1
|
Nicastro R, Péli-Gulli MP, Caligaris M, Jaquenoud M, Dokládal L, Alba J, Tripodi F, Pillet B, Brunner M, Stumpe M, Muneshige K, Hatakeyama R, Dengjel J, De Virgilio C. TORC1 autonomously controls its spatial partitioning via the Rag GTPase tether Tco89. Cell Rep 2025; 44:115683. [PMID: 40359108 DOI: 10.1016/j.celrep.2025.115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/17/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The eukaryotic target of rapamycin complex 1 (TORC1) kinase is a homeostatic regulator of growth, integrating nutritional cues at the endolysosomal compartment. Amino acids activate mammalian TORC1 (mTORC1) through the Rag GTPases that recruit it to lysosomes via a short domain within the mTORC1 subunit Raptor. Intriguingly, this "Raptor claw" domain is absent in Kog1, the Raptor ortholog in yeast. Instead, as we show here, yeast utilizes the fungal-specific Tco89 to tether TORC1 to active Rag GTPases. This interaction enables TORC1 to precisely calibrate the activity of the S6K1-related effector kinase Sch9 in response to amino acid availability. TORC1 stabilizes Tco89 by phosphorylation, and its inactivation causes swift Tco89 proteolysis, provoking a redistribution of TORC1 from the vacuole to signaling endosomes and its spatial separation from Sch9. Thus, TORC1 not only operates in spatially distinct subcellular pools but also controls its own quantitative distribution between these pools to economize energy resources under fluctuating nutrient conditions.
Collapse
Affiliation(s)
- Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Marco Caligaris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Malika Jaquenoud
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ladislav Dokládal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Josephine Alba
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Melanie Brunner
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kenji Muneshige
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Riko Hatakeyama
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
2
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Garg M, Waldor MK. Inducible transposon mutagenesis identifies bacterial fitness determinants during infection in mice. Nat Microbiol 2025; 10:1171-1183. [PMID: 40148565 PMCID: PMC12055562 DOI: 10.1038/s41564-025-01975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale forward genetics in bacteria. However, inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks can limit its effectiveness. Here we have developed 'InducTn-seq', where an arabinose-inducible Tn5 transposase enables temporal control of mini-Tn5 transposition. InducTn-seq generated up to 1.2 million transposon mutants from a single colony of enterotoxigenic Escherichia coli, Salmonella typhimurium, Shigella flexneri and Citrobacter rodentium. This mutant diversity enabled more sensitive detection of subtle fitness defects and measurement of quantitative fitness effects for essential and non-essential genes. Applying InducTn-seq to C. rodentium in a mouse model of infectious colitis bypassed a highly restrictive host bottleneck, generating a diverse population of >5 × 105 unique transposon mutants compared to 10-102 recovered by traditional Tn-seq. This in vivo screen revealed that the C. rodentium type I-E CRISPR system is required to suppress a toxin otherwise activated during gut colonization. Our findings highlight the potential of InducTn-seq for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W Basta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J Sullivan
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mehek Garg
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
3
|
Peng B, Wei S. Synthetic Engineering of Microbes for Production of Terpenoid Food Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10052-10068. [PMID: 40254844 DOI: 10.1021/acs.jafc.5c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Terpenoids are a class of chemicals comprising many food ingredient chemicals. Synthetic biology and metabolic engineering have been performed to produce microbial cell factories for their production. For improved production of various terpenoid ingredients, heterologous synthetic pathways can be optimized at multiple dimensions. Optimizing chassis precursor supply and overcoming the host's inherent metabolic rigidity are crucial for enhancing overall efficiency of heterologous terpenoid production. Integrating synthetic regulatory circuits can facilitate the staged programming and precise optimization of heterologous and endogenous metabolism. Engineering long-term genetic and metabolic stability is essential for the successful scale-up of commercial production. Maximizing efficiency in food terpenoid production will rely on interdisciplinary synthetic and engineering biology tools to advance state-of-the-art capabilities for the streamlined design and construction of complex genotypes in microbial chassis.
Collapse
Affiliation(s)
- Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Oberstaller J, Xu S, Naskar D, Zhang M, Wang C, Gibbons J, Pires CV, Mayho M, Otto TD, Rayner JC, Adams JH. Supersaturation mutagenesis reveals adaptive rewiring of essential genes among malaria parasites. Science 2025; 387:eadq7347. [PMID: 39913589 DOI: 10.1126/science.adq7347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/05/2024] [Indexed: 03/27/2025]
Abstract
Malaria parasites are highly divergent from model eukaryotes. Large-scale genome engineering methods effective in model organisms are frequently inapplicable, and systematic studies of gene function are few. We generated more than 175,000 transposon insertions in the Plasmodium knowlesi genome, averaging an insertion every 138 base pairs, and used this "supersaturation" mutagenesis to score essentiality for 98% of genes. The density of mutations allowed mapping of putative essential domains within genes, providing a completely new level of genome annotation for any Plasmodium species. Although gene essentiality was largely conserved across P. knowlesi, Plasmodium falciparum, and rodent malaria model Plasmodium berghei, a large number of shared genes are differentially essential, revealing species-specific adaptations. Our results indicated that Plasmodium essential gene evolution was conditionally linked to adaptive rewiring of metabolic networks for different hosts.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Shulin Xu
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Deboki Naskar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Min Zhang
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Chengqi Wang
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Justin Gibbons
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Camilla Valente Pires
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Matthew Mayho
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Thomas D Otto
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Laboratory of Pathogens and Host Immunity, Centre National de la Recherche Scientifique, and Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John H Adams
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Kingma E, Dolsma F, Iñigo de la Cruz L, Laan L. Saturated Transposon Analysis in Yeast as a one-step method to quantify the fitness effects of gene disruptions on a genome-wide scale. PLoS One 2025; 20:e0312437. [PMID: 39913404 PMCID: PMC11801604 DOI: 10.1371/journal.pone.0312437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/07/2024] [Indexed: 02/09/2025] Open
Abstract
Transposon insertion site sequencing (TIS) is a powerful tool that has significantly advanced our knowledge of functional genomics. For example, TIS has been used to identify essential genes of Saccharomyces cerevisiae, screen for antibiotic resistance genes in Klebsiella pneumoniae and determine the set of genes required for virulence of Mycobacterium tuberculosis. While providing valuable insights, these applications of TIS focus on (conditional) gene essentiality and neglect possibly interesting but subtle differences in the importance of genes for fitness. Notably, it has been demonstrated that data obtained from TIS experiments can be used for fitness quantification and the construction of genetic interaction maps, but this potential is only sporadically exploited. Here, we present a method to quantify the fitness of gene disruption mutants using data obtained from a TIS screen developed for the yeast Saccharomyces cerevisiae called SATAY. We show that the mean read count per transposon insertion site provides a metric for fitness that is robust across biological and technical replicate experiments. Importantly, the ability to resolve differences between gene disruption mutants with low fitness depends crucially on the inclusion of insertion sites that are not observed in the sequencing data to estimate the mean. While our method provides reproducible results between replicate SATAY datasets, the obtained fitness distribution differs substantially from those obtained using other techniques. It is currently unclear whether these inconsistencies are due to biological or technical differences between the methods. We end with suggestions for modifications of the SATAY procedure that could improve the resolution of the fitness estimates. Our analysis indicates that increasing the sequencing depth does very little to reduce the uncertainty in the estimates, while replacing the PCR amplification with methods that avoid or reduce the number of amplification cycles will likely be most effective in reducing noise.
Collapse
Affiliation(s)
- Enzo Kingma
- Department of Bionanoscience, Kavli Institute, Delft University of Technology, Delft, Zuid-Holland, The Netherlands
| | - Floor Dolsma
- Department of Bionanoscience, Kavli Institute, Delft University of Technology, Delft, Zuid-Holland, The Netherlands
| | - Leila Iñigo de la Cruz
- Department of Bionanoscience, Kavli Institute, Delft University of Technology, Delft, Zuid-Holland, The Netherlands
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute, Delft University of Technology, Delft, Zuid-Holland, The Netherlands
| |
Collapse
|
6
|
Robertson NR, Lee S, Tafrishi A, Wheeldon I. Advances in CRISPR-enabled genome-wide screens in yeast. FEMS Yeast Res 2025; 25:foaf013. [PMID: 40113237 PMCID: PMC11995697 DOI: 10.1093/femsyr/foaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas genome-wide screens are powerful tools for unraveling genotype-phenotype relationships, enabling precise manipulation of genes to study and engineer industrially useful traits. Traditional genetic methods, such as random mutagenesis or RNA interference, often lack the specificity and scalability required for large-scale functional genomic screens. CRISPR systems overcome these limitations by offering precision gene targeting and manipulation, allowing for high-throughput investigations into gene function and interactions. Recent work has shown that CRISPR genome editing is widely adaptable to several yeast species, many of which have natural traits suited for industrial biotechnology. In this review, we discuss recent advances in yeast functional genomics, emphasizing advancements made with CRISPR tools. We discuss how the development and optimization of CRISPR genome-wide screens have enabled a host-first approach to metabolic engineering, which takes advantage of the natural traits of nonconventional yeast-fast growth rates, high stress tolerance, and novel metabolism-to create new production hosts. Lastly, we discuss future directions, including automation and biosensor-driven screens, to enhance high-throughput CRISPR-enabled yeast engineering.
