1
|
Ghimire P, Joh RI. Modeling the Copy Number of HSATII Repeats in Human Pericentromere. Int J Mol Sci 2025; 26:4751. [PMID: 40429892 PMCID: PMC12112567 DOI: 10.3390/ijms26104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/11/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Tandemly repeated DNA fragments are major components of centromeres and pericentromeric heterochromatin, which is responsible for chromosomal stability and segregation. Recent evidence suggests that transcripts from these repeats play a key role in heterochromatin maintenance, and these repeats can be highly dynamic with various copy numbers. Here, we developed a mathematical model for human satellite repeats, which tracks the silenced and desilenced repeats, lncRNA, and copy number. Our model shows that chromatin factors for silencing and RNA stability can facilitate copy gain in satellites. Also, the system can be bistable, and cells with different copy numbers, silenced repeats with a small copy number, and desilenced repeats with a large copy number may coexist. To incorporate the cooperative methylation by neighboring repeats and the local chromatin environment, we also developed a spatial model where the local chromatin environment facilitates methylation locally. This model suggests that a local domain of silenced repeats may be an important feature of copy number regulation. Our models suggest that pericentromeric repeats are highly dynamic, and small changes in chromatin regulation can lead to large changes in satellite copy numbers.
Collapse
Affiliation(s)
- Puranjan Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Richard I. Joh
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23220, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23220, USA
| |
Collapse
|
2
|
Gaggi G, Hausman C, Cho S, Badalamenti BC, Trinh BQ, Di Ruscio A, Ummarino S. LncRNAs Ride the Storm of Epigenetic Marks. Genes (Basel) 2025; 16:313. [PMID: 40149464 PMCID: PMC11942515 DOI: 10.3390/genes16030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Advancements in genome sequencing technologies have uncovered the multifaceted roles of long non-coding RNAs (lncRNAs) in human cells. Recent discoveries have identified lncRNAs as major players in gene regulatory pathways, highlighting their pivotal role in human cell growth and development. Their dysregulation is implicated in the onset of genetic disorders and age-related diseases, including cancer. Specifically, they have been found to orchestrate molecular mechanisms impacting epigenetics, including DNA methylation and hydroxymethylation, histone modifications, and chromatin remodeling, thereby significantly influencing gene expression. This review provides an overview of the current knowledge on lncRNA-mediated epigenetic regulation of gene expression, emphasizing the biomedical implications of lncRNAs in the development of different types of cancers and genetic diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Clinton Hausman
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soomin Cho
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Brianna C. Badalamenti
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q. Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Annalisa Di Ruscio
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Simone Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
3
|
Ohta S, Ohzeki JI, Sato N, Tanizawa H, Chung CL, Noma KI, Masumoto H. Novel role of zinc-finger protein 518 in heterochromatin formation on α-satellite DNA. Nucleic Acids Res 2025; 53:gkae1162. [PMID: 39673523 PMCID: PMC11754734 DOI: 10.1093/nar/gkae1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024] Open
Abstract
Aneuploidy is caused by chromosomal missegregation and is frequently observed in cancers and hematological diseases. Therefore, it is important to understand the molecular mechanisms underlying chromosomal segregation. The centromere's intricate structure is crucial for proper chromosome segregation, with heterochromatin at the pericentromeric α-satellites playing a key role. However, the mechanism targeting heterochromatin to pericentromeres remains elusive. This study identifies a novel mechanism involving two homologous zinc-finger proteins ZNF518A and ZNF518B in human pericentric heterochromatin formation. Our investigation demonstrated that ZNF518s localize to the centromere via centromere protein B (CENP-B). Moreover, ZNF518s interact with heterochromatin protein 1 (HP1) and H3K9 methyltransferase G9A, recruiting the heterochromatin components to pericentromeres. We found that centromeric histone H3K9 trimethylation was diminished in the absence of ZNF518s when another H3K9 methyltransferase, SUV39H1, was depleted. In somatic cells, the ZNF518s-G9a axis is not the principal pathway for heterochromatin formation but plays a supplementary role. Furthermore, ZNF518s are involved in histone H3K9 trimethylation at ectopic sites, indicating their broad role in heterochromatin establishment. Consequently, we propose that ZNF518s participate in the mechanism underlying heterochromatin establishment at pericentromeres. Our findings shed light on the novel mechanism underlying pericentromeric heterochromatin formation, highlighting the central role of ZNF518 in this process.
Collapse
Affiliation(s)
- Shinya Ohta
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Department of Biochemistry, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
- Chromosome Engineering Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Nobuko Sato
- Department of Biochemistry, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Hideki Tanizawa
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Claire Yik-Lok Chung
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Ken-Ichi Noma
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| |
Collapse
|
4
|
Kennedy DR, Lemiere J, Tan C, Simental E, Braxton J, Maxwell RA, Amine AAA, Al-Sady B. Phosphorylation of HP1/Swi6 relieves competition with Suv39/Clr4 on nucleosomes and enables H3K9 trimethyl spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620326. [PMID: 39554105 PMCID: PMC11565791 DOI: 10.1101/2024.10.25.620326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Heterochromatin formation in Schizosaccharomyces pombe requires the spreading of histone 3 (H3) Lysine 9 (K9) methylation (me) from nucleation centers by the H3K9 methylase, Suv39/Clr4, and the reader protein, HP1/Swi6. To accomplish this, Suv39/Clr4 and HP1/Swi6 have to associate with nucleosomes both nonspecifically, binding DNA and octamer surfaces and specifically, via recognition of methylated H3K9 by their respective chromodomains. However, how both proteins avoid competition for the same nucleosomes in this process is unclear. Here, we show that phosphorylation tunes the nucleosome affinity of HP1/Swi6 such that it preferentially partitions onto Suv39/Clr4's trimethyl product rather than its unmethylated substrates. Preferential partitioning enables efficient conversion from di-to trimethylation on nucleosomes in vitro and H3K9me3 spreading in vivo. Together, our data suggests that phosphorylation of HP1/Swi6 creates a regime that relieves competition with the "read-write" mechanism of Suv39/Clr4 for productive heterochromatin spreading.
Collapse
Affiliation(s)
- Dana R Kennedy
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
- TETRAD graduate program, UCSF
| | | | - Catherine Tan
- Biomedical Sciences graduate program, UCSF
- Department of Cell and Tissue Biology, UCSF
| | - Eric Simental
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
- TETRAD graduate program, UCSF
| | - Julian Braxton
- Chemistry and Chemical Biology graduate program, UCSF
- Institute for Neurodegenerative Diseases, UCSF
| | - Robert A Maxwell
- The Vincent J. Coates Proteomics/Mass Spectrometry Core Laboratory, University of California, Berkeley, CA, USA
| | - Ahmed AA Amine
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
| | - Bassem Al-Sady
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
| |
Collapse
|
5
|
Kim HS, Roche B, Bhattacharjee S, Todeschini L, Chang AY, Hammell C, Verdel A, Martienssen RA. Clr4 SUV39H1 ubiquitination and non-coding RNA mediate transcriptional silencing of heterochromatin via Swi6 phase separation. Nat Commun 2024; 15:9384. [PMID: 39477922 PMCID: PMC11526040 DOI: 10.1038/s41467-024-53417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Transcriptional silencing by RNAi paradoxically relies on transcription, but how the transition from transcription to silencing is achieved has remained unclear. The Cryptic Loci Regulator complex (CLRC) in Schizosaccharomyces pombe is a cullin-ring E3 ligase required for silencing that is recruited by RNAi. We found that the E2 ubiquitin conjugating enzyme Ubc4 interacts with CLRC and mono-ubiquitinates the histone H3K9 methyltransferase Clr4SUV39H1, promoting the transition from co-transcriptional gene silencing (H3K9me2) to transcriptional gene silencing (H3K9me3). Ubiquitination of Clr4 occurs in an intrinsically disordered region (Clr4IDR), which undergoes liquid droplet formation in vitro, along with Swi6HP1 the effector of transcriptional gene silencing. Our data suggests that phase separation is exquisitely sensitive to non-coding RNA (ncRNA) which promotes self-association of Clr4, chromatin association, and di-, but not tri- methylation instead. Ubc4-CLRC also targets the transcriptional co-activator Bdf2BRD4, down-regulating centromeric transcription and small RNA (sRNA) production. The deubiquitinase Ubp3 counteracts both activities.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Benjamin Roche
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- University of North Dakota, School of Medicine & Health Sciences, 1301 N Columbia Rd. Stop 9037, Grand Forks, ND, 58202, USA
| | | | - Leila Todeschini
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - An-Yun Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - André Verdel
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| |
Collapse
|
6
|
Ma R, Zhang Y, Zhang J, Zhang P, Liu Z, Fan Y, Wang HT, Zhang Z, Zhu B. Targeting pericentric non-consecutive motifs for heterochromatin initiation. Nature 2024; 631:678-685. [PMID: 38961301 DOI: 10.1038/s41586-024-07640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Pericentric heterochromatin is a critical component of chromosomes marked by histone H3 K9 (H3K9) methylation1-3. However, what recruits H3K9-specific histone methyltransferases to pericentric regions in vertebrates remains unclear4, as does why pericentric regions in different species share the same H3K9 methylation mark despite lacking highly conserved DNA sequences2,5. Here we show that zinc-finger proteins ZNF512 and ZNF512B specifically localize at pericentric regions through direct DNA binding. Notably, both ZNF512 and ZNF512B are sufficient to initiate de novo heterochromatin formation at ectopically targeted repetitive regions and pericentric regions, as they directly recruit SUV39H1 and SUV39H2 (SUV39H) to catalyse H3K9 methylation. SUV39H2 makes a greater contribution to H3K9 trimethylation, whereas SUV39H1 seems to contribute more to silencing, probably owing to its preferential association with HP1 proteins. ZNF512 and ZNF512B from different species can specifically target pericentric regions of other vertebrates, because the atypical long linker residues between the zinc-fingers of ZNF512 and ZNF512B offer flexibility in recognition of non-consecutively organized three-nucleotide triplets targeted by each zinc-finger. This study addresses two long-standing questions: how constitutive heterochromatin is initiated and how seemingly variable pericentric sequences are targeted by the same set of conserved machinery in vertebrates.
