1
|
Peck A, Dadi A, Yavarow Z, Alfano LN, Anderson D, Arkin MR, Chou TF, D'Ambrosio ES, Diaz-Manera J, Dudley JP, Elder AG, Ghoshal N, Hart CE, Hart MM, Huryn DM, Johnson AE, Jones KB, Kimonis V, Kiskinis E, Lee EB, Lloyd TE, Mapstone M, Martin A, Meyer H, Mozaffar T, Onyike CU, Pfeffer G, Pindon A, Raman M, Richard I, Rubinsztein DC, Schiava M, Schütz AK, Shen PS, Southworth DR, Staffaroni AM, Taralio-Gravovac M, Weihl CC, Yao Q, Ye Y, Peck N. 2024 VCP International Conference: Exploring multi-disciplinary approaches from basic science of valosin containing protein, an AAA+ ATPase protein, to the therapeutic advancement for VCP-associated multisystem proteinopathy. Neurobiol Dis 2025; 207:106861. [PMID: 40037468 PMCID: PMC11960434 DOI: 10.1016/j.nbd.2025.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
Valosin-containing protein (VCP/p97) is a ubiquitously expressed AAA+ ATPase associated with numerous protein-protein interactions and critical cellular functions including protein degradation and clearance, mitochondrial homeostasis, DNA repair and replication, cell cycle regulation, endoplasmic reticulum-associated degradation, and lysosomal functions including autophagy and apoptosis. Autosomal-dominant missense mutations in the VCP gene may result in VCP-associated multisystem proteinopathy (VCP-MSP), a rare degenerative disorder linked to heterogeneous phenotypes including inclusion body myopathy (IBM) with Paget's disease of bone (PDB) and frontotemporal dementia (FTD) or IBMPFD, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), parkinsonism, Charcot-Marie Tooth disease (CMT), and spastic paraplegia. The complexity of VCP-MSP makes collaboration among stakeholders essential and necessitates a multi-disciplinary approach. The 2024 VCP International Conference was hosted at Caltech between February 22 and 25. Co-organized by Cure VCP Disease and Dr. Tsui-Fen Chou, the meeting aimed to center the patient as a research partner, harmonize diverse stakeholder engagement, and bridge the gap between basic and clinical neuroscience as it relates to VCP-MSP. Over 100 multi-disciplinary experts attended, ranging from basic scientists to clinicians to patient advocates. Attendees discussed genetics and clinical presentation, cellular and molecular mechanisms underlying disease, therapeutic approaches, and strategies for future VCP research. The conference included three roundtable discussions, 29 scientific presentations, 32 scientific posters, nine patient and caregiver posters, and a closing discussion forum. The following conference proceedings summarize these sessions, highlighting both the identified gaps in knowledge and the significant strides made towards understanding and treating VCP diseases.
Collapse
Affiliation(s)
- A Peck
- Cure VCP Disease, Warner Robins, GA, USA
| | - A Dadi
- Cure VCP Disease, Warner Robins, GA, USA
| | - Z Yavarow
- Cure VCP Disease, Warner Robins, GA, USA
| | - L N Alfano
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | - M R Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - T F Chou
- Department of Biology, Caltech, Pasadena, CA, USA
| | - E S D'Ambrosio
- Nationwide Children's Hospital, Columbus, OH, USA; Department of Genetic and Cellular Medicine and Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - J Diaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle, Upon Tyne, United Kingdom
| | - J P Dudley
- LaMontagne Center for Infectious Disease, University of Texas, Austin, TX, USA
| | - A G Elder
- Cure VCP Disease, Warner Robins, GA, USA
| | - N Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - C E Hart
- Creyon Bio, San Diego, CA, USA; Lilly, Indianapolis, IN, USA
| | - M M Hart
- Cure VCP Disease, Warner Robins, GA, USA
| | - D M Huryn
- Department of Chemistry University of Pennsylvania, Philadelphia, PA, USA
| | - A E Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - K B Jones
- Department of Orthopaedics, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - V Kimonis
- Department of Pediatrics, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA
| | - E Kiskinis
- The Ken & Ruth Davee Department of Neurology, Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - E B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - T E Lloyd
- Department of Neurology Baylor College of Medicine, Houston, TX, USA
| | - M Mapstone
- Department of Neurology, University of California, Irvine, CA, USA
| | - A Martin
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - H Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - T Mozaffar
- Department of Neurology, University of California, Irvine, CA, USA
| | - C U Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - G Pfeffer
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - A Pindon
- Cure VCP Disease, Warner Robins, GA, USA; Myhre Syndrome Foundation, Richardson, TX, USA
| | - M Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - I Richard
- Généthon, 91000 Evry, France; Université Paris-Saclay, Université Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry, France
| | - D C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - M Schiava
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle, Upon Tyne, United Kingdom
| | - A K Schütz
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - P S Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - D R Southworth
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - A M Staffaroni
- UCSF Memory and Aging Center University of California San Francisco, CA, USA
| | - M Taralio-Gravovac
- Department of Biochemistry & Molecular Biology, University of Calgary, Alberta, Calgary, Canada
| | - C C Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Q Yao
- Department of Medicine Stony Brook University, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Y Ye
- Laboratory of Molecular Biology, NIH, NIDDK, Bethesda, MD, USA
| | - N Peck
- Cure VCP Disease, Warner Robins, GA, USA.
| |
Collapse
|
2
|
Nandi P, DeVore K, Wang F, Li S, Walker JD, Truong TT, LaPorte MG, Wipf P, Schlager H, McCleerey J, Paquette W, Columbres RCA, Gan T, Poh YP, Fromme P, Flint AJ, Wolf M, Huryn DM, Chou TF, Chiu PL. Mechanism of allosteric inhibition of human p97/VCP ATPase and its disease mutant by triazole inhibitors. Commun Chem 2024; 7:177. [PMID: 39122922 PMCID: PMC11316111 DOI: 10.1038/s42004-024-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human p97 ATPase is crucial in various cellular processes, making it a target for inhibitors to treat cancers, neurological, and infectious diseases. Triazole allosteric p97 inhibitors have been demonstrated to match the efficacy of CB-5083, an ATP-competitive inhibitor, in cellular models. However, the mechanism is not well understood. This study systematically investigates the structures of new triazole inhibitors bound to both wild-type and disease mutant forms of p97 and measures their effects on function. These inhibitors bind at the interface of the D1 and D2 domains of each p97 subunit, shifting surrounding helices and altering the loop structures near the C-terminal α2 G helix to modulate domain-domain communications. A key structural moiety of the inhibitor affects the rotameric conformations of interacting side chains, indirectly modulating the N-terminal domain conformation in p97 R155H mutant. The differential effects of inhibitor binding to wild-type and mutant p97 provide insights into drug design with enhanced specificity, particularly for oncology applications.
Collapse
Affiliation(s)
- Purbasha Nandi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Kira DeVore
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joel D Walker
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thanh Tung Truong
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Matthew G LaPorte
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - John McCleerey
- Curia Global, Albany, NY, USA
- Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
| | | | - Rod Carlo A Columbres
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Taiping Gan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yu-Ping Poh
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Mechanism of Evolution, Arizona State University, Tempe, AZ, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | - Andrew J Flint
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA.
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
3
|
Schanda P, Haran G. NMR and Single-Molecule FRET Insights into Fast Protein Motions and Their Relation to Function. Annu Rev Biophys 2024; 53:247-273. [PMID: 38346243 DOI: 10.1146/annurev-biophys-070323-022428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Proteins often undergo large-scale conformational transitions, in which secondary and tertiary structure elements (loops, helices, and domains) change their structures or their positions with respect to each other. Simple considerations suggest that such dynamics should be relatively fast, but the functional cycles of many proteins are often relatively slow. Sophisticated experimental methods are starting to tackle this dichotomy and shed light on the contribution of large-scale conformational dynamics to protein function. In this review, we focus on the contribution of single-molecule Förster resonance energy transfer and nuclear magnetic resonance (NMR) spectroscopies to the study of conformational dynamics. We briefly describe the state of the art in each of these techniques and then point out their similarities and differences, as well as the relative strengths and weaknesses of each. Several case studies, in which the connection between fast conformational dynamics and slower function has been demonstrated, are then introduced and discussed. These examples include both enzymes and large protein machines, some of which have been studied by both NMR and fluorescence spectroscopies.
Collapse
Affiliation(s)
- Paul Schanda
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria;
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel;
| |
Collapse
|
4
|
Jones NH, Liu Q, Urnavicius L, Dahan NE, Vostal LE, Kapoor TM. Allosteric activation of VCP, an AAA unfoldase, by small molecule mimicry. Proc Natl Acad Sci U S A 2024; 121:e2316892121. [PMID: 38833472 PMCID: PMC11181084 DOI: 10.1073/pnas.2316892121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme function, activator binding must be permissive to different conformational states needed for mechanochemistry. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, an AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP ATPase Activator 1 (VAA1), a compound that dose-dependently stimulates VCP ATPase activity up to ~threefold. Our cryo-EM studies resulted in structures (ranging from ~2.9 to 3.7 Å-resolution) of VCP in apo and ADP-bound states and revealed that VAA1 binds an allosteric pocket near the C-terminus in both states. Engineered mutations in the VAA1-binding site confer resistance to VAA1, and furthermore, modulate VCP activity. Mutation of a phenylalanine residue in the VCP C-terminal tail that can occupy the VAA1 binding site also stimulates ATPase activity, suggesting that VAA1 acts by mimicking this interaction. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry.