Collapse
Affiliation(s)
- Nicholas R Robertson
- Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Sangcheon Lee
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Aida Tafrishi
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States
- Center for Industrial Biotechnology, University of California, Riverside, Riverside, CA 92521, United States
| |
Collapse
|
7
|
Morozumi Y, Hayashi Y, Chu CM, Sofyantoro F, Akikusa Y, Fukuda T, Shiozaki K. Fission yeast Pib2 localizes to vacuolar membranes and regulates TOR complex 1 through evolutionarily conserved domains. FEBS Lett 2024; 598:2886-2896. [PMID: 39010328 DOI: 10.1002/1873-3468.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
TOR complex 1 (TORC1) is a multi-protein kinase complex that coordinates cellular growth with environmental cues. Recent studies have identified Pib2 as a critical activator of TORC1 in budding yeast. Here, we show that loss of Pib2 causes severe growth defects in fission yeast cells, particularly when basal TORC1 activity is diminished by hypomorphic mutations in tor2, the gene encoding the catalytic subunit of TORC1. Consistently, TORC1 activity is significantly compromised in the tor2 hypomorphic mutants lacking Pib2. Moreover, as in budding yeast, fission yeast Pib2 localizes to vacuolar membranes via its FYVE domain, with its tail motif indispensable for TORC1 activation. These results strongly suggest that Pib2-mediated positive regulation of TORC1 is evolutionarily conserved between the two yeast species.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yumi Hayashi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Cuong Minh Chu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Billmyre RB. mSphere of Influence: When a sequencer is more than a sequencer. mSphere 2024; 9:e0043324. [PMID: 39254324 PMCID: PMC11520298 DOI: 10.1128/msphere.00433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Blake Billmyre uses functional genomics to help understand the biology of fungal pathogens, with an emphasis on evolution of virulence relevant traits and drug resistance. In this mSphere of Influence article, he reflects on how two papers (Liachko et al., "High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast," Genome Research, 2013, and Guo et al., "Integration profiling of gene function with dense maps of transposon integration," Genetics, 2013) impacted his research trajectory and goals. These articles show the power of creative use of sequencing as a tool to drive understanding of fundamental biology.
Collapse
Affiliation(s)
- R. Blake Billmyre
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
9
|
Fernández-García G, Valdés-Chiara P, Villazán-Gamonal P, Alonso-Fernández S, Manteca A. Essential Genes Discovery in Microorganisms by Transposon-Directed Sequencing (Tn-Seq): Experimental Approaches, Major Goals, and Future Perspectives. Int J Mol Sci 2024; 25:11298. [PMID: 39457080 PMCID: PMC11508858 DOI: 10.3390/ijms252011298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Essential genes are crucial for microbial viability, playing key roles in both the primary and secondary metabolism. Since mutations in these genes can threaten organism viability, identifying them is challenging. Conditionally essential genes are required only under specific conditions and are important for functions such as virulence, immunity, stress survival, and antibiotic resistance. Transposon-directed sequencing (Tn-Seq) has emerged as a powerful method for identifying both essential and conditionally essential genes. In this review, we explored Tn-Seq workflows, focusing on eubacterial species and some yeast species. A comparison of 14 eubacteria species revealed 133 conserved essential genes, including those involved in cell division (e.g., ftsA, ftsZ), DNA replication (e.g., dnaA, dnaE), ribosomal function, cell wall synthesis (e.g., murB, murC), and amino acid synthesis (e.g., alaS, argS). Many other essential genes lack clear orthologues across different microorganisms, making them specific to each organism studied. Conditionally essential genes were identified in 18 bacterial species grown under various conditions, but their conservation was low, reflecting dependence on specific environments and microorganisms. Advances in Tn-Seq are expected to reveal more essential genes in the near future, deepening our understanding of microbial biology and enhancing our ability to manipulate microbial growth, as well as both the primary and secondary metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Angel Manteca
- Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
10
|
Chen J, Nilsen ED, Chitboonthavisuk C, Mo CY, Raman S. Systematic, high-throughput characterization of bacteriophage gene essentiality on diverse hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617714. [PMID: 39416107 PMCID: PMC11482910 DOI: 10.1101/2024.10.10.617714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Understanding core and conditional gene essentiality is crucial for decoding genotype-phenotype relationships in organisms. We present PhageMaP, a high-throughput method to create genome-scale phage knockout libraries for systematically assessing gene essentiality in bacteriophages. Using PhageMaP, we generate gene essentiality maps across hundreds of genes in the model phage T7 and the non-model phage Bas63, on diverse hosts. These maps provide fundamental insights into genome organization, gene function, and host-specific conditional essentiality. By applying PhageMaP to a collection of anti-phage defense systems, we uncover phage genes that either inhibit or activate eight defenses and offer novel mechanistic hypotheses. Furthermore, we engineer synthetic phages with enhanced infectivity by modular transfer of a PhageMaP-discovered defense inhibitor from Bas63 to T7. PhageMaP is generalizable, as it leverages homologous recombination, a universal cellular process, for locus-specific barcoding. This versatile tool advances bacteriophage functional genomics and accelerates rational phage design for therapy.
Collapse
Affiliation(s)
- Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erick D Nilsen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Charlie Y Mo
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Tanigawa M, Maeda T, Isono E. FYVE1/FREE1 is involved in glutamine-responsive TORC1 activation in plants. iScience 2024; 27:110814. [PMID: 39297172 PMCID: PMC11409180 DOI: 10.1016/j.isci.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/06/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Target of rapamycin complex 1 (TORC1) integrates nutrient availability, growth factors, and stress signals to regulate cellular metabolism according to its environment. Similar to mammals, amino acids have been shown to activate TORC1 in plants. However, as the Rag complex that controls amino acid-responsive TORC1 activation mechanisms in many eukaryotes is not conserved in plants, the amino acid-sensing mechanisms upstream of TORC1 in plants remain unknown. In this study, we report that Arabidopsis FYVE1/FREE1 is involved in glutamine-induced TORC1 activation, independent of its previously reported function in ESCRT-dependent processes. FYVE1/FREE1 has a domain structure similar to that of the yeast glutamine sensor Pib2 that directly activates TORC1. Similar to Pib2, FYVE1/FREE1 interacts with TORC1 in response to glutamine. Furthermore, overexpression of a FYVE1/FREE1 variant lacking the presumptive TORC1 activation motif hindered the glutamine-responsive activation of TORC1. Overall, these observations suggest that FYVE1/FREE1 acts as an intracellular amino acid sensor that triggers TORC1 activation in plants.
Collapse
Affiliation(s)
- Mirai Tanigawa
- Departments of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3125, Japan
- Department of Biology, Faculty of Sciences, University of Konstanz, 78457 Konstanz, Germany
| | - Tatsuya Maeda
- Departments of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3125, Japan
| | - Erika Isono
- Department of Biology, Faculty of Sciences, University of Konstanz, 78457 Konstanz, Germany
- Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
| |
Collapse
|
12
|
Noireterre A, Soudet J, Bagdiul I, Stutz F. The cullin Rtt101 promotes ubiquitin-dependent DNA-protein crosslink repair across the cell cycle. Nucleic Acids Res 2024; 52:9654-9670. [PMID: 39077933 PMCID: PMC11381328 DOI: 10.1093/nar/gkae658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
DNA-protein crosslinks (DPCs) challenge faithful DNA replication and smooth passage of genomic information. Our study unveils the cullin E3 ubiquitin ligase Rtt101 as a DPC repair factor. Genetic analyses demonstrate that Rtt101 is essential for resistance to a wide range of DPC types including topoisomerase 1 crosslinks, in the same pathway as the ubiquitin-dependent aspartic protease Ddi1. Using an in vivo inducible Top1-mimicking DPC system, we reveal the significant impact of Rtt101 ubiquitination on DPC removal across different cell cycle phases. High-throughput methods coupled with next-generation sequencing specifically highlight the association of Rtt101 with replisomes as well as colocalization with DPCs. Our findings establish Rtt101 as a main contributor to DPC repair throughout the yeast cell cycle.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Ivona Bagdiul
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
13
|
Nickels TJ, Gale AN, Harrington AA, Timp W, Cunningham KW. Transposon-sequencing (Tn-seq) of the Candida glabrata reference strain CBS138 reveals epigenetic plasticity, structural variation, and intrinsic mechanisms of resistance to micafungin. G3 (BETHESDA, MD.) 2024; 14:jkae173. [PMID: 39047065 PMCID: PMC11373651 DOI: 10.1093/g3journal/jkae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Candida glabrata (also called Nakaseomyces glabratus) is an opportunistic pathogen that can resist common antifungals and rapidly acquire multidrug resistance. A large amount of genetic variation exists between isolates, which complicates generalizations. Portable transposon-sequencing (Tn-seq) methods can efficiently provide genome-wide information on strain differences and genetic mechanisms. Using the Hermes transposon, the CBS138 reference strain and a commonly studied derivative termed 2001 were subjected to Tn-seq in control conditions and after exposure to varying doses of the clinical antifungal micafungin. The approach revealed large differences between these strains, including a 131-kb tandem duplication and a variety of fitness differences. Additionally, both strains exhibited up to 1,000-fold increased transposon accessibility in subtelomeric regions relative to the BG2 strain, indicative of open subtelomeric chromatin in these isolates and large epigenetic variation within the species. Unexpectedly, the Pdr1 transcription factor conferred resistance to micafungin through targets other than CDR1. Other micafungin resistance pathways were also revealed including mannosyltransferase activity and biosynthesis of the lipid precursor sphingosine, the inhibition of which by SDZ 90-215 and myriocin enhanced the potency of micafungin in vitro. These findings provide insights into the complexity of the C. glabrata species as well as strategies for improving antifungal efficacy.