Collapse
Affiliation(s)
- Runze Ma
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Pinqi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zeqi Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Fan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao-Tian Wang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Gao J, Li F. Heterochromatin repeat organization at an individual level: Rex1BD and the 14-3-3 protein coordinate to shape the epigenetic landscape within heterochromatin repeats. Bioessays 2024; 46:e2400030. [PMID: 38679759 DOI: 10.1002/bies.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
In eukaryotic cells, heterochromatin is typically composed of tandem DNA repeats and plays crucial roles in gene expression and genome stability. It has been reported that silencing at individual units within tandem heterochromatin repeats exhibits a position-dependent variation. However, how the heterochromatin is organized at an individual repeat level remains poorly understood. Using a novel genetic approach, our recent study identified a conserved protein Rex1BD required for position-dependent silencing within heterochromatin repeats. We further revealed that Rex1BD interacts with the 14-3-3 protein to regulate heterochromatin silencing by linking RNAi and HDAC pathways. In this review, we discuss how Rex1BD and the 14-3-3 protein coordinate to modulate heterochromatin organization at the individual repeat level, and comment on the biological significance of the position-dependent effect in heterochromatin repeats. We also identify the knowledge gaps that still need to be unveiled in the field.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, New York, USA
| | - Fei Li
- Department of Biology, New York University, New York, New York, USA
| |
Collapse
|
8
|
Zocher S, McCloskey A, Karasinsky A, Schulte R, Friedrich U, Lesche M, Rund N, Gage FH, Hetzer MW, Toda T. Lifelong persistence of nuclear RNAs in the mouse brain. Science 2024; 384:53-59. [PMID: 38574132 PMCID: PMC7615865 DOI: 10.1126/science.adf3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/02/2024] [Indexed: 04/06/2024]
Abstract
Genomic DNA that resides in the nuclei of mammalian neurons can be as old as the organism itself. The life span of nuclear RNAs, which are critical for proper chromatin architecture and transcription regulation, has not been determined in adult tissues. In this work, we identified and characterized nuclear RNAs that do not turn over for at least 2 years in a subset of postnatally born cells in the mouse brain. These long-lived RNAs were stably retained in nuclei in a neural cell type-specific manner and were required for the maintenance of heterochromatin. Thus, the life span of neural cells may depend on both the molecular longevity of DNA for the storage of genetic information and also the extreme stability of RNA for the functional organization of chromatin.
Collapse
Affiliation(s)
- Sara Zocher
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
| | - Asako McCloskey
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Kura Oncology, Inc., 5510 Morehouse Dr., San Diego, CA 92121, USA
| | - Anne Karasinsky
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
| | - Roberta Schulte
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ulrike Friedrich
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Nicole Rund
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martin W. Hetzer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
- Laboratory of Neural Epigenomics, Institute of Medical Physics and Micro-tissue Engineering, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
9
|
Koryakov DE. Diversity and functional specialization of H3K9-specific histone methyltransferases. Bioessays 2024; 46:e2300163. [PMID: 38058121 DOI: 10.1002/bies.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Histone modifications play a critical role in the control over activities of the eukaryotic genome; among these chemical alterations, the methylation of lysine K9 in histone H3 (H3K9) is one of the most extensively studied. The number of enzymes capable of methylating H3K9 varies greatly across different organisms: in fission yeast, only one such methyltransferase is present, whereas in mammals, 10 are known. If there are several such enzymes, each of them must have some specific function, and they can interact with one another. Thus arises a complex system of interchangeability, "division of labor," and contacts with each other and with diverse proteins. Histone methyltransferases specialize in the number of methyl groups that they attach and have different intracellular localizations as well as different distributions on chromosomes. Each also shows distinct binding to different types of sequences and has a specific set of nonhistone substrates.
Collapse
Affiliation(s)
- Dmitry E Koryakov
- Lab of Molecular Cytogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| |
Collapse
|
10
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
11
|
Malla AB, Yu H, Farris D, Kadimi S, Lam TT, Cox AL, Smith ZD, Lesch BJ. DOT1L bridges transcription and heterochromatin formation at mammalian pericentromeres. EMBO Rep 2023; 24:e56492. [PMID: 37317657 PMCID: PMC10398668 DOI: 10.15252/embr.202256492] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Repetitive DNA elements are packaged in heterochromatin, but many require bursts of transcription to initiate and maintain long-term silencing. The mechanisms by which these heterochromatic genome features are transcribed remain largely unknown. Here, we show that DOT1L, a conserved histone methyltransferase that modifies lysine 79 of histone H3 (H3K79), has a specialized role in transcription of major satellite repeats to maintain pericentromeric heterochromatin and genome stability. We find that H3K79me3 is selectively enriched relative to H3K79me2 at repetitive elements in mouse embryonic stem cells (mESCs), that DOT1L loss compromises pericentromeric satellite transcription, and that this activity involves possible coordination between DOT1L and the chromatin remodeler SMARCA5. Stimulation of transcript production from pericentromeric repeats by DOT1L participates in stabilization of heterochromatin structures in mESCs and cleavage-stage embryos and is required for preimplantation viability. Our findings uncover an important role for DOT1L as a bridge between transcriptional activation of repeat elements and heterochromatin stability, advancing our understanding of how genome integrity is maintained and how chromatin state is set up during early development.
Collapse
Affiliation(s)
- Aushaq B Malla
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Haoming Yu
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Delaney Farris
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | | | - TuKiet T Lam
- Keck MS & Proteomics ResourceYale School of MedicineNew HavenCTUSA
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| | - Andy L Cox
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Zachary D Smith
- Department of GeneticsYale School of MedicineNew HavenCTUSA
- Yale Stem Cell CenterYale School of MedicineNew HavenCTUSA
| | - Bluma J Lesch
- Department of GeneticsYale School of MedicineNew HavenCTUSA
- Yale Cancer CenterYale School of MedicineNew HavenCTUSA
| |
Collapse
|
12
|
Nakamura R, Nakayama JI. Regulation of the SUV39H Family Methyltransferases: Insights from Fission Yeast. Biomolecules 2023; 13:biom13040593. [PMID: 37189341 DOI: 10.3390/biom13040593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Histones, which make up nucleosomes, undergo various post-translational modifications, such as acetylation, methylation, phosphorylation, and ubiquitylation. In particular, histone methylation serves different cellular functions depending on the location of the amino acid residue undergoing modification, and is tightly regulated by the antagonistic action of histone methyltransferases and demethylases. The SUV39H family of histone methyltransferases (HMTases) are evolutionarily conserved from fission yeast to humans and play an important role in the formation of higher-order chromatin structures called heterochromatin. The SUV39H family HMTases catalyzes the methylation of histone H3 lysine 9 (H3K9), and this modification serves as a binding site for heterochromatin protein 1 (HP1) to form a higher-order chromatin structure. While the regulatory mechanism of this family of enzymes has been extensively studied in various model organisms, Clr4, a fission yeast homologue, has made an important contribution. In this review, we focus on the regulatory mechanisms of the SUV39H family of proteins, in particular, the molecular mechanisms revealed by the studies of the fission yeast Clr4, and discuss their generality in comparison to other HMTases.
