1
|
Kjer HM, Andersson M, He Y, Pacureanu A, Daducci A, Pizzolato M, Salditt T, Robisch AL, Eckermann M, Töpperwien M, Bjorholm Dahl A, Elkjær ML, Illes Z, Ptito M, Andersen Dahl V, Dyrby TB. Bridging the 3D geometrical organisation of white matter pathways across anatomical length scales and species. eLife 2025; 13:RP94917. [PMID: 40019134 PMCID: PMC11870653 DOI: 10.7554/elife.94917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
We used diffusion MRI and x-ray synchrotron imaging on monkey and mice brains to examine the organisation of fibre pathways in white matter across anatomical scales. We compared the structure in the corpus callosum and crossing fibre regions and investigated the differences in cuprizone-induced demyelination in mouse brains versus healthy controls. Our findings revealed common principles of fibre organisation that apply despite the varying patterns observed across species; small axonal fasciculi and major bundles formed laminar structures with varying angles, according to the characteristics of major pathways. Fasciculi exhibited non-straight paths around obstacles like blood vessels, comparable across the samples of varying fibre complexity and demyelination. Quantifications of fibre orientation distributions were consistent across anatomical length scales and modalities, whereas tissue anisotropy had a more complex relationship, both dependent on the field-of-view. Our study emphasises the need to balance field-of-view and voxel size when characterising white matter features across length scales.
Collapse
Affiliation(s)
- Hans Martin Kjer
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Yi He
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhaiChina
| | | | | | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Anna-Lena Robisch
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Marina Eckermann
- ESRF - The European SynchrotronGrenobleFrance
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Mareike Töpperwien
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Maria Louise Elkjær
- Department of Neurology, Odense University HospitalOdenseDenmark
- Institute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Zsolt Illes
- Department of Neurology, Odense University HospitalOdenseDenmark
- Institute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
- BRIDGE—Brain Research—Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern DenmarkOdenseDenmark
- Rheumatology Research Unit, Odense University HospitalOdenseDenmark
| | - Maurice Ptito
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
- School of Optometry, University of MontrealMontrealCanada
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
2
|
Vulić K, Amos G, Ruff T, Kasm R, Ihle SJ, Küchler J, Vörös J, Weaver S. Impact of microchannel width on axons for brain-on-chip applications. LAB ON A CHIP 2024; 24:5155-5166. [PMID: 39440578 PMCID: PMC11497309 DOI: 10.1039/d4lc00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Technologies for axon guidance for in vitro disease models and bottom up investigations are increasingly being used in neuroscience research. One of the most prevalent patterning methods is using polydimethylsiloxane (PDMS) microstructures due to compatibility with microscopy and electrophysiology which enables systematic tracking of axon development with precision and efficiency. Previous investigations of these guidance platforms have noted axons tend to follow edges and avoid sharp turns; however, the specific impact of spatial constraints remains only partially explored. We investigated the influence of microchannel width beyond a constriction point, as well as the number of available microchannels, on axon growth dynamics. Further, by manipulating the size of micron/submicron-sized PDMS tunnels we investigated the space restriction that prevents growth cone penetration showing that restrictions smaller than 350 nm were sufficient to exclude axons. This research offers insights into the interplay of spatial constraints, axon development, and neural behavior. The findings are important for designing in vitro platforms and in vivo neural interfaces for both fundamental neuroscience and translational applications in rapidly evolving neural implant technologies.
Collapse
Affiliation(s)
- Katarina Vulić
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Giulia Amos
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Revan Kasm
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Joël Küchler
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Sean Weaver
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
3
|
Ouzounidis VR, Green M, van Capelle CDC, Gebhardt C, Crellin H, Finlayson C, Prevo B, Cheerambathur DK. The outer kinetochore components KNL-1 and Ndc80 complex regulate axon and neuronal cell body positioning in the C. elegans nervous system. Mol Biol Cell 2024; 35:ar83. [PMID: 38656792 PMCID: PMC11238089 DOI: 10.1091/mbc.e23-08-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The KMN (Knl1/Mis12/Ndc80) network at the kinetochore, primarily known for its role in chromosome segregation, has been shown to be repurposed during neurodevelopment. Here, we investigate the underlying neuronal mechanism and show that the KMN network promotes the proper axonal organization within the C. elegans head nervous system. Postmitotic degradation of KNL-1, which acts as a scaffold for signaling and has microtubule-binding activities at the kinetochore, led to disorganized ganglia and aberrant placement and organization of axons in the nerve ring - an interconnected axonal network. Through gene-replacement approaches, we demonstrate that the signaling motifs within KNL-1, responsible for recruiting protein phosphatase 1, and activating the spindle assembly checkpoint are required for neurodevelopment. Interestingly, while the microtubule-binding activity is crucial to KMN's neuronal function, microtubule dynamics and organization were unaffected in the absence of KNL-1. Instead, the NDC-80 microtubule-binding mutant displayed notable defects in axon bundling during nerve ring formation, indicating its role in facilitating axon-axon contacts. Overall, these findings provide evidence for a noncanonical role for the KMN network in shaping the structure and connectivity of the nervous system in C. elegans during brain development.
