1
|
Li R, Zhang Y, Zhang H, Wang C, Duan H, Sun S, Xiang D, Liu Z. CRMP2 in the hippocampus alleviates chronic stress-induced depressive-like behaviours in mice by affecting synaptic function. Behav Brain Res 2025; 484:115495. [PMID: 40020760 DOI: 10.1016/j.bbr.2025.115495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric illness and a significant contributor to the global burden of disease. However, the molecular mechanisms underlying depression are complex and have yet to be fully elucidated. Previous studies demonstrated that collapsin response mediator protein 2 (CRMP2) involved in the onset of depression, but its role is unclear yet. To explore the mechanism of CRMP2 in depression and whether it ameliorates depressive-like behaviours by modulating synaptic functions, we manipulate the expression of CRMP2 by adeno-associated virus (AAV) injected into the hippocampal CA1 region and then induced depressive-like behaviour by subjecting the mice to chronic unpredictable mild stress (CUMS). Sucrose preference test (SPT), open field test (OFT), elevated plus maze test (EPM), forced swimming test (FST), and tail suspension test (TST) are utilized to detect behavioral changes. Golgi-Cox staining and electron microscopy were applied to examine alterations in the structure and morphology of neural synapses. Synaptophysin (SYP), synaptophysin 1 (SYN1), growth-associated protein 43 (GAP43), glutamate receptor 2 (GLUR2) and postsynaptic density protein 95 (PSD95) is tested for synaptic function. The proteins interacting with CRMP2 were comprehensively investigated utilizing Immunoprecipitation-Mass Spectrometry (IP-MS) analysis and the direct binding between CRMP2 and PSD95 was validated. In our study, we observed CRMP2 in the hippocampal CA1 region was downregulated following CUMS. Knockdown of CRMP2 resulted in impaired synaptic structure and decreased expression of synapse-associated proteins, accompanied by increased depressive-like behaviour, like anhedonia and hopelessness. Conversely, overexpression of CRMP2 significantly ameliorated behavioural deficits associated with depression and restore the compromised synaptic structure and function. Our findings suggest that CRMP2 exerts a crucial function in modulating depressive-like behaviours by influencing the synaptic structure and function, and it can directly interact with PSD95.
Collapse
Affiliation(s)
- Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Chao Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, PR China.
| |
Collapse
|
2
|
Long Y, Li Y, Xue J, Geng W, Ma M, Wang X, Wang L. Mechanisms by which SNX-BAR subfamily controls the fate of SNXs' cargo. Front Physiol 2025; 16:1559313. [PMID: 40144551 PMCID: PMC11936996 DOI: 10.3389/fphys.2025.1559313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
The SNX-BAR subfamily is a component of the sorting nexins (SNXs) superfamily. Distinct from other SNXs, which feature a PX domain for phosphoinositide binding, the SNX-BAR subfamily includes a BAR domain that induces membrane curvature. Members of the SNX-BAR subfamily work together to recognize and select specific cargo, regulate receptor signaling, and manage cargo sorting both with and without the involvement of sorting complexes. They play a crucial role in maintaining cellular homeostasis by directing intracellular cargo to appropriate locations through endo-lysosomal, autophagolysosomal, and ubiquitin-proteasome pathways. This subfamily thus links various protein homeostasis pathways. This review examines the established and hypothesized functions of the SNX-BAR subfamily, its role in intracellular protein sorting and stability, and explores the potential involvement of subfamily dysfunction in the pathophysiology of cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yaolin Long
- Basic Medical Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Li
- Basic Medical Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jin Xue
- Basic Medical Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wanqing Geng
- Department of Ophthalmology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Mingxia Ma
- Basic Medical Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaohui Wang
- Basic Medical Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Wang
- Basic Medical Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Wang D, Zhao X, Wang P, Liu JJ. SNX32 Regulates Sorting and Trafficking of Activated EGFR to the Lysosomal Degradation Pathway. Traffic 2024; 25:e12952. [PMID: 39073202 DOI: 10.1111/tra.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
SNX32 is a member of the evolutionarily conserved Phox (PX) homology domain- and Bin/Amphiphysin/Rvs (BAR) domain- containing sorting nexin (SNX-BAR) family of proteins, which play important roles in sorting and membrane trafficking of endosomal cargoes. Although SNX32 shares the highest amino acid sequence homology with SNX6, and has been believed to function redundantly with SNX5 and SNX6 in retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), its role(s) in intracellular protein trafficking remains largely unexplored. Here, we report that it functions in parallel with SNX1 in mediating epidermal growth factor (EGF)-stimulated postendocytic trafficking of the epidermal growth factor receptor (EGFR). Moreover, SNX32 interacts directly with EGFR, and recruits SNX5 to promote sorting of EGF-EGFR into multivesicular bodies (MVBs) for lysosomal degradation. Thus, SNX32 functions distinctively from other SNX-BAR proteins to mediate signaling-coupled endolysosomal trafficking of EGFR.