Collapse
|
13
|
Stamidis N, Żylicz JJ. RNA-mediated heterochromatin formation at repetitive elements in mammals. EMBO J 2023; 42:e111717. [PMID: 36847618 PMCID: PMC10106986 DOI: 10.15252/embj.2022111717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
The failure to repress transcription of repetitive genomic elements can lead to catastrophic genome instability and is associated with various human diseases. As such, multiple parallel mechanisms cooperate to ensure repression and heterochromatinization of these elements, especially during germline development and early embryogenesis. A vital question in the field is how specificity in establishing heterochromatin at repetitive elements is achieved. Apart from trans-acting protein factors, recent evidence points to a role of different RNA species in targeting repressive histone marks and DNA methylation to these sites in mammals. Here, we review recent discoveries on this topic and predominantly focus on the role of RNA methylation, piRNAs, and other localized satellite RNAs.
Collapse
Affiliation(s)
- Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Heterochromatin and RNAi act independently to ensure genome stability in Mucorales human fungal pathogens. Proc Natl Acad Sci U S A 2023; 120:e2220475120. [PMID: 36745785 PMCID: PMC9963178 DOI: 10.1073/pnas.2220475120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chromatin modifications play a fundamental role in controlling transcription and genome stability and yet despite their importance, are poorly understood in early-diverging fungi. We present a comprehensive study of histone lysine and DNA methyltransferases across the Mucoromycota, emphasizing heterochromatin formation pathways that rely on the Clr4 complex involved in H3K9-methylation, the Polycomb-repressive complex 2 driving H3K27-methylation, or DNMT1-like methyltransferases that catalyze 5mC DNA methylation. Our analysis uncovered H3K9-methylated heterochromatin as the major chromatin modification repressing transcription in these fungi, which lack both Polycomb silencing and cytosine methylation. Although small RNAs generated by RNA interference (RNAi) pathways facilitate the formation of heterochromatin in many eukaryotic organisms, we show that RNAi is not required to maintain either genomic or centromeric heterochromatin in Mucor. H3K9-methylation and RNAi act independently to control centromeric regions, suggesting a functional subspecialization. Whereas the H3K9 methyltransferase Clr4 and heterochromatin formation are essential for cell viability, RNAi is dispensable for viability yet acts as the main epigenetic, regulatory force repressing transposition of centromeric GremLINE1 elements. Mutations inactivating canonical RNAi lead to rampant transposition and insertional inactivation of targets resulting in antimicrobial drug resistance. This fine-tuned, Rdrp2-dependent RNAi activity is critical for genome stability, restricting GremLINE1 retroelements to the centromeres where they occupy long heterochromatic islands. Taken together, our results suggest that RNAi and heterochromatin formation are independent genome defense and regulatory mechanisms in the Mucorales, contributing to a paradigm shift from the cotranscriptional gene silencing observed in fission yeasts to models in which heterochromatin and RNAi operate independently in early-diverging fungi.
Collapse
|
15
|
Levinsky AJ, McEdwards G, Sethna N, Currie MA. Targets of histone H3 lysine 9 methyltransferases. Front Cell Dev Biol 2022; 10:1026406. [PMID: 36568972 PMCID: PMC9768651 DOI: 10.3389/fcell.2022.1026406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone H3 lysine 9 di- and trimethylation are well-established marks of constitutively silenced heterochromatin domains found at repetitive DNA elements including pericentromeres, telomeres, and transposons. Loss of heterochromatin at these sites causes genomic instability in the form of aberrant DNA repair, chromosome segregation defects, replication stress, and transposition. H3K9 di- and trimethylation also regulate cell type-specific gene expression during development and form a barrier to cellular reprogramming. However, the role of H3K9 methyltransferases extends beyond histone methylation. There is a growing list of non-histone targets of H3K9 methyltransferases including transcription factors, steroid hormone receptors, histone modifying enzymes, and other chromatin regulatory proteins. Additionally, two classes of H3K9 methyltransferases modulate their own function through automethylation. Here we summarize the structure and function of mammalian H3K9 methyltransferases, their roles in genome regulation and constitutive heterochromatin, as well as the current repertoire of non-histone methylation targets including cases of automethylation.
Collapse
Affiliation(s)
- Aidan J. Levinsky
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasha Sethna
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mark A. Currie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada,*Correspondence: Mark A. Currie,
| |
Collapse
|
16
|
Zhao Y, Huang S, Tan X, Long L, He Q, Liang X, Bai J, Li Q, Lin J, Li Y, Liu N, Ma J, Chen Y. N 6 -Methyladenosine-Modified CBX1 Regulates Nasopharyngeal Carcinoma Progression Through Heterochromatin Formation and STAT1 Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2205091. [PMID: 36310139 PMCID: PMC9798977 DOI: 10.1002/advs.202205091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 05/16/2023]
Abstract
Epitranscriptomic remodeling such as N6 -methyladenosine (m6 A) modification plays a critical role in tumor development. However, little is known about the underlying mechanisms connecting m6 A modification and nasopharyngeal carcinoma (NPC) progression. Here, CBX1 is identified, a histone methylation regulator, to be significantly upregulated with m6 A hypomethylation in metastatic NPC tissues. The m6 A-modified CBX1 mRNA transcript is recognized and destabilized by the m6 A reader YTHDF3. Furthermore, it is revealed that CBX1 promotes NPC cell migration, invasion, and proliferation through transcriptional repression of MAP7 via H3K9me3-mediated heterochromatin formation. In addition to its oncogenic effect, CBX1 can facilitate immune evasion through IFN-γ-STAT1 signaling-mediated PD-L1 upregulation. Clinically, CBX1 serves as an independent predictor for unfavorable prognosis in NPC patients. The results reveal a crosstalk between epitranscriptomic and epigenetic regulation in NPC progression, and shed light on the functions of CBX1 in tumorigenesis and immunomodulation, which may provide an appealing therapeutic target in NPC.
Collapse
Affiliation(s)
- Yin Zhao
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Shengyan Huang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Xirong Tan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Liufen Long
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Qingmei He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Xiaoyu Liang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jiewen Bai
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Qingjie Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jiayi Lin
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Yingqin Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Na Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jun Ma
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Yupei Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| |
Collapse
|
17
|
Sacubitril Valsartan Enhances Cardiac Function and Alleviates Myocardial Infarction in Rats through a SUV39H1/SPP1 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5009289. [PMID: 36193085 PMCID: PMC9526637 DOI: 10.1155/2022/5009289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022]
Abstract
Sacubitril valsartan (lcz696) has been demonstrated as a substitute for angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for the treatment of heart failure. This research is aimed at examining the effects of lcz696 and its target molecules on myocardial infarction (MI). A rat model of MI was induced by left anterior descending artery ligation and treated with lcz696. Lcz696 treatment significantly reduced cardiac injury and heart failure, restored the left ventricular fractional shortening and ejection fraction, and reduced oxidative stress and inflammatory responses in rat myocardium. By analyzing the heart failure-related GSE47495 dataset and performing gene ontology (GO) functional enrichment analysis, we obtained histone lysine methyltransferase SUV39H1 and secreted phosphoprotein 1 (SPP1) as two molecules implicated in the oxidative stress and inflammation processes. An elevation of SUV39H1 whereas a decline of SPP1 were detected in cardiac tissues after lcz696 treatment. Enrichments of SUV39H1 and H3K9me3 at the SPP1 promoter were identified by chromatin immunoprecipitation assay. SUV39H1 catalyzed H3K9me3 modification to suppress the expression of SPP1. Preconditioning of SUV39H1 silencing blocked the protective roles of lcz696, but SPP1 silencing alleviated the myocardial injury. In conclusion, this study demonstrates that lcz696 enhances cardiac function and alleviates MI in rats through a SUV39H1/SPP1 axis.