Collapse
Affiliation(s)
- Timothy J Nickels
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew N Gale
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Tafrishi A, Trivedi V, Xing Z, Li M, Mewalal R, Cutler SR, Blaby I, Wheeldon I. Functional genomic screening in Komagataella phaffii enabled by high-activity CRISPR-Cas9 library. Metab Eng 2024; 85:73-83. [PMID: 39019250 DOI: 10.1016/j.ymben.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
CRISPR-based high-throughput genome-wide loss-of-function screens are a valuable approach to functional genetics and strain engineering. The yeast Komagataella phaffii is a host of particular interest in the biopharmaceutical industry and as a metabolic engineering host for proteins and metabolites. Here, we design and validate a highly active 6-fold coverage genome-wide sgRNA library for this biotechnologically important yeast containing 30,848 active sgRNAs targeting over 99% of its coding sequences. Conducting fitness screens in the absence of functional non-homologous end joining (NHEJ), the dominant DNA repair mechanism in K. phaffii, provides a quantitative means to assess the activity of each sgRNA in the library. This approach allows for the experimental validation of each guide's targeting activity, leading to more precise screening outcomes. We used this approach to conduct growth screens with glucose as the sole carbon source and identify essential genes. Comparative analysis of the called gene sets identified a core set of K. phaffii essential genes, many of which relate to metabolic engineering targets, including protein production, secretion, and glycosylation. The high activity, genome-wide CRISPR library developed here enables functional genomic screening in K. phaffii, applied here to gene essentiality classification, and promises to enable other genetic screens.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Varun Trivedi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Zenan Xing
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Mengwan Li
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ritesh Mewalal
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sean R Cutler
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
15
|
Billmyre RB, Craig CJ, Lyon J, Reichardt C, Eickbush MT, Zanders SE. Saturation transposon mutagenesis enables genome-wide identification of genes required for growth and fluconazole resistance in the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605507. [PMID: 39131341 PMCID: PMC11312461 DOI: 10.1101/2024.07.28.605507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Fungi can cause devastating invasive infections, typically in immunocompromised patients. Treatment is complicated both by the evolutionary similarity between humans and fungi and by the frequent emergence of drug resistance. Studies in fungal pathogens have long been slowed by a lack of high-throughput tools and community resources that are common in model organisms. Here we demonstrate a high-throughput transposon mutagenesis and sequencing (TN-seq) system in Cryptococcus neoformans that enables genome-wide determination of gene essentiality. We employed a random forest machine learning approach to classify the Cryptococcus neoformans genome as essential or nonessential, predicting 1,465 essential genes, including 302 that lack human orthologs. These genes are ideal targets for new antifungal drug development. TN-seq also enables genome-wide measurement of the fitness contribution of genes to phenotypes of interest. As proof of principle, we demonstrate the genome-wide contribution of genes to growth in fluconazole, a clinically used antifungal. We show a novel role for the well-studied RIM101 pathway in fluconazole susceptibility. We also show that 5' insertions of transposons can drive sensitization of essential genes, enabling screenlike assays of both essential and nonessential components of the genome. Using this approach, we demonstrate a role for mitochondrial function in fluconazole sensitivity, such that tuning down many essential mitochondrial genes via 5' insertions can drive resistance to fluconazole. Our assay system will be valuable in future studies of C. neoformans, particularly in examining the consequences of genotypic diversity.
Collapse
Affiliation(s)
- R. Blake Billmyre
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, GA, United States
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GA, United States
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Joshua Lyon
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
| | - Claire Reichardt
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, GA, United States
| | | | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, KS, United States
| |
Collapse
|
16
|
Tang T, Sun J, Li C. The role of Phafin proteins in cell signaling pathways and diseases. Open Life Sci 2024; 19:20220896. [PMID: 38947768 PMCID: PMC11211877 DOI: 10.1515/biol-2022-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Membrane-associated proteins are important membrane readers that mediate and facilitate the signaling and trafficking pathways in eukaryotic membrane-bound compartments. The protein members in the Phafin family are membrane readers containing two phosphoinositide recognition domains: the Pleckstrin Homology domain and the FYVE (Fab1, YOTB, Vac1, and early endosome antigen 1) domain. Phafin proteins, categorized into two subfamilies, Phafin1 and Phafin2, associate with cellular membranes through interactions involving membrane-embedded phosphoinositides and phosphoinositide-binding domains. These membrane-associated Phafin proteins play pivotal roles by recruiting binding partners and forming complexes, which contribute significantly to apoptotic, autophagic, and macropinocytotic pathways. Elevated expression levels of Phafin1 and Phafin2 are observed in various cancers. A recent study highlights a significant increase in Phafin1 protein levels in the lungs of idiopathic pulmonary fibrosis patients compared to normal subjects, suggesting a crucial role for Phafin1 in the pathogenesis of pulmonary fibrosis. Additionally, phosphatidylinositol-3-phosphate-binding 2 (Pib2), a close relative of the Phafin1 protein, functions as an amino acid sensor activating the TOCR1 pathway in yeasts. This review focuses on delineating the involvement of Phafin proteins in cellular signaling and their implications in diseases and briefly discusses the latest research findings concerning Pib2.
Collapse
Affiliation(s)
- Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jing Sun
- Department of Biostatistics and Epidemiology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
17
|
Torres M, Paszti S, Eberl L. Shedding light on bacteria-host interactions with the aid of TnSeq approaches. mBio 2024; 15:e0039024. [PMID: 38722161 PMCID: PMC11237515 DOI: 10.1128/mbio.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Bacteria are highly adaptable and grow in diverse niches, where they often interact with eukaryotic organisms. These interactions with different hosts span the entire spectrum from symbiosis to pathogenicity and thus determine the lifestyle of the bacterium. Knowledge of the genetic determinants involved in animal and plant host colonization by pathogenic and mutualistic bacteria is not only crucial to discover new drug targets for disease management but also for developing novel biostimulant strategies. In the last decades, significant progress in genome-wide high-throughput technologies such as transposon insertion sequencing has led to the identification of pathways that enable efficient host colonization. However, the extent to which similar genes play a role in this process in different bacteria is yet unclear. This review highlights the commonalities and specificities of bacterial determinants important for bacteria-host interaction.
Collapse
Affiliation(s)
- Marta Torres
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
18
|
Chen XR, Cui YZ, Li BZ, Yuan YJ. Genome engineering on size reduction and complexity simplification: A review. J Adv Res 2024; 60:159-171. [PMID: 37442424 PMCID: PMC11156615 DOI: 10.1016/j.jare.2023.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Genome simplification is an important topic in the field of life sciences that has attracted attention from its conception to the present day. It can help uncover the essential components of the genome and, in turn, shed light on the underlying operating principles of complex biological systems. This has made it a central focus of both basic and applied research in the life sciences. With the recent advancements in related technologies and our increasing knowledge of the genome, now is an opportune time to delve into this topic. AIM OF REVIEW Our review investigates the progress of genome simplification from two perspectives: genome size reduction and complexity simplification. In addition, we provide insights into the future development trends of genome simplification. KEY SCIENTIFIC CONCEPTS OF REVIEW Reducing genome size requires eliminating non-essential elements as much as possible. This process has been facilitated by advances in genome manipulation and synthesis techniques. However, we still need a better and clearer understanding of living systems to reduce genome complexity. As there is a lack of quantitative and clearly defined standards for this task, we have opted to approach the topic from various perspectives and present our findings accordingly.