Collapse
Affiliation(s)
- Dou Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Panpan Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Liu Z, Huang W, Zhu M, Xu Z, Xu Z, Yu C, Huang H. Mechanism of Robo1 in the pentylenetetrazol-kindled epilepsy mouse model. IBRAIN 2023; 9:369-380. [PMID: 38680506 PMCID: PMC11045194 DOI: 10.1002/ibra.12127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 04/28/2024]
Abstract
The neural network hypothesis is one of the important pathogenesis of drug-resistant epilepsy. Axons guide molecules through synaptic remodeling and brain tissue remodeling, which may result in the formation of abnormal neural networks. Therefore, axon guidance plays a crucial role in disease progression. However, although Robo1 is one of the important components of axon guidance, the role of Robo1 in epilepsy remains unclear. In this study, we aimed to explore the mechanism of Robo1 in epilepsy. Male adult C57BL/6 mice were intraperitoneally injected with pentylenetetrazol to establish an epilepsy model. Lentivirus (LV) was given via intracranial injection 2 weeks before pentylenetetrazol injection. Different expressions of Robo1 between the control group, LV-mediated Robo1 short hairpin RNA group, empty vector control LV group, and normal saline group were analyzed using Western blot, immunofluorescence staining, Golgi staining, and video monitoring. Robo1 was increased in the hippocampus in the pentylenetetrazol-induced epilepsy mouse model; lentiviral Robo1 knockdown prolonged the latency of seizure and reduced the seizure grade in mice and resulted in a decrease in dendritic spine density, while the number of mature dendritic spines was maintained. We speculate that Robo1 has been implicated in the development and progression of epilepsy through its effects on dendritic spine morphology and density. Epileptic mice with Robo1 knockdown virus intervention had lower seizure grade and longer latency. Follow-up findings suggest that Robo1 may modulate seizures by affecting dendritic spine density and morphology. Downregulation of Robo1 may negatively regulate epileptogenesis by decreasing the density of dendritic spines and maintaining a greater number of mature dendritic spines.
Collapse
Affiliation(s)
- Zheng Liu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Wei Huang
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Man‐Min Zhu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zhong‐Xiang Xu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zu‐Cai Xu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Chang‐Yin Yu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hao Huang
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
5
|
Mao R, Tong C, Liu JJ. E-Syt1 Regulates Neuronal Activity-Dependent Endoplasmic Reticulum-Plasma Membrane Junctions and Surface Expression of AMPA Receptors. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231185011. [PMID: 37484831 PMCID: PMC10359807 DOI: 10.1177/25152564231185011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Endoplasmic reticulum (ER)-plasma membrane (PM) contact sites/junctions play important roles in cell physiology including signal transduction, ion and lipid transfer, and membrane dynamics. However, little is known about the dynamic regulation and functional roles of ER-PM junctions in neurons. Using a split green fluorescent protein-based membrane contact probe, we find that the density of ER-PM contact sites changes dynamically in the dendrites of hippocampal neurons undergoing long-term synaptic potentiation (LTP). We show that the Ca2±-sensing membrane tethering protein Extended Synaptotagmin 1 (E-Syt1) mediates the formation of ER-PM contact sites during LTP. We also show that E-Syt1 is required for neuronal activity-dependent surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptors. These findings implicate ER-PM junctions in the regulation of neurotransmitter receptor trafficking and synaptic plasticity.