Collapse
Affiliation(s)
- Natalie H. Jones
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
- Tri-Institutional PhD Program in Chemical Biology, New York, NY10065
| | - Qiwen Liu
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
| | - Linas Urnavicius
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
| | - Noa E. Dahan
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY10065
| | - Lauren E. Vostal
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
- Tri-Institutional PhD Program in Chemical Biology, New York, NY10065
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
| |
Collapse
|
5
|
Lai CH, Ko KT, Fan PJ, Yu TA, Chang CF, Draczkowski P, Hsu STD. Structural insight into the ZFAND1-p97 interaction involved in stress granule clearance. J Biol Chem 2024; 300:107230. [PMID: 38537699 PMCID: PMC11047754 DOI: 10.1016/j.jbc.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024] Open
Abstract
Arsenite-induced stress granule (SG) formation can be cleared by the ubiquitin-proteasome system aided by the ATP-dependent unfoldase p97. ZFAND1 participates in this pathway by recruiting p97 to trigger SG clearance. ZFAND1 contains two An1-type zinc finger domains (ZF1 and ZF2), followed by a ubiquitin-like domain (UBL); but their structures are not experimentally determined. To shed light on the structural basis of the ZFAND1-p97 interaction, we determined the atomic structures of the individual domains of ZFAND1 by solution-state NMR spectroscopy and X-ray crystallography. We further characterized the interaction between ZFAND1 and p97 by methyl NMR spectroscopy and cryo-EM. 15N spin relaxation dynamics analysis indicated independent domain motions for ZF1, ZF2, and UBL. The crystal structure and NMR structure of UBL showed a conserved β-grasp fold homologous to ubiquitin and other UBLs. Nevertheless, the UBL of ZFAND1 contains an additional N-terminal helix that adopts different conformations in the crystalline and solution states. ZFAND1 uses the C-terminal UBL to bind to p97, evidenced by the pronounced line-broadening of the UBL domain during the p97 titration monitored by methyl NMR spectroscopy. ZFAND1 binding induces pronounced conformational heterogeneity in the N-terminal domain of p97, leading to a partial loss of the cryo-EM density of the N-terminal domain of p97. In conclusion, this work paved the way for a better understanding of the interplay between p97 and ZFAND1 in the context of SG clearance.
Collapse
Affiliation(s)
- Chih-Hsuan Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuang-Ting Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Ju Fan
- High-Field Nuclear Magnetic Resonance Center, Academia Sinica, Taipei, Taiwan
| | - Tsun-Ai Yu
- High-Field Nuclear Magnetic Resonance Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Fon Chang
- High-Field Nuclear Magnetic Resonance Center, Academia Sinica, Taipei, Taiwan
| | | | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; International Institute for Sustainability With Knotted Chiral Meta Matter (SKCM(2)), Hiroshima University, Higashihiroshima, Japan.
| |
Collapse
|
6
|
Shein M, Hitzenberger M, Cheng TC, Rout SR, Leitl KD, Sato Y, Zacharias M, Sakata E, Schütz AK. Characterizing ATP processing by the AAA+ protein p97 at the atomic level. Nat Chem 2024; 16:363-372. [PMID: 38326645 PMCID: PMC10914628 DOI: 10.1038/s41557-024-01440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
The human enzyme p97 regulates various cellular pathways by unfolding hundreds of protein substrates in an ATP-dependent manner, making it an essential component of protein homeostasis and an impactful pharmacological target. The hexameric complex undergoes substantial conformational changes throughout its catalytic cycle. Here we elucidate the molecular motions that occur at the active site in the temporal window immediately before and after ATP hydrolysis by merging cryo-EM, NMR spectroscopy and molecular dynamics simulations. p97 populates a metastable reaction intermediate, the ADP·Pi state, which is poised between hydrolysis and product release. Detailed snapshots reveal that the active site is finely tuned to trap and eventually discharge the cleaved phosphate. Signalling pathways originating at the active site coordinate the action of the hexamer subunits and couple hydrolysis with allosteric conformational changes. Our multidisciplinary approach enables a glimpse into the sophisticated spatial and temporal orchestration of ATP handling by a prototype AAA+ protein.
Collapse
Affiliation(s)
- Mikhail Shein
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany
- Bavarian NMR Center, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manuel Hitzenberger
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Germany.
| | - Tat Cheung Cheng
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Smruti R Rout
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Kira D Leitl
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany
- Bavarian NMR Center, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, Tottori, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Germany.
| | - Eri Sakata
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.
| | - Anne K Schütz
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany.
- Bavarian NMR Center, Technical University of Munich, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
7
|
Braxton JR, Altobelli CR, Tucker MR, Tse E, Thwin AC, Arkin MR, Southworth DR. The p97/VCP adaptor UBXD1 drives AAA+ remodeling and ring opening through multi-domain tethered interactions. Nat Struct Mol Biol 2023; 30:2009-2019. [PMID: 37945741 PMCID: PMC10716044 DOI: 10.1038/s41594-023-01126-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
p97, also known as valosin-containing protein, is an essential cytosolic AAA+ (ATPases associated with diverse cellular activities) hexamer that unfolds substrate polypeptides to support protein homeostasis and macromolecular disassembly. Distinct sets of p97 adaptors guide cellular functions but their roles in direct control of the hexamer are unclear. The UBXD1 adaptor localizes with p97 in critical mitochondria and lysosome clearance pathways and contains multiple p97-interacting domains. Here we identify UBXD1 as a potent p97 ATPase inhibitor and report structures of intact human p97-UBXD1 complexes that reveal extensive UBXD1 contacts across p97 and an asymmetric remodeling of the hexamer. Conserved VIM, UBX and PUB domains tether adjacent protomers while a connecting strand forms an N-terminal domain lariat with a helix wedged at the interprotomer interface. An additional VIM-connecting helix binds along the second (D2) AAA+ domain. Together, these contacts split the hexamer into a ring-open conformation. Structures, mutagenesis and comparisons to other adaptors further reveal how adaptors containing conserved p97-remodeling motifs regulate p97 ATPase activity and structure.
Collapse
Affiliation(s)
- Julian R Braxton
- Graduate Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Chad R Altobelli
- Graduate Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA
| | - Maxwell R Tucker
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Graduate Program in Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Aye C Thwin
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Braxton JR, Southworth DR. Structural insights of the p97/VCP AAA+ ATPase: How adapter interactions coordinate diverse cellular functionality. J Biol Chem 2023; 299:105182. [PMID: 37611827 PMCID: PMC10641518 DOI: 10.1016/j.jbc.2023.105182] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
p97/valosin-containing protein is an essential eukaryotic AAA+ ATPase with diverse functions including protein homeostasis, membrane remodeling, and chromatin regulation. Dysregulation of p97 function causes severe neurodegenerative disease and is associated with cancer, making this protein a significant therapeutic target. p97 extracts polypeptide substrates from macromolecular assemblies by hydrolysis-driven translocation through its central pore. Growing evidence indicates that this activity is highly coordinated by "adapter" partner proteins, of which more than 30 have been identified and are commonly described to facilitate translocation through substrate recruitment or modification. In so doing, these adapters enable critical p97-dependent functions such as extraction of misfolded proteins from the endoplasmic reticulum or mitochondria, and are likely the reason for the extreme functional diversity of p97 relative to other AAA+ translocases. Here, we review the known functions of adapter proteins and highlight recent structural and biochemical advances that have begun to reveal the diverse molecular bases for adapter-mediated regulation of p97 function. These studies suggest that the range of mechanisms by which p97 activity is controlled is vastly underexplored with significant advances possible for understanding p97 regulation by the most known adapters.
Collapse
Affiliation(s)
- Julian R Braxton
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, California, USA; Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
9
|
Jones NH, Liu Q, Urnavicius L, Dahan NE, Vostal LE, Kapoor TM. Allosteric activation of VCP, a AAA unfoldase, by small molecule mimicry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560478. [PMID: 37873168 PMCID: PMC10592943 DOI: 10.1101/2023.10.02.560478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme activity, activator binding must be permissive to different conformational states needed for enzyme function. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, a AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP Activator 1 (VA1), a compound that dose-dependently stimulates VCP ATPase activity up to ∼3-fold. Our cryo-EM studies resulted in structures (∼2.9-3.5 Å-resolution) of VCP in apo and ADP-bound states, and revealed VA1 binding an allosteric pocket near the C-terminus in both states. Engineered mutations in the VA1 binding site confer resistance to VA1, and furthermore, modulate VCP activity to a similar level as VA1-mediated activation. The VA1 binding site can alternatively be occupied by a phenylalanine residue in the VCP C-terminal tail, a motif that is post-translationally modified and interacts with cofactors. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry. Significance The loss of function of valosin-containing protein (VCP/p97), a mechanoenzyme from the AAA superfamily that hydrolyzes ATP and uses the released energy to extract or unfold substrate proteins, is linked to protein aggregation-based disorders. However, druggable allosteric sites to activate VCP, or any AAA mechanoenzyme, have not been identified. Here, we report cryo-EM structures of VCP in two states in complex with VA1, a compound we identified that dose-dependently stimulates VCP's ATP hydrolysis activity. The VA1 binding site can also be occupied by a phenylalanine residue in the VCP C-terminal tail, suggesting that VA1 acts through mimicry of this interaction. Our study reveals a druggable allosteric site and a mechanism of enzyme regulation.
