1
|
Zhang B, Leung PC, Cho WCS, Wong CK, Wang D. Targeting PI3K signaling in Lung Cancer: advances, challenges and therapeutic opportunities. J Transl Med 2025; 23:184. [PMID: 39953539 PMCID: PMC11829425 DOI: 10.1186/s12967-025-06144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality globally, necessitating the continual exploration of novel therapeutic targets. The phosphoinositide 3-kinase (PI3K) signaling pathway plays a pivotal role in oncogenic processes, including cell growth, survival, metabolism and immune modulation. This comprehensive review delineates the distinct roles of PI3K subtypes-PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ-in lung cancer pathogenesis and progression. We evaluate the current landscape of PI3K inhibitors, transitioning from non-selective early-generation compounds to isoform-specific agents, highlighting their clinical efficacy, resistance mechanisms and potential combination strategies. Furthermore, the intricate interplay between PI3K signaling and the tumor immune microenvironment is explored, elucidating how PI3K modulation can enhance immunotherapeutic responses. Metabolic reprogramming driven by PI3K signaling is also dissected, revealing vulnerabilities that can be therapeutically exploited. Despite promising advancements, challenges such as therapeutic resistance and adverse effects underscore the need for personalized medicine approaches and the development of next-generation inhibitors. This review underscores the multifaceted role of PI3K in lung cancer and advocates for integrated strategies to harness its full therapeutic potential, paving the way for improved patient outcomes.
Collapse
Affiliation(s)
- Bitian Zhang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Dongjie Wang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
2
|
Mai N, Abuhadra N, Jhaveri K. Molecularly Targeted Therapies for Triple Negative Breast Cancer: History, Advances, and Future Directions. Clin Breast Cancer 2023; 23:784-799. [PMID: 37336650 DOI: 10.1016/j.clbc.2023.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Triple negative breast cancer (TNBC) remains the subtype with poorest prognosis. Despite the subtype's heterogeneity, there is still a paucity in effective targeted therapeutics that offer both good efficacy and tolerability, and chemotherapy remains the backbone of modern TNBC therapy. In the past few years, immunotherapy as well as novel therapeutic modalities like antibody-drug conjugates (ADCs) have shown clinical benefit and have been FDA approved in various clinical stages of unselected TNBC. However, there has not been similar advancement in molecularly targeted therapies, especially when compared to advancements seen in hormone receptor (HR)-positive or HER2-positive breast cancer. PARP inhibitors have been approved for BRCA-mutated TNBC, but responses are short-lived, and resistance remains a barrier for current treatment. PI3K pathway inhibitors approved in HR+ breast cancer has not worked for TNBC and continue to have significant dose-limiting adverse effects. EGFR inhibition has been thoroughly explored in TNBC, but all trials so far have shown minimal efficacy. Nevertheless, despite these setbacks, current research in targeted therapy for TNBC holds great promise in overcoming the barriers of the past and developing novel therapeutic approaches for the future. In this review, we describe molecular targets both identified and validated in the treatment of TNBC, discuss the historical efforts towards development of targeted agents and current areas of improvement, and address promising advances that have the potential to improve outcomes in this heterogenous and aggressive breast cancer subtype. Immunotherapy, ADCs, and AR targeting will be discussed in separate reviews of this edition.