Collapse
Affiliation(s)
- Ranran Mao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chunfang Tong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Guo Z, Jiang CH, Tong C, Yang Y, Wang Z, Lam SM, Wang D, Li R, Shui G, Shi YS, Liu JJ. Activity-dependent PI4P synthesis by PI4KIIIα regulates long-term synaptic potentiation. Cell Rep 2022; 38:110452. [PMID: 35235793 DOI: 10.1016/j.celrep.2022.110452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/30/2021] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a low abundant phospholipid with important roles in lipid transport and membrane trafficking. However, little is known of its metabolism and function in neurons. Here, we investigate its subcellular distribution and functional roles in dendrites of rodent hippocampal neurons during resting state and long-term synaptic potentiation (LTP). We show that neural activity causes dynamic reversible changes in PI4P metabolism in dendrites. Upon LTP induction, PI4KIIIα, a type III phosphatidylinositol 4-kinase, localizes to the dendritic plasma membrane (PM) in a calcium-dependent manner and causes substantial increase in the levels of PI4P. Acute inhibition of PI4KIIIα activity abolishes trafficking of the AMPA-type glutamate receptor to the PM during LTP induction, and silencing of PI4KIIIα expression in the hippocampal CA1 region causes severe impairment of LTP and long-term memory. Collectively, our results identify an essential role for PI4KIIIα-dependent PI4P synthesis in synaptic plasticity of central nervous system neurons.
Collapse
Affiliation(s)
- Zhenzhen Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao-Hua Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Chunfang Tong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zehua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dou Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
7
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
8
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Tang XH, Zhang GF, Xu N, Duan GF, Jia M, Liu R, Zhou ZQ, Yang JJ. Extrasynaptic CaMKIIα is involved in the antidepressant effects of ketamine by downregulating GluN2B receptors in an LPS-induced depression model. J Neuroinflammation 2020; 17:181. [PMID: 32522211 PMCID: PMC7285526 DOI: 10.1186/s12974-020-01843-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND A subanesthetic dose of ketamine provides rapid and effective antidepressant effects, but the molecular mechanism remains elusive. It has been reported that overactivation of extrasynaptic GluN2B receptors is associated with the antidepressant effects of ketamine and the interaction between GluN2B and calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) is important for GluN2B localization and activity. Here, we tested whether changes of CaMKIIα and GluN2B are involved in the antidepressant effects of ketamine. METHODS Lipopolysaccharide (LPS) was injected intraperitoneally (i.p.) into male C57BL/6 mice. For the interventional study, mice were administrated with ketamine (10 mg/kg, i.p.) or a CaMKIIα inhibitor KN93. Behavioral alterations were evaluated by open-field, novelty-suppressed feeding, and forced-swimming tests. Physiological functions were evaluated by the body weight and fur coat state of mice. The levels of p-CaMKIIα, CaMKIIα, p-GluN2B, GluN2B, p-CREB, CREB, BDNF, GluR1, and GluR2 in the hippocampus were detected by western blotting. The interaction between GluN2B and CaMKIIα was studied using immunoprecipitation assay and small interfering RNA (siRNA) assays. The colocalizations of GluN2B/PSD95 and p-GluN2B/PSD95 were detected by immunofluorescence. The long-term potentiation (LTP) in SC-CA1 of the hippocampus was detected by electrophysiology. RESULTS LPS injection induced depression-like behaviors, which were accompanied by significant increases in extrasynaptic p-CaMKIIα expression, extrasynaptic GluN2B localization, and phosphorylation and decreases in p-CREB, BDNF, and GluR1 expressions and LTP impairment. These changes were prevented by ketamine administration. Immunoprecipitation assay revealed that LPS induced an increase in the p-CaMKIIα-GluN2B interaction, which was attenuated by ketamine administration. SiRNA assay revealed that CaMKIIα knockdown reduced the level and number of clusters of GluN2B in the cultured hippocampal neurons. KN93 administration also reduced extrasynaptic p-CaMKIIα expression, extrasynaptic GluN2B localization, and phosphorylation and exerted antidepressant effects. CONCLUSION These results indicate that extrasynaptic CaMKIIα plays a key role in the cellular mechanism of ketamine's antidepressant effect and it is related to the downregulation of extrasynaptic GluN2B localization and phosphorylation.
