity during retrieval revealed an age-related reduction in activity reflecting successful recovery of object features in the hippocampus, whereas trial-wise modulation of BOLD signal by graded memory precision was diminished in the AG. Gray matter volume of the AG further predicted individual differences in memory precision in older age, beyond likelihood of successful retrieval. These findings provide converging evidence for a role of functional and structural integrity of the AG in constraining the fidelity of episodic remembering in older age, yielding new insights into parietal contributions to age-related episodic memory decline.
Collapse
Affiliation(s)
- Saana M Korkki
- Department of Psychology, University of Cambridge, Cambridge, UK; Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
| | - Franziska R Richter
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Bastin C, Delhaye E. Targeting the function of the transentorhinal cortex to identify early cognitive markers of Alzheimer's disease. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01093-5. [PMID: 37024735 DOI: 10.3758/s13415-023-01093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 04/08/2023]
Abstract
Initial neuropathology of early Alzheimer's disease accumulates in the transentorhinal cortex. We review empirical data suggesting that tasks assessing cognitive functions supported by the transenthorinal cortex are impaired as early as the preclinical stages of Alzheimer's disease. These tasks span across various domains, including episodic memory, semantic memory, language, and perception. We propose that all tasks sensitive to Alzheimer-related transentorhinal neuropathology commonly rely on representations of entities supporting the processing and discrimination of items having perceptually and conceptually overlapping features. In the future, we suggest a screening tool that is sensitive and specific to very early Alzheimer's disease to probe memory and perceptual discrimination of highly similar entities.
Collapse
Affiliation(s)
- Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Allée du 6 Août, B30, 4000, Liège, Belgium.
| | - Emma Delhaye
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Allée du 6 Août, B30, 4000, Liège, Belgium
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Ekstrom AD, Hill PF. Spatial navigation and memory: A review of the similarities and differences relevant to brain models and age. Neuron 2023; 111:1037-1049. [PMID: 37023709 PMCID: PMC10083890 DOI: 10.1016/j.neuron.2023.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
Spatial navigation and memory are often seen as heavily intertwined at the cognitive and neural levels of analysis. We review models that hypothesize a central role for the medial temporal lobes, including the hippocampus, in both navigation and aspects of memory, particularly allocentric navigation and episodic memory. While these models have explanatory power in instances in which they overlap, they are limited in explaining functional and neuroanatomical differences. Focusing on human cognition, we explore the idea of navigation as a dynamically acquired skill and memory as an internally driven process, which may better account for the differences between the two. We also review network models of navigation and memory, which place a greater emphasis on connections rather than the functions of focal brain regions. These models, in turn, may have greater explanatory power for the differences between navigation and memory and the differing effects of brain lesions and age.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA.
| | - Paul F Hill
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA
| |
Collapse
|
34
|
Lau-Zhu A, Williams F, Steel C. Attachment patterns and autobiographical episodic memory functioning: A systemic review of adult studies to advance clinical psychological science. Clin Psychol Rev 2023; 101:102254. [PMID: 36804184 DOI: 10.1016/j.cpr.2023.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Patterns of insecure attachment are associated with psychopathology but the mechanisms involved remain poorly understood. Cognitive science proposes that attachment patterns are influenced by the autobiographical memory system and in turn influence its ongoing functioning. Disturbances in autobiographical memory represent cognitive risks for later emotional difficulties. We systemically reviewed 33 studies (in 28 articles) examining the association between attachment patterns and autobiographical episodic memory (AEM) in individuals from the age of 16 (i.e., from young to older adulthood). Attachment patterns were associated with key areas of AEM phenomenology, including intensity and arousal; detail, specificity, and vividness; coherence and fragmentation; and accuracy and latency. These associations appeared to be moderated by contextual and individual factors; mediated by emotional regulation and schema-based processing; linked to mental health outcomes. Attachment patterns may also influence the impact of certain AEM-based manipulations. We conclude by providing a critical discussion and a research agenda for bringing together attachment, memory, and emotion, with a view to promote mechanism-driven treatment innovation in clinical psychology.