Collapse
Affiliation(s)
- Nicholas Mai
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nour Abuhadra
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
3
|
Ma Z, Chen H, Xia Z, You J, Han C, Wang S, Xia W, Bai Y, Liu T, Xu L, Zhou G, Xu Y, Yin R. Energy stress-induced circZFR enhances oxidative phosphorylation in lung adenocarcinoma via regulating alternative splicing. J Exp Clin Cancer Res 2023; 42:169. [PMID: 37461053 PMCID: PMC10351155 DOI: 10.1186/s13046-023-02723-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) contribute to multiple biological functions and are also involved in pathological conditions such as cancer. However, the role of circRNAs in metabolic reprogramming, especially upon energy stress in lung adenocarcinoma (LUAD), remains largely unknown. METHODS Energy stress-induced circRNA was screened by circRNA profiling and glucose deprivation assays. RNA-seq, real-time cell analyzer system (RTCA) and measurement of oxygen consumption rate (OCR) were performed to explore the biological functions of circZFR in LUAD. The underlying mechanisms were investigated using circRNA pull-down, RNA immunoprecipitation, immunoprecipitation and bioinformatics analysis of alternative splicing. Clinical implications of circZFR were assessed in 92 pairs of LUAD tissues and adjacent non-tumor tissues, validated in established patient-derived tumor xenograft (PDTX) model. RESULTS CircZFR is induced by glucose deprivation and is significantly upregulated in LUAD compared to adjacent non-tumor tissues, enhancing oxidative phosphorylation (OXPHOS) for adaptation to energy stress. CircZFR is strongly associated with higher T stage and poor prognosis in patients with LUAD. Mechanistically, circZFR protects heterogeneous nuclear ribonucleoprotein L-like (HNRNPLL) from degradation by ubiquitination to regulate alternative splicing, such as myosin IB (MYO1B), and subsequently activates the AKT-mTOR pathway to facilitate OXPHOS. CONCLUSION Our study provides new insights into the role of circRNAs in anticancer metabolic therapies and expands our understanding of alternative splicing.
Collapse
Affiliation(s)
- Zhifei Ma
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Hao Chen
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Department of Thoracic Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, 226361, China
| | - Zhijun Xia
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, 21009, P.R. China
| | - Jing You
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211116, P.R. China
| | - Chencheng Han
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211116, P.R. China
| | - Siwei Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, 21009, P.R. China
| | - Wenjia Xia
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211116, P.R. China
| | - Yongkang Bai
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Tongyan Liu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211116, P.R. China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, 21009, P.R. China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, P.R. China.
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, 21009, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211116, P.R. China
- Department of Science and Technology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
| |
Collapse
|
4
|
Meng D, Zhao X, Yang YC, Navickas A, Helland C, Goodarzi H, Singh M, Bandyopadhyay S. A bi-steric mTORC1-selective inhibitor overcomes drug resistance in breast cancer. Oncogene 2023:10.1038/s41388-023-02737-z. [PMID: 37264081 DOI: 10.1038/s41388-023-02737-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Activation of the PI3K-mTOR pathway is central to breast cancer pathogenesis including resistance to many targeted therapies. The mTOR kinase forms two distinct complexes, mTORC1 and mTORC2, and understanding which is required for the survival of malignant cells has been limited by tools to selectively and completely impair either subcomplex. To address this, we used RMC-6272, a bi-steric molecule with a rapamycin-like moiety linked to an mTOR active-site inhibitor that displays >25-fold selectivity for mTORC1 over mTORC2 substrates. Complete suppression of mTORC1 by RMC-6272 causes apoptosis in ER+/HER2- breast cancer cell lines, particularly in those that harbor mutations in PIK3CA or PTEN, due to inhibition of the rapamycin resistant, mTORC1 substrate 4EBP1 and reduction of the pro-survival protein MCL1. RMC-6272 reduced translation of ribosomal mRNAs, MYC target genes, and components of the CDK4/6 pathway, suggesting enhanced impairment of oncogenic pathways compared to the partial mTORC1 inhibitor everolimus. RMC-6272 maintained efficacy in hormone therapy-resistant acquired cell lines and patient-derived xenografts (PDX), showed increased efficacy in CDK4/6 inhibitor treated acquired resistant cell lines versus their parental counterparts, and was efficacious in a PDX from a patient experiencing resistance to CDK4/6 inhibition. Bi-steric mTORC1-selective inhibition may be effective in overcoming multiple forms of therapy-resistance in ER+ breast cancers.