Collapse
|
18
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
19
|
Fukuda K, Makino Y, Kaneko S, Shimura C, Okada Y, Ichiyanagi K, Shinkai Y. Transcriptional states of retroelement-inserted regions and specific KRAB zinc finger protein association are correlated with DNA methylation of retroelements in human male germ cells. eLife 2022; 11:76822. [PMID: 35315771 PMCID: PMC8967385 DOI: 10.7554/elife.76822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/14/2022] Open
Abstract
DNA methylation, repressive histone modifications, and PIWI-interacting RNAs are essential for controlling retroelement silencing in mammalian germ lines. Dysregulation of retroelement silencing is associated with male sterility. Although retroelement silencing mechanisms have been extensively studied in mouse germ cells, little progress has been made in humans. Here, we show that the Krüppel-associated box domain zinc finger proteins are associated with DNA methylation of retroelements in human primordial germ cells. Further, we show that the hominoid-specific retroelement SINE-VNTR-Alus (SVA) is subjected to transcription-directed de novo DNA methylation during human spermatogenesis. The degree of de novo DNA methylation in SVAs varies among human individuals, which confers significant inter-individual epigenetic variation in sperm. Collectively, our results highlight potential molecular mechanisms for the regulation of retroelements in human male germ cells.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN, Wako, Japan
| | - Yoshinori Makino
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Satoru Kaneko
- Department of Obstetrics and Gynecology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | | | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Dicer promotes genome stability via the bromodomain transcriptional co-activator BRD4. Nat Commun 2022; 13:1001. [PMID: 35194019 PMCID: PMC8863982 DOI: 10.1038/s41467-022-28554-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
RNA interference is required for post-transcriptional silencing, but also has additional roles in transcriptional silencing of centromeres and genome stability. However, these roles have been controversial in mammals. Strikingly, we found that Dicer-deficient embryonic stem cells have strong proliferation and chromosome segregation defects as well as increased transcription of centromeric satellite repeats, which triggers the interferon response. We conducted a CRISPR-Cas9 genetic screen to restore viability and identified transcriptional activators, histone H3K9 methyltransferases, and chromosome segregation factors as suppressors, resembling Dicer suppressors identified in independent screens in fission yeast. The strongest suppressors were mutations in the transcriptional co-activator Brd4, which reversed the strand-specific transcription of major satellite repeats suppressing the interferon response, and in the histone acetyltransferase Elp3. We show that identical mutations in the second bromodomain of Brd4 rescue Dicer-dependent silencing and chromosome segregation defects in both mammalian cells and fission yeast. This remarkable conservation demonstrates that RNA interference has an ancient role in transcriptional silencing and in particular of satellite repeats, which is essential for cell cycle progression and proper chromosome segregation. Our results have pharmacological implications for cancer and autoimmune diseases characterized by unregulated transcription of satellite repeats. While RNA interference is conserved across species, small RNA pathways are very diverse. In this study, Gutbrod et al. find that non-canonical roles of Dicer in genome stability are in fact deeply conserved from yeast to humans.
Collapse
|
21
|
A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain. Mol Psychiatry 2021; 26:7550-7559. [PMID: 34262135 DOI: 10.1038/s41380-021-01199-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin β (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.
Collapse
|
22
|
Weirich S, Khella MS, Jeltsch A. Structure, Activity and Function of the Suv39h1 and Suv39h2 Protein Lysine Methyltransferases. Life (Basel) 2021; 11:life11070703. [PMID: 34357075 PMCID: PMC8303541 DOI: 10.3390/life11070703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
SUV39H1 and SUV39H2 were the first protein lysine methyltransferases that were identified more than 20 years ago. Both enzymes introduce di- and trimethylation at histone H3 lysine 9 (H3K9) and have important roles in the maintenance of heterochromatin and gene repression. They consist of a catalytically active SET domain and a chromodomain, which binds H3K9me2/3 and has roles in enzyme targeting and regulation. The heterochromatic targeting of SUV39H enzymes is further enhanced by the interaction with HP1 proteins and repeat-associated RNA. SUV39H1 and SUV39H2 recognize an RKST motif with additional residues on both sides, mainly K4 in the case of SUV39H1 and G12 in the case of SUV39H2. Both SUV39H enzymes methylate different non-histone proteins including RAG2, DOT1L, SET8 and HupB in the case of SUV39H1 and LSD1 in the case of SUV39H2. Both enzymes are expressed in embryonic cells and have broad expression profiles in the adult body. SUV39H1 shows little tissue preference except thymus, while SUV39H2 is more highly expressed in the brain, testis and thymus. Both enzymes are connected to cancer, having oncogenic or tumor-suppressive roles depending on the tumor type. In addition, SUV39H2 has roles in the brain during early neurodevelopment.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
| | - Mina S. Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
- Correspondence:
| |
Collapse
|
23
|
Wei KHC, Chan C, Bachtrog D. Establishment of H3K9me3-dependent heterochromatin during embryogenesis in Drosophila miranda. eLife 2021; 10:55612. [PMID: 34128466 PMCID: PMC8285105 DOI: 10.7554/elife.55612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heterochromatin is a key architectural feature of eukaryotic genomes crucial for silencing of repetitive elements. During Drosophila embryonic cellularization, heterochromatin rapidly appears over repetitive sequences, but the molecular details of how heterochromatin is established are poorly understood. Here, we map the genome-wide distribution of H3K9me3-dependent heterochromatin in individual embryos of Drosophila miranda at precisely staged developmental time points. We find that canonical H3K9me3 enrichment is established prior to cellularization and matures into stable and broad heterochromatin domains through development. Intriguingly, initial nucleation sites of H3K9me3 enrichment appear as early as embryonic stage 3 over transposable elements (TEs) and progressively broaden, consistent with spreading to neighboring nucleosomes. The earliest nucleation sites are limited to specific regions of a small number of recently active retrotransposon families and often appear over promoter and 5' regions of LTR retrotransposons, while late nucleation sites develop broadly across the entirety of most TEs. Interestingly, early nucleating TEs are strongly associated with abundant maternal piRNAs and show early zygotic transcription. These results support a model of piRNA-associated co-transcriptional silencing while also suggesting additional mechanisms for site-restricted H3K9me3 nucleation at TEs in pre-cellular Drosophila embryos.
Collapse
Affiliation(s)
- Kevin H-C Wei
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Carolus Chan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
24
|
Duda KJ, Ching RW, Jerabek L, Shukeir N, Erikson G, Engist B, Onishi-Seebacher M, Perrera V, Richter F, Mittler G, Fritz K, Helm M, Knuckles P, Bühler M, Jenuwein T. m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Res 2021; 49:5568-5587. [PMID: 33999208 PMCID: PMC8191757 DOI: 10.1093/nar/gkab364] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin.
Collapse
Affiliation(s)
- Katarzyna J Duda
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Reagan W Ching
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Lisa Jerabek
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Nicholas Shukeir
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Galina Erikson
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Bettina Engist
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Valentina Perrera
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Florian Richter
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg – University, Mainz 55128, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Katharina Fritz
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg – University, Mainz 55128, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg – University, Mainz 55128, Germany
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland and University of Basel, Basel 4051, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland and University of Basel, Basel 4051, Switzerland
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| |
Collapse
|
25
|
Sterling J, Menezes SV, Abbassi RH, Munoz L. Histone lysine demethylases and their functions in cancer. Int J Cancer 2021; 148:2375-2388. [PMID: 33128779 DOI: 10.1002/ijc.33375] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022]
Abstract
Histone lysine demethylases (KDMs) are enzymes that remove the methylation marks on lysines in nucleosomes' histone tails. These changes in methylation marks regulate gene transcription during both development and malignant transformation. Depending on which lysine residue is targeted, the effect of a given KDM on gene transcription can be either activating or repressing, and KDMs can regulate the expression of both oncogenes and tumour suppressors. Thus, the functions of KDMs can be regarded as both oncogenic and tumour suppressive, contingent on cell context and the enzyme isoform. Finally, KDMs also demethylate nonhistone proteins and have a variety of demethylase-independent functions. These epigenetic and other mechanisms that KDMs control make them important regulators of malignant tumours. Here, we present an overview of eight KDM subfamilies, their most-studied lysine targets and selected recent data on their roles in cancer stem cells, tumour aggressiveness and drug tolerance.