Collapse
Affiliation(s)
- A Lau-Zhu
- Oxford Institute of Clinical Psychology Training and Research, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - F Williams
- Oxford Institute of Clinical Psychology Training and Research, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - C Steel
- Oxford Institute of Clinical Psychology Training and Research, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Reagh ZM, Ranganath C. Flexible reuse of cortico-hippocampal representations during encoding and recall of naturalistic events. Nat Commun 2023; 14:1279. [PMID: 36890146 PMCID: PMC9995562 DOI: 10.1038/s41467-023-36805-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Although every life event is unique, there are considerable commonalities across events. However, little is known about whether or how the brain flexibly represents information about different event components at encoding and during remembering. Here, we show that different cortico-hippocampal networks systematically represent specific components of events depicted in videos, both during online experience and during episodic memory retrieval. Regions of an Anterior Temporal Network represented information about people, generalizing across contexts, whereas regions of a Posterior Medial Network represented context information, generalizing across people. Medial prefrontal cortex generalized across videos depicting the same event schema, whereas the hippocampus maintained event-specific representations. Similar effects were seen in real-time and recall, suggesting reuse of event components across overlapping episodic memories. These representational profiles together provide a computationally optimal strategy to scaffold memory for different high-level event components, allowing efficient reuse for event comprehension, recollection, and imagination.
Collapse
Affiliation(s)
- Zachariah M Reagh
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | - Charan Ranganath
- UC Davis Center for Neuroscience, University of California, Davis, CA, USA.,Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
36
|
Delhaye E, Coco MI, Bahri MA, Raposo A. Typicality in the brain during semantic and episodic memory decisions. Neuropsychologia 2023; 184:108529. [PMID: 36898662 DOI: 10.1016/j.neuropsychologia.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/25/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Concept typicality is a key semantic dimension supporting the categorical organization of items based on their features, such that typical items share more features with other members of their category than atypical items, which are more distinctive. Typicality effects manifest in better accuracy and faster response times during categorization tasks, but higher performance for atypical items in episodic memory tasks, due to their distinctiveness. At a neural level, typicality has been linked to the anterior temporal lobe (ATL) and the inferior frontal gyrus (IFG) in semantic decision tasks, but patterns of brain activity during episodic memory tasks remain to be understood. We investigated the neural correlates of typicality in semantic and episodic memory to determine the brain regions associated with semantic typicality and uncover effects arising when items are reinstated during retrieval. In an fMRI study, 26 healthy young subjects first performed a category verification task on words representing typical and atypical concepts (encoding), and then completed a recognition memory task (retrieval). In line with previous literature, we observed higher accuracy and faster response times for typical items in the category verification task, while atypical items were better recognized in the episodic memory task. During category verification, univariate analyses revealed a greater involvement of the angular gyrus for typical items and the inferior frontal gyrus for atypical items. During the correct recognition of old items, regions belonging to the core recollection network were activated. We then compared the similarity of the representations from encoding to retrieval (ERS) using Representation Similarity Analyses. Results showed that typical items were reinstated more than atypical ones in several regions including the left precuneus and left anterior temporal lobe (ATL). This suggests that the correct retrieval of typical items requires finer-grained processing, evidenced by greater item-specific reinstatement, which is needed to resolve their confusability with other members of the category due to their higher feature similarity. Our findings confirm the centrality of the ATL in the processing of typicality while extending it to memory retrieval.