Collapse
Affiliation(s)
- Delong Meng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Xin Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yu Chi Yang
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
| | - Ciara Helland
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Mallika Singh
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Cotler MJ, Ramadi KB, Hou X, Christodoulopoulos E, Ahn S, Bashyam A, Ding H, Larson M, Oberg AL, Whittaker C, Jonas O, Kaufmann SH, Weroha SJ, Cima MJ. Machine-learning aided in situ drug sensitivity screening predicts treatment outcomes in ovarian PDX tumors. Transl Oncol 2022; 21:101427. [PMID: 35472731 PMCID: PMC9136609 DOI: 10.1016/j.tranon.2022.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022] Open
Abstract
Long-term treatment outcomes for patients with high grade ovarian cancers have not changed despite innovations in therapies. There is no recommended assay for predicting patient response to second-line therapy, thus clinicians must make treatment decisions based on each individual patient. Patient-derived xenograft (PDX) tumors have been shown to predict drug sensitivity in ovarian cancer patients, but the time frame for intraperitoneal (IP) tumor generation, expansion, and drug screening is beyond that for tumor recurrence and platinum resistance to occur, thus results do not have clinical utility. We describe a drug sensitivity screening assay using a drug delivery microdevice implanted for 24 h in subcutaneous (SQ) ovarian PDX tumors to predict treatment outcomes in matched IP PDX tumors in a clinically relevant time frame. The SQ tumor response to local microdose drug exposure was found to be predictive of the growth of matched IP tumors after multi-week systemic therapy using significantly fewer animals (10 SQ vs 206 IP). Multiplexed immunofluorescence image analysis of phenotypic tumor response combined with a machine learning classifier could predict IP treatment outcomes against three second-line cytotoxic therapies with an average AUC of 0.91.
Collapse
Affiliation(s)
- Max J Cotler
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Khalil B Ramadi
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elena Christodoulopoulos
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Ahn
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ashvin Bashyam
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huiming Ding
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melissa Larson
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles Whittaker
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oliver Jonas
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Cima
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Distinct resistance mechanisms arise to allosteric vs. ATP-competitive AKT inhibitors. Nat Commun 2022; 13:2057. [PMID: 35440108 PMCID: PMC9019088 DOI: 10.1038/s41467-022-29655-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
The AKT kinases have emerged as promising therapeutic targets in oncology and both allosteric and ATP-competitive AKT inhibitors have entered clinical investigation. However, long-term efficacy of such inhibitors will likely be challenged by the development of resistance. We have established prostate cancer models of acquired resistance to the allosteric inhibitor MK-2206 or the ATP-competitive inhibitor ipatasertib following prolonged exposure. While alterations in AKT are associated with acquired resistance to MK-2206, ipatasertib resistance is driven by rewired compensatory activity of parallel signaling pathways. Importantly, MK-2206 resistance can be overcome by treatment with ipatasertib, while ipatasertib resistance can be reversed by co-treatment with inhibitors of pathways including PIM signaling. These findings demonstrate that distinct resistance mechanisms arise to the two classes of AKT inhibitors and that combination approaches may reverse resistance to ATP-competitive inhibition. How resistance to different classes of AKT inhibitors can emerge is unclear. Here, the authors show that resistance to allosteric inhibitors is mainly due to mutation of AKT1 while the ATP competitive resistance is driven by activation of PIM kinases in prostate cancer models.
Collapse
|
7
|
Anti-tumor metabolites from Synadenium grantii Hook F. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Loss of TACC1 variant25 inducing cell proliferation and suppressing autophagy in head and neck squamous carcinoma. Cell Death Discov 2021; 7:386. [PMID: 34897285 PMCID: PMC8665927 DOI: 10.1038/s41420-021-00777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Transforming acidic coiled-coil containing protein1 (TACC1) is closely related to transcription, translation and centrosome dynamics. Dysregulation of TACC1 is associated with multiple malignancies. Alternative splicing (AS) of TACC1 produces multiple variants, which are of great significance in cancer biology. However, the expression and biological functions of TACC1 variants in head and neck squamous cell carcinoma (HNSCC) remain unclear. In this study, we found for the first time that TACC1 variants exhibited a characteristic expression pattern and that TACC1 variant25 (TACC1v25) was downregulated in HNSCC tissues and cell lines. Overexpression of TACC1v25 in Cal27 and Fadu cells significantly inhibited proliferation and promoted autophagy. Moreover, expression levels of nuclear pERK and p-mTOR were significantly decreased, while the expression of Beclin-1 and the LC3II/LC3I ratio were increased in TACC1v25-overexpressed Cal27 and Fadu cells. After the addition of AKT activator SC79 to TACC1v25-overexpressed Cal27 and Fadu cells, the autophagy levels were remarkably rescued. In conclusion, TACC1v25 inhibits HNSCC progression through the ERK and AKT/mTOR pathways by inhibiting proliferation and increasing autophagy. TACC1v25 might have potential use as a tumour suppressor in HNSCC.