Collapse
Affiliation(s)
- Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Waldor MK. Inducible transposon mutagenesis for genome-scale forward genetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595064. [PMID: 38826325 PMCID: PMC11142078 DOI: 10.1101/2024.05.21.595064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale functional genetics in bacteria. However, its effectiveness is often limited by a lack of mutant diversity, caused by either inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks. Here, we introduce "InducTn-seq", which leverages inducible mutagenesis for temporal control of transposition. InducTn-seq generates millions of transposon mutants from a single colony, enabling the sensitive detection of subtle fitness defects and transforming binary classifications of gene essentiality into a quantitative fitness measurement across both essential and non-essential genes. Using a mouse model of infectious colitis, we show that InducTn-seq bypasses a highly restrictive host bottleneck to generate a diverse transposon mutant population from the few cells that initiate infection, revealing the role of oxygen-related metabolic plasticity in pathogenesis. Overall, InducTn-seq overcomes the limitations of traditional Tn-seq, unlocking new possibilities for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W. Basta
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian W. Campbell
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J. Sullivan
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
20
|
Nickels TJ, Gale AP, Harrington AA, Timp W, Cunningham KW. Tn-seq of the Candida glabrata reference strain CBS138 reveals epigenetic plasticity, structural variation, and intrinsic mechanisms of resistance to micafungin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592251. [PMID: 38746084 PMCID: PMC11092758 DOI: 10.1101/2024.05.02.592251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
C. glabrata is an opportunistic pathogen that can resist common antifungals and rapidly acquire multidrug resistance. A large amount of genetic variation exists between isolates, which complicates generalizations. Portable Tn-seq methods can efficiently provide genome-wide information on strain differences and genetic mechanisms. Using the Hermes transposon, the CBS138 reference strain and a commonly studied derivative termed 2001 were subjected to Tn-seq in control conditions and after exposure to varying doses of the clinical antifungal micafungin. The approach revealed large differences between these strains, including a 131 kb tandem duplication and a variety of fitness differences. Additionally, both strains exhibited up to 1000-fold increased transposon accessibility in subtelomeric regions relative to the BG2 strain, indicative of open subtelomeric chromatin in these isolates and large epigenetic variation within the species. Unexpectedly, the Pdr1 transcription factor conferred resistance to micafungin through targets other than CDR1 . Other micafungin resistance pathways were also revealed including mannosyltransferase activity and biosynthesis of the lipid precursor sphingosine, the drugging of which by SDZ 90-215 or myriocin enhanced the potency of micafungin in vitro . These findings provide insights into complexity of the C. glabrata species as well as strategies for improving antifungal efficacy. Summary Candida glabrata is an emerging pathogen with large genetic diversity and genome plasticity. The type strain CBS138 and a laboratory derivative were mutagenized with the Hermes transposon and profiled using Tn-seq. Numerous genes that regulate innate and acquired resistance to an important clinical antifungal were uncovered, including a pleiotropic drug resistance gene (PDR1) and a duplication of part of one chromosome. Compounds that target PDR1 and other genes may augment the potency of existing antifungals.
Collapse
|
21
|
Zeng Q, Araki Y, Noda T. Pib2 is a cysteine sensor involved in TORC1 activation in Saccharomyces cerevisiae. Cell Rep 2024; 43:113599. [PMID: 38127619 DOI: 10.1016/j.celrep.2023.113599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator that monitors the availability of various amino acids to promote cell growth in Saccharomyces cerevisiae. It is activated via two distinct upstream pathways: the Gtr pathway, which corresponds to mammalian Rag, and the Pib2 pathway. This study shows that Ser3 was phosphorylated exclusively in a Pib2-dependent manner. Using Ser3 as an indicator of TORC1 activity, together with the established TORC1 substrate Sch9, we investigated which pathways were employed by individual amino acids. Different amino acids exhibited different dependencies on the Gtr and Pib2 pathways. Cysteine was most dependent on the Pib2 pathway and increased the interaction between TORC1 and Pib2 in vivo and in vitro. Moreover, cysteine directly bound to Pib2 via W632 and F635, two critical residues in the T(ail) motif that are necessary to activate TORC1. These results indicate that Pib2 functions as a sensor for cysteine in TORC1 regulation.
Collapse
Affiliation(s)
- Qingzhong Zeng
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yasuhiro Araki
- Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.
| | - Takeshi Noda
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan; Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Cecil JH, Padilla CM, Lipinski AA, Langlais PR, Luo X, Capaldi AP. The Molecular Logic of Gtr1/2 and Pib2 Dependent TORC1 Regulation in Budding Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570342. [PMID: 38106135 PMCID: PMC10723367 DOI: 10.1101/2023.12.06.570342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The Target of Rapamycin kinase Complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that, in Saccharomyces cerevisiae, nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2, and the phosphatidylinositol 3-phosphate binding protein, Pib2. However, it was unclear if/how Gtr1/2 and Pib2 cooperate to control TORC1. Here we report that this dual regulator system pushes TORC1 into three distinct signaling states: (i) a Gtr1/2 on, Pib2 on, rapid growth state in nutrient replete conditions; (ii) a Gtr1/2 off, Pib2 on, adaptive/slow growth state in poor-quality growth medium; and (iii) a Gtr1/2 off, Pib2 off, quiescent state in starvation conditions. We suggest that other signaling pathways work in a similar way, to drive a multi-level response via a single kinase, but the behavior has been overlooked since most studies follow signaling to a single reporter protein.
Collapse
Affiliation(s)
- Jacob H. Cecil
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
| | - Cristina M. Padilla
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
| | | | - Paul R. Langlais
- Department of Medicine, University of Arizona, Tucson, AZ, 85721
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
- Bio5 Institute, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
23
|
Gasser SM, Stutz F. SUMO in the regulation of DNA repair and transcription at nuclear pores. FEBS Lett 2023; 597:2833-2850. [PMID: 37805446 DOI: 10.1002/1873-3468.14751] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Two related post-translational modifications, the covalent linkage of Ubiquitin and the Small Ubiquitin-related MOdifier (SUMO) to lysine residues, play key roles in the regulation of both DNA repair pathway choice and transcription. Whereas ubiquitination is generally associated with proteasome-mediated protein degradation, the impact of sumoylation has been more mysterious. In the cell nucleus, sumoylation effects are largely mediated by the relocalization of the modified targets, particularly in response to DNA damage. This is governed in part by the concentration of SUMO protease at nuclear pores [Melchior, F et al. (2003) Trends Biochem Sci 28, 612-618; Ptak, C and Wozniak, RW (2017) Adv Exp Med Biol 963, 111-126]. We review here the roles of sumoylation in determining genomic locus positioning relative to the nuclear envelope and to nuclear pores, to facilitate repair and regulate transcription.
Collapse
Affiliation(s)
- Susan M Gasser
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
- ISREC Foundation, Agora Cancer Research Center, Lausanne, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Switzerland
| |
Collapse
|
24
|
Ellison EL, Zhou P, Hermanson P, Chu YH, Read A, Hirsch CN, Grotewold E, Springer NM. Mutator transposon insertions within maize genes often provide a novel outward reading promoter. Genetics 2023; 225:iyad171. [PMID: 37815810 DOI: 10.1093/genetics/iyad171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 10/11/2023] Open
Abstract
The highly active family of Mutator (Mu) DNA transposons has been widely used for forward and reverse genetics in maize. There are examples of Mu-suppressible alleles that result in conditional phenotypic effects based on the activity of Mu. Phenotypes from these Mu-suppressible mutations are observed in Mu-active genetic backgrounds, but absent when Mu activity is lost. For some Mu-suppressible alleles, phenotypic suppression likely results from an outward-reading promoter within Mu that is only active when the autonomous Mu element is silenced or lost. We isolated 35 Mu alleles from the UniformMu population that represent insertions in 24 different genes. Most of these mutant alleles are due to insertions within gene coding sequences, but several 5' UTR and intron insertions were included. RNA-seq and de novo transcript assembly were utilized to document the transcripts produced from 33 of these Mu insertion alleles. For 20 of the 33 alleles, there was evidence of transcripts initiating within the Mu sequence reading through the gene. This outward-reading promoter activity was detected in multiple types of Mu elements and does not depend on the orientation of Mu. Expression analyses of Mu-initiated transcripts revealed the Mu promoter often provides gene expression levels and patterns that are similar to the wild-type gene. These results suggest the Mu promoter may represent a minimal promoter that can respond to gene cis-regulatory elements. Findings from this study have implications for maize researchers using the UniformMu population, and more broadly highlight a strategy for transposons to co-exist with their host.
Collapse
Affiliation(s)
- Erika L Ellison
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peter Hermanson
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi-Hsuan Chu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew Read
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
25
|
Nicastro R, Brohée L, Alba J, Nüchel J, Figlia G, Kipschull S, Gollwitzer P, Romero-Pozuelo J, Fernandes SA, Lamprakis A, Vanni S, Teleman AA, De Virgilio C, Demetriades C. Malonyl-CoA is a conserved endogenous ATP-competitive mTORC1 inhibitor. Nat Cell Biol 2023; 25:1303-1318. [PMID: 37563253 PMCID: PMC10495264 DOI: 10.1038/s41556-023-01198-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.
Collapse
Affiliation(s)
- Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laura Brohée
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Josephine Alba
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Julian Nüchel
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Gianluca Figlia
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | | | - Peter Gollwitzer
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Jesus Romero-Pozuelo
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
- Unidad de Investigación Biomedica, Universidad Alfonso X El Sabio (UAX), Madrid, Spain
| | | | - Andreas Lamprakis
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Heidelberg University, Heidelberg, Germany.
| | | | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany.