Collapse
Affiliation(s)
- Jayden Sterling
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sharleen V Menezes
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ramzi H Abbassi
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Lenka Munoz
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Tan L, Tran L, Ferreyra S, Moran JA, Skovgaard Z, Trujillo A, ibili E, Zhao Y. Downregulation of SUV39H1 and CITED2 Exerts Additive Effect on Promoting Adipogenic Commitment of Human Mesenchymal Stem Cells. Stem Cells Dev 2021; 30:485-501. [PMID: 33691475 PMCID: PMC8106253 DOI: 10.1089/scd.2020.0190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 11/12/2022] Open
Abstract
Human adipogenesis is the process through which uncommitted human mesenchymal stem cells (hMSCs) differentiate into adipocytes. Through a siRNA-based high-throughput screen that identifies adipogenic regulators whose expression knockdown leads to enhanced adipogenic differentiation of hMSCs, two new regulators, SUV39H1, a histone methyltransferase that catalyzes H3K9Me3, and CITED2, a CBP/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 were uncovered. Both SUV39H1 and CITED2 are normally downregulated during adipogenic differentiation of hMSCs. Further expression knockdown induced by siSUV39H1 or siCITED2 at the adipogenic initiation stage significantly enhanced adipogenic differentiation of hMSCs as compared with siControl treatment, with siSUV39H1 acting by both accelerating fat accumulation in individual adipocytes and increasing the total number of committed adipocytes, whereas siCITED2 acting predominantly by increasing the total number of committed adipocytes. In addition, both siSUV39H1 and siCITED2 were able to redirect hMSCs to undergo adipogenic differentiation in the presence of osteogenic inducing media, which normally only induces osteogenic differentiation of hMSCs in the absence of siSUV39H1 or siCITED2. Interestingly, simultaneous knockdown of both SUV39H1 and CITED2 resulted in even greater levels of adipogenic differentiation of hMSCs and expression of CEBPα and PPARγ, two master regulators of adipogenesis, as compared with those elicited by single gene knockdown. Furthermore, the effects of co-knockdown were equivalent to the additive effect of individual gene knockdown. Taken together, this study demonstrates that SUV39H1 and CITED2 are both negative regulators of human adipogenesis, and downregulation of both genes exerts an additive effect on promoting adipogenic differentiation of hMSCs through augmented commitment.
Collapse
Affiliation(s)
- Lun Tan
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Linh Tran
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Stephanie Ferreyra
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Jose A. Moran
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Zachary Skovgaard
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Amparo Trujillo
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Esra ibili
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Yuanxiang Zhao
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| |
Collapse
|
27
|
Yan P, Liu Z, Song M, Wu Z, Xu W, Li K, Ji Q, Wang S, Liu X, Yan K, Esteban CR, Ci W, Belmonte JCI, Xie W, Ren J, Zhang W, Sun Q, Qu J, Liu GH. Genome-wide R-loop Landscapes during Cell Differentiation and Reprogramming. Cell Rep 2021; 32:107870. [PMID: 32640235 DOI: 10.1016/j.celrep.2020.107870] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
DNA:RNA hybrids play key roles in both physiological and disease states by regulating chromatin and genome organization. Their homeostasis during cell differentiation and cell plasticity remains elusive. Using an isogenic human stem cell platform, we systematically characterize R-loops, DNA methylation, histone modifications, and chromatin accessibility in pluripotent cells and their lineage-differentiated derivatives. We confirm that a portion of R-loops formed co-transcriptionally at pluripotency genes in pluripotent stem cells and at lineage-controlling genes in differentiated lineages. Notably, a subset of R-loops maintained after differentiation are associated with repressive chromatin marks on silent pluripotency genes and undesired lineage genes. Moreover, in reprogrammed pluripotent cells, cell-of-origin-specific R-loops are initially present but are resolved with serial passaging. Our analysis suggests a multifaceted role of R-loops in cell fate determination that may serve as an additional layer of modulation on cell fate memory and cell plasticity.
Collapse
Affiliation(s)
- Pengze Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kuan Li
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Weimin Ci
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie Ren
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Ahmad SF, Singchat W, Jehangir M, Suntronpong A, Panthum T, Malaivijitnond S, Srikulnath K. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics. Cells 2020; 9:E2714. [PMID: 33352976 PMCID: PMC7767330 DOI: 10.3390/cells9122714] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
A substantial portion of the primate genome is composed of non-coding regions, so-called "dark matter", which includes an abundance of tandemly repeated sequences called satellite DNA. Collectively known as the satellitome, this genomic component offers exciting evolutionary insights into aspects of primate genome biology that raise new questions and challenge existing paradigms. A complete human reference genome was recently reported with telomere-to-telomere human X chromosome assembly that resolved hundreds of dark regions, encompassing a 3.1 Mb centromeric satellite array that had not been identified previously. With the recent exponential increase in the availability of primate genomes, and the development of modern genomic and bioinformatics tools, extensive growth in our knowledge concerning the structure, function, and evolution of satellite elements is expected. The current state of knowledge on this topic is summarized, highlighting various types of primate-specific satellite repeats to compare their proportions across diverse lineages. Inter- and intraspecific variation of satellite repeats in the primate genome are reviewed. The functional significance of these sequences is discussed by describing how the transcriptional activity of satellite repeats can affect gene expression during different cellular processes. Sex-linked satellites are outlined, together with their respective genomic organization. Mechanisms are proposed whereby satellite repeats might have emerged as novel sequences during different evolutionary phases. Finally, the main challenges that hinder the detection of satellite DNA are outlined and an overview of the latest methodologies to address technological limitations is presented.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
29
|
Thakur J, Henikoff S. Architectural RNA in chromatin organization. Biochem Soc Trans 2020; 48:1967-1978. [PMID: 32897323 PMCID: PMC7609026 DOI: 10.1042/bst20191226] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
RNA plays a well-established architectural role in the formation of membraneless interchromatin nuclear bodies. However, a less well-known role of RNA is in organizing chromatin, whereby specific RNAs have been found to recruit chromatin modifier proteins. Whether or not RNA can act as an architectural molecule for chromatin remains unclear, partly because dissecting the architectural role of RNA from its regulatory role remains challenging. Studies that have addressed RNA's architectural role in chromatin organization rely on in situ RNA depletion using Ribonuclease A (RNase A) and suggest that RNA plays a major direct architectural role in chromatin organization. In this review, we will discuss these findings, candidate chromatin architectural long non-coding RNAs and possible mechanisms by which RNA, along with RNA binding proteins might be mediating chromatin organization.
Collapse
Affiliation(s)
- Jitendra Thakur
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| |
Collapse
|
30
|
Yadav RP, Mäkelä JA, Hyssälä H, Cisneros-Montalvo S, Kotaja N. DICER regulates the expression of major satellite repeat transcripts and meiotic chromosome segregation during spermatogenesis. Nucleic Acids Res 2020; 48:7135-7153. [PMID: 32484548 PMCID: PMC7367195 DOI: 10.1093/nar/gkaa460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/23/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Constitutive heterochromatin at the pericentric regions of chromosomes undergoes dynamic changes in its epigenetic and spatial organization during spermatogenesis. Accurate control of pericentric heterochromatin is required for meiotic cell divisions and production of fertile and epigenetically intact spermatozoa. In this study, we demonstrate that pericentric heterochromatin is expressed during mouse spermatogenesis to produce major satellite repeat (MSR) transcripts. We show that the endonuclease DICER localizes to the pericentric heterochromatin in the testis. Furthermore, DICER forms complexes with MSR transcripts, and their processing into small RNAs is compromised in Dicer1 knockout mice leading to an elevated level of MSR transcripts in meiotic cells. We also show that defective MSR forward transcript processing in Dicer1 cKO germ cells is accompanied with reduced recruitment of SUV39H2 and H3K9me3 to the pericentric heterochromatin and meiotic chromosome missegregation. Altogether, our results indicate that the physiological role of DICER in maintenance of male fertility extends to the regulation of pericentric heterochromatin through direct targeting of MSR transcripts.