Collapse
Affiliation(s)
- Emma Delhaye
- GIGA-CRC IVI, Liege University, Belgium; CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Portugal.
| | - Moreno I Coco
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Portugal; Department of Psychology, Sapienza, University of Rome, Italy; IRCCS Santa Lucia, Rome, Italy
| | | | - Ana Raposo
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Portugal
| |
Collapse
|
37
|
Flanagin VL, Klinkowski S, Brodt S, Graetsch M, Roselli C, Glasauer S, Gais S. The precuneus as a central node in declarative memory retrieval. Cereb Cortex 2023; 33:5981-5990. [PMID: 36610736 DOI: 10.1093/cercor/bhac476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Both, the hippocampal formation and the neocortex are contributing to declarative memory, but their functional specialization remains unclear. We investigated the differential contribution of both memory systems during free recall of word lists. In total, 21 women and 17 men studied the same list but with the help of different encoding associations. Participants associated the words either sequentially with the previous word on the list, with spatial locations on a well-known path, or with unique autobiographical events. After intensive rehearsal, subjects recalled the words during functional magnetic resonance imaging (fMRI). Common activity to all three types of encoding associations was identified in the posterior parietal cortex, in particular in the precuneus. Additionally, when associating spatial or autobiographical material, retrosplenial cortex activity was elicited during word list recall, while hippocampal activity emerged only for autobiographically associated words. These findings support a general, critical function of the precuneus in episodic memory storage and retrieval. The encoding-retrieval repetitions during learning seem to have accelerated hippocampus-independence and lead to direct neocortical integration in the sequentially associated and spatially associated word list tasks. During recall of words associated with autobiographical memories, the hippocampus might add spatiotemporal information supporting detailed scenic and contextual memories.
Collapse
Affiliation(s)
- Virginia L Flanagin
- Bernstein Center for Computational Neuroscience, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.,IFB-LMU, Dept. of Neurology, Marchioninistr. 15, 81377 München, Germany
| | - Svenja Klinkowski
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| | - Svenja Brodt
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| | - Melanie Graetsch
- General and Experimental Psychology, Ludwig Maximilians University München, Leopoldstr. 13, 80802 München, Germany
| | - Carolina Roselli
- General and Experimental Psychology, Ludwig Maximilians University München, Leopoldstr. 13, 80802 München, Germany
| | - Stefan Glasauer
- Bernstein Center for Computational Neuroscience, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.,Computational Neuroscience, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| |
Collapse
|
38
|
Bellana B, Ladyka-Wojcik N, Lahan S, Moscovitch M, Grady CL. Recollection and prior knowledge recruit the left angular gyrus during recognition. Brain Struct Funct 2023; 228:197-217. [PMID: 36441240 DOI: 10.1007/s00429-022-02597-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/09/2022] [Indexed: 11/29/2022]
Abstract
The human angular gyrus (AG) is implicated in recollection, or the ability to retrieve detailed memory content from a specific episode. A separate line of research examining the neural bases of more general mnemonic representations, extracted over multiple episodes, also highlights the AG as a core region of interest. To reconcile these separate views of AG function, the present fMRI experiment used a Remember-Know paradigm with famous (prior knowledge) and non-famous (no prior knowledge) faces to test whether AG activity could be modulated by both task-specific recollection and general prior knowledge within the same individuals. Increased BOLD activity in the left AG was observed during both recollection in the absence of prior knowledge (recollected > non-recollected or correctly rejected non-famous faces) and when prior knowledge was accessed in the absence of experiment-specific recollection (famous > non-famous correct rejections). This pattern was most prominent for the left AG as compared to the broader inferior parietal lobe. Recollection-related responses in the left AG increased with encoding duration and prior knowledge, despite prior knowledge being incidental to the recognition decision. Overall, the left AG appears sensitive to both task-specific recollection and the incidental access of general prior knowledge, thus broadening our notions of the kinds of mnemonic representations that drive activity in this region.
Collapse
Affiliation(s)
- Buddhika Bellana
- Department of Psychology, York University, Glendon Campus, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada.
| | | | - Shany Lahan
- Department of Human Biology, University of Toronto, Toronto, Canada
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada.