Collapse
Affiliation(s)
- Vasileios R. Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mattie Green
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte de Ceuninck van Capelle
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Clara Gebhardt
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Helena Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Cameron Finlayson
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K. Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
4
|
Pillai EK, Franze K. Mechanics in the nervous system: From development to disease. Neuron 2024; 112:342-361. [PMID: 37967561 DOI: 10.1016/j.neuron.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Physical forces are ubiquitous in biological processes across scales and diverse contexts. This review highlights the significance of mechanical forces in nervous system development, homeostasis, and disease. We provide an overview of mechanical signals present in the nervous system and delve into mechanotransduction mechanisms translating these mechanical cues into biochemical signals. During development, mechanical cues regulate a plethora of processes, including cell proliferation, differentiation, migration, network formation, and cortex folding. Forces then continue exerting their influence on physiological processes, such as neuronal activity, glial cell function, and the interplay between these different cell types. Notably, changes in tissue mechanics manifest in neurodegenerative diseases and brain tumors, potentially offering new diagnostic and therapeutic target opportunities. Understanding the role of cellular forces and tissue mechanics in nervous system physiology and pathology adds a new facet to neurobiology, shedding new light on many processes that remain incompletely understood.
Collapse
Affiliation(s)
- Eva K Pillai
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Institute of Medical Physics and Microtissue Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Kussmaulallee 1, 91054 Erlangen, Germany.
| |
Collapse
|
5
|
Franze K. Tensed axons are on fire. Proc Natl Acad Sci U S A 2024; 121:e2321811121. [PMID: 38232299 PMCID: PMC10835051 DOI: 10.1073/pnas.2321811121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, CambridgeCB2 3DY, United Kingdom
- Institute of Medical Physics and Microtissue Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058Erlangen, Germany
| |
Collapse
|
6
|
Pincet L, Pincet F. Membrane Tubulation with a Biomembrane Force Probe. MEMBRANES 2023; 13:910. [PMID: 38132914 PMCID: PMC10744658 DOI: 10.3390/membranes13120910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Tubulation is a common cellular process involving the formation of membrane tubes ranging from 50 nm to 1 µm in diameter. These tubes facilitate intercompartmental connections, material transport within cells and content exchange between cells. The high curvature of these tubes makes them specific targets for proteins that sense local geometry. In vitro, similar tubes have been created by pulling on the membranes of giant unilamellar vesicles. Optical tweezers and micromanipulation are typically used in these experiments, involving the manipulation of a GUV with a micropipette and a streptavidin-coated bead trapped in optical tweezers. The interaction forms streptavidin/biotin bonds, leading to tube formation. Here, we propose a cost-effective alternative using only micromanipulation techniques, replacing optical tweezers with a Biomembrane Force Probe (BFP). The BFP, employing a biotinylated erythrocyte as a nanospring, allows for the controlled measurement of forces ranging from 1 pN to 1 nN. The BFP has been widely used to study molecular interactions in cellular processes, extending beyond its original purpose. We outline the experimental setup, tube formation and characterization of tube dimensions and energetics, and discuss the advantages and limitations of this approach in studying membrane tubulation.
Collapse
Affiliation(s)
- Lancelot Pincet
- Institut des Sciences Moléculaires d’Orsay, Université Paris-Saclay, CNRS, F-91405 Orsay, France;
| | - Frédéric Pincet
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
7
|
Acero VP, Das S, Rivellini O, Purvis EM, Adewole DO, Cullen DK. Emergent structural and functional properties of hippocampal multi-cellular aggregates. Front Neurosci 2023; 17:1171115. [PMID: 37397454 PMCID: PMC10311220 DOI: 10.3389/fnins.2023.1171115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Hippocampal neural networks are distinctly capable of integrating multi-modal sensory inputs to drive memory formation. Neuroscientific investigations using simplified in vitro models have greatly relied on planar (2D) neuronal cultures made from dissociated tissue. While these models have served as simple, cost-effective, and high-throughput tools for examining various morphological and electrophysiological characteristics of hippocampal networks, 2D cultures fail to reconstitute critical elements of the brain microenvironment that may be necessary for the emergence of sophisticated integrative network properties. To address this, we utilized a forced aggregation technique to generate high-density (>100,000 cells/mm3) multi-cellular three-dimensional aggregates using rodent embryonic hippocampal tissue. We contrasted the emergent structural and functional properties of aggregated (3D) and dissociated (2D) cultures over 28 days in vitro (DIV). Hippocampal aggregates displayed robust axonal fasciculation across large distances and significant neuronal polarization, i.e., spatial segregation of dendrites and axons, at earlier time points compared to dissociated cultures. Moreover, we found that astrocytes in aggregate cultures self-organized into non-overlapping quasi-domains and developed highly stellate morphologies resembling astrocyte structures in vivo. We maintained cultures on multi-electrode arrays (MEAs) to assess spontaneous electrophysiological activity for up to 28 DIV. We found that 3D networks of aggregated cultures developed highly synchronized networks and with high burstiness by 28 DIV. We also demonstrated that dual-aggregate networks became active by 7 DIV, in contrast to single-aggregate networks which became active and developed synchronous bursting activity with repeating motifs by 14 DIV. Taken together, our findings demonstrate that the high-density, multi-cellular, 3D microenvironment of hippocampal aggregates supports the recapitulation of emergent biofidelic morphological and functional properties. Our findings suggest that neural aggregates may be used as segregated, modular building blocks for the development of complex, multi-nodal neural network topologies.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Erin M. Purvis
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Villard C. Spatial confinement: A spur for axonal growth. Semin Cell Dev Biol 2023; 140:54-62. [PMID: 35927121 DOI: 10.1016/j.semcdb.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 01/28/2023]
Abstract
The concept of spatial confinement is the basis of cell positioning and guidance in in vitro studies. In vivo, it reflects many situations faced during embryonic development. In vitro, spatial confinement of neurons is achieved using different technological approaches: adhesive patterning, topographical structuring, microfluidics and the use of hydrogels. The notion of chemical or physical frontiers is particularly central to the behaviors of growth cones and neuronal processes under confinement. They encompass phenomena of cell spreading, boundary crossing, and path finding on surfaces with different adhesive properties. However, the most universal phenomenon related to confinement, regardless of how it is implemented, is the acceleration of neuronal growth. Overall, a bi-directional causal link emerges between the shape of the growth cone and neuronal elongation dynamics, both in vivo and in vitro. The sensing of adhesion discontinuities by filopodia and the subsequent spatial redistribution and size adaptation of these actin-rich filaments seem critical for the growth rate in conditions in which adhesive contacts and actin-associated clutching forces dominate. On the other hand, the involvement of microtubules, specifically demonstrated in 3D hydrogel environments and leading to ameboid-like locomotion, could be relevant in a wider range of growth situations. This review brings together a literature collected in distinct scientific fields such as development, mechanobiology and bioengineering that highlight the consequences of confinement and raise new questions at different cellular scales. Its ambition is to stimulate new research that could lead to a better understanding of what gives neurons their ability to establish and regulate their exceptional size.