Collapse
Affiliation(s)
- Ram Prakash Yadav
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Hanna Hyssälä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Sheyla Cisneros-Montalvo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Finland
| | - Noora Kotaja
- To whom correspondence should be addressed. Tel: +358 44 2539225;
| |
Collapse
|
31
|
Martins NMC, Cisneros-Soberanis F, Pesenti E, Kochanova NY, Shang WH, Hori T, Nagase T, Kimura H, Larionov V, Masumoto H, Fukagawa T, Earnshaw WC. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory. J Cell Sci 2020; 133:jcs242610. [PMID: 32576667 PMCID: PMC7390644 DOI: 10.1242/jcs.242610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
| | | | - Elisa Pesenti
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | | | - Wei-Hao Shang
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Vladimir Larionov
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | | | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
32
|
Zhang L, Tian S, Zhao M, Yang T, Quan S, Yang Q, Song L, Yang X. SUV39H1-DNMT3A-mediated epigenetic regulation of Tim-3 and galectin-9 in the cervical cancer. Cancer Cell Int 2020; 20:325. [PMID: 32699524 PMCID: PMC7370487 DOI: 10.1186/s12935-020-01380-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Methylation of histone 3 at lysine 9 (H3K9) and DNA methylation are epigenetic marks correlated with genes silencing. The tumor microenvironment significantly influences therapeutic responses and clinical outcomes. The epigenetic-regulation mechanism of the costimulatory factors Tim-3 and galectin-9 in cervical cancer remains unknown. Methods The methylation status of HAVCR2 and LGALS9 were detected by MS-PCR in cervical cancer tissues and cell lines. The underlying molecular mechanism of SUV39H1-DNMT3A-Tim-3/galectin-9 regulation was elucidated using cervical cancer cell lines containing siRNA or/and over-expression system. Confirmation of the regulation of DNMT3A by SUV39H1 used ChIP-qPCR. Results SUV39H1 up-regulates H3K9me3 expression at the DNMT3A promoter region, which in turn induced expression of DNMT3A in cervical cancer. In addition, the mechanistic studies indicate that DNMT3A mediates the epigenetic modulation of the HAVCR2 and LGALS9 genes by directly binding to their promoter regions in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1 up-regulates the level of H3K9me3 at the DNMT3A promoter region was found to correlate with Tim-3 and galectin-9 cellular expression level. Conclusion These results indicate that SUV39H1-DNMT3A is a crucial Tim-3 and galectin-9 regulatory axis in cervical cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Qing Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| |
Collapse
|
33
|
Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat Cell Biol 2020; 22:767-778. [PMID: 32601371 PMCID: PMC7610380 DOI: 10.1038/s41556-020-0536-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/24/2020] [Indexed: 01/24/2023]
Abstract
Upon fertilization in mammals the gametes are reprogrammed to create a totipotent zygote, a process that involves de novo establishment of chromatin domains. A major feature occurring during preimplantation development is the dramatic remodeling of constitutive heterochromatin, although the functional relevance of this is unknown. Here we show that heterochromatin establishment relies on the stepwise expression and regulated activity of Suv39h enzymes. Enforcing precocious acquisition of constitutive heterochromatin results in compromised development and epigenetic reprogramming, demonstrating that heterochromatin remodeling is essential for natural reprogramming at fertilization. We find that de novo H3K9 trimethylation in the paternal pronucleus after fertilization is catalyzed by Suv39h2 and that pericentromeric RNAs inhibit Suv39h2 activity and reduce H3K9me3. De novo H3K9me3 is initially non-repressive for gene expression but instead can bookmark promoters for compaction. Overall, we uncover the functional importance for the restricted transmission of constitutive heterochromatin during reprogramming and a non-repressive role for H3K9me3.
Collapse
|
34
|
RNA-mediated regulation of chromatin structures. Genes Genomics 2020; 42:609-617. [PMID: 32297146 DOI: 10.1007/s13258-020-00929-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 12/26/2022]
Abstract
It is now evident that transcriptional gene regulation usually requires the re-organization of chromatin architecture. Increasing evidence suggested various kinds of RNAs are involved in this process. Especially the nascent RNAs retained at their site of transcription can serve as a scaffold for organizing transcriptionally either favorable or unfavorable chromatin structures. An emerging concept of phase separation explains how these chromatin structures can be maintained as physically discrete subcompartments within membrane-less nucleoplasm. Evidences that support the crucial role of nascent RNAs in the formation of phase-separated condensates are now rapidly growing.
Collapse
|
35
|
Gutbrod MJ, Martienssen RA. Conserved chromosomal functions of RNA interference. Nat Rev Genet 2020; 21:311-331. [PMID: 32051563 DOI: 10.1038/s41576-019-0203-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi), a cellular process through which small RNAs target and regulate complementary RNA transcripts, has well-characterized roles in post-transcriptional gene regulation and transposon repression. Recent studies have revealed additional conserved roles for RNAi proteins, such as Argonaute and Dicer, in chromosome function. By guiding chromatin modification, RNAi components promote chromosome segregation during both mitosis and meiosis and regulate chromosomal and genomic dosage response. Small RNAs and the RNAi machinery also participate in the resolution of DNA damage. Interestingly, many of these lesser-studied functions seem to be more strongly conserved across eukaryotes than are well-characterized functions such as the processing of microRNAs. These findings have implications for the evolution of RNAi since the last eukaryotic common ancestor, and they provide a more complete view of the functions of RNAi.
Collapse
Affiliation(s)
- Michael J Gutbrod
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Robert A Martienssen
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
36
|
Louzada S, Lopes M, Ferreira D, Adega F, Escudeiro A, Gama-Carvalho M, Chaves R. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity-An Evolutionary and Clinical Affair. Genes (Basel) 2020; 11:E72. [PMID: 31936645 PMCID: PMC7017282 DOI: 10.3390/genes11010072] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Repetitive DNA is a major organizational component of eukaryotic genomes, being intrinsically related with their architecture and evolution. Tandemly repeated satellite DNAs (satDNAs) can be found clustered in specific heterochromatin-rich chromosomal regions, building vital structures like functional centromeres and also dispersed within euchromatin. Interestingly, despite their association to critical chromosomal structures, satDNAs are widely variable among species due to their high turnover rates. This dynamic behavior has been associated with genome plasticity and chromosome rearrangements, leading to the reshaping of genomes. Here we present the current knowledge regarding satDNAs in the light of new genomic technologies, and the challenges in the study of these sequences. Furthermore, we discuss how these sequences, together with other repeats, influence genome architecture, impacting its evolution and association with disease.
Collapse
Affiliation(s)
- Sandra Louzada
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Mariana Lopes
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Margarida Gama-Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| |
Collapse
|
37
|
Wang J, Yang Z, Wu NP, Yang J. Increased expression of BCL11B and its recruited chromatin remodeling factors during highly active antiretroviral therapy synergistically represses the transcription of human immunodeficiency virus type 1 and is associated with residual immune activation. Arch Virol 2019; 165:321-330. [PMID: 31828511 DOI: 10.1007/s00705-019-04475-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Persistence of human immunodeficiency virus 1 (HIV-1) latency and residual immune activation remain major barriers to treatment in patients receiving highly active antiretroviral therapy (HAART). In the present study, we investigated the molecular mechanisms of persistent HIV infection and residual immune activation in HAART-treated patients. We showed that the expression level of B-cell CLL/lymphoma 11B (BCL11B) was significantly increased in CD4+T cells from HIV-infected patients undergoing HAART, and this was accompanied by increased expression of BCL11B-associated chromatin modifiers and inflammatory factors in comparison to healthy controls and untreated patients with HIV. In vitro assays showed that BCL11B significantly inhibited HIV-1 long terminal repeat (LTR)-mediated transcription. Knockdown of BCL11B resulted in the activation of HIV latent cells, and dissociation of BCL11B and its related chromatin remodeling factors from the HIV LTR. Our findings suggested that increased expression of BCL11B and its related chromatin modifiers contribute to HIV-1 transcriptional silencing, and alteration of BCL11B levels might lead to abnormal transcription and inflammation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Zongxing Yang
- The Second Department of Infectious Disease, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang, People's Republic of China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
| | - Jin Yang
- Center for Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, Zhejiang, People's Republic of China.
| |
Collapse
|
38
|
Saha P, Mishra RK. Heterochromatic hues of transcription-the diverse roles of noncoding transcripts from constitutive heterochromatin. FEBS J 2019; 286:4626-4641. [PMID: 31644838 DOI: 10.1111/febs.15104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023]
Abstract
Constitutive heterochromatin has been canonically considered as transcriptionally inert chromosomal regions, which silences the repeats and transposable elements (TEs), to preserve genomic integrity. However, several studies from the last few decades show that centromeric and pericentromeric regions also get transcribed and these transcripts are involved in multiple cellular processes. Regulation of such spatially and temporally controlled transcription and their relevance to heterochromatin function have emerged as an active area of research in chromatin biology. Here, we review the myriad of roles of noncoding transcripts from the constitutive heterochromatin in the establishment and maintenance of heterochromatin, kinetochore assembly, germline epigenome maintenance, early development, and diseases. Contrary to general expectations, there are active protein-coding genes in the heterochromatin although the regulatory mechanisms of their expression are largely unknown. We propose plausible hypotheses to explain heterochromatic gene expression using Drosophila melanogaster as a model, and discuss the evolutionary significance of these transcripts in the context of Drosophilid speciation. Such analyses offer insights into the regulatory pathways and functions of heterochromatic transcripts which open new avenues for further investigation.