Collapse
|
10
|
Oppenheim T, Radzinski M, Braitbard M, Brielle ES, Yogev O, Goldberger E, Yesharim Y, Ravid T, Schneidman-Duhovny D, Reichmann D. The Cdc48 N-terminal domain has a molecular switch that mediates the Npl4-Ufd1-Cdc48 complex formation. Structure 2023; 31:764-779.e8. [PMID: 37311459 DOI: 10.1016/j.str.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Cdc48 (VCP/p97) is a major AAA-ATPase involved in protein quality control, along with its canonical cofactors Ufd1 and Npl4 (UN). Here, we present novel structural insights into the interactions within the Cdc48-Npl4-Ufd1 ternary complex. Using integrative modeling, we combine subunit structures with crosslinking mass spectrometry (XL-MS) to map the interaction between Npl4 and Ufd1, alone and in complex with Cdc48. We describe the stabilization of the UN assembly upon binding with the N-terminal-domain (NTD) of Cdc48 and identify a highly conserved cysteine, C115, at the Cdc48-Npl4-binding interface which is central to the stability of the Cdc48-Npl4-Ufd1 complex. Mutation of Cys115 to serine disrupts the interaction between Cdc48-NTD and Npl4-Ufd1 and leads to a moderate decrease in cellular growth and protein quality control in yeast. Our results provide structural insight into the architecture of the Cdc48-Npl4-Ufd1 complex as well as its in vivo implications.
Collapse
Affiliation(s)
- Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Merav Braitbard
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Esther S Brielle
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ohad Yogev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eliya Goldberger
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yarden Yesharim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
11
|
Blueggel M, Kroening A, Kracht M, van den Boom J, Dabisch M, Goehring A, Kaschani F, Kaiser M, Bayer P, Meyer H, Beuck C. The UBX domain in UBXD1 organizes ubiquitin binding at the C-terminus of the VCP/p97 AAA-ATPase. Nat Commun 2023; 14:3258. [PMID: 37277335 DOI: 10.1038/s41467-023-38604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The AAA+ ATPase p97/VCP together with different sets of substrate-delivery adapters and accessory cofactor proteins unfolds ubiquitinated substrates to facilitate degradation by the proteasome. The UBXD1 cofactor is connected to p97-associated multisystem proteinopathy but its biochemical function and structural organization on p97 has remained largely elusive. Using a combination of crosslinking mass spectrometry and biochemical assays, we identify an extended UBX (eUBX) module in UBXD1 related to a lariat in another cofactor, ASPL. Of note, the UBXD1-eUBX intramolecularly associates with the PUB domain in UBXD1 close to the substrate exit pore of p97. The UBXD1 PUB domain can also bind the proteasomal shuttling factor HR23b via its UBL domain. We further show that the eUBX domain has ubiquitin binding activity and that UBXD1 associates with an active p97-adapter complex during substrate unfolding. Our findings suggest that the UBXD1-eUBX module receives unfolded ubiquitinated substrates after they exit the p97 channel and before hand-over to the proteasome. The interplay of full-length UBXD1 and HR23b and their function in the context of an active p97:UBXD1 unfolding complex remains to be studied in future work.
Collapse
Affiliation(s)
- Mike Blueggel
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Kroening
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Kracht
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Dabisch
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anna Goehring
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
Braxton JR, Altobelli CR, Tucker MR, Tse E, Thwin AC, Arkin MR, Southworth DR. The p97/VCP adapter UBXD1 drives AAA+ remodeling and ring opening through multi-domain tethered interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540864. [PMID: 37292947 PMCID: PMC10245715 DOI: 10.1101/2023.05.15.540864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
p97/VCP is an essential cytosolic AAA+ ATPase hexamer that extracts and unfolds substrate polypeptides during protein homeostasis and degradation. Distinct sets of p97 adapters guide cellular functions but their roles in direct control of the hexamer are unclear. The UBXD1 adapter localizes with p97 in critical mitochondria and lysosome clearance pathways and contains multiple p97-interacting domains. We identify UBXD1 as a potent p97 ATPase inhibitor and report structures of intact p97:UBXD1 complexes that reveal extensive UBXD1 contacts across p97 and an asymmetric remodeling of the hexamer. Conserved VIM, UBX, and PUB domains tether adjacent protomers while a connecting strand forms an N-terminal domain lariat with a helix wedged at the interprotomer interface. An additional VIM-connecting helix binds along the second AAA+ domain. Together these contacts split the hexamer into a ring-open conformation. Structures, mutagenesis, and comparisons to other adapters further reveal how adapters containing conserved p97-remodeling motifs regulate p97 ATPase activity and structure.
Collapse
Affiliation(s)
- Julian R. Braxton
- Graduate Program in Chemistry and Chemical Biology; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Chad R. Altobelli
- Graduate Program in Chemistry and Chemical Biology; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Maxwell R. Tucker
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Graduate Program in Biophysics; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Aye C. Thwin
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Valimehr S, Sethi A, Shukla M, Bhattacharyya S, Kazemi M, Rouiller I. Molecular Mechanisms Driving and Regulating the AAA+ ATPase VCP/p97, an Important Therapeutic Target for Treating Cancer, Neurological and Infectious Diseases. Biomolecules 2023; 13:biom13050737. [PMID: 37238606 DOI: 10.3390/biom13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
p97/VCP, a highly conserved type II ATPase associated with diverse cellular activities (AAA+ ATPase), is an important therapeutic target in the treatment of neurodegenerative diseases and cancer. p97 performs a variety of functions in the cell and facilitates virus replication. It is a mechanochemical enzyme that generates mechanical force from ATP-binding and hydrolysis to perform several functions, including unfolding of protein substrates. Several dozens of cofactors/adaptors interact with p97 and define the multifunctionality of p97. This review presents the current understanding of the molecular mechanism of p97 during the ATPase cycle and its regulation by cofactors and small-molecule inhibitors. We compare detailed structural information obtained in different nucleotide states in the presence and absence of substrates and inhibitors. We also review how pathogenic gain-of-function mutations modify the conformational changes of p97 during the ATPase cycle. Overall, the review highlights how the mechanistic knowledge of p97 helps in designing pathway-specific modulators and inhibitors.
Collapse
Affiliation(s)
- Sepideh Valimehr
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Ian Holmes Imaging Centre, Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Manjari Shukla
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Mohsen Kazemi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
14
|
Ghelichkhani F, Gonzalez FA, Kapitonova MA, Schaefer-Ramadan S, Liu J, Cheng R, Rozovsky S. Selenoprotein S: A versatile disordered protein. Arch Biochem Biophys 2022; 731:109427. [PMID: 36241082 PMCID: PMC10026367 DOI: 10.1016/j.abb.2022.109427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Selenoprotein S (selenos) is a small, intrinsically disordered membrane protein that is associated with various cellular functions, such as inflammatory processes, cellular stress response, protein quality control, and signaling pathways. It is primarily known for its contribution to the ER-associated degradation (ERAD) pathway, which governs the extraction of misfolded proteins or misassembled protein complexes from the ER to the cytosol for degradation by the proteasome. However, selenos's other cellular roles in signaling are equally vital, including the control of transcription factors and cytokine levels. Consequently, genetic polymorphisms of selenos are associated with increased risk for diabetes, dyslipidemia, and cardiovascular diseases, while high expression levels correlate with poor prognosis in several cancers. Its inhibitory role in cytokine secretion is also exploited by viruses. Since selenos binds multiple protein complexes, however, its specific contributions to various cellular pathways and diseases have been difficult to establish. Thus, the precise cellular functions of selenos and their interconnectivity have only recently begun to emerge. This review aims to summarize recent insights into the structure, interactome, and cellular roles of selenos.
Collapse
Affiliation(s)
- Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Fabio A Gonzalez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | | | - Jun Liu
- Enlaza Therapeutics, 11099 N. Torrey Pines Rd, suite 290, La Jolla, CA, 92037, USA
| | - Rujin Cheng
- NGM Biopharmaceuticals, Inc., 333 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
15
|
Zhang J, Vancea AI, Arold ST. Targeting plant UBX proteins: AI-enhanced lessons from distant cousins. TRENDS IN PLANT SCIENCE 2022; 27:1099-1108. [PMID: 35718708 DOI: 10.1016/j.tplants.2022.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Across all eukaryotic kingdoms, ubiquitin regulatory X (UBX) domain-containing adaptor proteins control the segregase cell division control protein 48 (CDC48), and thereby also control cellular proteostasis and adaptation. The structures and biological roles of UBX proteins in animals and fungi have garnered considerable attention. However, their counterparts in plants remain markedly understudied. Since 2021, the artificial intelligence (AI)-based algorithm AlphaFold has provided predictions of protein structural features that can be highly accurate. Predictions of the proteomes of all major model organisms are now freely accessible to the entire research community through user-friendly web interfaces. We propose that the combination of cross-kingdom comparison with AF analysis produces a wealth of testable hypotheses to inspire and guide experimental research on plant UBX domain-containing (PUX) proteins.