| | - Cheryl L Grady
- Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
39
|
Internal attention is the only retroactive mechanism for controlling precision in working memory. Atten Percept Psychophys 2022:10.3758/s13414-022-02628-7. [PMID: 36536206 PMCID: PMC10371937 DOI: 10.3758/s13414-022-02628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/23/2022]
Abstract
AbstractRecent research has suggested that humans can assert control over the precision of working memory (WM) items. However, the mechanisms that enable this control are unclear. While some studies suggest that internal attention improves precision, it may not be the only factor, as previous work also demonstrated that WM storage is disentangled from attention. To test whether there is a precision control mechanism beyond internal attention, we contrasted internal attention and precision requirements within the same trial in three experiments. In every trial, participants memorized two items briefly. Before the test, a retro-cue indicated which item would be tested first, thus should be attended. Importantly, we encouraged participants to store the unattended item with higher precision by testing it using more similar lure colors at the probe display. Accuracy was analyzed on a small proportion of trials where the target-lure similarity, hence the task difficulty, was equal for attended and unattended items. Experiments 2 and 3 controlled for output interference by the first test and involuntary precision boost by the retro-cue, respectively. In all experiments, the unattended item had lower accuracy than the attended item, suggesting that individuals were not able to remember it more precisely than the attended item. Thus, we conclude that there is no precision control mechanism beyond internal attention, highlighting the close relationship between attentional and qualitative prioritization within WM. We discuss the important implications of these findings for our understanding of the fundamentals of WM and WM-driven behaviors.
Collapse
|
40
|
Abstract
In this reflective piece on visual working memory, I depart from the laboriously honed skills of writing a review. Instead of integrating approaches, synthesizing evidence, and building a cohesive perspective, I scratch my head and share niggles and puzzlements. I expose where my scholarship and understanding are stumped by findings and standard views in the literature.
Collapse
|
41
|
Cooper RA, Ritchey M. Patterns of episodic content and specificity predicting subjective memory vividness. Mem Cognit 2022; 50:1629-1643. [PMID: 35246786 DOI: 10.3758/s13421-022-01291-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
The ability to remember and internally represent events is often accompanied by a subjective sense of "vividness". Vividness measures are frequently used to evaluate the experience of remembering and imagining events, yet little research has considered the objective attributes of event memories that underlie this subjective judgment, and individual differences in this mapping. Here, we tested how the content and specificity of event memories support subjectively vivid recollection. Over three experiments, participants encoded events containing a theme word and three distinct elements - a person, a place, and an object. In a memory test, memory for event elements was assessed at two levels of specificity - semantic gist (names) and perceptual details (lure discrimination). We found a strong correspondence between memory vividness and memory for gist information that did not vary by which elements were contained in memory. There was a smaller, additive benefit of remembering specific perceptual details on vividness, which, in one study, was driven by memory for place details. Moreover, we found individual differences in the relationship between memory vividness and objective memory attributes primarily along the specificity dimension, such that one cluster of participants used perceptual detail to inform memory vividness whereas another cluster was more driven by gist information. Therefore, while gist memory appears to drive vividness on average, there were idiosyncrasies in this pattern across participants. When assessing subjective ratings of memory and imagination, research should consider how these ratings map onto objective memory attributes in the context of their study design and population.
Collapse
Affiliation(s)
- Rose A Cooper
- Department of Psychology, Northeastern University, Boston, MA, USA.
- Roux Institute, Northeastern University, Boston, MA, USA.
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, Boston, MA, USA
| |
Collapse
|
42
|
Kurkela KA, Cooper RA, Ryu E, Ritchey M. Integrating Region- and Network-level Contributions to Episodic Recollection Using Multilevel Structural Equation Modeling. J Cogn Neurosci 2022; 34:2341-2359. [PMID: 36007077 DOI: 10.1162/jocn_a_01904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The brain is composed of networks of interacting brain regions that support higher-order cognition. Among these, a core network of regions has been associated with recollection and other forms of episodic construction. Past research has focused largely on the roles of individual brain regions in recollection or on their mutual engagement as part of an integrated network. However, the relationship between these region- and network-level contributions remains poorly understood. Here, we applied multilevel structural equation modeling to examine the functional organization of the posterior medial (PM) network and its relationship to episodic memory outcomes. We evaluated two aspects of functional heterogeneity in the PM network: first, the organization of individual regions into subnetworks, and second, the presence of regionally specific contributions while accounting for network-level effects. Our results suggest that the PM network is composed of ventral and dorsal subnetworks, with the ventral subnetwork making a unique contribution to recollection, especially to recollection of spatial information, and that memory-related activity in individual regions is well accounted for by these network-level effects. These findings highlight the importance of considering the functions of individual brain regions within the context of their affiliated networks.
