1
|
Ren MY, Liou LM, Lee KZ. Respiration triggered trans-spinal magnetic stimulation in healthy subjects. Neuroscience 2025; 574:74-82. [PMID: 40189134 DOI: 10.1016/j.neuroscience.2025.03.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Respiratory muscle dysfunction is usually observed in several neurological and pulmonary disorders. Consequently, it is essential to develop a clinically applicable strategy aimed at enhancing diaphragm excitability. The main objective of this study is to establish a respiration triggered trans-spinal magnetic stimulation protocol, and compare diaphragmatic motor evoked potentials during expiration-inspiration vs. inspiration-expiration transition. Bilateral diaphragm electromyograms were monitored in response to trans-spinal magnetic stimulation triggered by respiratory signals detected by the respiratory belt attached on the chest in 11 males and 10 females. The results demonstrated that bilateral diaphragmatic motor evoked potentials induced by trans-spinal magnetic stimulation gradually increased with increasing stimulation intensity in both male and female subjects. The response of diaphragmatic motor evoked potentials was greater when the stimulation was applied during inspiration-expiration transition in males; however, the modulatory effect of respiratory phase transition during trans-spinal magnetic stimulation was not observed in females. These findings suggested that respiration triggered trans-spinal magnetic stimulation is a feasible and non-invasively approach for selectively activating spinal circuits at a specific time point of the respiratory cycle to effectively induce greater diaphragmatic motor evoked potentials.
Collapse
Affiliation(s)
- Ming-Yue Ren
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Min Liou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Medical University, Kaohsiung, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Kaohsiung, Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Buyannemekh K, Villoutreix P, Bertrand V. Left/right asymmetrically expressed ephrin and Flamingo proteins regulate lateralized axon growth in C. elegans. Dev Biol 2025; 517:117-125. [PMID: 39341445 DOI: 10.1016/j.ydbio.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
While the nervous system of bilaterian animals is mainly left-right (L-R) symmetric at the anatomical level, some molecular and functional L-R asymmetries exist. However, the extent of these molecular asymmetries and their functional consequences remain poorly characterized. C. elegans allows to study L-R asymmetries in the nervous system with single-neuron resolution. We have previously shown that a neural bHLH transcription factor, HLH-16/Olig, is L-R asymmetrically expressed in the AIY neuron lineage and regulates AIY axon projections in a L-R asymmetric manner. Here, by combining a candidate approach and single-cell RNA sequencing data analysis, we identify the ephrin protein EFN-2 and the Flamingo protein FMI-1 as downstream targets of HLH-16 that are L-R asymmetrically expressed in the AIY lineage. We show that EFN-2 and FMI-1 collaborate in the L-R asymmetric regulation of axonal growth. EFN-2 may act via a non-canonical receptor of the L1CAM family, SAX-7. Our study reveals novel molecular L-R asymmetries in the C. elegans nervous system and their functional consequences.
Collapse
Affiliation(s)
- Khulganaa Buyannemekh
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France; Aix Marseille Univ, Université de Toulon, CNRS, LIS, Turing Centre for Living Systems, Marseille, France; Aix Marseille Univ, INSERM, MMG, Turing Centre for Living Systems, Marseille, France
| | - Paul Villoutreix
- Aix Marseille Univ, Université de Toulon, CNRS, LIS, Turing Centre for Living Systems, Marseille, France; Aix Marseille Univ, INSERM, MMG, Turing Centre for Living Systems, Marseille, France
| | - Vincent Bertrand
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
3
|
Kemfack AM, Hernández-Morato I, Moayedi Y, Pitman MJ. Transcriptome Analysis of Left Versus Right Intrinsic Laryngeal Muscles Associated with Innervation. Laryngoscope 2024; 134:3741-3753. [PMID: 38721727 PMCID: PMC11245368 DOI: 10.1002/lary.31487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVES/HYPOTHESIS Recurrent laryngeal nerve injury diagnosed as idiopathic or due to short-term surgery-related intubation exhibits a higher incidence of left-sided paralysis. While this is often attributed to nerve length, it is hypothesized there are asymmetric differences in the expression of genes related to neuromuscular function that may impact reinnervation and contribute to this laterality phenomenon. To test this hypothesis, this study analyzes the transcriptome profiles of the intrinsic laryngeal muscles (ILMs), comparing gene expression in the left versus right, with particular attention to genetic pathways associated with neuromuscular function. STUDY DESIGN Laboratory experiment. METHODS RNA was extracted from the left and right sides of the rat posterior cricoarytenoid (PCA), lateral thyroarytenoid (LTA), and medial thyroarytenoid (MTA), respectively. After high-throughput RNA-Sequencing, 88 samples were organized into 12 datasets according to their age (P15/adult), sex (male/female), and muscle type (PCA/LTA/MTA). A comprehensive bioinformatics analysis was conducted to compare the left-right ILMs across different conditions. RESULTS A total of 774 differentially expressed genes were identified across the 12 experimental groups, revealing age, sex, and muscle-specific differences between the left versus right ILMs. Enrichment analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways implicated several genes with a left-right laryngeal muscle asymmetry. These genes are associated with neuronal and muscular physiology, immune/inflammatory response, and hormone control. CONCLUSION Bioinformatics analysis confirmed divergent transcriptome profiles between the left-right ILMs. This preliminary study identifies putative gene targets that will characterize ILM laterality. LEVEL OF EVIDENCE N/A Laryngoscope, 134:3741-3753, 2024.