Collapse
Affiliation(s)
- Junrui Zhang
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Alexandra I Vancea
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
16
|
Gauto DF, Macek P, Malinverni D, Fraga H, Paloni M, Sučec I, Hessel A, Bustamante JP, Barducci A, Schanda P. Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR. Nat Commun 2022; 13:1927. [PMID: 35395851 PMCID: PMC8993905 DOI: 10.1038/s41467-022-29423-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
Large oligomeric enzymes control a myriad of cellular processes, from protein synthesis and degradation to metabolism. The 0.5 MDa large TET2 aminopeptidase, a prototypical protease important for cellular homeostasis, degrades peptides within a ca. 60 Å wide tetrahedral chamber with four lateral openings. The mechanisms of substrate trafficking and processing remain debated. Here, we integrate magic-angle spinning (MAS) NMR, mutagenesis, co-evolution analysis and molecular dynamics simulations and reveal that a loop in the catalytic chamber is a key element for enzymatic function. The loop is able to stabilize ligands in the active site and may additionally have a direct role in activating the catalytic water molecule whereby a conserved histidine plays a key role. Our data provide a strong case for the functional importance of highly dynamic - and often overlooked - parts of an enzyme, and the potential of MAS NMR to investigate their dynamics at atomic resolution.
Collapse
Affiliation(s)
- Diego F Gauto
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- ICSN, CNRS UPR2301, Univ. Paris-Saclay, Gif-sur-Yvette, France
| | - Pavel Macek
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- Celonic AG, Eulerstrasse 55, 4051, Basel, Switzerland
| | - Duccio Malinverni
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hugo Fraga
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigacao e Inovacao em Saude, Universidade do Porto, Porto, Portugal
| | - Matteo Paloni
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Iva Sučec
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Audrey Hessel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Juan Pablo Bustamante
- Instituto de Bioingenieria y Bioinformatica, IBB (CONICET-UNER), Oro Verde, Entre Rios, Argentina
| | - Alessandro Barducci
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France.
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria.
| |
Collapse
|
17
|
Ferrari V, Cristofani R, Tedesco B, Crippa V, Chierichetti M, Casarotto E, Cozzi M, Mina F, Piccolella M, Galbiati M, Rusmini P, Poletti A. Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. Int J Mol Sci 2022; 23:1939. [PMID: 35216053 PMCID: PMC8878954 DOI: 10.3390/ijms23041939] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Barbara Tedesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS—Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy;
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| |
Collapse
|
18
|
Probing allosteric interactions in homo-oligomeric molecular machines using solution NMR spectroscopy. Proc Natl Acad Sci U S A 2021; 118:2116325118. [PMID: 34893543 DOI: 10.1073/pnas.2116325118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
Developments in solution NMR spectroscopy have significantly impacted the biological questions that can now be addressed by this methodology. By means of illustration, we present here a perspective focusing on studies of a number of molecular machines that are critical for cellular homeostasis. The role of NMR in elucidating the structural dynamics of these important molecules is emphasized, focusing specifically on intersubunit allosteric communication in homo-oligomers. In many biophysical studies of oligomers, allostery is inferred by showing that models specifically including intersubunit communication best fit the data of interest. Ideally, however, experimental studies focusing on one subunit of a multisubunit system would be performed as an important complement to the more traditional bulk measurements in which signals from all components are measured simultaneously. Using an approach whereby asymmetric molecules are prepared in concert with NMR experiments focusing on the structural dynamics of individual protomers, we present examples of how intersubunit allostery can be directly observed in high-molecular-weight protein systems. These examples highlight some of the unique roles of solution NMR spectroscopy in studies of complex biomolecules and emphasize the important synergy between NMR and other atomic resolution biophysical methods.
Collapse
|
19
|
Gu J, Sim BR, Li J, Yu Y, Qin L, Wu L, Shen Y, Nie Y, Zhao YL, Xu Y. Evolutionary coupling-inspired engineering of alcohol dehydrogenase reveals the influence of distant sites on its catalytic efficiency for stereospecific synthesis of chiral alcohols. Comput Struct Biotechnol J 2021; 19:5864-5873. [PMID: 34815831 PMCID: PMC8572861 DOI: 10.1016/j.csbj.2021.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
Alcohol dehydrogenase (ADH) has attracted much attention due to its ability to catalyze the synthesis of important chiral alcohol pharmaceutical intermediates with high stereoselectivity. ADH protein engineering efforts have generally focused on reshaping the substrate-binding pocket. However, distant sites outside the pocket may also affect its activity, although the underlying molecular mechanism remains unclear. The current study aimed to apply evolutionary coupling-inspired engineering to the ADH CpRCR and to identify potential mutation sites. Through conservative analysis, phylogenic analysis and residues distribution analysis, the co-evolution hotspots Leu34 and Leu137 were confirmed to be highly evolved under the pressure of natural selection and to be possibly related to the catalytic function of the protein. Hence, Leu34 and Leu137, far away from the active center, were selected for mutation. The generated CpRCR-L34A and CpRCR-L137V variants showed high stereoselectivity and 1.24-7.81 fold increase in k cat /K m value compared with that of the wild type, when reacted with 8 aromatic ketones or β-ketoesters. Corresponding computational study implied that L34 and L137 may extend allosteric fluctuation in the protein structure from the distal mutational site to the active site. Moreover, the L34 and L137 mutations modified the pre-reaction state in multiple ways, in terms of position of the hydride with respect to the target carbonyl. These findings provide insights into the catalytic mechanism of the enzyme and facilitate its regulation from the perspective of the site interaction network.
Collapse
Affiliation(s)
- Jie Gu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Byu Ri Sim
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiarui Li
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yangqing Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lunjie Wu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yu Shen
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
AAA+ ATPase p97/VCP mutants and inhibitor binding disrupt inter-domain coupling and subsequent allosteric activation. J Biol Chem 2021; 297:101187. [PMID: 34520757 PMCID: PMC8517850 DOI: 10.1016/j.jbc.2021.101187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022] Open
Abstract
The human AAA+ ATPase p97, also known as valosin-containing protein, a potential target for cancer therapeutics, plays a vital role in the clearing of misfolded proteins. p97 dysfunction is also known to play a crucial role in several neurodegenerative disorders, such as MultiSystem Proteinopathy 1 (MSP-1) and Familial Amyotrophic Lateral Sclerosis (ALS). However, the structural basis of its role in such diseases remains elusive. Here, we present cryo-EM structural analyses of four disease mutants p97R155H, p97R191Q, p97A232E, p97D592N, as well as p97E470D, implicated in resistance to the drug CB-5083, a potent p97 inhibitor. Our cryo-EM structures demonstrate that these mutations affect nucleotide-driven allosteric activation across the three principal p97 domains (N, D1, and D2) by predominantly interfering with either (1) the coupling between the D1 and N-terminal domains (p97R155H and p97R191Q), (2) the interprotomer interactions (p97A232E), or (3) the coupling between D1 and D2 nucleotide domains (p97D592N, p97E470D). We also show that binding of the competitive inhibitor, CB-5083, to the D2 domain prevents conformational changes similar to those seen for mutations that affect coupling between the D1 and D2 domains. Our studies enable tracing of the path of allosteric activation across p97 and establish a common mechanistic link between active site inhibition and defects in allosteric activation by disease-causing mutations and have potential implications for the design of novel allosteric compounds that can modulate p97 function.
Collapse
|
21
|
Dissecting the role of interprotomer cooperativity in the activation of oligomeric high-temperature requirement A2 protein. Proc Natl Acad Sci U S A 2021; 118:2111257118. [PMID: 34446566 DOI: 10.1073/pnas.2111257118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human high-temperature requirement A2 (HtrA2) mitochondrial protease is critical for cellular proteostasis, with mutations in this enzyme closely associated with the onset of neurodegenerative disorders. HtrA2 forms a homotrimeric structure, with each subunit composed of protease and PDZ (PSD-95, DLG, ZO-1) domains. Although we had previously shown that successive ligand binding occurs with increasing affinity, and it has been suggested that allostery plays a role in regulating catalysis, the molecular details of how this occurs have not been established. Here, we use cysteine-based chemistry to generate subunits in different conformational states along with a protomer mixing strategy, biochemical assays, and methyl-transverse relaxation optimized spectroscopy-based NMR studies to understand the role of interprotomer allostery in regulating HtrA2 function. We show that substrate binding to a PDZ domain of one protomer increases millisecond-to-microsecond timescale dynamics in neighboring subunits that prime them for binding substrate molecules. Only when all three PDZ-binding sites are substrate bound can the enzyme transition into an active conformation that involves significant structural rearrangements of the protease domains. Our results thus explain why when one (or more) of the protomers is fixed in a ligand-binding-incompetent conformation or contains the inactivating S276C mutation that is causative for a neurodegenerative phenotype in mouse models of Parkinson's disease, transition to an active state cannot be formed. In this manner, wild-type HtrA2 is only active when substrate concentrations are high and therefore toxic and unregulated proteolysis of nonsubstrate proteins can be suppressed.
Collapse
|
22
|
Kok JR, Palminha NM, Dos Santos Souza C, El-Khamisy SF, Ferraiuolo L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell Mol Life Sci 2021; 78:5707-5729. [PMID: 34173837 PMCID: PMC8316199 DOI: 10.1007/s00018-021-03872-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The cause of DNA damage in ALS remains unclear but likely differs between genetic subgroups. Repeat expansion in the C9ORF72 gene is the most common genetic cause of familial ALS and responsible for about 10% of sporadic cases. These genetic mutations are known to cause R-loops, thus increasing genomic instability and DNA damage, and generate dipeptide repeat proteins, which have been shown to lead to DNA damage and impairment of the DNA damage response. Similarly, several genes associated with ALS including TARDBP, FUS, NEK1, SQSTM1 and SETX are known to play a role in DNA repair and the DNA damage response, and thus may contribute to neuronal death via these pathways. Another consistent feature present in both sporadic and familial ALS is the ability of astrocytes to induce motor neuron death, although the factors causing this toxicity remain largely unknown. In this review, we summarise the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS as well as discuss the possible mechanisms involved in different genetic subtypes with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.