Collapse
Affiliation(s)
| | | | - Ehri Ryu
- Boston College, Chestnut Hill, MA
| | | |
Collapse
|
43
|
van Schie CC, Chiu CD, Rombouts SARB, Heiser WJ, Elzinga BM. Finding a positive me: Affective and neural insights into the challenges of positive autobiographical memory reliving in borderline personality disorder. Behav Res Ther 2022; 158:104182. [PMID: 36137418 DOI: 10.1016/j.brat.2022.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND This study aimed to investigate whether people with borderline personality disorder (BPD) can benefit from reliving positive autobiographical memories in terms of mood and state self-esteem and elucidate the neural processes supporting optimal memory reliving. Particularly the role of vividness and brain areas involved in autonoetic consciousness were studied, as key factors involved in improving mood and state self-esteem by positive memory reliving. METHODS Women with BPD (N = 25), Healthy Controls (HC, N = 33) and controls with Low Self-Esteem (LSE, N = 22) relived four neutral and four positive autobiographical memories in an MRI scanner. After reliving each memory mood and vividness was rated. State self-esteem was assessed before and after the Reliving Autobiographical Memories (RAM) task. RESULTS Overall, mood and state self-esteem were lower in participants with BPD compared to HC and LSE, but both the BPD and LSE group improved significantly after positive memory reliving. Moreover, participants with BPD indicated that they relived their memories with less vividness than HC but not LSE, regardless of valence. When reliving (vs reading) memories, participants with BPD showed increased precuneus and lingual gyrus activation compared to HC but not LSE, which was inversely related to vividness. DISCUSSION Women with BPD seem to experience more challenges in reliving neutral and positive autobiographical memories with lower vividness and less deactivated precuneus potentially indicating altered autonoetic consciousness. Nevertheless, participants with BPD do benefit in mood and self-esteem from reliving positive memories. These findings underline the potential of positive autobiographical memory reliving and suggest that interventions may be further shaped to improve mood and strengthen self-views in people with BPD.
Collapse
Affiliation(s)
- Charlotte C van Schie
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.
| | - Chui-De Chiu
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Serge A R B Rombouts
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Willem J Heiser
- Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Bernet M Elzinga
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
44
|
Wittmann BC, Şatırer Y. Decreased associative processing and memory confidence in aphantasia. Learn Mem 2022; 29:412-420. [PMID: 36253008 PMCID: PMC9578376 DOI: 10.1101/lm.053610.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Visual imagery and mental reconstruction of scenes are considered core components of episodic memory retrieval. Individuals with absent visual imagery (aphantasia) score lower on tests of autobiographical memory, suggesting that aphantasia may be associated with differences in episodic and associative processing. In this online study, we tested aphantasic participants and controls on associative recognition and memory confidence for three types of associations encoded incidentally: associations between visual-visual and audio-visual stimulus pairs, associations between an object and its location on the screen, and intraitem associations. Aphantasic participants had a lower rate of high-confidence hits in all associative memory tests compared with controls. Performance on auditory-visual associations was correlated with individual differences in a measure of object imagery in the aphantasic group but not in controls. No overall group difference in memory performance was found, indicating that visual imagery selectively contributes to memory confidence. Analysis of the encoding task revealed that aphantasics made fewer associative links between the stimuli, suggesting a role for visual imagery in associative processing of visual and auditory input. These data enhance our understanding of visual imagery contributions to associative memory and further characterize the cognitive profile of aphantasia.