Collapse
|
9
|
Tu DY, Zhang M, Yin WJ, Xu LY, Sang W, Li ZY, Xu KL. [Effects of L-asparaginase on proliferation, cell cycle and apoptosis of Burkitt lymphoma cell lines]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:930-938. [PMID: 35045655 PMCID: PMC8763592 DOI: 10.3760/cma.j.issn.0253-2727.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Objective: To investigate the effect of L-asparaginase on the proliferation, cell cycle, and apoptosis of Burkitt lymphoma cell lines and explore the molecular mechanism. Methods: The effect of L-asparaginase on the cell proliferation of Burkitt lymphoma cell lines was detected using the CCK-8 method. The apoptosis rate and cell cycle were detected using flow cytometry. The expression of related molecules in cell cycle, apoptosis, autophagy, and PI3K/Akt/mTOR signaling pathway was detected and analyzed using qPCR and Western blot assay. Results: L-asparaginase significantly inhibited the proliferation of Burkitt lymphoma cell lines and caused cell cycle arrest at G(0)/G(1) phage. L-asparaginase induced cell apoptosis and autophagy in Burkitt lymphoma cell lines. Further results showed that L-asparaginase inhibited the expression of c-Myc and also inhibited the expression of p-PI3K, p-Akt-S473, p-mTOR, p-70S6K, and p-4E-BP1. Combining PI3K inhibitor LY294002 with L-asparaginase further induced apoptosis. Additionally, L-Asp inhibited STAT and ERK signaling pathways. Conclusion: L-asparaginase inhibited Burkitt lymphoma cell proliferation, arrested cell cycle, activated autophagy, and induced apoptosis by inhibiting the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- D Y Tu
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China Department of Cardiology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng 224000, China
| | - M Zhang
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - W J Yin
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - L Y Xu
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - W Sang
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Z Y Li
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - K L Xu
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| |
Collapse
|
10
|
Vanhaesebroeck B, Perry MWD, Brown JR, André F, Okkenhaug K. PI3K inhibitors are finally coming of age. Nat Rev Drug Discov 2021; 20:741-769. [PMID: 34127844 PMCID: PMC9297732 DOI: 10.1038/s41573-021-00209-1] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 01/08/2023]
Abstract
Overactive phosphoinositide 3-kinase (PI3K) in cancer and immune dysregulation has spurred extensive efforts to develop therapeutic PI3K inhibitors. Although progress has been hampered by issues such as poor drug tolerance and drug resistance, several PI3K inhibitors have now received regulatory approval - the PI3Kα isoform-selective inhibitor alpelisib for the treatment of breast cancer and inhibitors mainly aimed at the leukocyte-enriched PI3Kδ in B cell malignancies. In addition to targeting cancer cell-intrinsic PI3K activity, emerging evidence highlights the potential of PI3K inhibitors in cancer immunotherapy. This Review summarizes key discoveries that aid the clinical translation of PI3Kα and PI3Kδ inhibitors, highlighting lessons learnt and future opportunities.
Collapse
Affiliation(s)
| | - Matthew W D Perry
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jennifer R Brown
- CLL Center, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fabrice André
- Institut Gustave Roussy, INSERM U981, Université Paris Saclay, Paris, France
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Activation of the MAPK pathway mediates resistance to PI3K inhibitors in chronic lymphocytic leukemia. Blood 2021; 138:44-56. [PMID: 33684943 DOI: 10.1182/blood.2020006765] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/12/2021] [Indexed: 01/07/2023] Open
Abstract
Inhibitors of Bruton tyrosine kinase (BTK) and phosphatidylinositol 3-kinase δ (PI3Kδ) that target the B-cell receptor (BCR) signaling pathway have revolutionized the treatment of chronic lymphocytic leukemia (CLL). Mutations associated with resistance to BTK inhibitors have been identified, but limited data are available on mechanisms of resistance to PI3Kδ inhibitors. Here we present findings from longitudinal whole-exome sequencing of cells from patients with multiply relapsed CLL (N = 28) enrolled in trials of PI3K inhibitors. The nonresponder subgroup was characterized by baseline activating mutations in MAP2K1, BRAF, and KRAS genes in 60% of patients. PI3Kδ inhibition failed to inhibit ERK phosphorylation (pERK) in nonresponder CLL cells with and without mutations, whereas treatment with a MEK inhibitor rescued ERK inhibition. Overexpression of MAP2K1 mutants in vitro led to increased basal and inducible pERK and resistance to idelalisib. These data demonstrate that MAPK/ERK activation plays a key role in resistance to PI3Kδ inhibitors in CLL and provide a rationale for therapy with a combination of PI3Kδ and ERK inhibitors.