Collapse
Affiliation(s)
- Xiao-Hui Tang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ning Xu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gui-Fang Duan
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Ru Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Ponzi E, Gentile M, Agolini E, Matera E, Palumbi R, Buonadonna AL, Peschechera A, Gabellone A, Antonucci MF, Margari L. 14q12q13.2 microdeletion syndrome: Clinical characterization of a new patient, review of the literature, and further evidence of a candidate region for CNS anomalies. Mol Genet Genomic Med 2020; 8:e1289. [PMID: 32415730 PMCID: PMC7336736 DOI: 10.1002/mgg3.1289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chromosome 14q11‐q22 deletion syndrome (OMIM 613457) is a rare contiguous gene syndrome. Two regions of overlap (RO) of the 14q12q21.1 deletion have been identified: a proximal region (RO1), including FOXG1(*164874), NKX2‐1(*600635), and PAX9(*167416) and a distal region (RO2), including NKX2‐1 and PAX9. We report a 6‐year‐old boy with mild dysmorphic facial features, global developmental delay, and hypoplasia of the corpus callosum. Methods and Results Array‐CGH analysis revealed a 14q12q13.2 microdeletion. We compared the phenotype of our patient with previously published cases in order to establish a genotype–phenotype correlation. Conclusion The study hypothesizes the presence of a new RO, not including the previously reported candidate genes, and attempt to define the associated molecular and psychomotor/neurobehavioral phenotype. This region encompasses the distal breakpoint of RO1 and the proximal breakpoint of RO2, and seems to be associated with intellectual disability (ID), hypotonia, epilepsy, and corpus callosum abnormalities. Although more cases are needed, we speculated on SNX6(*606098) and BAZ1A(*605680) as potential candidate genes associated with the corpus callosum abnormalities.
Collapse
Affiliation(s)
- Emanuela Ponzi
- Department of Medical Genetics, Di Venere Hospital, ASL BARI, Bari, Italy
| | - Mattia Gentile
- Department of Medical Genetics, Di Venere Hospital, ASL BARI, Bari, Italy
| | - Emanuele Agolini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Emilia Matera
- Basic Medical Sciences, Neuroscience and Sense Organs Department, University of the Study of Bari "Aldo Moro", Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Roberto Palumbi
- Basic Medical Sciences, Neuroscience and Sense Organs Department, University of the Study of Bari "Aldo Moro", Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | | | - Antonia Peschechera
- Basic Medical Sciences, Neuroscience and Sense Organs Department, University of the Study of Bari "Aldo Moro", Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Alessandra Gabellone
- Basic Medical Sciences, Neuroscience and Sense Organs Department, University of the Study of Bari "Aldo Moro", Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | | | - Lucia Margari
- Basic Medical Sciences, Neuroscience and Sense Organs Department, University of the Study of Bari "Aldo Moro", Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
11
|
Lin L, Lyu Q, Kwan PY, Zhao J, Fan R, Chai A, Lai CSW, Chan YS, Shen X, Lai KO. The epilepsy and intellectual disability-associated protein TBC1D24 regulates the maintenance of excitatory synapses and animal behaviors. PLoS Genet 2020; 16:e1008587. [PMID: 32004315 PMCID: PMC7015432 DOI: 10.1371/journal.pgen.1008587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 02/12/2020] [Accepted: 12/29/2019] [Indexed: 12/27/2022] Open
Abstract
Perturbation of synapse development underlies many inherited neurodevelopmental disorders including intellectual disability (ID). Diverse mutations on the human TBC1D24 gene are strongly associated with epilepsy and ID. However, the physiological function of TBC1D24 in the brain is not well understood, and there is a lack of genetic mouse model that mimics TBC1D24 loss-of-function for the study of animal behaviors. Here we report that TBC1D24 is present at the postsynaptic sites of excitatory synapses, where it is required for the maintenance of dendritic spines through inhibition of the small GTPase ARF6. Mice subjected to viral-mediated knockdown of TBC1D24 in the adult hippocampus display dendritic spine loss, deficits in contextual fear memory, as well as abnormal behaviors including hyperactivity and increased anxiety. Interestingly, we show that the protein stability of TBC1D24 is diminished by the disease-associated missense mutation that leads to F251L amino acid substitution. We further generate the F251L knock-in mice, and the homozygous mutants show increased neuronal excitability, spontaneous seizure and pre-mature death. Moreover, the heterozygous F251L knock-in