Collapse
Affiliation(s)
- Bianca C Wittmann
- Department of Psychology, Justus Liebig University, 35394 Giessen, Germany
| | - Yılmaz Şatırer
- Department of Psychology, Justus Liebig University, 35394 Giessen, Germany
| |
Collapse
|
45
|
Bainbridge WA, Baker CI. Multidimensional memory topography in the medial parietal cortex identified from neuroimaging of thousands of daily memory videos. Nat Commun 2022; 13:6508. [PMID: 36316315 PMCID: PMC9622880 DOI: 10.1038/s41467-022-34075-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Our memories form a tapestry of events, people, and places, woven across the decades of our lives. However, research has often been limited in assessing the nature of episodic memory by using artificial stimuli and short time scales. The explosion of social media enables new ways to examine the neural representations of naturalistic episodic memories, for features like the memory's age, location, memory strength, and emotions. We recruited 23 users of a video diary app ("1 s Everyday"), who had recorded 9266 daily memory videos spanning up to 7 years. During a 3 T fMRI scan, participants viewed 300 of their memory videos intermixed with 300 from another individual. We find that memory features are tightly interrelated, highlighting the need to test them in conjunction, and discover a multidimensional topography in medial parietal cortex, with subregions sensitive to a memory's age, strength, and the familiarity of the people and places involved.
Collapse
Affiliation(s)
- Wilma A Bainbridge
- Department of Psychology, University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Drascher ML, Kuhl BA. Long-term memory interference is resolved via repulsion and precision along diagnostic memory dimensions. Psychon Bull Rev 2022; 29:1898-1912. [PMID: 35380409 PMCID: PMC9568473 DOI: 10.3758/s13423-022-02082-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/04/2022]
Abstract
When memories share similar features, this can lead to interference, and ultimately forgetting. With experience, however, interference can be resolved. This raises the important question of how memories change, with experience, to minimize interference. Intuitively, interference might be minimized by increasing the precision and accuracy of memories. However, recent evidence suggests a potentially adaptive role for memory distortions. Namely, similarity can trigger exaggerations of subtle differences between memories (repulsion). Here, we tested whether repulsion specifically occurs on feature dimensions along which memories compete and whether repulsion is predictive of reduced memory interference. To test these ideas, we developed synthetic faces in a two-dimensional face space (affect and gender). This allowed us to precisely manipulate similarity between faces and the feature dimension along which faces differed. In three experiments, participants learned to associate faces with unique cue words. Associative memory tests confirmed that when faces were similar (face pairmates), this produced interference. Using a continuous face reconstruction task, we found two changes in face memory that preferentially occurred along the feature dimension that was "diagnostic" of the difference between face pairmates: (1) there was a bias to remember pairmates with exaggerated differences (repulsion) and (2) there was an increase in the precision of feature memory. Critically, repulsion and precision were each associated with reduced associative memory interference, but these were statistically dissociable contributions. Collectively, our findings reveal that similarity between memories triggers dissociable, experience-dependent changes that serve an adaptive role in reducing interference.
Collapse
Affiliation(s)
| | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR, USA.
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
47
|
Barzykowski K, Moulin CJA. Are involuntary autobiographical memory and déjà vu natural products of memory retrieval? Behav Brain Sci 2022; 46:e356. [PMID: 36111499 DOI: 10.1017/s0140525x22002035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Involuntary autobiographical memories (IAMs) and déjà vu are phenomena that occur spontaneously in daily life. IAMs are recollections of the personal past, whereas déjà vu is defined as an experience in which the person feels familiarity at the same time as knowing that the familiarity is false. We present and discuss the idea that both IAMs and déjà vu can be explained as natural phenomena resulting from memory processing and, importantly, are both based on the same memory retrieval processes. Briefly, we hypothesise that both can be described as "involuntary" or spontaneous cognitions, where IAMs deliver content and déjà vu delivers only the feeling of retrieval. We map out the similarities and differences between the two, making a theoretical and neuroscientific account for their integration into models of memory retrieval and how the autobiographical memory literature can explain these quirks of daily life and unusual but meaningful phenomena. We explain the emergence of the déjà vu phenomenon by relating it to well-known mechanisms of autobiographical memory retrieval, concluding that IAMs and déjà vu lie on a continuum.