Collapse
Affiliation(s)
- Angela M. Kemfack
- The Center for Voice and Swallowing, Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center. New York, NY
| | - Ignacio Hernández-Morato
- The Center for Voice and Swallowing, Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center. New York, NY
- Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid. Madrid (Spain)
| | - Yalda Moayedi
- The Center for Voice and Swallowing, Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center. New York, NY
- Department of Neurology, Columbia University Irving Medical Center. New York, NY
- Pain Research Center, New York University College of Dentistry, New York University. New York, NY
| | - Michael J. Pitman
- The Center for Voice and Swallowing, Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center. New York, NY
| |
Collapse
|
4
|
Kemfack AM, Hernández-Morato I, Moayedi Y, Pitman MJ. Transcriptome analysis of left versus right intrinsic laryngeal muscles associated with innervation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554869. [PMID: 37873132 PMCID: PMC10592802 DOI: 10.1101/2023.08.25.554869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Objectives/Hypothesis Recurrent laryngeal nerve injury diagnosed as idiopathic or due to short-term surgery-related intubation exhibits a higher incidence of left-sided paralysis. While this is often attributed to nerve length, it is hypothesized there are asymmetric differences in the expression of genes related to neuromuscular function that may impact reinnervation and contribute to this laterality phenomenon. To test this hypothesis, this study analyzes the transcriptome profiles of the intrinsic laryngeal muscles (ILMs), comparing gene expression in the left versus right, with particular attention to genetic pathways associated with neuromuscular function. Study Design Laboratory experiment. Methods RNA was extracted from the left and right sides of the rat posterior cricoarytenoid (PCA), lateral thyroarytenoid (LTA), and medial thyroarytenoid (MTA), respectively. After high-throughput RNA-Sequencing (RNA-Seq), 88 samples were organized into 12 datasets according to their age (P15/adult), sex (male/female), and muscle type (PCA/LTA/MTA). A comprehensive bioinformatics analysis was conducted to compare the left-right ILMs across different conditions. Results 774 differentially expressed genes (DEGs) were identified across the 12 experimental groups, revealing age, sex, and muscle-specific differences between the left versus right ILMs. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways implicated several genes with a left-right laryngeal muscle asymmetry. These genes are associated with neuronal and muscular physiology, immune/inflammatory response, and hormone control. Conclusion Bioinformatics analysis confirmed divergent transcriptome profiles between the left-right ILMs. This preliminary study identifies putative gene targets that will characterize ILM laterality. Level of Evidence N/A. LAY SUMMARY Vocal fold paralysis is more common on the left. This study shows left versus right differences in gene expression related to innervation, suggesting the increased rate of left recurrent laryngeal nerve paralysis may be associated with genetic differences, not just nerve length.