mice survive into adulthood but display dendritic spine defects and impaired memory. Our findings therefore uncover a previously uncharacterized postsynaptic function of TBC1D24, and suggest that impaired dendritic spine maintenance contributes to the pathophysiology of individuals harboring TBC1D24 gene mutations. The F251L knock-in mice represent a useful animal model for investigation of the mechanistic link between TBC1D24 loss-of-function and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lianfeng Lin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Quanwei Lyu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Pui-Yi Kwan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Junjun Zhao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Ruolin Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Anping Chai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Xuting Shen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Kwok-On Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Pang S, Li Y, Chen W, Li Y, Yang M, Zhao L, Shen Q, Cheng N, Wang Y, Lin X, Ma J, Wu H, Zhu G. Pb exposure reduces the expression of SNX6 and Homer1 in offspring rats and PC12 cells. Toxicology 2019; 416:23-29. [PMID: 30738087 DOI: 10.1016/j.tox.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 11/25/2022]
Abstract
Lead (Pb) is a widespread environmental heavy metal toxicant and chronic Pb exposure can have irreversible effects on memory and cognitive function, which is closely related to dendritic spines. Studies have shown that SNX6 and Homer1 can regulate the growth of dendritic spines. We aimed to investigate the effect of Pb exposure on the dendritic spines in hippocampus, the expression of SNX6 and Homer1 in rats and PC12 cells. The animals were randomly divided to three groups: control group, low lead group and high lead group. PC12 cells were divided into 3 groups: 0 μM, 1 μM and 100 μM Pb acetate. The results showed that the Pb levels in blood and hippocampus of all exposure groups were significantly higher than that of the control group. The morphology of dendritic spines in hippocampus after Pb treatment was changed and the density of dendritic spines was reduced. The expression of SNX6 and Homer1 was decreased in Pb exposed groups compared with the control group. Furthermore, up-regulation of SNX6 expression could reverse the down-regulation of Pb exposure on Homer1. These results indicate that Pb exposure can reduce the expression of SNX6 and lead to a decrease in Homer1 expression, which affects the changes in dendritic spines causing learning and memory impairment.
Collapse
Affiliation(s)
- Shimin Pang
- Second Clinical Collage, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Yanshu Li
- Jiangxi Supervision and Inspection Center for Medical Devices, Nanchang 330029, PR China
| | - Wei Chen
- Laboratory Animal Science Center, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Yaobin Li
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Meiyuan Yang
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Lijuan Zhao
- Second Clinical Collage, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Qiwei Shen
- Second Clinical Collage, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Nuo Cheng
- Queen Marry Collage, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Ying Wang
- Queen Marry Collage, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Xuequn Lin
- Faculty of Nursing, Nanchang Insitude of technology, Nanchang 330006, PR China
| | - Jianmin Ma
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Honghao Wu
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Gaochun Zhu
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China.
| |
Collapse
|
13
|
Brodin L, Shupliakov O. Retromer in Synaptic Function and Pathology. Front Synaptic Neurosci 2018; 10:37. [PMID: 30405388 PMCID: PMC6207580 DOI: 10.3389/fnsyn.2018.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
The retromer complex mediates export of select transmembrane proteins from endosomes to the trans-Golgi network (TGN) or to the plasma membrane. Dysfunction of retromer has been linked with slowly progressing neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease (AD and PD). As these disorders affect synapses it is of key importance to clarify the function of retromer-dependent protein trafficking pathways in pre- and postsynaptic compartments. Here we discuss recent insights into the roles of retromer in the trafficking of synaptic vesicle proteins, neurotransmitter receptors and other synaptic proteins. We also consider evidence that implies synapses as sites of early pathology in neurodegenerative disorders, pointing to a possible role of synaptic retromer dysfunction in the initiation of disease.