Collapse
Affiliation(s)
- Jannigje Rachel Kok
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Nelma M Palminha
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
- The Institute of Cancer Therapeutics, West Yorkshire, UK.
| | - Laura Ferraiuolo
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
23
|
Nandi P, Li S, Columbres RCA, Wang F, Williams DR, Poh YP, Chou TF, Chiu PL. Structural and Functional Analysis of Disease-Linked p97 ATPase Mutant Complexes. Int J Mol Sci 2021; 22:ijms22158079. [PMID: 34360842 PMCID: PMC8347982 DOI: 10.3390/ijms22158079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/14/2023] Open
Abstract
IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97R155H with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97R155H mutant all show up configurations in ADP- or ATPγS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97R155H ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97R155H.
Collapse
Affiliation(s)
- Purbasha Nandi
- Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Rod Carlo A. Columbres
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | | | - Yu-Ping Poh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
- Correspondence: (T.-F.C.); (P.-L.C.)
| | - Po-Lin Chiu
- Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Correspondence: (T.-F.C.); (P.-L.C.)
| |
Collapse
|
24
|
Dubey A, Stoyanov N, Viennet T, Chhabra S, Elter S, Borggräfe J, Viegas A, Nowak RP, Burdzhiev N, Petrov O, Fischer ES, Etzkorn M, Gelev V, Arthanari H. Lokale Deuterierung ermöglicht NMR‐Messung von Methylgruppen in Proteinen aus eukaryotischen und Zell‐freien Expressionssystemen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abhinav Dubey
- Cancer Biology Dana-Farber Cancer Institute 450 Brookline Avenue LC-3311 Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02215 USA
| | - Nikolay Stoyanov
- Faculty of Chemistry and Pharmacy Sofia University 1 James Bourchier Blvd. 1164 Sofia Bulgarien
| | - Thibault Viennet
- Institute of Physical Biology Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Deutschland
- Institute of Biological Information Processing (IBI-7) Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
- JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
| | - Sandeep Chhabra
- Cancer Biology Dana-Farber Cancer Institute 450 Brookline Avenue LC-3311 Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02215 USA
| | - Shantha Elter
- Institute of Physical Biology Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Deutschland
- Institute of Biological Information Processing (IBI-7) Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
- JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
| | - Jan Borggräfe
- Institute of Physical Biology Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Deutschland
- Institute of Biological Information Processing (IBI-7) Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
- JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
| | - Aldino Viegas
- Institute of Physical Biology Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Deutschland
- Institute of Biological Information Processing (IBI-7) Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
- JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
| | - Radosław P. Nowak
- Cancer Biology Dana-Farber Cancer Institute 450 Brookline Avenue LC-3311 Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02215 USA
| | - Nikola Burdzhiev
- Faculty of Chemistry and Pharmacy Sofia University 1 James Bourchier Blvd. 1164 Sofia Bulgarien
| | - Ognyan Petrov
- Faculty of Chemistry and Pharmacy Sofia University 1 James Bourchier Blvd. 1164 Sofia Bulgarien
| | - Eric S. Fischer
- Cancer Biology Dana-Farber Cancer Institute 450 Brookline Avenue LC-3311 Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02215 USA
| | - Manuel Etzkorn
- Institute of Physical Biology Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Deutschland
- Institute of Biological Information Processing (IBI-7) Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
- JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
| | - Vladimir Gelev
- Faculty of Chemistry and Pharmacy Sofia University 1 James Bourchier Blvd. 1164 Sofia Bulgarien
| | - Haribabu Arthanari
- Cancer Biology Dana-Farber Cancer Institute 450 Brookline Avenue LC-3311 Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02215 USA
| |
Collapse
|
25
|
Dubey A, Stoyanov N, Viennet T, Chhabra S, Elter S, Borggräfe J, Viegas A, Nowak RP, Burdzhiev N, Petrov O, Fischer ES, Etzkorn M, Gelev V, Arthanari H. Local Deuteration Enables NMR Observation of Methyl Groups in Proteins from Eukaryotic and Cell-Free Expression Systems. Angew Chem Int Ed Engl 2021; 60:13783-13787. [PMID: 33768661 PMCID: PMC8251921 DOI: 10.1002/anie.202016070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Indexed: 01/13/2023]
Abstract
Therapeutically relevant proteins such as GPCRs, antibodies and kinases face clear limitations in NMR studies due to the challenges in site-specific isotope labeling and deuteration in eukaryotic expression systems. Here we describe an efficient and simple method to observe the methyl groups of leucine residues in proteins expressed in bacterial, eukaryotic or cell-free expression systems without modification of the expression protocol. The method relies on simple stereo-selective 13 C-labeling and deuteration of leucine that alleviates the need for additional deuteration of the protein. The spectroscopic benefits of "local" deuteration are examined in detail through Forbidden Coherence Transfer (FCT) experiments and simulations. The utility of this labeling method is demonstrated in the cell-free synthesis of bacteriorhodopsin and in the insect-cell expression of the RRM2 domain of human RBM39.
Collapse
Affiliation(s)
- Abhinav Dubey
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Nikolay Stoyanov
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Thibault Viennet
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Sandeep Chhabra
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Shantha Elter
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Jan Borggräfe
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Aldino Viegas
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Radosław P. Nowak
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Nikola Burdzhiev
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Ognyan Petrov
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Eric S. Fischer
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Manuel Etzkorn
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Vladimir Gelev
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Haribabu Arthanari
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| |
Collapse
|
26
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. J Neuropathol Exp Neurol 2021; 80:494-513. [PMID: 33860329 PMCID: PMC8177850 DOI: 10.1093/jnen/nlab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins. This protein aggregation suggests that abnormal proteostasis contributes to aging-related neurodegeneration. A better fundamental understanding of proteins that regulate proteostasis may provide insight into the pathophysiology of neurodegenerative disease and may perhaps reveal novel therapeutic opportunities. The 26S proteasome is the key effector of the ubiquitin-proteasome system responsible for degrading polyubiquitinated proteins. However, additional factors, such as valosin-containing protein (VCP/p97/Cdc48) and C9orf72, play a role in regulation and trafficking of substrates through the normal proteostasis systems of a cell. Nonhuman AAA+ ATPases, such as the disaggregase Hsp104, also provide insights into the biochemical processes that regulate protein aggregation. X-ray crystallography and cryo-electron microscopy (cryo-EM) structures not bound to substrate have provided meaningful information about the 26S proteasome, VCP, and Hsp104. However, recent cryo-EM structures bound to substrate have provided new information about the function and mechanism of these proteostasis factors. Cryo-EM and cryo-electron tomography data combined with biochemical data have also increased the understanding of C9orf72 and its role in maintaining proteostasis. These structural insights provide a foundation for understanding proteostasis mechanisms with near-atomic resolution upon which insights can be gleaned regarding the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Alderson TR, Kay LE. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 2021; 184:577-595. [PMID: 33545034 DOI: 10.1016/j.cell.2020.12.034] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Biomolecules are in constant motion. To understand how they function, and why malfunctions can cause disease, it is necessary to describe their three-dimensional structures in terms of dynamic conformational ensembles. Here, we demonstrate how nuclear magnetic resonance (NMR) spectroscopy provides an essential, dynamic view of structural biology that captures biomolecular motions at atomic resolution. We focus on examples that emphasize the diversity of biomolecules and biochemical applications that are amenable to NMR, such as elucidating functional dynamics in large molecular machines, characterizing transient conformations implicated in the onset of disease, and obtaining atomic-level descriptions of intrinsically disordered regions that make weak interactions involved in liquid-liquid phase separation. Finally, we discuss the pivotal role that NMR has played in driving forward our understanding of the biomolecular dynamics-function paradigm.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada.
| | - Lewis E Kay
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
28
|
Huang R, Ripstein ZA, Rubinstein JL, Kay LE. Probing Cooperativity of N‐Terminal Domain Orientations in the p97 Molecular Machine: Synergy Between NMR Spectroscopy and Cryo‐EM. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Huang
- Department of Biochemistry University of Toronto Toronto Ontario M5S 1A8 Canada
- Program in Molecular Medicine Hospital for Sick Children 555 University Avenue Toronto Ontario M5G 1X8 Canada
- Department of Molecular Genetics and Chemistry University of Toronto Toronto Ontario M5S 1A8 Canada
- Department of Chemistry University of Guelph Guelph Ontario N1G 1Y4 Canada
| | - Zev A. Ripstein
- Department of Biochemistry University of Toronto Toronto Ontario M5S 1A8 Canada
- Program in Molecular Medicine Hospital for Sick Children 555 University Avenue Toronto Ontario M5G 1X8 Canada
| | - John L. Rubinstein
- Department of Biochemistry University of Toronto Toronto Ontario M5S 1A8 Canada
- Program in Molecular Medicine Hospital for Sick Children 555 University Avenue Toronto Ontario M5G 1X8 Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario M5G 1L7 Canada
| | - Lewis E. Kay
- Department of Biochemistry University of Toronto Toronto Ontario M5S 1A8 Canada
- Program in Molecular Medicine Hospital for Sick Children 555 University Avenue Toronto Ontario M5G 1X8 Canada
- Department of Molecular Genetics and Chemistry University of Toronto Toronto Ontario M5S 1A8 Canada
| |
Collapse
|
29
|
Bayer P, Matena A, Beuck C. NMR Spectroscopy of supramolecular chemistry on protein surfaces. Beilstein J Org Chem 2020; 16:2505-2522. [PMID: 33093929 PMCID: PMC7554676 DOI: 10.3762/bjoc.16.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/17/2023] Open
Abstract
As one of the few analytical methods that offer atomic resolution, NMR spectroscopy is a valuable tool to study the interaction of proteins with their interaction partners, both biomolecules and synthetic ligands. In recent years, the focus in chemistry has kept expanding from targeting small binding pockets in proteins to recognizing patches on protein surfaces, mostly via supramolecular chemistry, with the goal to modulate protein-protein interactions. Here we present NMR methods that have been applied to characterize these molecular interactions and discuss the challenges of this endeavor.