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
26
|
Avecilla G, Spealman P, Matthews J, Caudal E, Schacherer J, Gresham D. Copy number variation alters local and global mutational tolerance. Genome Res 2023; 33:1340-1353. [PMID: 37652668 PMCID: PMC10547251 DOI: 10.1101/gr.277625.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
Copy number variants (CNVs), duplications and deletions of genomic sequences, contribute to evolutionary adaptation but can also confer deleterious effects and cause disease. Whereas the effects of amplifying individual genes or whole chromosomes (i.e., aneuploidy) have been studied extensively, much less is known about the genetic and functional effects of CNVs of differing sizes and structures. Here, we investigated Saccharomyces cerevisiae (yeast) strains that acquired adaptive CNVs of variable structures and copy numbers following experimental evolution in glutamine-limited chemostats. Although beneficial in the selective environment, CNVs result in decreased fitness compared with the euploid ancestor in rich media. We used transposon mutagenesis to investigate mutational tolerance and genome-wide genetic interactions in CNV strains. We find that CNVs increase mutational target size, confer increased mutational tolerance in amplified essential genes, and result in novel genetic interactions with unlinked genes. We validated a novel genetic interaction between different CNVs and BMH1 that was common to multiple strains. We also analyzed global gene expression and found that transcriptional dosage compensation does not affect most genes amplified by CNVs, although gene-specific transcriptional dosage compensation does occur for ∼12% of amplified genes. Furthermore, we find that CNV strains do not show previously described transcriptional signatures of aneuploidy. Our study reveals the extent to which local and global mutational tolerance is modified by CNVs with implications for genome evolution and CNV-associated diseases, such as cancer.
Collapse
Affiliation(s)
- Grace Avecilla
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Pieter Spealman
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Julia Matthews
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Elodie Caudal
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
| | - David Gresham
- Department of Biology, New York University, New York, New York 10003, USA;
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
27
|
Redd PS, Payero L, Gilbert DM, Page CA, King R, McAssey EV, Bodie D, Diaz S, Hancock CN. Transposase expression, element abundance, element size, and DNA repair determine the mobility and heritability of PIF/ Pong/ Harbinger transposable elements. Front Cell Dev Biol 2023; 11:1184046. [PMID: 37363729 PMCID: PMC10288884 DOI: 10.3389/fcell.2023.1184046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Class II DNA transposable elements account for significant portions of eukaryotic genomes and contribute to genome evolution through their mobilization. To escape inactivating mutations and persist in the host genome over evolutionary time, these elements must be mobilized enough to result in additional copies. These elements utilize a "cut and paste" transposition mechanism that does not intrinsically include replication. However, elements such as the rice derived mPing element have been observed to increase in copy number over time. Methods: We used yeast transposition assays to test several parameters that could affect the excision and insertion of mPing and its related elements. This included development of novel strategies for measuring element insertion and sequencing insertion sites. Results: Increased transposase protein expression increased the mobilization frequency of a small (430 bp) element, while overexpression inhibition was observed for a larger (7,126 bp) element. Smaller element size increased both the frequency of excision and insertion of these elements. The effect of yeast ploidy on element excision, insertion, and copy number provided evidence that homology dependent repair allows for replicative transposition. These elements were found to preferentially insert into yeast rDNA repeat sequences. Discussion: Identifying the parameters that influence transposition of these elements will facilitate their use for gene discovery and genome editing. These insights in to the behavior of these elements also provide important clues into how class II transposable elements have shaped eukaryotic genomes.
Collapse
Affiliation(s)
- Priscilla S. Redd
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Lisette Payero
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - David M. Gilbert
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Clinton A. Page
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Reese King
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Edward V. McAssey
- Department of Crop and Soil Science, Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, United States
| | - Dalton Bodie
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Stephanie Diaz
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - C. Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| |
Collapse
|
28
|
Li F, Tarkington J, Sherlock G. Fit-Seq2.0: An Improved Software for High-Throughput Fitness Measurements Using Pooled Competition Assays. J Mol Evol 2023; 91:334-344. [PMID: 36877292 PMCID: PMC10276102 DOI: 10.1007/s00239-023-10098-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
The fitness of a genotype is defined as its lifetime reproductive success, with fitness itself being a composite trait likely dependent on many underlying phenotypes. Measuring fitness is important for understanding how alteration of different cellular components affects a cell's ability to reproduce. Here, we describe an improved approach, implemented in Python, for estimating fitness in high throughput via pooled competition assays.
Collapse
Affiliation(s)
- Fangfei Li
- Department of Genetics, Stanford University, Stanford, USA
| | | | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, USA.
| |
Collapse
|
29
|
Synergistic mechanism between the endoplasmic reticulum and mitochondria and their crosstalk with other organelles. Cell Death Discov 2023; 9:51. [PMID: 36759598 PMCID: PMC9911404 DOI: 10.1038/s41420-023-01353-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Organelles are functional areas where eukaryotic cells perform processes necessary for life. Each organelle performs specific functions; however, highly coordinated crosstalk occurs between them. Disorder of organelle networks often occur in various diseases. The endoplasmic reticulum (ER) and mitochondria are crucial organelles in eukaryotic cells as they are the material synthesis and oxidative metabolism centers, respectively. Homeostasis and orchestrated interactions are essential for maintaining the normal activities of cells. However, the mode and mechanism of organelle crosstalk is still a research challenge. Furthermore, the intricate association between organelle dyshomeostasis and the progression of many human diseases remains unclear. This paper systematically summarized the latest research advances in the synergistic mechanism between the endoplasmic reticulum and mitochondria and their crosstalk with other organelles based on recent literature. It also highlights the application potential of organelle homeostasis maintenance as a preventative and treatment strategy for diseases.
Collapse
|
30
|
TORC1 Signaling in Fungi: From Yeasts to Filamentous Fungi. Microorganisms 2023; 11:microorganisms11010218. [PMID: 36677510 PMCID: PMC9864104 DOI: 10.3390/microorganisms11010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is an important regulator of various signaling pathways. It can control cell growth and development by integrating multiple signals from amino acids, glucose, phosphate, growth factors, pressure, oxidation, and so on. In recent years, it has been reported that TORC1 is of great significance in regulating cytotoxicity, morphology, protein synthesis and degradation, nutrient absorption, and metabolism. In this review, we mainly discuss the upstream and downstream signaling pathways of TORC1 to reveal its role in fungi.
Collapse
|
31
|
Caligaris M, Nicastro R, Hu Z, Tripodi F, Hummel JE, Pillet B, Deprez MA, Winderickx J, Rospert S, Coccetti P, Dengjel J, De Virgilio C. Snf1/AMPK fine-tunes TORC1 signaling in response to glucose starvation. eLife 2023; 12:84319. [PMID: 36749016 PMCID: PMC9937656 DOI: 10.7554/elife.84319] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) and the target of rapamycin complex 1 (TORC1) are central kinase modules of two opposing signaling pathways that control eukaryotic cell growth and metabolism in response to the availability of energy and nutrients. Accordingly, energy depletion activates AMPK to inhibit growth, while nutrients and high energy levels activate TORC1 to promote growth. Both in mammals and lower eukaryotes such as yeast, the AMPK and TORC1 pathways are wired to each other at different levels, which ensures homeostatic control of growth and metabolism. In this context, a previous study (Hughes Hallett et al., 2015) reported that AMPK in yeast, that is Snf1, prevents the transient TORC1 reactivation during the early phase following acute glucose starvation, but the underlying mechanism has remained elusive. Using a combination of unbiased mass spectrometry (MS)-based phosphoproteomics, genetic, biochemical, and physiological experiments, we show here that Snf1 temporally maintains TORC1 inactive in glucose-starved cells primarily through the TORC1-regulatory protein Pib2. Our data, therefore, extend the function of Pib2 to a hub that integrates both glucose and, as reported earlier, glutamine signals to control TORC1. We further demonstrate that Snf1 phosphorylates the TORC1 effector kinase Sch9 within its N-terminal region and thereby antagonizes the phosphorylation of a C-terminal TORC1-target residue within Sch9 itself that is critical for its activity. The consequences of Snf1-mediated phosphorylation of Pib2 and Sch9 are physiologically additive and sufficient to explain the role of Snf1 in short-term inhibition of TORC1 in acutely glucose-starved cells.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of FribourgFribourgSwitzerland
| | | | - Zehan Hu
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-BicoccaMilanoItaly
| | - Johannes Erwin Hummel
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Benjamin Pillet
- Department of Biology, University of FribourgFribourgSwitzerland
| | | | | | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of FreiburgFreiburgGermany,Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-BicoccaMilanoItaly
| | - Jörn Dengjel
- Department of Biology, University of FribourgFribourgSwitzerland
| | | |
Collapse
|
32
|
Genome-wide quantification of contributions to sexual fitness identifies genes required for spore viability and health in fission yeast. PLoS Genet 2022; 18:e1010462. [DOI: 10.1371/journal.pgen.1010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Numerous genes required for sexual reproduction remain to be identified even in simple model species like Schizosaccharomyces pombe. To address this, we developed an assay in S. pombe that couples transposon mutagenesis with high-throughput sequencing (TN-seq) to quantitatively measure the fitness contribution of nonessential genes across the genome to sexual reproduction. This approach identified 532 genes that contribute to sex, including more than 200 that were not previously annotated to be involved in the process, of which more than 150 have orthologs in vertebrates. Among our verified hits was an uncharacterized gene, ifs1 (important for sex), that is required for spore viability. In two other hits, plb1 and alg9, we observed a novel mutant phenotype of poor spore health wherein viable spores are produced, but the spores exhibit low fitness and are rapidly outcompeted by wild type. Finally, we fortuitously discovered that a gene previously thought to be essential, sdg1 (social distancing gene), is instead required for growth at low cell densities and can be rescued by conditioned medium. Our assay will be valuable in further studies of sexual reproduction in S. pombe and identifies multiple candidate genes that could contribute to sexual reproduction in other eukaryotes, including humans.