Collapse
Affiliation(s)
- Catherine Villard
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université Paris Cité, UMR 8236 CNRS, F-75013 Paris, France.
| |
Collapse
|
9
|
Breau MA, Trembleau A. Chemical and mechanical control of axon fasciculation and defasciculation. Semin Cell Dev Biol 2023; 140:72-81. [PMID: 35810068 DOI: 10.1016/j.semcdb.2022.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
Neural networks are constructed through the development of robust axonal projections from individual neurons, which ultimately establish connections with their targets. In most animals, developing axons assemble in bundles to navigate collectively across various areas within the central nervous system or the periphery, before they separate from these bundles in order to find their specific targets. These processes, called fasciculation and defasciculation respectively, were thought for many years to be controlled chemically: while guidance cues may attract or repulse axonal growth cones, adhesion molecules expressed at the surface of axons mediate their fasciculation. Recently, an additional non-chemical parameter, the mechanical longitudinal tension of axons, turned out to play a role in axon fasciculation and defasciculation, through zippering and unzippering of axon shafts. In this review, we present an integrated view of the currently known chemical and mechanical control of axon:axon dynamic interactions. We highlight the facts that the decision to cross or not to cross another axon depends on a combination of chemical, mechanical and geometrical parameters, and that the decision to fasciculate/defasciculate through zippering/unzippering relies on the balance between axon:axon adhesion and their mechanical tension. Finally, we speculate about possible functional implications of zippering-dependent axon shaft fasciculation, in the collective migration of axons, and in the sorting of subpopulations of axons.
Collapse
Affiliation(s)
- Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR 7622), Institut de Biologie Paris Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Alain Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France.
| |
Collapse
|
10
|
Lorenzo DN, Edwards RJ, Slavutsky AL. Spectrins: molecular organizers and targets of neurological disorders. Nat Rev Neurosci 2023; 24:195-212. [PMID: 36697767 PMCID: PMC10598481 DOI: 10.1038/s41583-022-00674-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Spectrins are cytoskeletal proteins that are expressed ubiquitously in the mammalian nervous system. Pathogenic variants in SPTAN1, SPTBN1, SPTBN2 and SPTBN4, four of the six genes encoding neuronal spectrins, cause neurological disorders. Despite their structural similarity and shared role as molecular organizers at the cell membrane, spectrins vary in expression, subcellular localization and specialization in neurons, and this variation partly underlies non-overlapping disease presentations across spectrinopathies. Here, we summarize recent progress in discerning the local and long-range organization and diverse functions of neuronal spectrins. We provide an overview of functional studies using mouse models, which, together with growing human genetic and clinical data, are helping to illuminate the aetiology of neurological spectrinopathies. These approaches are all critical on the path to plausible therapeutic solutions.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Reginald J Edwards
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia L Slavutsky
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Nomdedeu-Sancho G, Alsina B. Wiring the senses: Factors that regulate peripheral axon pathfinding in sensory systems. Dev Dyn 2023; 252:81-103. [PMID: 35972036 PMCID: PMC10087148 DOI: 10.1002/dvdy.523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory neurons of the head are the ones that transmit the information about the external world to our brain for its processing. Axons from cranial sensory neurons sense different chemoattractant and chemorepulsive molecules during the journey and in the target tissue to establish the precise innervation with brain neurons and/or receptor cells. Here, we aim to unify and summarize the available information regarding molecular mechanisms guiding the different afferent sensory axons of the head. By putting the information together, we find the use of similar guidance cues in different sensory systems but in distinct combinations. In vertebrates, the number of genes in each family of guidance cues has suffered a great expansion in the genome, providing redundancy, and robustness. We also discuss recently published data involving the role of glia and mechanical forces in shaping the axon paths. Finally, we highlight the remaining questions to be addressed in the field.