Collapse
|
5
|
Vagnozzi AN, Moore MT, López de Boer R, Agarwal A, Zampieri N, Landmesser LT, Philippidou P. Catenin signaling controls phrenic motor neuron development and function during a narrow temporal window. Front Neural Circuits 2023; 17:1121049. [PMID: 36895798 PMCID: PMC9988953 DOI: 10.3389/fncir.2023.1121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Phrenic Motor Column (PMC) neurons are a specialized subset of motor neurons (MNs) that provide the only motor innervation to the diaphragm muscle and are therefore essential for survival. Despite their critical role, the mechanisms that control phrenic MN development and function are not well understood. Here, we show that catenin-mediated cadherin adhesive function is required for multiple aspects of phrenic MN development. Deletion of β- and γ-catenin from MN progenitors results in perinatal lethality and a severe reduction in phrenic MN bursting activity. In the absence of catenin signaling, phrenic MN topography is eroded, MN clustering is lost and phrenic axons and dendrites fail to grow appropriately. Despite the essential requirement for catenins in early phrenic MN development, they appear to be dispensable for phrenic MN maintenance, as catenin deletion from postmitotic MNs does not impact phrenic MN topography or function. Our data reveal a fundamental role for catenins in PMC development and suggest that distinct mechanisms are likely to control PMC maintenance.
Collapse
Affiliation(s)
- Alicia N. Vagnozzi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Matthew T. Moore
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Raquel López de Boer
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aambar Agarwal
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Niccolò Zampieri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lynn T. Landmesser
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
6
|
Catenin signaling controls phrenic motor neuron development and function during a narrow temporal window. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524559. [PMID: 36711833 PMCID: PMC9882252 DOI: 10.1101/2023.01.18.524559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phrenic Motor Column (PMC) neurons are a specialized subset of motor neurons (MNs) that provide the only motor innervation to the diaphragm muscle and are therefore essential for survival. Despite their critical role, the mechanisms that control phrenic MN development and function are not well understood. Here, we show that catenin-mediated cadherin adhesive function is required for multiple aspects of phrenic MN development. Deletion of β - and γ -catenin from MN progenitors results in perinatal lethality and a severe reduction in phrenic MN bursting activity. In the absence of catenin signaling, phrenic MN topography is eroded, MN clustering is lost and phrenic axons and dendrites fail to grow appropriately. Despite the essential requirement for catenins in early phrenic MN development, they appear to be dispensable for phrenic MN maintenance, as catenin deletion from postmitotic MNs does not impact phrenic MN topography or function. Our data reveal a fundamental role for catenins in PMC development and suggest that distinct mechanisms are likely to control PMC maintenance.
Collapse
|
7
|
Sefton EM, Gallardo M, Kardon G. Developmental origin and morphogenesis of the diaphragm, an essential mammalian muscle. Dev Biol 2018; 440:64-73. [PMID: 29679560 DOI: 10.1016/j.ydbio.2018.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/14/2018] [Accepted: 04/14/2018] [Indexed: 11/17/2022]
Abstract
The diaphragm is a mammalian skeletal muscle essential for respiration and for separating the thoracic and abdominal cavities. Development of the diaphragm requires the coordinated development of muscle, muscle connective tissue, tendon, nerves, and vasculature that derive from different embryonic sources. However, defects in diaphragm development are common and the cause of an often deadly birth defect, Congenital Diaphragmatic Hernia (CDH). Here we comprehensively describe the normal developmental origin and complex spatial-temporal relationship between the different developing tissues to form a functional diaphragm using a developmental series of mouse embryos genetically and immunofluorescently labeled and analyzed in whole mount. We find that the earliest developmental events are the emigration of muscle progenitors from cervical somites followed by the projection of phrenic nerve axons from the cervical neural tube. Muscle progenitors and phrenic nerve target the pleuroperitoneal folds (PPFs), transient pyramidal-shaped structures that form between the thoracic and abdominal cavities. Subsequently, the PPFs expand across the surface of the liver to give rise to the muscle connective tissue and central tendon, and the leading edge of their expansion precedes muscle morphogenesis, formation of the vascular network, and outgrowth and branching of the phrenic nerve. Thus development and morphogenesis of the PPFs is critical for diaphragm formation. In addition, our data indicate that the earliest events in diaphragm development are critical for the etiology of CDH and instrumental to the evolution of the diaphragm. CDH initiates prior to E12.5 in mouse and suggests that defects in the early PPF formation or their ability to recruit muscle are an important source of CDH. Also, the recruitment of muscle progenitors from cervical somites to the nascent PPFs is uniquely mammalian and a key developmental innovation essential for the evolution of the muscularized diaphragm.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Human Genetics University of Utah, Salt Lake City, UT 84112, USA
| | - Mirialys Gallardo
- Department of Human Genetics University of Utah, Salt Lake City, UT 84112, USA
| | - Gabrielle Kardon
- Department of Human Genetics University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|