Collapse
Affiliation(s)
- Peter Bayer
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Universitätsstr. 1-5, 45141 Essen, Germany
| | - Anja Matena
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Universitätsstr. 1-5, 45141 Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Universitätsstr. 1-5, 45141 Essen, Germany
| |
Collapse
|
30
|
An intrinsically disordered motif regulates the interaction between the p47 adaptor and the p97 AAA+ ATPase. Proc Natl Acad Sci U S A 2020; 117:26226-26236. [PMID: 33028677 DOI: 10.1073/pnas.2013920117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
VCP/p97, an enzyme critical to proteostasis, is regulated through interactions with protein adaptors targeting it to specific cellular tasks. One such adaptor, p47, forms a complex with p97 to direct lipid membrane remodeling. Here, we use NMR and other biophysical methods to study the structural dynamics of p47 and p47-p97 complexes. Disordered regions in p47 are shown to be critical in directing intra-p47 and p47-p97 interactions via a pair of previously unidentified linear motifs. One of these, an SHP domain, regulates p47 binding to p97 in a manner that depends on the nucleotide state of p97. NMR and electron cryomicroscopy data have been used as restraints in molecular dynamics trajectories to develop structural ensembles for p47-p97 complexes in adenosine diphosphate (ADP)- and adenosine triphosphate (ATP)-bound conformations, highlighting differences in interactions in the two states. Our study establishes the importance of intrinsically disordered regions in p47 for the formation of functional p47-p97 complexes.
Collapse
|
31
|
Huang R, Ripstein ZA, Rubinstein JL, Kay LE. Probing Cooperativity of N-Terminal Domain Orientations in the p97 Molecular Machine: Synergy Between NMR Spectroscopy and Cryo-EM. Angew Chem Int Ed Engl 2020; 59:22423-22426. [PMID: 32857889 DOI: 10.1002/anie.202009767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Indexed: 11/08/2022]
Abstract
The hexameric p97 enzyme plays an integral role in cellular homeostasis. Large changes to the orientation of its N-terminal domains (NTDs), corresponding to NTD-down (p97-ADP) or NTD-up (p97-ATP), accompany ATP hydrolysis. The NTDs in a series of p97 disease mutants interconvert rapidly between up and down conformations when p97 is in the ADP-bound state. While the populations of up and down NTDs can be determined from bulk measurements, information about the cooperativity of the transition between conformations is lacking. Here we use cryo-EM to determine populations of the 14 unique up/down NTD states of the homo-hexameric R95G disease-causing p97 ring, showing that NTD orientations do not depend on those of neighboring subunits. In contrast, NMR studies establish that inter-protomer cooperativity is important for regulating the orientation of NTDs in p97 particles comprising mixtures of different subunits, such as wild-type and R95G, emphasizing the synergy between cryo-EM and NMR in establishing how the components of p97 function.
Collapse
Affiliation(s)
- Rui Huang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Department of Molecular Genetics and Chemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 1Y4, Canada
| | - Zev A Ripstein
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Lewis E Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Program in Molecular Medicine, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Department of Molecular Genetics and Chemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
32
|
Rydzek S, Shein M, Bielytskyi P, Schütz AK. Observation of a Transient Reaction Intermediate Illuminates the Mechanochemical Cycle of the AAA-ATPase p97. J Am Chem Soc 2020; 142:14472-14480. [DOI: 10.1021/jacs.0c03180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Rydzek
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Mikhail Shein
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Pavlo Bielytskyi
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Anne K. Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
33
|
Abramov G, Velyvis A, Rennella E, Wong LE, Kay LE. A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Proc Natl Acad Sci U S A 2020; 117:12836-12846. [PMID: 32457157 PMCID: PMC7293644 DOI: 10.1073/pnas.2004317117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of methyl-transverse relaxation-optimized spectroscopy (methyl-TROSY)-based NMR methods, in concert with robust strategies for incorporation of methyl-group probes of structure and dynamics into the protein of interest, has facilitated quantitative studies of high-molecular-weight protein complexes. Here we develop a one-pot in vitro reaction for producing NMR quantities of methyl-labeled DNA at the C5 and N6 positions of cytosine (5mC) and adenine (6mA) nucleobases, respectively, enabling the study of high-molecular-weight DNA molecules using TROSY approaches originally developed for protein applications. Our biosynthetic strategy exploits the large number of naturally available methyltransferases to specifically methylate DNA at a desired number of sites that serve as probes of structure and dynamics. We illustrate the methodology with studies of the 153-base pair Widom DNA molecule that is simultaneously methyl-labeled at five sites, showing that high-quality 13C-1H spectra can be recorded on 100 μM samples in a few minutes. NMR spin relaxation studies of labeled methyl groups in both DNA and the H2B histone protein component of the 200-kDa nucleosome core particle (NCP) establish that methyl groups at 5mC and 6mA positions are, in general, more rigid than Ile, Leu, and Val methyl probes in protein side chains. Studies focusing on histone H2B of NCPs wrapped with either wild-type DNA or DNA methylated at all 26 CpG sites highlight the utility of NMR in investigating the structural dynamics of the NCP and how its histone core is affected through DNA methylation, an important regulator of transcription.
Collapse
Affiliation(s)
- Gili Abramov
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Algirdas Velyvis
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Bioscience Department, Syngenta, Jealott's Hill Research Centre, Bracknell RG42 6EY, United Kingdom
| | - Enrico Rennella
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leo E Wong
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
34
|
Pritišanac I, Alderson TR, Güntert P. Automated assignment of methyl NMR spectra from large proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:54-73. [PMID: 32883449 DOI: 10.1016/j.pnmrs.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 05/05/2023]
Abstract
As structural biology trends towards larger and more complex biomolecular targets, a detailed understanding of their interactions and underlying structures and dynamics is required. The development of methyl-TROSY has enabled NMR spectroscopy to provide atomic-resolution insight into the mechanisms of large molecular assemblies in solution. However, the applicability of methyl-TROSY has been hindered by the laborious and time-consuming resonance assignment process, typically performed with domain fragmentation, site-directed mutagenesis, and analysis of NOE data in the context of a crystal structure. In response, several structure-based automatic methyl assignment strategies have been developed over the past decade. Here, we present a comprehensive analysis of all available methods and compare their input data requirements, algorithmic strategies, and reported performance. In general, the methods fall into two categories: those that primarily rely on inter-methyl NOEs, and those that utilize methyl PRE- and PCS-based restraints. We discuss their advantages and limitations, and highlight the potential benefits from standardizing and combining different methods.
Collapse
Affiliation(s)
- Iva Pritišanac
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany; Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland; Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
35
|
Bhat AS, Dustin Schaeffer R, Kinch L, Medvedev KE, Grishin NV. Recent advances suggest increased influence of selective pressure in allostery. Curr Opin Struct Biol 2020; 62:183-188. [PMID: 32302874 DOI: 10.1016/j.sbi.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
Allosteric regulation of protein functions is ubiquitous in organismal biology, but the principles governing its evolution are not well understood. Here we discuss recent studies supporting the large-scale existence of latent allostery in ancestor proteins of superfamilies. As suggested, the evolution of allostery could be driven by the need for specificity in paralogs of slow evolving protein complexes with conserved active sites. The same slow evolution is displayed by purifying selection exhibited in allosteric proteins with somatic mutations involved in cancer, where disease-associated mutations are enriched in both orthosteric and allosteric sites. Consequently, disease-associated variants can be used to identify druggable allosteric sites that are specific for paralogs in protein superfamilies with otherwise similar functions.
Collapse
Affiliation(s)
- Archana S Bhat
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Richard Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Lisa Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States.
| |
Collapse
|
36
|
Sui X, Pan M, Li YM. Insights into the Design of p97-targeting Small Molecules from Structural Studies on p97 Functional Mechanism. Curr Med Chem 2020; 27:298-316. [PMID: 31584361 DOI: 10.2174/0929867326666191004162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
p97, also known as valosin-containing protein or CDC48, is a member of the AAA+ protein family that is highly conserved in eukaryotes. It binds to various cofactors in the body to perform its protein-unfolding function and participates in DNA repair, degradation of subcellular membrane proteins, and protein quality control pathways, among other processes. Its malfunction can lead to many diseases, such as inclusion body myopathy, associated with Paget's disease of bone and/or frontotemporal dementia, amyotrophic lateral sclerosis disease, and others. In recent years, many small-molecule inhibitors have been deployed against p97, including bis (diethyldithiocarbamate)- copper and CB-5083, which entered the first phase of clinical tests but failed. One bottleneck in the design of p97 drugs is that its molecular mechanism remains unclear. This paper summarizes recent studies on the molecular mechanisms of p97, which may lead to insight into how the next generation of small molecules targeting p97 can be designed.
