1
|
Sun Y, Shi Y, Li C, Shi H. Histidine Protonation Behaviors on Structural Properties and Aggregation Properties of Aβ(1-42) Mature Fibril: Approaching by Edge Effects. J Phys Chem B 2024; 128:7341-7349. [PMID: 39018428 DOI: 10.1021/acs.jpcb.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The histidine behavior plays a crucial role in the structural and aggregation properties of protein folding and misfolding. Understanding the histidine behavior at the edge of the protein structure is critical for finding ways to disrupt fibril elongation and growth, but this impact remains poorly understood. In the current study, we used molecular dynamics simulations to investigate the edge substitution effect of histidine protonation on the structural and aggregation properties. Our data showed that ΔG1 contributed the most to binding affinity compared to ΔG2 and ΔG3. The different protonation states at the edge chain significantly impacted the secondary structure properties of the edge chain. Specifically, we found that such protonation behavior significantly affected specific regions, particularly the N-terminus (G9-Q15) and C-terminus (K28-A30). Further analysis confirmed that H6, H13, and H14 were directly involved in H-bonding networks with the C1_H14//C2_H13 interchain interactions critical for maintaining the interchain stability. Furthermore, we confirmed that H6, H13, and H14 were directly involved in the loss of the carbon skeleton contact in the N-terminus. Our findings indicate that the edge condition is more susceptible to changes in structural properties than the middle condition. The current study is helpful for understanding the histidine behavior hypothesis in related misfolding diseases.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Yaru Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Changgui Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| |
Collapse
|
2
|
Pradeepkiran JA, Baig J, Islam MA, Kshirsagar S, Reddy PH. Amyloid-β and Phosphorylated Tau are the Key Biomarkers and Predictors of Alzheimer's Disease. Aging Dis 2024; 16:658-682. [PMID: 38739937 PMCID: PMC11964437 DOI: 10.14336/ad.2024.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Alzheimer's disease (AD) is a age-related neurodegenerative disease and is a major public health concern both in Texas, US and Worldwide. This neurodegenerative disease is mainly characterized by amyloid-beta (Aβ) and phosphorylated Tau (p-Tau) accumulation in the brains of patients with AD and increasing evidence suggests that these are key biomarkers in AD. Both Aβ and p-tau can be detected through various imaging techniques (such as positron emission tomography, PET) and cerebrospinal fluid (CSF) analysis. The presence of these biomarkers in individuals, who are asymptomatic or have mild cognitive impairment can indicate an increased risk of developing AD in the future. Furthermore, the combination of Aβ and p-tau biomarkers is often used for more accurate diagnosis and prediction of AD progression. Along with AD being a neurodegenerative disease, it is associated with other chronic conditions such as cardiovascular disease, obesity, depression, and diabetes because studies have shown that these comorbid conditions make people more vulnerable to AD. In the first part of this review, we discuss that biofluid-based biomarkers such as Aβ, p-Tau in cerebrospinal fluid (CSF) and Aβ & p-Tau in plasma could be used as an alternative sensitive technique to diagnose AD. In the second part, we discuss the underlying molecular mechanisms of chronic conditions linked with AD and how they affect the patients in clinical care.
Collapse
Affiliation(s)
| | - Javaria Baig
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Md Ariful Islam
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Public Health Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Shi Y, Sun Y, Li C, Wang S, Wang J, Shi H. Edge Substitution Effects of Histidine Tautomerization Behaviors on the Structural Properties and Aggregation Properties of Aβ(1-42) Mature Fibril. ACS Chem Neurosci 2024; 15:1055-1062. [PMID: 38379141 DOI: 10.1021/acschemneuro.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Histidine behaviors play critical roles in folding and misfolding processes due to the changes in net charge and the various N/N-H orientations on imidazole rings. However, the effect of histidine tautomerization (HIE (Nε-H, ε) and HID (Nδ-H, δ) states) behaviors on the edge chain of Aβ mature fibrils remains inadequately understood, which is critical for finding a strategy to disturb fibril elongation and growth. In the current study, eight independent molecular dynamics simulations were conducted to investigate such impacts on the structural and aggregation properties. Our results from three different binding models revealed that the binding contributions of edge substitution effects are primarily located between chains 1 and 2. Histidine states significantly influence the secondary structure of each domain. Further analysis confirmed that the C1_H6//C1_E11 intrachain interaction is essential in maintaining the internal stability of chain 1, while the C1_H13//C2_H13 and C1_H14//C2_H13 interchain interactions are critical in maintaining the interchain stability of the fibril structure. Our subsequent analysis revealed that the current edge substitution leads to the loss of the C1_H13//C1_E11 intrachain and C1_H13//C2_H14 interchain interactions. The N-terminal regularity was significantly directly influenced by histidine states, particularly by the residue of C1_H13. Our study provides valuable insights into the effect of histidine behaviors on the edge chain of Aβ mature fibril, advancing our understanding of the histidine behavior hypothesis in misfolding diseases.