Collapse
|
33
|
Rapid Gene Target Tracking for Enhancing β-Carotene Production Using Flow Cytometry-Based High-Throughput Screening in Yarrowia lipolytica. Appl Environ Microbiol 2022; 88:e0114922. [PMID: 36094200 PMCID: PMC9552598 DOI: 10.1128/aem.01149-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Carotene is a provitamin A precursor and an important antioxidant that is used widely in the aquaculture, food, cosmetic, and pharmaceutical industries. Oleaginous Yarrowia lipolytica has been demonstrated as a competitive producer microorganism for the production of hydrophobic β-carotene through rational engineering strategies. However, the limited understanding of the complexity of the metabolic network between carotenoid biosynthesis and other cellular processes has hampered further advancement. Genome-scale mutagenesis and high-throughput screening of mutagenesis libraries have been extensively employed in gene mining or in the identification of key targets associated with particular phenotypes. In this study, we developed a fluorescence-activated cell-sorting approach for the effective high-throughput screening of high-β-carotene-producing strains. Using this approach, millions of mutants were screened rapidly, and new gene targets involved in lipid metabolism, sterol metabolism, signal transduction, and stress response were identified. The disruption of the genes affecting fatty acid oxidation, lipid composition, and sterol transcriptional regulation (4CL-8, GCS, and YIsterTF) increased β-carotene significantly. By engineering these targets in a high-β-carotene production, a strain that produced 9.4 g/L β-carotene was constructed. Here, we used a flow cytometry approach to improve screening efficiency and eliminate the interference of intermediate metabolites. The targets obtained in this study can be used in studies focusing on metabolic engineering in the future for improving carotenoid production. IMPORTANCE β-Carotene is a high-value-added product that is widely used in the aquaculture, food, cosmetic, and pharmaceutical industries. In our previous study, Yarrowia lipolytica has been engineered extensively to produce β-carotene. To further improve its production, high-throughput screening and the identification of new beneficial gene targets are required. Herein, we developed a fluorescence-activated cell-sorting approach for the effective high-throughput screening of high-β-carotene-producing strains. Using this approach, millions of mutants were screened rapidly, and new gene targets involved in lipid metabolism, sterol metabolism, signal transduction, and stress response were identified. The disruption of the genes affecting fatty acid oxidation, lipid composition, and sterol transcriptional regulation (4CL-8, GCS, and YIsterTF) increased β-carotene significantly. By engineering these targets in a high-β-carotene production, a strain that produced 9.4 g/L β-carotene was constructed.
Collapse
|
34
|
Troutman KK, Varlakhanova NV, Tornabene BA, Ramachandran R, Ford MGJ. Conserved Pib2 regions have distinct roles in TORC1 regulation at the vacuole. J Cell Sci 2022; 135:jcs259994. [PMID: 36000409 PMCID: PMC9584352 DOI: 10.1242/jcs.259994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/15/2022] [Indexed: 12/27/2022] Open
Abstract
TORC1 is a critical controller of cell growth in eukaryotes. In yeast (Saccharomyces cerevisiae), the presence of nutrients is signaled to TORC1 by several upstream regulatory sensors that together coordinate TORC1 activity. TORC1 localizes to both vacuolar and endosomal membranes, where differential signaling occurs. This localization is mimicked by Pib2, a key upstream TORC1 regulator that is essential for TORC1 reactivation after nutrient starvation or pharmacological inhibition. Pib2 has both positive and negative effects on TORC1 activity, but the mechanisms remain poorly understood. Here, we pinpoint the Pib2 inhibitory function on TORC1 to residues within short, conserved N-terminal regions. We also show that the Pib2 C-terminal regions, helical region E and tail, are essential for TORC1 reactivation. Furthermore, the Pib2 FYVE domain plays a role in vacuolar localization, but it is surprisingly unnecessary for recovery from rapamycin exposure. Using chimeric Pib2 targeting constructs, we show that endosomal localization is not necessary for TORC1 reactivation and cell growth after rapamycin treatment. Thus, a comprehensive molecular dissection of Pib2 demonstrates that each of its conserved regions differentially contribute to Pib2-mediated regulation of TORC1 activity.
Collapse
Affiliation(s)
- Kayla K. Troutman
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Natalia V. Varlakhanova
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Bryan A. Tornabene
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rajesh Ramachandran
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marijn G. J. Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
35
|
Loss-of-function mutation survey revealed that genes with background-dependent fitness are rare and functionally related in yeast. Proc Natl Acad Sci U S A 2022; 119:e2204206119. [PMID: 36067306 PMCID: PMC9478683 DOI: 10.1073/pnas.2204206119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In different individuals, the same mutation can lead to different phenotypes due to genetic background effects. This is commonly observed in various systems, including many human diseases. While isolated examples of such background effects have been observed, a systematic view across a large number of individuals is still lacking. Here, we surveyed genetic background effects associated with gene loss-of-function mutations across a population of natural isolates of the yeast Saccharomyces cerevisiae. We found that ∼15% of genes can display a background-dependent fitness change. Genes related to mitochondrial functions are significantly overrepresented, and showed reversed patterns of fitness gain or loss with genes involved in transcription and chromatin remodeling as well as in nuclear–cytoplasmic transport, suggesting a potential functional rewiring. In natural populations, the same mutation can lead to different phenotypic outcomes due to the genetic variation that exists among individuals. Such genetic background effects are commonly observed, including in the context of many human diseases. However, systematic characterization of these effects at the species level is still lacking to date. Here, we sought to comprehensively survey background-dependent traits associated with gene loss-of-function (LoF) mutations in 39 natural isolates of Saccharomyces cerevisiae using a transposon saturation strategy. By analyzing the modeled fitness variability of a total of 4,469 genes, we found that 15% of them, when impacted by a LoF mutation, exhibited a significant gain- or loss-of-fitness phenotype in certain natural isolates compared with the reference strain S288C. Out of these 632 genes with predicted background-dependent fitness effects, around 2/3 impact multiple backgrounds with a gradient of predicted fitness change while 1/3 are specific to a single genetic background. Genes related to mitochondrial function are significantly overrepresented in the set of genes showing a continuous variation and display a potential functional rewiring with other genes involved in transcription and chromatin remodeling as well as in nuclear–cytoplasmic transport. Such rewiring effects are likely modulated by both the genetic background and the environment. While background-specific cases are rare and span diverse cellular processes, they can be functionally related at the individual level. All genes with background-dependent fitness effects tend to have an intermediate connectivity in the global genetic interaction network and have shown relaxed selection pressure at the population level, highlighting their potential evolutionary characteristics.
Collapse
|
36
|
Wallace RL, Lu E, Luo X, Capaldi AP. Ait1 regulates TORC1 signaling and localization in budding yeast. eLife 2022; 11:68773. [PMID: 36047762 PMCID: PMC9499541 DOI: 10.7554/elife.68773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
The target of rapamycin complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2 (RagA/C in humans), and the GTPase activating complex SEAC/GATOR. However, it remains unclear if, and how, other proteins/pathways regulate TORC1 in simple eukaryotes like yeast. Here, we report that the previously unstudied GPCR-like protein, Ait1, binds to TORC1-Gtr1/2 in Saccharomyces cerevisiae and holds TORC1 around the vacuole during log-phase growth. Then, during amino acid starvation, Ait1 inhibits TORC1 via Gtr1/2 using a loop that resembles the RagA/C-binding domain in the human protein SLC38A9. Importantly, Ait1 is only found in the Saccharomycetaceae/codaceae, two closely related families of yeast that have lost the ancient TORC1 regulators Rheb and TSC1/2. Thus, the TORC1 circuit found in the Saccharomycetaceae/codaceae, and likely other simple eukaryotes, has undergone significant rewiring during evolution.