Collapse
Affiliation(s)
- Xin Sui
- Department of Chemistry, Tsinghua University, Beijing 100086, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
37
|
Andrade NS, Ramic M, Esanov R, Liu W, Rybin MJ, Gaidosh G, Abdallah A, Del’Olio S, Huff TC, Chee NT, Anatha S, Gendron TF, Wahlestedt C, Zhang Y, Benatar M, Mueller C, Zeier Z. Dipeptide repeat proteins inhibit homology-directed DNA double strand break repair in C9ORF72 ALS/FTD. Mol Neurodegener 2020; 15:13. [PMID: 32093728 PMCID: PMC7041170 DOI: 10.1186/s13024-020-00365-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The C9ORF72 hexanucleotide repeat expansion is the most common known genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two fatal age-related neurodegenerative diseases. The C9ORF72 expansion encodes five dipeptide repeat proteins (DPRs) that are produced through a non-canonical translation mechanism. Among the DPRs, proline-arginine (PR), glycine-arginine (GR), and glycine-alanine (GA) are the most neurotoxic and increase the frequency of DNA double strand breaks (DSBs). While the accumulation of these genotoxic lesions is increasingly recognized as a feature of disease, the mechanism(s) of DPR-mediated DNA damage are ill-defined and the effect of DPRs on the efficiency of each DNA DSB repair pathways has not been previously evaluated. METHODS AND RESULTS Using DNA DSB repair assays, we evaluated the efficiency of specific repair pathways, and found that PR, GR and GA decrease the efficiency of non-homologous end joining (NHEJ), single strand annealing (SSA), and microhomology-mediated end joining (MMEJ), but not homologous recombination (HR). We found that PR inhibits DNA DSB repair, in part, by binding to the nucleolar protein nucleophosmin (NPM1). Depletion of NPM1 inhibited NHEJ and SSA, suggesting that NPM1 loss-of-function in PR expressing cells leads to impediments of both non-homologous and homology-directed DNA DSB repair pathways. By deleting NPM1 sub-cellular localization signals, we found that PR binds NPM1 regardless of the cellular compartment to which NPM1 was directed. Deletion of the NPM1 acidic loop motif, known to engage other arginine-rich proteins, abrogated PR and NPM1 binding. Using confocal and super-resolution immunofluorescence microscopy, we found that levels of RAD52, a component of the SSA repair machinery, were significantly increased iPSC neurons relative to isogenic controls in which the C9ORF72 expansion had been deleted using CRISPR/Cas9 genome editing. Western analysis of post-mortem brain tissues confirmed that RAD52 immunoreactivity is significantly increased in C9ALS/FTD samples as compared to controls. CONCLUSIONS Collectively, we characterized the inhibitory effects of DPRs on key DNA DSB repair pathways, identified NPM1 as a facilitator of DNA repair that is inhibited by PR, and revealed deficits in homology-directed DNA DSB repair pathways as a novel feature of C9ORF72-related disease.
Collapse
Affiliation(s)
- Nadja S. Andrade
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Melina Ramic
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Rustam Esanov
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Wenjun Liu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 USA
| | - Mathew J. Rybin
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Gabriel Gaidosh
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136 USA
| | - Abbas Abdallah
- Department of Neurology, University of Massachusetts Medical School, Worchester, MA USA
| | - Samuel Del’Olio
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Tyler C. Huff
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136 USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1601 NW 12th Ave, Miami, FL. 33136 USA
| | - Nancy T. Chee
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Sadhana Anatha
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 USA
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, 115 NW 14th St.,, Miami, FL 33136 USA
| | - Christian Mueller
- Department of Neurology, University of Massachusetts Medical School, Worchester, MA USA
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| |
Collapse
|
38
|
Abstract
p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.
Collapse
|
39
|
Alderson TR, Kay LE. Unveiling invisible protein states with NMR spectroscopy. Curr Opin Struct Biol 2020; 60:39-49. [DOI: 10.1016/j.sbi.2019.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
|
40
|
Schütz S, Sprangers R. Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:56-84. [PMID: 32130959 DOI: 10.1016/j.pnmrs.2019.09.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
A major goal in structural biology is to unravel how molecular machines function in detail. To that end, solution-state NMR spectroscopy is ideally suited as it is able to study biological assemblies in a near natural environment. Based on methyl TROSY methods, it is now possible to record high-quality data on complexes that are far over 100 kDa in molecular weight. In this review, we discuss the theoretical background of methyl TROSY spectroscopy, the information that can be extracted from methyl TROSY spectra and approaches that can be used to assign methyl resonances in large complexes. In addition, we touch upon insights that have been obtained for a number of challenging biological systems, including the 20S proteasome, the RNA exosome, molecular chaperones and G-protein-coupled receptors. We anticipate that methyl TROSY methods will be increasingly important in modern structural biology approaches, where information regarding static structures is complemented with insights into conformational changes and dynamic intermolecular interactions.
Collapse
Affiliation(s)
- Stefan Schütz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
41
|
De Ridder W, Azmi A, Clemen CS, Eichinger L, Hofmann A, Schröder R, Johnson K, Töpf A, Straub V, De Jonghe P, Maudsley S, De Bleecker JL, Baets J. Multisystem proteinopathy due to a homozygous p.Arg159His VCP mutation: A tale of the unexpected. Neurology 2019; 94:e785-e796. [PMID: 31848255 DOI: 10.1212/wnl.0000000000008763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To assess the clinical, radiologic, myopathologic, and proteomic findings in a patient manifesting a multisystem proteinopathy due to a homozygous valosin-containing protein gene (VCP) mutation previously reported to be pathogenic in the heterozygous state. METHODS We studied a 36-year-old male index patient and his father, both presenting with progressive limb-girdle weakness. Muscle involvement was assessed by MRI and muscle biopsies. We performed whole-exome sequencing and Sanger sequencing for segregation analysis of the identified p.Arg159His VCP mutation. To dissect biological disease signatures, we applied state-of-the-art quantitative proteomics on muscle tissue of the index case, his father, 3 additional patients with VCP-related myopathy, and 3 control individuals. RESULTS The index patient, homozygous for the known p.Arg159His mutation in VCP, manifested a typical VCP-related myopathy phenotype, although with a markedly high creatine kinase value and a relatively early disease onset, and Paget disease of bone. The father exhibited a myopathy phenotype and discrete parkinsonism, and multiple deceased family members on the maternal side of the pedigree displayed a dementia, parkinsonism, or myopathy phenotype. Bioinformatic analysis of quantitative proteomic data revealed the degenerative nature of the disease, with evidence suggesting selective failure of muscle regeneration and stress granule dyshomeostasis. CONCLUSION We report a patient showing a multisystem proteinopathy due to a homozygous VCP mutation. The patient manifests a severe phenotype, yet fundamental disease characteristics are preserved. Proteomic findings provide further insights into VCP-related pathomechanisms.
Collapse
Affiliation(s)
- Willem De Ridder
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Abdelkrim Azmi
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Christoph S Clemen
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Ludwig Eichinger
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Andreas Hofmann
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Rolf Schröder
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Katherine Johnson
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Ana Töpf
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Volker Straub
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Peter De Jonghe
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Stuart Maudsley
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Jan L De Bleecker
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Jonathan Baets
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium.
| |
Collapse
|
42
|
Structure of the PUB Domain from Ubiquitin Regulatory X Domain Protein 1 (UBXD1) and Its Interaction with the p97 AAA+ ATPase. Biomolecules 2019; 9:biom9120876. [PMID: 31847414 PMCID: PMC6995525 DOI: 10.3390/biom9120876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023] Open
Abstract
AAA+ ATPase p97/valosin-containing protein (VCP)/Cdc48 is a key player in various cellular stress responses in which it unfolds ubiquitinated proteins to facilitate their degradation by the proteasome. P97 works in different cellular processes using alternative sets of cofactors and is implicated in multiple degenerative diseases. Ubiquitin regulatory X domain protein 1 (UBXD1) has been linked to pathogenesis and is unique amongst p97 cofactors because it interacts with both termini of p97. Its N-domain binds to the N-domain and N/D1 interface of p97 and regulates its ATPase activity. The PUB (peptide:N-glycanase and UBA or UBX-containing proteins) domain binds the p97 C-terminus, but how it controls p97 function is still unknown. Here we present the NMR structure of UBXD1-PUB together with binding studies, mutational analysis, and a model of UBXD1-PUB in complex with the p97 C-terminus. While the binding pocket is conserved among PUB domains, UBXD1-PUB features a unique loop and turn regions suggesting a role in coordinating interaction with downstream regulators and substrate processing
Collapse
|
43
|
Wang X, Jing X, Deng Y, Nie Y, Xu F, Xu Y, Zhao YL, Hunt JF, Montelione GT, Szyperski T. Evolutionary coupling saturation mutagenesis: Coevolution-guided identification of distant sites influencing Bacillus naganoensis pullulanase activity. FEBS Lett 2019; 594:799-812. [PMID: 31665817 DOI: 10.1002/1873-3468.13652] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 01/20/2023]
Abstract
Pullulanases are well-known debranching enzymes hydrolyzing α-1,6-glycosidic linkages. To date, engineering of pullulanase is mainly focused on catalytic pocket or domain tailoring based on structure/sequence information. Saturation mutagenesis-involved directed evolution is, however, limited by the low number of mutational sites compatible with combinatorial libraries of feasible size. Using Bacillus naganoensis pullulanase as a target protein, here we introduce the 'evolutionary coupling saturation mutagenesis' (ECSM) approach: residue pair covariances are calculated to identify residues for saturation mutagenesis, focusing directed evolution on residue pairs playing important roles in natural evolution. Evolutionary coupling (EC) analysis identified seven residue pairs as evolutionary mutational hotspots. Subsequent saturation mutagenesis yielded variants with enhanced catalytic activity. The functional pairs apparently represent distant sites affecting enzyme activity.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiaoran Jing
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yi Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Fei Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - John F Hunt
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Chemistry and Chemical Biology, and Center for Biotechnology and Integrative Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, The State University of New York at Buffalo, NY, USA
| |
Collapse
|
44
|
Blythe EE, Gates SN, Deshaies RJ, Martin A. Multisystem Proteinopathy Mutations in VCP/p97 Increase NPLOC4·UFD1L Binding and Substrate Processing. Structure 2019; 27:1820-1829.e4. [PMID: 31623962 DOI: 10.1016/j.str.2019.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
Abstract
Valosin-containing protein (VCP)/p97 is an essential ATP-dependent protein unfoldase. Dominant mutations in p97 cause multisystem proteinopathy (MSP), a disease affecting the brain, muscle, and bone. Despite the identification of numerous pathways that are perturbed in MSP, the molecular-level defects of these p97 mutants are not completely understood. Here, we use biochemistry and cryoelectron microscopy to explore the effects of MSP mutations on the unfoldase activity of p97 in complex with its substrate adaptor NPLOC4⋅UFD1L (UN). We show that all seven analyzed MSP mutants unfold substrates faster. Mutant homo- and heterohexamers exhibit tighter UN binding and faster substrate processing. Our structural studies suggest that the increased UN affinity originates from a decoupling of p97's nucleotide state and the positioning of its N-terminal domains. Together, our data support a gain-of-function model for p97-UN-dependent processes in MSP and underscore the importance of N-terminal domain movements for adaptor recruitment and substrate processing by p97.