Collapse
Affiliation(s)
- Parna Saha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
39
|
Mills WK, Lee YCG, Kochendoerfer AM, Dunleavy EM, Karpen GH. RNA from a simple-tandem repeat is required for sperm maturation and male fertility in Drosophila melanogaster. eLife 2019; 8:48940. [PMID: 31687931 PMCID: PMC6879302 DOI: 10.7554/elife.48940] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/03/2019] [Indexed: 11/26/2022] Open
Abstract
Tandemly-repeated DNAs, or satellites, are enriched in heterochromatic regions of eukaryotic genomes and contribute to nuclear structure and function. Some satellites are transcribed, but we lack direct evidence that specific satellite RNAs are required for normal organismal functions. Here, we show satellite RNAs derived from AAGAG tandem repeats are transcribed in many cells throughout Drosophila melanogaster development, enriched in neurons and testes, often localized within heterochromatic regions, and important for viability. Strikingly, we find AAGAG transcripts are necessary for male fertility, and that AAGAG RNA depletion results in defective histone-protamine exchange, sperm maturation and chromatin organization. Since these events happen late in spermatogenesis when the transcripts are not detected, we speculate that AAGAG RNA in primary spermatocytes ‘primes’ post-meiosis steps for sperm maturation. In addition to demonstrating essential functions for AAGAG RNAs, comparisons between closely related Drosophila species suggest that satellites and their transcription evolve quickly to generate new functions.
Collapse
Affiliation(s)
- Wilbur Kyle Mills
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Yuh Chwen G Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | | | - Elaine M Dunleavy
- Centre for Chromosome Biology, National University of Ireland, Galway, Ireland
| | - Gary H Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
40
|
Connelly KE, Weaver TM, Alpsoy A, Gu BX, Musselman CA, Dykhuizen EC. Engagement of DNA and H3K27me3 by the CBX8 chromodomain drives chromatin association. Nucleic Acids Res 2019; 47:2289-2305. [PMID: 30597065 PMCID: PMC6411926 DOI: 10.1093/nar/gky1290] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 01/17/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) is critical for mediating gene repression during development and adult stem cell maintenance. Five CBX proteins, CBX2,4,6,7,8, form mutually exclusive PRC1 complexes and are thought to play a role in the association of PRC1 with chromatin. Specifically, the N-terminal chromodomain (CD) in the CBX proteins is thought to mediate specific targeting to methylated histones. For CBX8, however, the chromodomain has demonstrated weak affinity and specificity for methylated histones in vitro, leaving doubt as to its role in CBX8 chromatin association. Here, we investigate the function of the CBX8 CD in vitro and in vivo. We find that the CD is in fact a major driver of CBX8 chromatin association and determine that this is driven by both histone and previously unrecognized DNA binding activity. We characterize the structural basis of histone and DNA binding and determine how they integrate on multiple levels. Notably, we find that the chromatin environment is critical in determining the ultimate function of the CD in CBX8 association.
Collapse
Affiliation(s)
- Katelyn E Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Tyler M Weaver
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Brian X Gu
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
41
|
Abstract
Mammalian genomes are extensively transcribed, which produces a large number of both coding and non-coding transcripts. Various RNAs are physically associated with chromatin, through being either retained in cis at their site of transcription or recruited in trans to other genomic regions. Driven by recent technological innovations for detecting chromatin-associated RNAs, diverse roles are being revealed for these RNAs and associated RNA-binding proteins (RBPs) in gene regulation and genome function. Such functions include locus-specific roles in gene activation and silencing, as well as emerging roles in higher-order genome organization, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Monaghan L, Massett ME, Bunschoten RP, Hoose A, Pirvan PA, Liskamp RMJ, Jørgensen HG, Huang X. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2019; 9:705. [PMID: 31428579 PMCID: PMC6687838 DOI: 10.3389/fonc.2019.00705] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Growing evidence has demonstrated that epigenetic dysregulation is a common pathological feature in human cancer cells. Global alterations in the epigenetic landscape are prevalent in malignant cells across different solid tumors including, prostate cancer, non-small-cell lung cancer, renal cell carcinoma, and in haemopoietic malignancy. In particular, DNA hypomethylation and histone hypoacetylation have been observed in acute myeloid leukemia (AML) patient blasts, with histone methylation being an emerging area of study. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational modification known to be involved in the regulation of a broad range of biological processes, including the formation of transcriptionally silent heterochromatin. Following the observation of its aberrant methylation status in hematological malignancy and several other cancer phenotypes, recent studies have associated H3K9me3 levels with patient outcome and highlighted key molecular mechanisms linking H3K9me3 profile with AML etiology in a number of large-scale meta-analysis. Consequently, the development and application of small molecule inhibitors which target the histone methyltransferases or demethylase enzymes known to participate in the oncogenic regulation of H3K9me3 in AML represents an advancing area of ongoing study. Here, we provide a comprehensive review on how this particular epigenetic mark is regulated within cells and its emerging role as a potential therapeutic target in AML, along with an update on the current research into advancing the generation of more potent and selective inhibitors against known H3K9 methyltransferases and demethylases.
Collapse
Affiliation(s)
- Laura Monaghan
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew E. Massett
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Alex Hoose
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
43
|
Hiragami-Hamada K, Nakayama JI. Do the charges matter?-balancing the charges of the chromodomain proteins on the nucleosome. J Biochem 2019; 165:455-458. [PMID: 30649341 PMCID: PMC6537122 DOI: 10.1093/jb/mvz004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
The chromodomain (CD) is a member of the Royal family of conserved chromatin-binding motifs with methylated substrate binding ability, and is often found in ‘readers’ or ‘writers’ of repressive histone marks. The regions upstream or downstream of the CD are generally highly charged. Several previous studies suggested that these charged regions modulate the CD’s chromatin-binding activity. Considering the relatively weak interaction between the CD and a modified histone tail, it is puzzling how the highly charged CD-flanking regions are ‘balanced’ on the highly charged nucleosomes to mediate a modification-dependent interaction. Interestingly, the charge distributions along the CD and surrounding regions appear to be distinct among different types of readers and writers, indicating their functional relevance. Here, we describe and discuss the current understanding of the highly charged CD-flanking regions and the potential experimental concerns caused by the regions.
Collapse
Affiliation(s)
- Kyoko Hiragami-Hamada
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
44
|
Ji H, Zhou Y, Zhuang X, Zhu Y, Wu Z, Lu Y, Li S, Zeng Y, Lu QR, Huo Y, Shi Y, Bu H. HDAC3 Deficiency Promotes Liver Cancer through a Defect in H3K9ac/H3K9me3 Transition. Cancer Res 2019; 79:3676-3688. [PMID: 31097476 PMCID: PMC6679938 DOI: 10.1158/0008-5472.can-18-3767] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/10/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023]
Abstract
DNA damage triggers diverse cancers, particularly hepatocellular carcinoma (HCC), but the intrinsic link between DNA damage and tumorigenesis remains unclear. Because of its role as an epigenetic and transcriptional regulator, histone deacetylase 3 (HDAC3) is essential for DNA damage control and is often aberrantly expressed in human HCC. In this study, we used individual class I HDAC member-deficient mice to demonstrate that K9 in histone H3 (H3K9), which is the critical site for the assembly of DNA damage response complexes, is exclusively targeted by HDAC3. Ablation of HDAC3 disrupted the deacetylation and consequent trimethylation of H3K9 (H3K9me3), the first step in double-strand break repair, and led to the accumulation of damaged DNA. Simultaneously, hyperacetylated H3K9 (H3K9ac) served as a transcriptional activator and enhanced multiple signaling pathways to promote tumorigenesis. Together, these results show that HDAC3 targets the H3K9ac/H3K9me3 transition to serve as a critical regulator that controls both DNA damage repair and the transcription of many tumor-related genes. Moreover, these findings provide novel insights into the link between DNA damage and transcriptional reprogramming in tumorigenesis. SIGNIFICANCE: These findings show that HDAC3 exclusively regulates H3K9ac in response to DNA damage, and loss of HDAC3 activity shifts the balance from DNA damage control to protumorigenic transcriptional activity.