Collapse
Affiliation(s)
- Gemma Nomdedeu-Sancho
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Hingorani M, Viviani AML, Sanfilippo JE, Janušonis S. High-resolution spatiotemporal analysis of single serotonergic axons in an in vitro system. Front Neurosci 2022; 16:994735. [PMID: 36353595 PMCID: PMC9638127 DOI: 10.3389/fnins.2022.994735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vertebrate brains have a dual structure, composed of (i) axons that can be well-captured with graph-theoretical methods and (ii) axons that form a dense matrix in which neurons with precise connections operate. A core part of this matrix is formed by axons (fibers) that store and release 5-hydroxytryptamine (5-HT, serotonin), an ancient neurotransmitter that supports neuroplasticity and has profound implications for mental health. The self-organization of the serotonergic matrix is not well understood, despite recent advances in experimental and theoretical approaches. In particular, individual serotonergic axons produce highly stochastic trajectories, fundamental to the construction of regional fiber densities, but further advances in predictive computer simulations require more accurate experimental information. This study examined single serotonergic axons in culture systems (co-cultures and monolayers), by using a set of complementary high-resolution methods: confocal microscopy, holotomography (refractive index-based live imaging), and super-resolution (STED) microscopy. It shows that serotonergic axon walks in neural tissue may strongly reflect the stochastic geometry of this tissue and it also provides new insights into the morphology and branching properties of serotonergic axons. The proposed experimental platform can support next-generation analyses of the serotonergic matrix, including seamless integration with supercomputing approaches.
Collapse
|
13
|
Kissoondoyal A, Crawford DA. Prostaglandin E2 Increases Neurite Length and the Formation of Axonal Loops, and Regulates Cone Turning in Differentiating NE4C Cells Via PKA. Cell Mol Neurobiol 2022; 42:1385-1397. [PMID: 33389417 PMCID: PMC11421704 DOI: 10.1007/s10571-020-01029-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Prostaglandin E2 (PGE2) is a membrane-derived lipid signaling molecule important in neuronal development. Abnormal levels of PGE2, due to environmental insults prenatal development, have been linked to brain pathologies. We have previously shown that the addition of PGE2 to neuroectodermal (NE4C) stem cells affects early stages of neuronal differentiation (day 0-8) including increased stem cell motility, accelerated formation of neurospheres, and elevated calcium levels in growth cones. In this study, we further examine whether PGE2 can influence actin-dependent neuronal morphology in later stages (day 8-12) of NE4C cell differentiation. We show that exposure to PGE2 from the initiation of differentiation increased neurite length and the proportion of neurites that formed axonal loops. We also observed changes in the proportion of turning growth cones as the differentiation progressed, with a reduced likelihood of observing turning (or asymmetrical) growth cones on day 8 and increased odds on days 10 and 12. Moreover, we showed for the first time that the observed changes in cytoskeletal morphology were PGE2/PKA dependent. Interestingly, we also found that PGE2 decreased the total protein levels of the actin-bound form of spinophilin and increased levels of unbound PKA-phosphorylated ser94-spinophilin. Hence, we propose that exposure to PGE2 can destabilize the actin cytoskeleton at various stages of neuronal differentiation due to dissociation of ser94-spinophilin causing changes in neuronal morphology.
Collapse
Affiliation(s)
- Ashby Kissoondoyal
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada
| | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada.
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
14
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
15
|
Magnetically-actuated microposts stimulate axon growth. Biophys J 2022; 121:374-382. [PMID: 34979131 PMCID: PMC8822606 DOI: 10.1016/j.bpj.2021.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/10/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
New strategies to promote neuronal regeneration should aim to increase the speed of axonal elongation. Biochemical signaling is a key factor in axon growth, but recent discoveries have shown that mechanical force, through a process referred to as stretch growth, can significantly influence the elongation rate. Here, we develop a method to apply forces to primary hippocampal neurons from mice using magnetic microposts that actuate in response to an external magnetic field. Neurons are cultured onto these microposts and subjected to an average displacement of 0.2 μm at a frequency of 5 Hz. We find that the mechanical stimulation promotes an increase in the length of the axons compared to control conditions. In addition, there is an increase in the density of microtubules and in the amount of cisternae of the endoplasmic reticulum, providing evidence that stretch growth is accompanied by a mass addition to the neurite. Together, these results indicate that magnetically-actuated microposts can accelerate the rate of axon growth, paving the way for future applications in neuronal regeneration. VIDEO ABSTRACT.
Collapse
|
16
|
Luo B, Tiwari AP, Chen N, Ramakrishna S, Yang IH. Development of an Axon-Guiding Aligned Nanofiber-Integrated Compartmentalized Microfluidic Neuron Culture System. ACS APPLIED BIO MATERIALS 2021; 4:8424-8432. [PMID: 35005947 DOI: 10.1021/acsabm.1c00960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microfluidic-based neuron cell culture systems have recently gained a lot of attention due to their efficiency in supporting the spatial and temporal control of cellular microenvironments. However, the lack of axon guidance is the key limitation in current culture systems. To combat this, we have developed electrospun aligned nanofiber-integrated compartmentalized microfluidic neuron culture systems (NIMSs), where the nanofibers have enabled axonal guidance and stability. The resulting platform significantly improved axon alignment, length, and stability for both rat primary embryonic motor neurons (MNs) and dorsal root ganglia (DRG) neurons compared to the conventional glass-based microfluidic systems (GMSs). The results showed that axonal growth covered more than two times the area on the axonal chamber of NIMSs compared to the area covered for GMSs. Overall, this platform can be used as a valuable tool for fundamental neuroscience research, drug screening, and biomaterial testing.