Collapse
Affiliation(s)
- Emily E Blythe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Stephanie N Gates
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Amgen Research, Thousand Oaks, CA 91320, USA
| | - Andreas Martin
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
45
|
Yuwen T, Huang R, Vallurupalli P, Kay LE. A Methyl‐TROSY‐Based
1
H Relaxation Dispersion Experiment for Studies of Conformational Exchange in High Molecular Weight Proteins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tairan Yuwen
- Departments of Molecular GeneticsBiochemistry and ChemistryUniversity of Toronto Toronto Ontario M5S 1A8 Canada
| | - Rui Huang
- Departments of Molecular GeneticsBiochemistry and ChemistryUniversity of Toronto Toronto Ontario M5S 1A8 Canada
| | - Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad Telangana 500107 India
| | - Lewis E. Kay
- Departments of Molecular GeneticsBiochemistry and ChemistryUniversity of Toronto Toronto Ontario M5S 1A8 Canada
- Program in Molecular MedicineHospital for Sick Children 555 University Avenue Toronto Ontario M5G 1X8 Canada
| |
Collapse
|
46
|
Yuwen T, Huang R, Vallurupalli P, Kay LE. A Methyl‐TROSY‐Based
1
H Relaxation Dispersion Experiment for Studies of Conformational Exchange in High Molecular Weight Proteins. Angew Chem Int Ed Engl 2019; 58:6250-6254. [DOI: 10.1002/anie.201900241] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Tairan Yuwen
- Departments of Molecular GeneticsBiochemistry and ChemistryUniversity of Toronto Toronto Ontario M5S 1A8 Canada
| | - Rui Huang
- Departments of Molecular GeneticsBiochemistry and ChemistryUniversity of Toronto Toronto Ontario M5S 1A8 Canada
| | - Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad Telangana 500107 India
| | - Lewis E. Kay
- Departments of Molecular GeneticsBiochemistry and ChemistryUniversity of Toronto Toronto Ontario M5S 1A8 Canada
- Program in Molecular MedicineHospital for Sick Children 555 University Avenue Toronto Ontario M5G 1X8 Canada
| |
Collapse
|
47
|
Zhong M, Lee GM, Sijbesma E, Ottmann C, Arkin MR. Modulating protein-protein interaction networks in protein homeostasis. Curr Opin Chem Biol 2019; 50:55-65. [PMID: 30913483 DOI: 10.1016/j.cbpa.2019.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions (PPIs) occur in complex networks. These networks are highly dependent on cellular context and can be extensively altered in disease states such as cancer and viral infection. In recent years, there has been significant progress in developing inhibitors that target individual PPIs either orthosterically (at the interface) or allosterically. These molecules can now be used as tools to dissect PPI networks. Here, we review recent examples that highlight the use of small molecules and engineered proteins to probe PPIs within the complex networks that regulate protein homeostasis. Researchers have discovered multiple mechanisms to modulate PPIs involved in host/viral interactions, deubiquitinases, the ATPase p97/VCP, and HSP70 chaperones. However, few studies have evaluated the effect of such modulators on the target's network or have compared the biological implications of different modulation strategies. Such studies will have an important impact on next generation therapeutics.
Collapse
Affiliation(s)
- Mengqi Zhong
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California, San Francisco, CA, USA
| | - Gregory M Lee
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California, San Francisco, CA, USA
| | - Eline Sijbesma
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Christian Ottmann
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
48
|
Protein engineering: the potential of remote mutations. Biochem Soc Trans 2019; 47:701-711. [PMID: 30902926 DOI: 10.1042/bst20180614] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/18/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022]
Abstract
Engineered proteins, especially enzymes, are now commonly used in many industries owing to their catalytic power, specific binding of ligands, and properties as materials and food additives. As the number of potential uses for engineered proteins has increased, the interest in engineering or designing proteins to have greater stability, activity and specificity has increased in turn. With any rational engineering or design pursuit, the success of these endeavours relies on our fundamental understanding of the systems themselves; in the case of proteins, their structure-dynamics-function relationships. Proteins are most commonly rationally engineered by targeting the residues that we understand to be functionally important, such as enzyme active sites or ligand-binding sites. This means that the majority of the protein, i.e. regions remote from the active- or ligand-binding site, is often ignored. However, there is a growing body of literature that reports on, and rationalises, the successful engineering of proteins at remote sites. This minireview will discuss the current state of the art in protein engineering, with a particular focus on engineering regions that are remote from active- or ligand-binding sites. As the use of protein technologies expands, exploiting the potential improvements made possible through modifying remote regions will become vital if we are to realise the full potential of protein engineering and design.
Collapse
|
49
|
Szell PMJ, Zablotny S, Bryce DL. Halogen bonding as a supramolecular dynamics catalyst. Nat Commun 2019; 10:916. [PMID: 30796220 PMCID: PMC6385366 DOI: 10.1038/s41467-019-08878-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/04/2019] [Indexed: 01/23/2023] Open
Abstract
Dynamic processes have many implications in functional molecules, including catalysts, enzymes, host-guest complexes, and molecular machines. Here, we demonstrate via deuterium NMR relaxation experiments how halogen bonding directly impacts the dynamics in solid 2,3,5,6-tetramethylpyrazine cocrystals, catalyzing the methyl group rotation. On average, we observe a reduction of 56% in the rotational activation energy of the methyl groups in the halogen bonded cocrystals, contrasting the reduction of 36% in the hydrogen bonded cocrystals, with respect to pure 2,3,5,6-tetramethylpyrazine. Density functional theory calculations attribute this superior catalytic ability of the halogen bond to the simultaneous destabilization of the staggered conformation and stabilization of the gauche conformation, overall reducing the rotational energy barrier. Furthermore, the calculations suggest that the catalytic ability of the halogen bond may be tuneable, with stronger halogen bond donors acting as superior dynamics catalysts. Thus, halogen bonding may play a role in both assembly and promoting dynamical processes. The halogen bond is well known for its ability to assemble supramolecules. Here, using NMR experiments, the authors reveal the role of these bonds in dynamic processes, finding that the halogen bond directly catalyzes dynamical rotation in solid cocrystals by reducing the associated energy barrier.
Collapse
Affiliation(s)
- Patrick M J Szell
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Scott Zablotny
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
50
|
Abstract
p97 is an essential hexameric AAA+ ATPase involved in a wide range of cellular processes. Mutations in the enzyme are implicated in the etiology of an autosomal dominant neurological disease in which patients are heterozygous with respect to p97 alleles, containing one copy each of WT and disease-causing mutant genes, so that, in vivo, p97 molecules can be heterogeneous in subunit composition. Studies of p97 have, however, focused on homohexameric constructs, where protomers are either entirely WT or contain a disease-causing mutation, showing that for WT p97, the N-terminal domain (NTD) of each subunit can exist in either a down (ADP) or up (ATP) conformation. NMR studies establish that, in the ADP-bound state, the up/down NTD equilibrium shifts progressively toward the up conformation as a function of disease mutant severity. To understand NTD functional dynamics in biologically relevant p97 heterohexamers comprising both WT and disease-causing mutant subunits, we performed a methyl-transverse relaxation optimized spectroscopy (TROSY) NMR study on a series of constructs in which only one of the protomer types is NMR-labeled. Our results show positive cooperativity of NTD up/down equilibria between neighboring protomers, allowing us to define interprotomer pathways that mediate the allosteric communication between subunits. Notably, the perturbed up/down NTD equilibrium in mutant subunits is partially restored by neighboring WT protomers, as is the two-pronged binding of the UBXD1 adaptor that is affected in disease. This work highlights the plasticity of p97 and how subtle perturbations to its free-energy landscape lead to significant changes in NTD conformation and adaptor binding.
Collapse
|