Collapse
Affiliation(s)
- Ryan L Wallace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Eric Lu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| |
Collapse
|
37
|
Bosch-Guiteras N, van Leeuwen J. Exploring conditional gene essentiality through systems genetics approaches in yeast. Curr Opin Genet Dev 2022; 76:101963. [PMID: 35939967 DOI: 10.1016/j.gde.2022.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
An essential gene encodes for a cellular function that is required for viability. Although viability is a straightforward phenotype to analyze in yeast, defining a gene as essential is not always trivial. Gene essentiality has generally been studied in specific laboratory strains and under standard growth conditions, however, essentiality can vary across species, strains, and environments. Recent systematic studies of gene essentiality revealed that two sets of essential genes exist: core essential genes that are always required for viability and conditional essential genes that vary in essentiality in different genetic and environmental contexts. Here, we review recent advances made in the systematic analysis of gene essentiality in yeast and discuss the properties that distinguish core from context-dependent essential genes.
Collapse
Affiliation(s)
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
38
|
Liu X, Cui Z, Su T, Lu X, Hou J, Qi Q. Identification of genome integration sites for developing a CRISPR-based gene expression toolkit in Yarrowia lipolytica. Microb Biotechnol 2022; 15:2223-2234. [PMID: 35436041 PMCID: PMC9328735 DOI: 10.1111/1751-7915.14060] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
With the rapid development of synthetic biology, the oleaginous yeast Yarrowia lipolytica has become an attractive microorganism for chemical production. To better optimize and reroute metabolic pathways, we have expanded the CRISPR-based gene expression toolkit of Y. lipolytica. By sorting the integration sites associated with high expression, new neutral integration sites associated with high expression and high integration efficiency were identified. Diverse genetic components, including promoters and terminators, were also characterized to expand the expression range. We found that in addition to promoters, the newly characterized terminators exhibited large variations in gene expression. These genetic components and integration sites were then used to regulate genes involved in the lycopene biosynthesis pathway, and different levels of lycopene production were achieved. The CRISPR-based gene expression toolkit developed in this study will facilitate the genetic engineering of Y. lipolytica.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Zhiyong Cui
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Tianyuan Su
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Xuemei Lu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Jin Hou
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Qingsheng Qi
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| |
Collapse
|
39
|
Jagdish T, Nguyen Ba AN. Microbial experimental evolution in a massively multiplexed and high-throughput era. Curr Opin Genet Dev 2022; 75:101943. [PMID: 35752001 DOI: 10.1016/j.gde.2022.101943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
Experimental evolution with microbial model systems has transformed our understanding of the basic rules underlying ecology and evolution. Experiments leveraging evolution as a central feature put evolutionary theories to the test, and modern sequencing and engineering tools then characterized the molecular basis of adaptation. As theory and experimentations refined our understanding of evolution, a need to increase throughput and experimental complexity has emerged. Here, we summarize recent technologies that have made high-throughput experiments practical and highlight studies that have capitalized on these tools, defining an exciting new era in microbial experimental evolution. Multiple research directions previously limited by experimental scale are now accessible for study and we believe applying evolutionary lessons from in vitro studies onto these applied settings has the potential for major innovations and discoveries across ecology and medicine.
Collapse
Affiliation(s)
- Tanush Jagdish
- Department of Molecular and Cellular Biology and The Program for Systems Synthetic and Quantitative Biology, Harvard University, Cambridge, United States.
| | - Alex N Nguyen Ba
- Department of Biology, University of Toronto at Mississauga, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
40
|
Sánchez-Álvarez M, del Pozo MÁ, Bosch M, Pol A. Insights Into the Biogenesis and Emerging Functions of Lipid Droplets From Unbiased Molecular Profiling Approaches. Front Cell Dev Biol 2022; 10:901321. [PMID: 35756995 PMCID: PMC9213792 DOI: 10.3389/fcell.2022.901321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lipid droplets (LDs) are spherical, single sheet phospholipid-bound organelles that store neutral lipids in all eukaryotes and some prokaryotes. Initially conceived as relatively inert depots for energy and lipid precursors, these highly dynamic structures play active roles in homeostatic functions beyond metabolism, such as proteostasis and protein turnover, innate immunity and defense. A major share of the knowledge behind this paradigm shift has been enabled by the use of systematic molecular profiling approaches, capable of revealing and describing these non-intuitive systems-level relationships. Here, we discuss these advances and some of the challenges they entail, and highlight standing questions in the field.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel del Pozo
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
41
|
Chen P, Michel AH, Zhang J. Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms. Nat Commun 2022; 13:1490. [PMID: 35314699 PMCID: PMC8938418 DOI: 10.1038/s41467-022-29228-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
Due to epistasis, the same mutation can have drastically different phenotypic consequences in different individuals. This phenomenon is pertinent to precision medicine as well as antimicrobial drug development, but its general characteristics are largely unknown. We approach this question by genome-wide assessment of gene essentiality polymorphism in 16 Saccharomyces cerevisiae strains using transposon insertional mutagenesis. Essentiality polymorphism is observed for 9.8% of genes, most of which have had repeated essentiality switches in evolution. Genes exhibiting essentiality polymorphism lean toward having intermediate numbers of genetic and protein interactions. Gene essentiality changes tend to occur concordantly among components of the same protein complex or metabolic pathway and among a group of over 100 mitochondrial proteins, revealing molecular machines or functional modules as units of gene essentiality variation. Most essential genes tolerate transposon insertions consistently among strains in one or more coding segments, delineating nonessential regions within essential genes.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Agnès H Michel
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
42
|
John Peter AT, Schie SNS, Cheung NJ, Michel AH, Peter M, Kornmann B. Rewiring phospholipid biosynthesis reveals resilience to membrane perturbations and uncovers regulators of lipid homeostasis. EMBO J 2022; 41:e109998. [PMID: 35188676 PMCID: PMC8982615 DOI: 10.15252/embj.2021109998] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
The organelles of eukaryotic cells differ in their membrane lipid composition. This heterogeneity is achieved by the localization of lipid synthesizing and modifying enzymes to specific compartments, as well as by intracellular lipid transport that utilizes vesicular and non‐vesicular routes to ferry lipids from their place of synthesis to their destination. For instance, the major and essential phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), can be produced by multiple pathways and, in the case of PE, also at multiple locations. However, the molecular components that underlie lipid homeostasis as well as the routes allowing their distribution remain unclear. Here, we present an approach in which we simplify and rewire yeast phospholipid synthesis by redirecting PE and PC synthesis reactions to distinct subcellular locations using chimeric enzymes fused to specific organelle targeting motifs. In rewired conditions, viability is expected to depend on homeostatic adaptation to the ensuing lipostatic perturbations and on efficient interorganelle lipid transport. We therefore performed genetic screens to identify factors involved in both of these processes. Among the candidates identified, we find genes linked to transcriptional regulation of lipid homeostasis, lipid metabolism, and transport. In particular, we identify a requirement for Csf1—an uncharacterized protein harboring a Chorein‐N lipid transport motif—for survival under certain rewired conditions as well as lipidomic adaptation to cold, implicating Csf1 in interorganelle lipid transport and homeostatic adaptation.
Collapse
Affiliation(s)
| | | | - Ngaam J Cheung
- Department of Biochemistry University of Oxford Oxford UK
| | - Agnès H Michel
- Department of Biochemistry University of Oxford Oxford UK
| | | | | |
Collapse
|
43
|
Liu X, Liu M, Zhang J, Chang Y, Cui Z, Ji B, Nielsen J, Qi Q, Hou J. Mapping of Nonhomologous End Joining-Mediated Integration Facilitates Genome-Scale Trackable Mutagenesis in Yarrowia lipolytica. ACS Synth Biol 2022; 11:216-227. [PMID: 34958561 DOI: 10.1021/acssynbio.1c00390] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genome-scale mutagenesis, phenotypic screening, and tracking the causal mutations is a powerful approach for genetic analysis. However, classic mutagenesis approaches require extensive effort to identify causal mutations. It is desirable to demonstrate a powerful approach for rapid trackable mutagenesis. Here, we mapped the distribution of nonhomologous end joining (NHEJ)-mediated integration for the first time and demonstrated that it can be used for constructing the genome-scale trackable mutagenesis library in Yarrowia lipolytica. The sequencing of 9.15 × 105 insertions showed that NHEJ-mediated integration inserted DNA randomly across the chromosomes, and the transcriptional regulatory regions exhibited integration preference. The insertions were located in both nucleosome-occupancy regions and nucleosome-free regions. Using NHEJ-mediated integration to construct the genome-scale mutagenesis library, the new targets that improved β-carotene biosynthesis and acetic acid tolerance were identified rapidly. This mutagenesis approach is readily applicable to other organisms with strong NHEJ preference and will contribute to cell factory construction.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Yizhao Chang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| |
Collapse
|
44
|
Rahman ASMZ, Timmerman L, Gallardo F, Cardona ST. Identification of putative essential protein domains from high-density transposon insertion sequencing. Sci Rep 2022; 12:962. [PMID: 35046497 PMCID: PMC8770471 DOI: 10.1038/s41598-022-05028-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022] Open
Abstract
A first clue to gene function can be obtained by examining whether a gene is required for life in certain standard conditions, that is, whether a gene is essential. In bacteria, essential genes are usually identified by high-density transposon mutagenesis followed by sequencing of insertion sites (Tn-seq). These studies assign the term "essential" to whole genes rather than the protein domain sequences that encode the essential functions. However, genes can code for multiple protein domains that evolve their functions independently. Therefore, when essential genes code for more than one protein domain, only one of them could be essential. In this study, we defined this subset of genes as "essential domain-containing" (EDC) genes. Using a Tn-seq data set built-in Burkholderia cenocepacia K56-2, we developed an in silico pipeline to identify EDC genes and the essential protein domains they encode. We found forty candidate EDC genes and demonstrated growth defect phenotypes using CRISPR interference (CRISPRi). This analysis included two knockdowns of genes encoding the protein domains of unknown function DUF2213 and DUF4148. These putative essential domains are conserved in more than two hundred bacterial species, including human and plant pathogens. Together, our study suggests that essentiality should be assigned to individual protein domains rather than genes, contributing to a first functional characterization of protein domains of unknown function.