Collapse
Affiliation(s)
- Baiwen Luo
- N.1 Institute for Health, National University of Singapore, 28 Medical Drive, #05-COR, 117456 Singapore
| | - Arjun Prasad Tiwari
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Nuan Chen
- N.1 Institute for Health, National University of Singapore, 28 Medical Drive, #05-COR, 117456 Singapore.,Center of Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117575 Singapore
| | - Seeram Ramakrishna
- Center of Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117575 Singapore
| | - In Hong Yang
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
17
|
Sengupta T, Koonce NL, Vázquez-Martínez N, Moyle MW, Duncan LH, Emerson SE, Han X, Shao L, Wu Y, Santella A, Fan L, Bao Z, Mohler W, Shroff H, Colón-Ramos DA. Differential adhesion regulates neurite placement via a retrograde zippering mechanism. eLife 2021; 10:71171. [PMID: 34783657 PMCID: PMC8843091 DOI: 10.7554/elife.71171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally-regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.
Collapse
Affiliation(s)
- Titas Sengupta
- Yale University School of Medicine, New Haven, United States
| | - Noelle L Koonce
- Yale University School of Medicine, New Haven, United States
| | | | - Mark W Moyle
- Yale University School of Medicine, New Haven, United States
| | | | - Sarah E Emerson
- Yale University School of Medicine, New Haven, United States
| | - Xiaofei Han
- National Institutes of Health, Bethesda, United States
| | - Lin Shao
- Yale University School of Medicine, New Haven, United States
| | - Yicong Wu
- National Institutes of Health, Bethesda, United States
| | - Anthony Santella
- Developmental Biology Program, Molecular Cytology Core, Sloan-Kettering Institute, New York, United States
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, United States
| | - William Mohler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
| | - Hari Shroff
- National Institutes of Health, Bethesda, United States
| | | |
Collapse
|
18
|
Parittotokkaporn S, Dravid A, Raos BJ, Rosset S, Svirskis D, O'Carroll SJ. Stretchable microchannel-on-a-chip: A simple model for evaluating the effects of uniaxial strain on neuronal injury. J Neurosci Methods 2021; 362:109302. [PMID: 34343573 DOI: 10.1016/j.jneumeth.2021.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Axonal injury is a major component of traumatic spinal cord injury (SCI), associated with rapid deformation of spinal tissue and axonal projections. In vitro models enable us to examine these effects and screen potential therapies in a controlled, reproducible manner. NEW METHOD A customized, stretchable microchannel system was developed using polydimethylsiloxane microchannels. Cortical and spinal embryonic rat neurons were cultured within the microchannel structures, allowing a uniaxial strain to be applied to isolated axonal processes. Global strains of up to 52% were applied to the stretchable microchannel-on-a-chip platform leading to local strains of up to 12% being experienced by axons isolated in the microchannels. RESULTS Individual axons exposed to local strains between 3.2% and 8.7% developed beading within 30-minutes of injury. At higher local strains of 9.8% and 12% individual axons ruptured within 30-minutes of injury. Axon bundles, or fascicles, were more resistant to rupture at each strain level, compared to individual axons. At lower local strain of 3.2%, axon bundles inside microchannels and neuronal cells near entrances of them progressively swelled and degenerated over a period of 7 days after injury. COMPARISON WITH EXISTING METHOD(S) This method is simple, reliable and reproducible with good control and measurement of injury tolerance and morphological deformations using standard laboratory equipment. By measuring local strains, we observed that axonal injuries occur at a lower strain magnitude and a lower strain rate than previous methods reporting global strains, which may not accurately reflect the true axonal strain. CONCLUSIONS We describe a novel stretchable microchannel-on-a-chip platform to study the effect of varying local strain on morphological characteristics of neuronal injury.
Collapse
Affiliation(s)
- Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand
| | - Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
19
|
Pan X, Zhou Y, Hotulainen P, Meunier FA, Wang T. The axonal radial contractility: Structural basis underlying a new form of neural plasticity. Bioessays 2021; 43:e2100033. [PMID: 34145916 DOI: 10.1002/bies.202100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Axons are the longest cellular structure reaching over a meter in the case of human motor axons. They have a relatively small diameter and contain several cytoskeletal elements that mediate both material and information exchange within neurons. Recently, a novel type of axonal plasticity, termed axonal radial contractility, has been unveiled. It is represented by dynamic and transient diameter changes of the axon shaft to accommodate the passages of large organelles. Mechanisms underpinning this plasticity are not fully understood. Here, we first summarised recent evidence of the functional relevance for axon radial contractility, then discussed the underlying structural basis, reviewing nanoscopic evidence of the subtle changes. Two models are proposed to explain how actomyosin rings are organised. Possible roles of non-muscle myosin II (NM-II) in axon degeneration are discussed. Finally, we discuss the concept of periodic functional nanodomains, which could sense extracellular cues and coordinate the axonal responses. Also see the video abstract here: https://youtu.be/ojCnrJ8RCRc.
Collapse
Affiliation(s)
- Xiaorong Pan
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Yimin Zhou
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tong Wang
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| |
Collapse
|
20
|
Oliveri H, Franze K, Goriely A. Theory for Durotactic Axon Guidance. PHYSICAL REVIEW LETTERS 2021; 126:118101. [PMID: 33798338 DOI: 10.1103/physrevlett.126.118101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
During the development of the nervous system, neurons extend bundles of axons that grow and meet other neurons to form the neuronal network. Robust guidance mechanisms are needed for these bundles to migrate and reach their functional target. Directional information depends on external cues such as chemical or mechanical gradients. Unlike chemotaxis that has been extensively studied, the role and mechanism of durotaxis, the directed response to variations in substrate rigidity, remain unclear. We model bundle migration and guidance by rigidity gradients by using the theory of morphoelastic rods. We show that, at a rigidity interface, the motion of axon bundles follows a simple behavior analogous to optic ray theory and obeys Snell's law for refraction and reflection. We use this powerful analogy to demonstrate that axons can be guided by the equivalent of optical lenses and fibers created by regions of different stiffnesses.