Collapse
Affiliation(s)
- Hongjie Ji
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Yongjie Zhou
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Zhuang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjie Zhu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Yannrong Lu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Shengfu Li
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zeng
- Department of Liver and Vascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qing R Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yanying Huo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China.
| | - Hong Bu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Yandım C, Karakülah G. Expression dynamics of repetitive DNA in early human embryonic development. BMC Genomics 2019; 20:439. [PMID: 31151386 PMCID: PMC6545021 DOI: 10.1186/s12864-019-5803-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The last decade witnessed a number of genome-wide studies on human pre-implantation, which mostly focused on genes and provided only limited information on repeats, excluding the satellites. Considering the fact that repeats constitute a large portion of our genome with reported links to human physiology and disease, a thorough understanding of their spatiotemporal regulation during human embryogenesis will give invaluable clues on chromatin dynamics across time and space. Therefore, we performed a detailed expression analysis of all repetitive DNA elements including the satellites across stages of human pre-implantation and embryonic stem cells. RESULTS We uncovered stage-specific expressions of more than a thousand repeat elements whose expressions fluctuated with a mild global decrease at the blastocyst stage. Most satellites were highly expressed at the 4-cell level and expressions of ACRO1 and D20S16 specifically peaked at this point. Whereas all members of the SVA elements were highly upregulated at 8-cell and morula stages, other transposons and small RNA repeats exhibited a high level of variation among their specific subtypes. Our repeat enrichment analysis in gene promoters coupled with expression correlations highlighted potential links between repeat expressions and nearby genes, emphasising mostly 8-cell and morula specific genes together with SVA_D, LTR5_Hs and LTR70 transposons. The DNA methylation analysis further complemented the understanding on the mechanistic aspects of the repeatome's regulation per se and revealed critical stages where DNA methylation levels are negatively correlating with repeat expression. CONCLUSIONS Taken together, our study shows that specific expression patterns are not exclusive to genes and long non-coding RNAs but the repeatome also exhibits an intriguingly dynamic pattern at the global scale. Repeats identified in this study; particularly satellites, which were historically associated with heterochromatin, and those with potential links to nearby gene expression provide valuable insights into the understanding of key events in genomic regulation and warrant further research in epigenetics, genomics and developmental biology.
Collapse
Affiliation(s)
- Cihangir Yandım
- İzmir Biomedicine and Genome Center (IBG), 35340, İnciraltı, İzmir, Turkey.,Department of Genetics and Bioengineering, İzmir University of Economics, Faculty of Engineering, 35330, Balçova, İzmir, Turkey.,Department of Medicine, Division of Brain Sciences, Hammersmith Hospital, Imperial College London, Faculty of Medicine, W12 0NN, London, UK
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), 35340, İnciraltı, İzmir, Turkey. .,İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey.
| |
Collapse
|
46
|
Taylor R, Long J, Yoon JW, Childs R, Sylvestersen KB, Nielsen ML, Leong KF, Iannaccone S, Walterhouse DO, Robbins DJ, Iannaccone P. Regulation of GLI1 by cis DNA elements and epigenetic marks. DNA Repair (Amst) 2019; 79:10-21. [PMID: 31085420 PMCID: PMC6570425 DOI: 10.1016/j.dnarep.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
GLI1 is one of three transcription factors (GLI1, GLI2 and GLI3) that mediate the Hedgehog signal transduction pathway and play important roles in normal development. GLI1 and GLI2 form a positive-feedback loop and function as human oncogenes. The mouse and human GLI1 genes have untranslated 5′ exons and large introns 5′ of the translational start. Here we show that Sonic Hedgehog (SHH) stimulates occupancy in the introns by H3K27ac, H3K4me3 and the histone reader protein BRD4. H3K27ac and H3K4me3 occupancy is not significantly changed by removing BRD4 from the human intron and transcription start site (TSS) region. We identified six GLI binding sites (GBS) in the first intron of the human GLI1 gene that are in regions of high sequence conservation among mammals. GLI1 and GLI2 bind all of the GBS in vitro. Elimination of GBS1 and 4 attenuates transcriptional activation by GLI1. Elimination of GBS1, 2, and 4 attenuates transcriptional activation by GLI2. Eliminating all sites essentially eliminates reporter gene activation. Further, GLI1 binds the histone variant H2A.Z. These results suggest that GLI1 and GLI2 can regulate GLI1 expression through protein-protein interactions involving complexes of transcription factors, histone variants, and reader proteins in the regulatory intron of the GLI1 gene. GLI1 acting in trans on the GLI1 intron provides a mechanism for GLI1 positive feedback and auto-regulation. Understanding the combinatorial protein landscape in this locus will be important to interrupting the GLI positive feedback loop and providing new therapeutic approaches to cancers associated with GLI1 overexpression.
Collapse
Affiliation(s)
- Robert Taylor
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Jun Long
- The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, USA
| | - Joon Won Yoon
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Ronnie Childs
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | | | | | - King-Fu Leong
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Stephen Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - David O Walterhouse
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - David J Robbins
- The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, USA.
| | - Philip Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA.
| |
Collapse
|
47
|
Jukam D, Limouse C, Smith OK, Risca VI, Bell JC, Straight AF. Chromatin-Associated RNA Sequencing (ChAR-seq). CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2019; 126:e87. [PMID: 30786161 PMCID: PMC7670654 DOI: 10.1002/cpmb.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNA is a fundamental component of chromatin. Noncoding RNAs (ncRNAs) can associate with chromatin to influence gene expression and chromatin state; many also act at long distances from their transcriptional origin. Yet we know almost nothing about the functions or sites of action for most ncRNAs. Current methods to identify sites of RNA interaction with the genome are limited to the study of a single RNA at a time. Here we describe a protocol for ChAR-seq, a strategy to identify all chromatin-associated RNAs and map their DNA contacts genome-wide. In ChAR-seq, proximity ligation of RNA and DNA to a linker molecule is used to construct a chimeric RNA-DNA molecule that is converted to DNA for sequencing. In a single assay, ChAR-seq can discover de novo chromatin interactions of distinct RNAs, including nascent transcripts, splicing RNAs, and long noncoding RNAs (lncRNAs). Resulting "maps" of genome-bound RNAs should provide new insights into RNA biology. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, California
| | - Charles Limouse
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Owen K. Smith
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| | - Viviana I. Risca
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Present Address: Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, New York
| | - Jason C. Bell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- Present Address: 10X Genomics, Pleasanton, California
| | - Aaron F. Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
48
|
Kumari D, Gazy I, Usdin K. Pharmacological Reactivation of the Silenced FMR1 Gene as a Targeted Therapeutic Approach for Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020039. [PMID: 30759772 PMCID: PMC6406686 DOI: 10.3390/brainsci9020039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
More than ~200 CGG repeats in the 5′ untranslated region of the FMR1 gene results in transcriptional silencing and the absence of the FMR1 encoded protein, FMRP. FMRP is an RNA-binding protein that regulates the transport and translation of a variety of brain mRNAs in an activity-dependent manner. The loss of FMRP causes dysregulation of many neuronal pathways and results in an intellectual disability disorder, fragile X syndrome (FXS). Currently, there is no effective treatment for FXS. In this review, we discuss reactivation of the FMR1 gene as a potential approach for FXS treatment with an emphasis on the use of small molecules to inhibit the pathways important for gene silencing.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Inbal Gazy
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Weaver TM, Morrison EA, Musselman CA. Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains. Molecules 2018; 23:molecules23102614. [PMID: 30322003 PMCID: PMC6222470 DOI: 10.3390/molecules23102614] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/09/2023] Open
Abstract
The eukaryotic genome is packaged into the cell nucleus in the form of chromatin, a complex of genomic DNA and histone proteins. Chromatin structure regulation is critical for all DNA templated processes and involves, among many things, extensive post-translational modification of the histone proteins. These modifications can be “read out” by histone binding subdomains known as histone reader domains. A large number of reader domains have been identified and found to selectively recognize an array of histone post-translational modifications in order to target, retain, or regulate chromatin-modifying and remodeling complexes at their substrates. Interestingly, an increasing number of these histone reader domains are being identified as also harboring nucleic acid binding activity. In this review, we present a summary of the histone reader domains currently known to bind nucleic acids, with a focus on the molecular mechanisms of binding and the interplay between DNA and histone recognition. Additionally, we highlight the functional implications of nucleic acid binding in chromatin association and regulation. We propose that nucleic acid binding is as functionally important as histone binding, and that a significant portion of the as yet untested reader domains will emerge to have nucleic acid binding capabilities.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
50
|
Abstract
Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Serafin U. Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Gary H. Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|