Collapse
|
12
|
Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Bioinformatics Study of Sea Cucumber Peptides as Antibreast Cancer Through Inhibiting the Activity of Overexpressed Protein (EGFR, PI3K, AKT1, and CDK4). Cancer Inform 2021; 20:11769351211031864. [PMID: 34345161 PMCID: PMC8283226 DOI: 10.1177/11769351211031864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is the most common type of cancer in women globally. The overexpressed proteins, including EGFR, PI3K, AKT1, and CDK4, have a role in the growth of breast cancer cells. The 3D peptide structure of sea cucumber Cucumaria frondosa was modeled and then docked with EGFR, PI3K, AKT1, and CDK4 proteins using AutoDock Vina software. The docking result, which has the best binding affinity value, is continued with molecular dynamics simulation. The docking results showed that all peptides bind to the active sites of the four proteins. WPPNYQW and YDWRF peptides bind to proteins with lower binding affinity values than positive controls. The four proteins were in a stable state when complexed with the WPPNYQW peptide, which was seen from the RMSD and RMSF value. PI3K-YDWRF and AKT1-YDWRF complexes are stable, characterized by high RMSD values and increased volatility in several amino acids. WPPNYQW peptide has high potential as an antibreast cancer agent because it binds to the active sites of the four proteins with low binding affinity values and stable interactions. Meanwhile, the YDWRF peptide interacts with the four proteins with low binding affinity values, but the interaction is only stable on PI3K and AKT1 proteins.
Collapse
Affiliation(s)
| | - Hana Ratnawati
- Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Nashi Widodo
- Biology Department, Faculty of Mathematics and Natural Sciences, The University of Brawijaya, Malang, Indonesia
| | | |
Collapse
|
13
|
Vazquez N, Lopez A, Cuello V, Persans M, Schuenzel E, Innis-Whitehouse W, Keniry M. NVP-BEZ235 or JAKi Treatment leads to decreased survival of examined GBM and BBC cells. Cancer Treat Res Commun 2021; 27:100340. [PMID: 33636591 DOI: 10.1016/j.ctarc.2021.100340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Cancer cells almost universally harbor constitutively active Phosphatidylinositol-3 Kinase (PI3K) Pathway activity via mutation of key signaling components and/or epigenetic mechanisms. Scores of PI3K Pathway inhibitors are currently under investigation as putative chemotherapeutics. However, feedback and stem cell mechanisms induced by PI3K Pathway inhibition can lead to reduced treatment efficacy. To address therapeutic barriers, we examined whether JAKi would reduce stem gene expression in a setting of PI3K Pathway inhibition in order to improve treatment efficacy. We targeted the PI3K Pathway with NVP-BEZ235 (dual PI3K and mTOR inhibitor) in combination with the Janus Kinase inhibitor JAKi in glioblastoma (GBM) and basal-like breast cancer (BBC) cell lines. We examined growth, gene expression, and apoptosis in cells treated with NVP-BEZ235 and/or JAKi. Growth and recovery assays showed no significant impact of dual treatment with NVP-BEZ235/JAKi compared to NVP-BEZ235 treatment alone. Gene expression and flow cytometry revealed that single and dual treatments induced apoptosis. Stem gene expression was retained in dual NVP-BEZ235/JAKi treatment samples. Future in vivo studies may give further insight into the impact of combined NVP-BEZ235/JAKi treatment in GBM and BBC.
