1
|
Hu Y, Tuo B. The function of chloride channels in digestive system disease (Review). Int J Mol Med 2025; 55:99. [PMID: 40314091 PMCID: PMC12045473 DOI: 10.3892/ijmm.2025.5540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/11/2025] [Indexed: 05/03/2025] Open
Abstract
Cation channels have been extensively studied in the context of digestive disorders, but comparatively little attention has been given to anions and their associated channels. Chloride ions, the most abundant anions in the human body, act as signaling molecules, modulating cellular behavior and playing a key role in regulating multiorgan physiological and pathophysiological mechanisms. The intra‑ and extracellular distributions of chloride ions are primarily controlled by various chloride channels and transporters. Currently, these chloride channels are classified into several groups: The chloride channels family, cystic fibrosis transmembrane conductance regulator, calcium‑activated chloride channels, volume‑regulated anion channels, proton‑activated chloride channels and ligand‑gated anion channels. This review aims to summarize the roles of chloride ion channels and transporter proteins in digestive system diseases, providing a theoretical basis for future research and offering potential new strategies for disease treatment.
Collapse
Affiliation(s)
- Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Kostritskii AY, Kostritskaia Y, Dmitrieva N, Stauber T, Machtens JP. Calcium-activated chloride channel TMEM16A opens via pi-helical transition in transmembrane segment 4. Proc Natl Acad Sci U S A 2025; 122:e2421900122. [PMID: 40299692 PMCID: PMC12067253 DOI: 10.1073/pnas.2421900122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/27/2025] [Indexed: 05/01/2025] Open
Abstract
TMEM16A is a Ca2+-activated Cl- channel that has crucial roles in various physiological and pathological processes. However, the structure of the open state of the channel and the mechanism of Ca2+-induced pore opening have remained elusive. Using extensive molecular dynamics simulations, protein structure prediction, and patch-clamp electrophysiology, we demonstrate that TMEM16A opens a hydrated Cl--conductive pore via a pi-helical transition in transmembrane segment 4 (TM4). We also describe a coupling mechanism that links pi-helical transition and pore opening to the Ca2+-induced conformational changes in TMEM16A. Furthermore, we designed a pi-helix-stabilizing mutation (I551P) that facilitates TMEM16A activation, revealing atomistic details of the ion-conduction mechanism. Finally, AlphaFold2 structure predictions revealed the importance of the pi helix in TM4 to structure-function relations in TMEM16 and the related OSCA/TMEM63 family, further highlighting the relevance of dynamic pi helices for gating in various ion channels.
Collapse
Affiliation(s)
- Andrei Y. Kostritskii
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, Jülich52428, Germany
| | - Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg20457, Germany
| | - Natalia Dmitrieva
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, Jülich52428, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg20457, Germany
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, Jülich52428, Germany
- Institute of Neurophysiology, Hannover Medical School, Hannover30625, Germany
| |
Collapse
|
3
|
Jannu AK, Penn RB. Channeling Relaxation through Multiple Means: TMEM16A Antagonism for Asthma. Am J Respir Cell Mol Biol 2025; 72:466-468. [PMID: 39589219 PMCID: PMC12051912 DOI: 10.1165/rcmb.2024-0521ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Affiliation(s)
- Arun K Jannu
- Center for Translational Medicine Thomas Jefferson University Philadelphia, Pennsylvania
| | - Raymond B Penn
- Center for Translational Medicine Thomas Jefferson University Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Yu T, Wang Z, Chen Y, Xiang Y, Wu M, Zhang M, Yin X, Chen Z. Blood-Brain Barrier (BBB) Dysfunction in CNS Diseases: Paying Attention to Pericytes. CNS Neurosci Ther 2025; 31:e70422. [PMID: 40371544 PMCID: PMC12079091 DOI: 10.1111/cns.70422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/12/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Dysfunction of the blood-brain barrier (BBB) is an important pathological mechanism in central nervous system (CNS) diseases and can trigger a series of pathological reactions, such as neuroinflammatory responses, oxidative stress, immune infiltration, etc., thereby worsening brain damage. However, pericytes are often overlooked by researchers, and no review research has yet summarized the mechanism by which pericytes contribute to BBB dysfunction in CNS diseases. RESULTS Therefore, this review explores the pathophysiology of BBB dysfunction in CNS diseases and provides a detailed account of the biological characteristics of pericytes, especially the controversy over their biomarkers. Subsequently, we review the role of pericytes in CNS diseases such as Alzheimer's disease, vascular dementia, multiple sclerosis, ischemic stroke, and hemorrhagic stroke, with a particular focus on the role of pericytes in BBB dysfunction. In addition, we also discuss treatments based on pericytes, such as regenerative medicine that induces pericyte differentiation and Pericyte-Extracellular Vesicles. CONCLUSIONS This review aims to provide a more comprehensive understanding and guidance on the role of pericytes in BBB dysfunction in CNS diseases and serve clinical treatment.