Collapse
Affiliation(s)
- Yaru Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Changgui Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Shuo Wang
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Jinping Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| |
Collapse
|
4
|
Jakowiecki J, Orzeł U, Miszta P, Młynarczyk K, Filipek S. Conformational Changes and Unfolding of β-Amyloid Substrates in the Active Site of γ-Secretase. Int J Mol Sci 2024; 25:2564. [PMID: 38473811 DOI: 10.3390/ijms25052564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and is characterized by a presence of amyloid plaques, composed mostly of the amyloid-β (Aβ) peptides, in the brains of AD patients. The peptides are generated from the amyloid precursor protein (APP), which undergoes a sequence of cleavages, referred as trimming, performed by γ-secretase. Here, we investigated conformational changes in a series of β-amyloid substrates (from less and more amyloidogenic pathways) in the active site of presenilin-1, the catalytic subunit of γ-secretase. The substrates are trimmed every three residues, finally leading to Aβ40 and Aβ42, which are the major components of amyloid plaques. To study conformational changes, we employed all-atom molecular dynamics simulations, while for unfolding, we used steered molecular dynamics simulations in an implicit membrane-water environment to accelerate changes. We have found substantial differences in the flexibility of extended C-terminal parts between more and less amyloidogenic pathway substrates. We also propose that the positively charged residues of presenilin-1 may facilitate the stretching and unfolding of substrates. The calculated forces and work/energy of pulling were exceptionally high for Aβ40, indicating why trimming of this substrate is so infrequent.
Collapse
Affiliation(s)
- Jakub Jakowiecki
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Urszula Orzeł
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Krzysztof Młynarczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Nayak V, Patra S, Rout S, Jena AB, Sharma R, Pattanaik KP, Singh J, Pandey SS, Singh RP, Majhi S, Singh KR, Kerry RG. Regulation of neuroinflammation in Alzheimer's disease via nanoparticle-loaded phytocompounds with anti-inflammatory and autophagy-inducing properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155150. [PMID: 37944239 DOI: 10.1016/j.phymed.2023.155150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/23/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by neuroinflammation linked to amyloid β (Aβ) aggregation and phosphorylated tau (τ) protein in neurofibrillary tangles (NFTs). Key elements in Aβ production and NFT assembly, like γ-secretase and p38 mitogen-activated protein kinase (p38MAPK), contribute to neuroinflammation. In addition, impaired proteosomal and autophagic pathways increase Aβ and τ aggregation, leading to neuronal damage. Conventional neuroinflammation drugs have limitations due to unidirectional therapeutic approaches and challenges in crossing the Blood-Brain Barrier (BBB). Clinical trials for non-steroidal anti-inflammatory drugs (NSAIDs) and other therapeutics remain uncertain. Novel strategies addressing the complex pathogenesis and BBB translocation are needed to effectively tackle AD-related neuroinflammation. PURPOSE The current scenario demands for a much-sophisticated theranostic measures which could be achieved via customized engineering and designing of novel nanotherapeutics. As, these therapeutics functions as a double edge sword, having the efficiency of unambiguous targeting, multiple drug delivery and ability to cross BBB proficiently. METHODS Inclusion criteria involve selecting recent, English-language studies from the past decade (2013-2023) that explore the regulation of neuroinflammation in neuroinflammation, Alzheimer's disease, amyloid β, tau protein, nanoparticles, autophagy, and phytocompounds. Various study types, including clinical trials, experiments, and reviews, were considered. Exclusion criteria comprised non-relevant publication types, studies unrelated to Alzheimer's disease or phytocompounds, those with methodological flaws, duplicates, and studies with inaccessible data. RESULTS In this study, polymeric nanoparticles loaded with specific phytocompounds and coated with an antibody targeting the transferrin receptor (anti-TfR) present on BBB. Thereafter, the engineered nanoparticles with the ability to efficiently traverse the BBB and interact with target molecules within the brain, could induce autophagy, a cellular process crucial for neuronal health, and exhibit potent anti-inflammatory effects. Henceforth, the proposed combination of desired phytocompounds, polymeric nanoparticles, and anti-TfR coating presents a promising approach for targeted drug delivery to the brain, with potential implications in neuroinflammatory conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Vinayak Nayak
- ICAR- National Institute on Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha (752050), India
| | - Sushmita Patra
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra (410210), India
| | - Shrushti Rout
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha (751004), India
| | - Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (02115), United States of America
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh (221005), India
| | - Kali Prasad Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh (221005), India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu (8080196), Japan
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sanatan Majhi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (02115), United States of America
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu (8080196), Japan.