Collapse
Affiliation(s)
- Neftali Vazquez
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Alma Lopez
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Victoria Cuello
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Michael Persans
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Erin Schuenzel
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Wendy Innis-Whitehouse
- School of Medicine, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Megan Keniry
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States.
| |
Collapse
|
14
|
The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers (Basel) 2020; 12:cancers12092435. [PMID: 32867128 PMCID: PMC7564582 DOI: 10.3390/cancers12092435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
High mobility group box B (HMGB) proteins are overexpressed in different types of cancers such as epithelial ovarian cancers (EOC). We have determined the first interactome of HMGB1 and HMGB2 in epithelial ovarian cancer (the EOC-HMGB interactome). Libraries from the SKOV-3 cell line and a primary transitional cell carcinoma (TCC) ovarian tumor were tested by the Yeast Two Hybrid (Y2H) approach. The interactome reveals proteins that are related to cancer hallmarks and their expression is altered in EOC. Moreover, some of these proteins have been associated to survival and prognosis of patients. The interaction of MIEN1 and NOP53 with HMGB2 has been validated by co-immunoprecipitation in SKOV-3 and PEO1 cell lines. SKOV-3 cells were treated with different anti-tumoral drugs to evaluate changes in HMGB1, HMGB2, MIEN1 and NOP53 gene expression. Results show that combined treatment of paclitaxel and carboplatin induces a stronger down-regulation of these genes in comparison to individual treatments. Individual treatment with paclitaxel or olaparib up-regulates NOP53, which is expressed at lower levels in EOC than in non-cancerous cells. On the other hand, bevacizumab diminishes the expression of HMGB2 and NOP53. This study also shows that silencing of these genes affects cell-viability after drug exposure. HMGB1 silencing causes loss of response to paclitaxel, whereas silencing of HMGB2 slightly increases sensitivity to olaparib. Silencing of either HMGB1 or HMGB2 increases sensitivity to carboplatin. Lastly, a moderate loss of response to bevacizumab is observed when NOP53 is silenced.
Collapse
|
15
|
Liu Z, Qiu X, Mak S, Guo B, Hu S, Wang J, Luo F, Xu D, Sun Y, Zhang G, Cui G, Wang Y, Zhang Z, Han Y. Multifunctional memantine nitrate significantly protects against glutamate-induced excitotoxicity via inhibiting calcium influx and attenuating PI3K/Akt/GSK3beta pathway. Chem Biol Interact 2020; 325:109020. [PMID: 32092300 DOI: 10.1016/j.cbi.2020.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/09/2019] [Accepted: 02/18/2020] [Indexed: 01/30/2023]
Abstract
Overactivation of N-methyl-D-aspartate (NMDA) receptors has been associated with neurodegenerative disorders such as Alzheimer's disease (AD), cerebral vascular disorders and amyotrophic lateral sclerosis (ALS). We have previously designed and synthesized a series of memantine nitrate and some of them have shown vessel dilatory effects and neuroprotective effects; however, the detailed mechanisms have not been elucidated. In this study, we further demonstrated that memantine nitrate-06 (MN-06), one of the novel compounds derived from memantine, possessed significant neuroprotective effects against glutamate-induced excitotoxicity in rat primary cerebellar granule neurons (CGNs). Pretreatment of MN-06 reversed the activation of GSK3b and the suppression of phosphorylated Akt induced by glutamate. In addition, the neuroprotective effects of MN-06 could be abolished by LY294002, the specific phosphatidylinositol 3-kinase (PI3-K) inhibitor. Ca2+ imaging shown that pretreatment of MN-06 prevented Ca2+ influx induced by glutamate. Moreover, MN-06 might inhibit the NMDA-mediated current by antagonizing NDMA receptors, which was further confirmed by molecular docking simulation. Taken together, MN-06 protected against glutamate-induced excitotoxicity by blocking calcium influx and attenuating PI3-K/Akt/GSK-3b pathway, indicating that MN-06 might be a potential drug for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Zheng Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Xiaoling Qiu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Shinghung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Baojian Guo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shengquan Hu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jiajun Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Fangcheng Luo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Daping Xu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Guozhen Cui
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China.