Collapse
Affiliation(s)
- Hadrien Oliveri
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Kristian Franze
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
- Institute of Medical Physics and Micro-Tissue Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen 91052, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen 91052, Germany
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
21
|
Manipulation of Axonal Outgrowth via Exogenous Low Forces. Int J Mol Sci 2020; 21:ijms21218009. [PMID: 33126477 PMCID: PMC7663625 DOI: 10.3390/ijms21218009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Neurons are mechanosensitive cells. The role of mechanical force in the process of neurite initiation, elongation and sprouting; nerve fasciculation; and neuron maturation continues to attract considerable interest among scientists. Force is an endogenous signal that stimulates all these processes in vivo. The axon is able to sense force, generate force and, ultimately, transduce the force in a signal for growth. This opens up fascinating scenarios. How are forces generated and sensed in vivo? Which molecular mechanisms are responsible for this mechanotransduction signal? Can we exploit exogenously applied forces to mimic and control this process? How can these extremely low forces be generated in vivo in a non-invasive manner? Can these methodologies for force generation be used in regenerative therapies? This review addresses these questions, providing a general overview of current knowledge on the applications of exogenous forces to manipulate axonal outgrowth, with a special focus on forces whose magnitude is similar to those generated in vivo. We also review the principal methodologies for applying these forces, providing new inspiration and insights into the potential of this approach for future regenerative therapies.
Collapse
|
22
|
Wang X, Kohl A, Yu X, Zorio DAR, Klar A, Sela-Donenfeld D, Wang Y. Temporal-specific roles of fragile X mental retardation protein in the development of the hindbrain auditory circuit. Development 2020; 147:dev.188797. [PMID: 32747436 DOI: 10.1242/dev.188797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein abundant in the nervous system. Functional loss of FMRP leads to sensory dysfunction and severe intellectual disabilities. In the auditory system, FMRP deficiency alters neuronal function and synaptic connectivity and results in perturbed processing of sound information. Nevertheless, roles of FMRP in embryonic development of the auditory hindbrain have not been identified. Here, we developed high-specificity approaches to genetically track and manipulate throughout development of the Atoh1+ neuronal cell type, which is highly conserved in vertebrates, in the cochlear nucleus of chicken embryos. We identified distinct FMRP-containing granules in the growing axons of Atoh1+ neurons and post-migrating NM cells. FMRP downregulation induced by CRISPR/Cas9 and shRNA techniques resulted in perturbed axonal pathfinding, delay in midline crossing, excess branching of neurites, and axonal targeting errors during the period of circuit development. Together, these results provide the first in vivo identification of FMRP localization and actions in developing axons of auditory neurons, and demonstrate the importance of investigating early embryonic alterations toward understanding the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.,Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Xiaoyan Yu
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Diego A R Zorio
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Avihu Klar
- Department of Medical Neurobiology IMRIC, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
23
|
Trans-Axonal Signaling in Neural Circuit Wiring. Int J Mol Sci 2020; 21:ijms21145170. [PMID: 32708320 PMCID: PMC7404203 DOI: 10.3390/ijms21145170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The development of neural circuits is a complex process that relies on the proper navigation of axons through their environment to their appropriate targets. While axon–environment and axon–target interactions have long been known as essential for circuit formation, communication between axons themselves has only more recently emerged as another crucial mechanism. Trans-axonal signaling governs many axonal behaviors, including fasciculation for proper guidance to targets, defasciculation for pathfinding at important choice points, repulsion along and within tracts for pre-target sorting and target selection, repulsion at the target for precise synaptic connectivity, and potentially selective degeneration for circuit refinement. This review outlines the recent advances in identifying the molecular mechanisms of trans-axonal signaling and discusses the role of axon–axon interactions during the different steps of neural circuit formation.
Collapse
|
24
|
ConFiG: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation. Neuroimage 2020; 220:117107. [PMID: 32622984 PMCID: PMC7903162 DOI: 10.1016/j.neuroimage.2020.117107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 11/27/2022] Open
Abstract
This paper presents Contextual Fibre Growth (ConFiG), an approach to generate white matter numerical phantoms by mimicking natural fibre genesis. ConFiG grows fibres one-by-one, following simple rules motivated by real axonal guidance mechanisms. These simple rules enable ConFiG to generate phantoms with tuneable microstructural features by growing fibres while attempting to meet morphological targets such as user-specified density and orientation distribution. We compare ConFiG to the state-of-the-art approach based on packing fibres together by generating phantoms in a range of fibre configurations including crossing fibre bundles and orientation dispersion. Results demonstrate that ConFiG produces phantoms with up to 20% higher densities than the state-of-the-art, particularly in complex configurations with crossing fibres. We additionally show that the microstructural morphology of ConFiG phantoms is comparable to real tissue, producing diameter and orientation distributions close to electron microscopy estimates from real tissue as well as capturing complex fibre cross sections. Signals simulated from ConFiG phantoms match real diffusion MRI data well, showing that ConFiG phantoms can be used to generate realistic diffusion MRI data. This demonstrates the feasibility of ConFiG to generate realistic synthetic diffusion MRI data for developing and validating microstructure modelling approaches. We present ConFiG, a biologically motivated numerical phantom generator for white matter. ConFiG produces phantoms with state-of-the-art density and realistic microstructure. Diffusion MRI simulations in ConFiG phantoms are comparable to real dMRI signals.