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha (751004), India.
| |
Collapse
|
6
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Orzeł U, Jakowiecki J, Młynarczyk K, Filipek S. The Role of Cholesterol in Amyloidogenic Substrate Binding to the γ-Secretase Complex. Biomolecules 2021; 11:biom11070935. [PMID: 34202467 PMCID: PMC8301813 DOI: 10.3390/biom11070935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid β (Aβ) plaques in the brain. The γ-secretase complex, which produces Aβ, is an intramembrane-cleaving protease consisting of four membrane proteins. In this paper we investigated the amyloidogenic fragments of amyloid precursor protein (substrates Aβ43 and Aβ45, leading to less amyloidogenic Aβ40 and more amyloidogenic Aβ42, respectively) docked to the binding site of presenilin, the catalytic subunit of γ-secretase. In total, we performed 9 μs of all-atom molecular dynamics simulations of the whole γ-secretase complex with both substrates in low (10%) and high (50%) concentrations of cholesterol in the membrane. We found that, at the high cholesterol level, the Aβ45 helix was statistically more flexible in the binding site of presenilin than Aβ43. An increase in the cholesterol concentration was also correlated with a higher flexibility of the Aβ45 helix, which suggests incompatibility between Aβ45 and the binding site of presenilin potentiated by a high cholesterol level. However, at the C-terminal part of Aβ45, the active site of presenilin was more compact in the case of a high cholesterol level, which could promote processing of this substrate. We also performed detailed mapping of the cholesterol binding sites at low and high cholesterol concentrations, which were independent of the typical cholesterol binding motifs.
Collapse
|
8
|
Ugbaja SC, Lawal M, Kumalo H. An Overview of β-Amyloid Cleaving Enzyme 1 (Bace1) in Alzheimer's Disease Therapy Elucidating its Exosite-Binding Antibody and Allosteric Inhibitor. Curr Med Chem 2021; 29:114-135. [PMID: 34102967 DOI: 10.2174/0929867328666210608145357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Over decades of its identification, numerous past and ongoing researches have focused on the therapeutic roles of β-amyloid cleaving enzyme 1 (BACE1) as a target in treating Alzheimer's disease (AD). Although the initial BACE1 inhibitors at phase-3 clinical trials tremendously reduced β-amyloid-associated plaques in patients with AD, the researchers eventually discontinued the tests due to the lack of potency. This discontinuation has resulted in limited drug development and discovery targeted at BACE1, despite the high demand for dementia and AD therapies. It is, therefore, imperative to describe the detailed underlying biological basis of the BACE1 therapeutic option in neurological diseases. Herein, we highlight BACE1 bioactivity, genetic properties, and role in neurodegenerative therapy. We review research contributions to BACE1 exosite-binding antibody and allosteric inhibitor development as AD therapies. The review also covers BACE1 biological function, the disease-associated mechanisms, and the enzyme conditions for amyloid precursor protein sites splitting. Based on the present review, we suggest further studies on anti-BACE1 exosite antibodies and BACE1 allosteric inhibitors. Non-active site inhibition might be the way forward to BACE1 therapy in Alzheimer's neurological disorder.
Collapse
Affiliation(s)
- Samuel C Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
9
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 455] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|