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
16
|
Vanhaesebroeck B, Bilanges B, Madsen RR, Dale KL, Lau E, Vladimirou E. Perspective: Potential Impact and Therapeutic Implications of Oncogenic PI3K Activation on Chromosomal Instability. Biomolecules 2019; 9:E331. [PMID: 31374965 PMCID: PMC6723836 DOI: 10.3390/biom9080331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Genetic activation of the class I PI3K pathway is very common in cancer. This mostly results from oncogenic mutations in PIK3CA, the gene encoding the ubiquitously expressed PI3Kα catalytic subunit, or from inactivation of the PTEN tumour suppressor, a lipid phosphatase that opposes class I PI3K signalling. The clinical impact of PI3K inhibitors in solid tumours, aimed at dampening cancer-cell-intrinsic PI3K activity, has thus far been limited. Challenges include poor drug tolerance, incomplete pathway inhibition and pre-existing or inhibitor-induced resistance. The principle of pharmacologically targeting cancer-cell-intrinsic PI3K activity also assumes that all cancer-promoting effects of PI3K activation are reversible, which might not be the case. Emerging evidence suggests that genetic PI3K pathway activation can induce and/or allow cells to tolerate chromosomal instability, which-even if occurring in a low fraction of the cell population-might help to facilitate and/or drive tumour evolution. While it is clear that such genomic events cannot be reverted pharmacologically, a role for PI3K in the regulation of chromosomal instability could be exploited by using PI3K pathway inhibitors to prevent those genomic events from happening and/or reduce the pace at which they are occurring, thereby dampening cancer development or progression. Such an impact might be most effective in tumours with clonal PI3K activation and achievable at lower drug doses than the maximum-tolerated doses of PI3K inhibitors currently used in the clinic.
Collapse
Affiliation(s)
- Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| | - Benoit Bilanges
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Ralitsa R Madsen
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Katie L Dale
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Evelyn Lau
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Elina Vladimirou
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
17
|
Le Cras TD, Boscolo E. Cellular and molecular mechanisms of PIK3CA-related vascular anomalies. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:H33-H40. [PMID: 32923951 PMCID: PMC7439927 DOI: 10.1530/vb-19-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a major mediator of growth factor signaling, cell proliferation and metabolism. Somatic gain-of-function mutations in PIK3CA, the catalytic subunit of PI3K, have recently been discovered in a number of vascular anomalies. The timing and origin of these mutations remain unclear although they are believed to occur during embryogenesis. The cellular origin of these lesions likely involves endothelial cells or an early endothelial cell lineage. This review will cover the diseases and syndromes associated with PIK3CA mutations and discuss the cellular origin, pathways and mechanisms. Activating PIK3CA 'hot spot' mutations have long been associated with a multitude of cancers allowing the development of targeted pharmacological inhibitors that are FDA-approved or in clinical trials. Current and future therapeutic approaches for PIK3CA-related vascular anomalies are discussed.
Collapse
Affiliation(s)
- Timothy D Le Cras
- Division of Pulmonary Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Elisa Boscolo
- Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Mues M, Karra L, Romero-Moya D, Wandler A, Hangauer MJ, Ksionda O, Thus Y, Lindenbergh M, Shannon K, McManus MT, Roose JP. High-Complexity shRNA Libraries and PI3 Kinase Inhibition in Cancer: High-Fidelity Synthetic Lethality Predictions. Cell Rep 2019; 27:631-647.e5. [PMID: 30970263 PMCID: PMC6690758 DOI: 10.1016/j.celrep.2019.03.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2018] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Deregulated signal transduction is a cancer hallmark, and its complexity and interconnectivity imply that combination therapy should be considered, but large data volumes that cover the complexity are required in user-friendly ways. Here, we present a searchable database resource of synthetic lethality with a PI3 kinase signal transduction inhibitor by performing a saturation screen with an ultra-complex shRNA library containing 30 independent shRNAs per gene target. We focus on Ras-PI3 kinase signaling with T cell leukemia as a screening platform for multiple clinical and experimental reasons. Our resource predicts multiple combination-based therapies with high fidelity, ten of which we confirmed with small molecule inhibitors. Included are biochemical assays, as well as the IPI145 (duvelisib) inhibitor. We uncover the mechanism of synergy between the PI3 kinase inhibitor GDC0941 (pictilisib) and the tubulin inhibitor vincristine and demonstrate broad synergy in 28 cell lines of 5 cancer types and efficacy in preclinical leukemia mouse trials.