Collapse
Affiliation(s)
- Lennart Brodin
- Department of Neuroscience, Karolinska Institutet (KI), Stockholm, Sweden
| | - Oleg Shupliakov
- Department of Neuroscience, Karolinska Institutet (KI), Stockholm, Sweden.,Institute of Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia
| |
Collapse
|
14
|
Analysis of new therapeutic strategies for diabetes mellitus based on traditional Chinese medicine “xiaoke” formulae. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Yong X, Hu W, Zhou X, Wang J, Burstein E, Jia D. Expression and purification of the SNX1/SNX6 complex. Protein Expr Purif 2018; 151:93-98. [PMID: 29908913 DOI: 10.1016/j.pep.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022]
Abstract
The sorting nexin (SNX) family proteins play an essential role in vesicular transport, cell signaling, and membrane remodeling. The SNX members SNX1/2 and SNX5/6 form dimers, and mediate endosome-to-trans Golgi network (TGN) transport through coordinating cargo selection and membrane remodeling. It is well-known how a SNX-BAR protein forms a homodimer; however, it is less clear how a heterodimer is formed. Here a detailed expression and purification protocol of the SNX1/SNX6 complex, from both worm and human, is described. Keys to the successful protein production include co-expression of both genes, and inclusion of glycerol in the protein buffer. Solution studies suggest that SNX1 and SNX6 form a 1:1 heterodimer. The production of a large amount, high quality of the SNX1/SNX6 complex provides a basis for future biochemical and structural studies of the complex, and in vitro reconstitution of SNX1/SNX6-mediated transport.
Collapse
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Drug Clinical Trial Institute, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenfeng Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Drug Clinical Trial Institute, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xue Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Drug Clinical Trial Institute, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Drug Clinical Trial Institute, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Drug Clinical Trial Institute, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Yang Y, Chen J, Guo Z, Deng S, Du X, Zhu S, Ye C, Shi YS, Liu JJ. Endophilin A1 Promotes Actin Polymerization in Dendritic Spines Required for Synaptic Potentiation. Front Mol Neurosci 2018; 11:177. [PMID: 29892212 PMCID: PMC5985315 DOI: 10.3389/fnmol.2018.00177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/09/2018] [Indexed: 12/04/2022] Open
Abstract
Endophilin A1 is a member of the N-BAR domain-containing endophilin A protein family that is involved in membrane dynamics and trafficking. At the presynaptic terminal, endophilin As participate in synaptic vesicle recycling and autophagosome formation. By gene knockout studies, here we report that postsynaptic endophilin A1 functions in synaptic plasticity. Ablation of endophilin A1 in the hippocampal CA1 region of mature mouse brain impairs long-term spatial and contextual fear memory. Its loss in CA1 neurons postsynaptic of the Schaffer collateral pathway causes impairment in their AMPA-type glutamate receptor-mediated synaptic transmission and long-term potentiation. In KO neurons, defects in the structural and functional plasticity of dendritic spines can be rescued by overexpression of endophilin A1 but not A2 or A3. Further, endophilin A1 promotes actin polymerization in dendritic spines during synaptic potentiation. These findings reveal a physiological role of endophilin A1 distinct from that of other endophilin As at the postsynaptic site.
Collapse
Affiliation(s)
- Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zhenzhen Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Shikun Deng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoxia Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chang Ye
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yun S Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Mechanism of inhibition of retromer transport by the bacterial effector RidL. Proc Natl Acad Sci U S A 2018; 115:E1446-E1454. [PMID: 29386389 DOI: 10.1073/pnas.1717383115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retrograde vesicle trafficking pathways are responsible for returning membrane-associated components from endosomes to the Golgi apparatus and the endoplasmic reticulum (ER), and they are critical for maintaining organelle identity, lipid homeostasis, and many other cellular functions. The retrograde transport pathway has emerged as an important target for intravacuolar bacterial pathogens. The opportunistic pathogen Legionella pneumophila exploits both the secretory and recycling branches of the vesicle transport pathway for intracellular bacterial proliferation. Its Dot/Icm effector RidL inhibits the activity of the retromer by directly engaging retromer components. However, the mechanism underlying such inhibition remains unknown. Here we present the crystal structure of RidL in complex with VPS29, a subunit of the retromer. Our results demonstrate that RidL binds to a highly conserved hydrophobic pocket of VPS29. This interaction is critical for endosomal recruitment of RidL and for its inhibitory effects. RidL inhibits retromer activity by direct competition, in which it occupies the VPS29-binding site of the essential retromer regulator TBC1d5. The mechanism of retromer inhibition by RidL reveals a hotspot on VPS29 critical for recognition by its regulators that is also exploited by pathogens, and provides a structural basis for the development of small molecule inhibitors against the retromer.