Collapse
|
25
|
Abstract
The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
26
|
|
27
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
28
|
Luo B, Tian L, Chen N, Ramakrishna S, Thakor N, Yang IH. Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an in vitro model of the neuromuscular junction (NMJ). Biomater Sci 2019; 6:3262-3272. [PMID: 30402630 DOI: 10.1039/c8bm00720a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The neuromuscular junction (NMJ) is a specialized synapse between motor neurons and the muscle fibers they innervate. Due to the complexity of various signalling molecules and pathways, in vivo NMJs are difficult to study. Therefore, in vitro motor neuron-muscle co-culture plays a pivotal role in studying the mechanisms of NMJ formation associated with neurodegenerative diseases. There is a growing need to develop novel methodologies that can be used to develop long-term cultures of NMJs. To date, there have been few studies on NMJ development and long-term maintenance of the system, which is also the main challenge for the current in vitro models of NMJs. In this study, we demonstrate a long-term co-culture system of primary embryonic motor neurons from Sprague-Dawley rats and C2C12 cells on both random and aligned electrospun polylactic acid (PLA) nanofibrous scaffolds. This is the first study to explore the role of electrospun nanofibers in the long-term maintenance of NMJs. PLA nanofibrous scaffolds provide better contact guidance for C2C12 cells aligning along the fibers, thus guiding myotube formation. We can only maintain the co-culture system on a conventional glass substrate for 2 weeks, whilst 55% and 70% of the cells still survived on random and aligned PLA substrates after 7 weeks. Our nanofiber-based long-term co-culture system is used as an important tool for the fundamental research of NMJs.
Collapse
Affiliation(s)
- Baiwen Luo
- Singapore Institute for Neurotechnology, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 119077. inhong.yang.@ku.ac.ae
| | | | | | | | | | | |
Collapse
|
29
|
Gong Z, Fang C, You R, Shao X, Wei X, Chang RCC, Lin Y. Distinct relaxation timescales of neurites revealed by rate-dependent indentation, relaxation and micro-rheology tests. SOFT MATTER 2019; 15:166-174. [PMID: 30420982 DOI: 10.1039/c8sm01747f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although the dynamic response of neurites is believed to play crucial roles in processes like axon outgrowth and formation of the neural network, the dynamic mechanical properties of such protrusions remain poorly understood. In this study, by using AFM (atomic force microscopy) indentation, we systematically examined the dynamic behavior of well-developed neurites on primary neurons under different loading modes (step loading, oscillating loading and ramp loading). Interestingly, the response was found to be strongly rate-dependent, with an apparent initial and long-term elastic modulus around 800 and 80 Pa, respectively. To better analyze the measurement data and extract information of key interest, the finite element simulation method (FEM) was also conducted where the neurite was treated as a viscoelastic solid consisting of multiple characteristic relaxation times. It was found that a minimum of three relaxation timescales, i.e. ∼0.01, 0.1 and 1 seconds, are needed to explain the observed relaxation curve as well as fit simulation results to the indentation and rheology data under different loading rates and driving frequencies. We further demonstrated that these three characteristic relaxation times likely originate from the thermal fluctuations of the microtubule, membrane relaxation and cytosol viscosity, respectively. By identifying key parameters describing the time-dependent behavior of neurites, as well as revealing possible physical mechanisms behind, this study could greatly help us understand how neural cells perform their biological duties over a wide spectrum of timescales.
Collapse
Affiliation(s)
- Ze Gong
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Fouquet C, Trembleau A. Preparation and Manipulation of Olfactory Epithelium Explant Cultures for Measurement of the Mechanical Tension of Individual Axons Using the Biomembrane Force Probe. Bio Protoc 2019; 9:e3213. [PMID: 31131294 DOI: 10.21769/bioprotoc.3213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this paper, we describe a protocol allowing measurement of the mechanical tension of individual axons grown ex vivo from neural tissue explants. This protocol was developed with primary cultures of olfactory epithelium explants from embryonic (E13.5) mice. It includes a detailed description of explant dissection and culture, as well as the main steps of the procedure for axon tension measurement using the previously established Biomembrane Force Probe.
Collapse
Affiliation(s)
- Coralie Fouquet
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Laboratoire Neuroscience Paris Seine, F-75005 Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine, Laboratoire Neuroscience Paris Seine, F-75005 Paris, France
| |
Collapse
|
31
|
Gangatharan G, Schneider-Maunoury S, Breau MA. Role of mechanical cues in shaping neuronal morphology and connectivity. Biol Cell 2018; 110:125-136. [PMID: 29698566 DOI: 10.1111/boc.201800003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
Neuronal circuits, the functional building blocks of the nervous system, assemble during development through a series of dynamic processes including the migration of neurons to their final position, the growth and navigation of axons and their synaptic connection with target cells. While the role of chemical cues in guiding neuronal migration and axonal development has been extensively analysed, the contribution of mechanical inputs, such as forces and stiffness, has received far less attention. In this article, we review the in vitro and more recent in vivo studies supporting the notion that mechanical signals are critical for multiple aspects of neuronal circuit assembly, from the emergence of axons to the formation of functional synapses. By combining live imaging approaches with tools designed to measure and manipulate the mechanical environment of neurons, the emerging field of neuromechanics will add a new paradigm in our understanding of neuronal development and potentially inspire novel regenerative therapies.