Collapse
Affiliation(s)
- Krystian Barzykowski
- Applied Memory Research Laboratory, Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Kraków, Poland
| | - Chris J A Moulin
- Laboratoire de Psychologie et Neurocognition, Université Grenoble Alpes, Grenoble, France
- Institut Universitaire de France
| |
Collapse
|
48
|
Reinstating location improves mnemonic access but not fidelity of visual mental representations. Cortex 2022; 156:39-53. [DOI: 10.1016/j.cortex.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
49
|
Leng X, Huang Y, Zhao S, Jiang X, Shi P, Chen H. Altered neural correlates of episodic memory for food and non-food cues in females with overweight/obesity. Appetite 2022; 175:106074. [PMID: 35525333 DOI: 10.1016/j.appet.2022.106074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
Episodic memory formation is fundamental to cognition and plays a key role in eating behaviors, indirectly promoting the maintenance and acceleration of weight gain. Impaired episodic memory function is a hallmark of people with overweight/obesity, nevertheless, little research has been conducted to explore the effects of overweight/obesity on neural networks associated with episodic memory. The current study aimed to unravel the behavioral responses and neurocognitive mechanisms underlying the episodic memory for food and non-food cues in females with overweight/obesity. To explore this issue, a group of females with overweight/obesity (n = 26) and a group of age-matched females with healthy weight (n = 28) participated in a functional magnetic resonance imaging (fMRI) event-related episodic memory paradigm, during which pictures of palatable food and pictures of neutral daily necessities were presented. Whole-brain analyses revealed differential engagement in several neural regions between the groups during an episodic memory task. Specifically, compared to the healthy weight controls, females with overweight/obesity exhibited reduced brain activity in the temporal, parietal, and frontal regions during episodic memory encoding and successful retrieval of both food and non-food cues. Additionally, activation patterns in the left hippocampus and right olfactory cortex of females with and without overweight/obesity suggested that item memory changed according to the type of stimuli presented during item memory. Specifically, females with overweight/obesity showed greater engagement of the left hippocampus and right olfactory cortex when processing food cues, but less activation of the left hippocampus and right olfactory cortex when presented with non-food cues. Consistent with the obesity and suboptimal food-related decision theoretical model, these findings provide evidence of dissociation of the neural underpinnings of episodic memory in females with overweight/obesity and underline important effects of overweight/obesity on brain functions related to episodic memory.
Collapse
Affiliation(s)
- Xuechen Leng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yufei Huang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Song Zhao
- Department of Psychology, School of Education, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xintong Jiang
- School of Psychology, Northeast Normal University, Changchun, 130024, China
| | - Pan Shi
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China; Research Center of Psychology and Social Development, Chongqing, 400715, China.
| |
Collapse
|
50
|
Musz E, Chen J. Neural signatures associated with temporal compression in the verbal retelling of past events. Commun Biol 2022; 5:489. [PMID: 35606497 PMCID: PMC9126919 DOI: 10.1038/s42003-022-03418-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
When we retell our past experiences, we aim to reproduce some version of the original events; this reproduced version is often temporally compressed relative to the original. However, it is currently unclear how this compression manifests in brain activity. One possibility is that a compressed retrieved memory manifests as a neural pattern which is more dissimilar to the original, relative to a more detailed or vivid memory. However, we argue that measuring raw dissimilarity alone is insufficient, as it confuses a variety of interesting and uninteresting changes. To address this problem, we examine brain pattern changes that are consistent across people. We show that temporal compression in individuals’ retelling of past events predicts systematic encoding-to-recall transformations in several higher associative regions. These findings elucidate how neural representations are not simply reactivated, but can also be transformed due to temporal compression during a universal form of human memory expression: verbal retelling. Brain patterns measured while participants first watched a movie in the fMRI scanner, then recalled the movie’s key narrative features, demonstrate that temporal compression in individuals’ retelling of past events predicts encoding-to-recall transformations.
Collapse
Affiliation(s)
- Elizabeth Musz
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Janice Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|