Collapse
|
18
|
Abstract
The phox-homology (PX) domain is a phosphoinositide-binding domain conserved in all eukaryotes and present in 49 human proteins. Proteins containing PX domains, many of which are also known as sorting nexins (SNXs), have a large variety of functions in membrane trafficking, cell signaling, and lipid metabolism in association with membranes of the secretory and endocytic system. In this review we discuss the structural basis for both canonical lipid interactions with the endosome-enriched lipid phosphatidylinositol-3-phosphate (PtdIns3P) as well as non-canonical lipids that promote membrane association. We also describe recent advances in defining the diverse mechanisms by which PX domains interact with other proteins including the retromer trafficking complex and proteins secreted by bacterial pathogens. Like other membrane interacting domains, the attachment of PX domain proteins to specific membranes is often facilitated by additional interactions that contribute to binding avidity, and we discuss this coincidence detection for several known examples.
Collapse
|
19
|
Sun Q, Yong X, Sun X, Yang F, Dai Z, Gong Y, Zhou L, Zhang X, Niu D, Dai L, Liu JJ, Jia D. Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE. Signal Transduct Target Ther 2017; 2:17030. [PMID: 29263922 PMCID: PMC5661634 DOI: 10.1038/sigtrans.2017.30] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/27/2017] [Indexed: 02/05/2023] Open
Abstract
The endosomal trafficking pathways are essential for many cellular activities. They are also important targets by many intracellular pathogens. Key regulators of the endosomal trafficking include the retromer complex and sorting nexins (SNXs). Chlamydia trachomatis effector protein IncE directly targets the retromer components SNX5 and SNX6 and suppresses retromer-mediated transport, but the exact mechanism has remained unclear. We present the crystal structure of the PX domain of SNX5 in complex with IncE, showing that IncE binds to a highly conserved hydrophobic groove of SNX5. The unique helical hairpin of SNX5/6 is essential for binding, explaining the specificity of SNX5/6 for IncE. The SNX5/6–IncE interaction is required for cellular localization of IncE and its inhibitory function. Mechanistically, IncE inhibits the association of CI-MPR cargo with retromer-containing endosomal subdomains. Our study provides new insights into the regulation of retromer-mediated transport and illustrates the intricate competition between host and pathogens in controlling cellular trafficking.
Collapse
Affiliation(s)
- Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xin Yong
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Sun
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhonghua Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanqiu Gong
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xia Zhang
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Dawen Niu
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lunzhi Dai
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Da Jia
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Liu JJ. Regulation of dynein-dynactin-driven vesicular transport. Traffic 2017; 18:336-347. [PMID: 28248450 DOI: 10.1111/tra.12475] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
Most of the long-range intracellular movements of vesicles, organelles and other cargoes are driven by microtubule (MT)-based molecular motors. Cytoplasmic dynein, a multisubunit protein complex, with the aid of dynactin, drives transport of a wide variety of cargoes towards the minus end of MTs. In this article, I review our current understanding of the mechanisms underlying spatiotemporal regulation of dynein-dynactin-driven vesicular transport with a special emphasis on the many steps of directional movement along MT tracks. These include the recruitment of dynein to MT plus ends, the activation and processivity of dynein, and cargo recognition and release by the motor complex at the target membrane. Furthermore, I summarize the most recent findings about the fine control mechanisms for intracellular transport via the interaction between the dynein-dynactin motor complex and its vesicular cargoes.
Collapse
Affiliation(s)
- Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|