Collapse
Affiliation(s)
- Girisaran Gangatharan
- Sorbonne Université, CNRS UMR 7622, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine (LBD-IBPS), INSERM, Paris, 75005, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR 7622, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine (LBD-IBPS), INSERM, Paris, 75005, France
| | - Marie Anne Breau
- Sorbonne Université, CNRS UMR 7622, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine (LBD-IBPS), INSERM, Paris, 75005, France.,Sorbonne Université, CNRS UMR 8237, Laboratoire Jean Perrin, Paris, 75005, France
| |
Collapse
|
32
|
Sitko AA, Kuwajima T, Mason C. Eye-specific segregation and differential fasciculation of developing retinal ganglion cell axons in the mouse visual pathway. J Comp Neurol 2018; 526:1077-1096. [PMID: 29322522 PMCID: PMC6062437 DOI: 10.1002/cne.24392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 01/19/2023]
Abstract
Prior to forming and refining synaptic connections, axons of projection neurons navigate long distances to their targets. While much is known about guidance cues for axon navigation through intermediate choice points, whether and how axons are organized within tracts is less clear. Here we analyze the organization of retinal ganglion cell (RGC) axons in the developing mouse retinogeniculate pathway. RGC axons are organized by both eye-specificity and topography in the optic nerve and tract: ipsilateral RGC axons are segregated from contralateral axons and are offset laterally in the tract relative to contralateral axon topographic position. To identify potential cell-autonomous factors contributing to the segregation of ipsilateral and contralateral RGC axons in the visual pathway, we assessed their fasciculation behavior in a retinal explant assay. Ipsilateral RGC neurites self-fasciculate more than contralateral neurites in vitro and maintain this difference in the presence of extrinsic chiasm cues. To further probe the role of axon self-association in circuit formation in vivo, we examined RGC axon organization and fasciculation in an EphB1-/- mutant, in which a subset of ipsilateral RGC axons aberrantly crosses the midline but targets the ipsilateral zone in the dorsal lateral geniculate nucleus on the opposite side. Aberrantly crossing axons retain their association with ipsilateral axons in the contralateral tract, indicating that cohort-specific axon affinity is maintained independently of guidance signals present at the midline. Our results provide a comprehensive assessment of RGC axon organization in the retinogeniculate pathway and suggest that axon self-association contributes to pre-target axon organization.
Collapse
Affiliation(s)
- Austen A. Sitko
- Departments of Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, 10032
- Current address, corresponding author: Austen A. Sitko, Department of Neurobiology, Harvard Medical School, 456 Goldenson, 220 Longwood Avenue, Boston, MA 02115,
| | - Takaaki Kuwajima
- Departments of Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, 10032
- Pathology and Cell Biology, and Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, 10032
| | - Carol Mason
- Departments of Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, 10032
- Pathology and Cell Biology, and Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, 10032
| |
Collapse
|
33
|
Breau MA, Schneider-Maunoury S. [Stretch-induced axon growth: a universal, yet poorly explored process]. Biol Aujourdhui 2018; 211:215-222. [PMID: 29412131 DOI: 10.1051/jbio/2017028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 12/21/2022]
Abstract
The growth of axons is a key step in neuronal circuit assembly. The axon starts elongating with the migration of its growth cone in response to molecular signals present in the surrounding embryonic tissues. Following the formation of a synapse between the axon and the target cell, the distance which separates the cell body from the synapse continues to increase to accommodate the growth of the organism. This second phase of elongation, which is universal and crucial since it contributes to an important proportion of the final axon size, has been historically referred to as "stretch-induced axon growth". It is indeed likely to result from a mechanical tension generated by the growth of the body, but the underlying mechanisms remain poorly characterized. This article reviews the experimental studies of this process, mainly analysed on cultured neurons so far. The recent development of in vivo imaging techniques and tools to probe and perturb mechanical forces within embryos will shed new light on this universal mode of axonal growth. This knowledge may inspire the design of novel tissue engineering strategies dedicated to brain and spinal cord repair.
Collapse
Affiliation(s)
- Marie Anne Breau
- Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, CNRS UMR7622, INSERM U1156, 75005 Paris, France - Sorbonne Universités, UPMC Université Paris 06, 75005 Paris, France
| | - Sylvie Schneider-Maunoury
- Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, CNRS UMR7622, INSERM U1156, 75005 Paris, France - Sorbonne Universités, UPMC Université Paris 06, 75005 Paris, France
| |
Collapse
|
34
|
Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord. Sci Rep 2017; 7:13551. [PMID: 29051550 PMCID: PMC5648846 DOI: 10.1038/s41598-017-13804-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/03/2017] [Indexed: 11/21/2022] Open
Abstract
During nervous system development growing axons can interact with each other, for example by adhering together in order to produce bundles (fasciculation). How does such axon-axon interaction affect the resulting axonal trajectories, and what are the possible benefits of this process in terms of network function? In this paper we study these questions by adapting an existing computational model of the development of neurons in the Xenopus tadpole spinal cord to include interactions between axons. We demonstrate that even relatively weak attraction causes bundles to appear, while if axons weakly repulse each other their trajectories diverge such that they fill the available space. We show how fasciculation can help to ensure axons grow in the correct location for proper network formation when normal growth barriers contain gaps, and use a functional spiking model to show that fasciculation allows the network to generate reliable swimming behaviour even when overall synapse counts are artificially lowered. Although we study fasciculation in one particular organism, our approach to modelling axon growth is general and can be widely applied to study other nervous systems.
Collapse
|