Collapse
Affiliation(s)
- Marsilius Mues
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laila Karra
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Damia Romero-Moya
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anica Wandler
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew J Hangauer
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yvonne Thus
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marthe Lindenbergh
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin Shannon
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael T McManus
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Song JH, Singh N, Luevano LA, Padi SKR, Okumura K, Olive V, Black SM, Warfel NA, Goodrich DW, Kraft AS. Mechanisms Behind Resistance to PI3K Inhibitor Treatment Induced by the PIM Kinase. Mol Cancer Ther 2018; 17:2710-2721. [PMID: 30190422 PMCID: PMC6279580 DOI: 10.1158/1535-7163.mct-18-0374] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/27/2018] [Accepted: 08/30/2018] [Indexed: 12/29/2022]
Abstract
Cancer resistance to PI3K inhibitor therapy can be in part mediated by increases in the PIM1 kinase. However, the exact mechanism by which PIM kinase promotes tumor cell resistance is unknown. Our study unveils the pivotal control of redox signaling by PIM kinases as a driver of this resistance mechanism. PIM1 kinase functions to decrease cellular ROS levels by enhancing nuclear factor erythroid 2-related factor 2 (NRF2)/antioxidant response element activity. PIM prevents cell death induced by PI3K-AKT-inhibitory drugs through a noncanonical mechanism of NRF2 ubiquitination and degradation and translational control of NRF2 protein levels through modulation of eIF4B and mTORC1 activity. Importantly, PIM also controls NAD(P)H production by increasing glucose flux through the pentose phosphate shunt decreasing ROS production, and thereby diminishing the cytotoxicity of PI3K-AKT inhibitors. Treatment with PIM kinase inhibitors reverses this resistance phenotype, making tumors increasingly susceptible to small-molecule therapeutics, which block the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Jin H Song
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona.
- University of Arizona Cancer Center, Tucson, Arizona
| | - Neha Singh
- University of Arizona Cancer Center, Tucson, Arizona
| | | | | | - Koichi Okumura
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Virginie Olive
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Stephen M Black
- Department of Physiology, University of Arizona, Tucson, Arizona
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Noel A Warfel
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- University of Arizona Cancer Center, Tucson, Arizona
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, New York, New York
| | - Andrew S Kraft
- University of Arizona Cancer Center, Tucson, Arizona.
- Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
20
|
Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer. Nat Chem Biol 2018; 14:768-777. [PMID: 29942081 PMCID: PMC6051919 DOI: 10.1038/s41589-018-0081-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer.
Collapse
|
21
|
Gómez Tejeda Zañudo J, Scaltriti M, Albert R. A network modeling approach to elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer. CANCER CONVERGENCE 2017; 1:5. [PMID: 29623959 PMCID: PMC5876695 DOI: 10.1186/s41236-017-0007-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023] Open
Abstract
Background Mechanistic models of within-cell signal transduction networks can explain how these networks integrate internal and external inputs to give rise to the appropriate cellular response. These models can be fruitfully used in cancer cells, whose aberrant decision-making regarding their survival or death, proliferation or quiescence can be connected to errors in the state of nodes or edges of the signal transduction network. Results Here we present a comprehensive network, and discrete dynamic model, of signal transduction in ER+ breast cancer based on the literature of ER+, HER2+, and PIK3CA-mutant breast cancers. The network model recapitulates known resistance mechanisms to PI3K inhibitors and suggests other possibilities for resistance. The model also reveals known and novel combinatorial interventions that are more effective than PI3K inhibition alone. Conclusions The use of a logic-based, discrete dynamic model enables the identification of results that are mainly due to the organization of the signaling network, and those that also depend on the kinetics of individual events. Network-based models such as this will play an increasing role in the rational design of high-order therapeutic combinations. Electronic supplementary material The online version of this article (10.1186/s41236-017-0007-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge Gómez Tejeda Zañudo
- 1Department of Physics, The Pennsylvania State University, University Park, PA 16802-6300 USA.,2Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA.,3Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142 USA
| | - Maurizio Scaltriti
- 4Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA.,5Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Réka Albert
- 1Department of Physics, The Pennsylvania State University, University Park, PA 16802-6300 USA.,6Department of Biology, The Pennsylvania State University, University Park, PA 16802-6300 USA
| |
Collapse
|
22
|
Abstract
Exciting new technologies are often self-limiting in their rollout, as access to state-of-the-art instrumentation or the need for years of hands-on experience, for better or worse, ensures slow adoption by the community. CRISPR technology, however, presents the opposite dilemma, where the simplicity of the system enabled the parallel development of many applications, improvements and derivatives, and new users are now presented with an almost paralyzing abundance of choices. This Review intends to guide users through the process of applying CRISPR technology to their biological problems of interest, especially in the context of discovering gene function at scale.
Collapse
Affiliation(s)
- John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| |
Collapse
|