Collapse
Affiliation(s)
| | - Lukas Timmerman
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - Flyn Gallardo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
45
|
Riggs P, Blundell-Hunter G, Hagelberger J, Ren G, Ettwiller L, Berkmen M. Insertion Specificity of the hATx-6 Transposase of Hydra magnipapillata. Front Mol Biosci 2022; 8:734154. [PMID: 34988112 DOI: 10.3389/fmolb.2021.734154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023] Open
Abstract
Transposable elements (TE) are mobile genetic elements, present in all domains of life. They commonly encode a single transposase enzyme, that performs the excision and reintegration reactions, and these enzymes have been used in mutagenesis and creation of next-generation sequencing libraries. All transposases have some bias in the DNA sequence they bind to when reintegrating the TE DNA. We sought to identify a transposase that showed minimal sequence bias and could be produced recombinantly, using information from the literature and a novel bioinformatic analysis, resulting in the selection of the hATx-6 transposase from Hydra vulgaris (aka Hydra magnipapillata) for further study. This transposase was tested and shown to be active both in vitro and in vivo, and we were able to demonstrate very low sequence bias in its integration preference. This transposase could be an excellent candidate for use in biotechnology, such as the creation of next-generation sequencing libraries.
Collapse
Affiliation(s)
- Paul Riggs
- New England Biolabs, Ipswich, MA, United States
| | | | | | - Guoping Ren
- New England Biolabs, Ipswich, MA, United States
| | | | | |
Collapse
|
46
|
Michel AH, Kornmann B. SAturated Transposon Analysis in Yeast (SATAY) for Deep Functional Mapping of Yeast Genomes. Methods Mol Biol 2022; 2477:349-379. [PMID: 35524127 DOI: 10.1007/978-1-0716-2257-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Genome-wide transposon mutagenesis followed by deep sequencing allows the genome-wide mapping of growth-affecting loci in a straightforward and time-efficient way.SAturated Transposon Analysis in Yeast (SATAY) takes advantage of a modified maize transposon that is highly mobilizable in S. cerevisiae. SATAY allows not only the genome-wide mapping of genes required for growth in select conditions (such as genetic interactions or drug sensitivity/resistance), but also of protein sub-domains, as well as the creation of gain- and separation-of-function alleles. From strain preparation to the mapping of sequencing reads, we detail all the steps for the making and analysis of SATAY libraries in any S. cerevisiae lab, requiring only ordinary equipment and access to a Next-Gen sequencing platform.
Collapse
Affiliation(s)
- Agnès H Michel
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benoît Kornmann
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
47
|
Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 2021; 37:110149. [PMID: 34965436 DOI: 10.1016/j.celrep.2021.110149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
The eukaryotic TORC1 kinase assimilates diverse environmental cues, including growth factors and nutrients, to control growth by tuning anabolic and catabolic processes. In yeast, TORC1 stimulates protein synthesis in response to abundant nutrients primarily through its proximal effector kinase Sch9. Conversely, TORC1 inhibition following nutrient limitation unlocks various distally controlled kinases (e.g., Atg1, Gcn2, Npr1, Rim15, Slt2/Mpk1, and Yak1), which cooperate through poorly defined circuits to orchestrate the quiescence program. To better define the signaling landscape of the latter kinases, we use in vivo quantitative phosphoproteomics. Through pinpointing known and uncharted Npr1, Rim15, Slt2/Mpk1, and Yak1 effectors, our study examines the architecture of the distally controlled TORC1 kinase network. Accordingly, this is built on a combination of discrete, convergent, and multilayered feedback regulatory mechanisms, which likely ensure homeostatic control of and/or robust responses by TORC1 and its effector kinases under fluctuating nutritional conditions.
Collapse
|
48
|
Carreira R, Aguado FJ, Hurtado-Nieves V, Blanco MG. Canonical and novel non-canonical activities of the Holliday junction resolvase Yen1. Nucleic Acids Res 2021; 50:259-280. [PMID: 34928393 PMCID: PMC8754655 DOI: 10.1093/nar/gkab1225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 11/14/2022] Open
Abstract
Yen1 and GEN1 are members of the Rad2/XPG family of nucleases that were identified as the first canonical nuclear Holliday junction (HJ) resolvases in budding yeast and humans due to their ability to introduce two symmetric, coordinated incisions on opposite strands of the HJ, yielding nicked DNA products that could be readily ligated. While GEN1 has been extensively characterized in vitro, much less is known about the biochemistry of Yen1. Here, we have performed the first in-depth characterization of purified Yen1. We confirmed that Yen1 resembles GEN1 in many aspects, including range of substrates targeted, position of most incisions they produce or the increase in the first incision rate by assembly of a dimer on a HJ, despite minor differences. However, we demonstrate that Yen1 is endowed with additional nuclease activities, like a nick-specific 5′-3′ exonuclease or HJ arm-chopping that could apparently blur its classification as a canonical HJ resolvase. Despite this, we show that Yen1 fulfils the requirements of a canonical HJ resolvase and hypothesize that its wider array of nuclease activities might contribute to its function in the removal of persistent recombination or replication intermediates.
Collapse
Affiliation(s)
- Raquel Carreira
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - F Javier Aguado
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Vanesa Hurtado-Nieves
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| |
Collapse
|
49
|
Singh AK, Schauer T, Pfaller L, Straub T, Mueller-Planitz F. The biogenesis and function of nucleosome arrays. Nat Commun 2021; 12:7011. [PMID: 34853297 PMCID: PMC8636622 DOI: 10.1038/s41467-021-27285-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Numerous chromatin remodeling enzymes position nucleosomes in eukaryotic cells. Aside from these factors, transcription, DNA sequence, and statistical positioning of nucleosomes also shape the nucleosome landscape. The precise contributions of these processes remain unclear due to their functional redundancy in vivo. By incisive genome engineering, we radically decreased their redundancy in Saccharomyces cerevisiae. The transcriptional machinery strongly disrupts evenly spaced nucleosomes. Proper nucleosome density and DNA sequence are critical for their biogenesis. The INO80 remodeling complex helps space nucleosomes in vivo and positions the first nucleosome over genes in an H2A.Z-independent fashion. INO80 requires its Arp8 subunit but unexpectedly not the Nhp10 module for spacing. Cells with irregularly spaced nucleosomes suffer from genotoxic stress including DNA damage, recombination and transpositions. We derive a model of the biogenesis of the nucleosome landscape and suggest that it evolved not only to regulate but also to protect the genome.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- grid.5252.00000 0004 1936 973XMolecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Tamás Schauer
- grid.5252.00000 0004 1936 973XBioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Lena Pfaller
- grid.5252.00000 0004 1936 973XMolecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany ,grid.419481.10000 0001 1515 9979Present Address: Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Tobias Straub
- grid.5252.00000 0004 1936 973XBioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Felix Mueller-Planitz
- Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany. .,Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
50
|
SUMO orchestrates multiple alternative DNA-protein crosslink repair pathways. Cell Rep 2021; 37:110034. [PMID: 34818558 PMCID: PMC10042627 DOI: 10.1016/j.celrep.2021.110034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/27/2020] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Endogenous metabolites, environmental agents, and therapeutic drugs promote formation of covalent DNA-protein crosslinks (DPCs). Persistent DPCs compromise genome integrity and are eliminated by multiple repair pathways. Aberrant Top1-DNA crosslinks, or Top1ccs, are processed by Tdp1 and Wss1 functioning in parallel pathways in Saccharomyces cerevisiae. It remains obscure how cells choose between diverse mechanisms of DPC repair. Here, we show that several SUMO biogenesis factors (Ulp1, Siz2, Slx5, and Slx8) control repair of Top1cc or an analogous DPC lesion. Genetic analysis reveals that SUMO promotes Top1cc processing in the absence of Tdp1 but has an inhibitory role if cells additionally lack Wss1. In the tdp1Δ wss1Δ mutant, the E3 SUMO ligase Siz2 stimulates sumoylation in the vicinity of the DPC, but not SUMO conjugation to Top1. This Siz2-dependent sumoylation inhibits alternative DPC repair mechanisms, including Ddi1. Our findings suggest that SUMO tunes available repair pathways to facilitate faithful DPC repair.
Collapse
|