Collapse
Affiliation(s)
- Tianrui Yu
- Department of Neurology, School of Clinical MedicineJiujiang UniversityJiujiangChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangChina
| | - Zixuan Wang
- Department of Neurology, School of Clinical MedicineJiujiang UniversityJiujiangChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangChina
| | - Yanghang Chen
- Department of Neurology, School of Clinical MedicineJiujiang UniversityJiujiangChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangChina
| | - Yuanyuan Xiang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangChina
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangChina
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangChina
| | - Manqing Zhang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangChina
| | - Xiaoping Yin
- Department of Neurology, School of Clinical MedicineJiujiang UniversityJiujiangChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangChina
| | - Zhiying Chen
- Department of Neurology, School of Clinical MedicineJiujiang UniversityJiujiangChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangChina
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical SciencesJiujiang UniversityJiujiangChina
| |
Collapse
|
5
|
Pant S, Tam SW, Long SB. The pentameric chloride channel BEST1 is activated by extracellular GABA. Proc Natl Acad Sci U S A 2025; 122:e2424474122. [PMID: 40249777 PMCID: PMC12037058 DOI: 10.1073/pnas.2424474122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025] Open
Abstract
Bestrophin-1 (BEST1) is a chloride channel expressed in the eye and other tissues of the body. A link between BEST1 and the principal inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been proposed. The most appreciated receptors for extracellular GABA are the GABAB G-protein-coupled receptors and the pentameric GABAA chloride channels, both of which have fundamental roles in the central nervous system. Here, we demonstrate that BEST1 is directly activated by GABA. Through functional studies and atomic-resolution structures of human and chicken BEST1, we identify a GABA binding site on the channel's extracellular side and determine the mechanism by which GABA binding stabilizes opening of the channel's central gate. This same gate, "the neck," is activated by intracellular [Ca2+], indicating that BEST1 is controlled by ligands from both sides of the membrane. The studies demonstrate that BEST1, which shares no structural homology with GABAA receptors, is a GABA-activated chloride channel. The physiological implications of this finding remain to be studied.
Collapse
Affiliation(s)
- Swati Pant
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY10065
| | - Stephanie W. Tam
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY10065
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| |
Collapse
|
6
|
Lin WY, Chung WY, Park S, Movahed Abtahi A, Leblanc B, Ahuja M, Muallem S. Multiple cAMP/PKA complexes at the STIM1 ER/PM junction specified by E-Syt1 and E-Syt2 reciprocally gates ANO1 (TMEM16A) via Ca 2. Nat Commun 2025; 16:3378. [PMID: 40204782 PMCID: PMC11982563 DOI: 10.1038/s41467-025-58682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
ANO1 plays a crucial role in determining numerous physiological functions, including epithelial secretion, yet its regulatory mechanisms remain incompletely understood. Here, we describe a fundamental dynamic regulation of ANO1 surface expression and Ca2+-dependent gating via the cAMP/PKA pathway at the STIM1 ER/PM junctions. At these junctions, STIM1 assembles AC-AKAP-PKA complexes, while E-Syt1 mediates formation of ANO1-VAPA-IRBIT-E-Syt1-AC8-AKAP5-PKA complex, that phosphorylates ANO1 S673, increasing ANO1 Ca2+ affinity. Within these complexes, the Ca2+ and cAMP pathways act synergistically to enhance ANO1 function. By contrast, E-Syt2 dissociates the ANO1-VAPA interaction, forming ANO1-IRBIT-E-Syt2-AC6-AKAP11-PKA complex that phosphorylates ANO1 S221, which markedly reduces ANO1 Ca2+ affinity. The effects of the E-Syts are primarily mediated by their reciprocal regulation of junctional PI(4)P, PI(4,5)P2 and PtdSer. Accordingly, IRBIT deletion in mice impairs receptor-stimulated activation of ANO1 and fluid secretion. These findings should have broad implications for ANO1 roles and functions across various tissues.
Collapse
Affiliation(s)
- Wei-Yin Lin
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Woo Young Chung
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Seonghee Park
- Department of Physiology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ava Movahed Abtahi
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Leblanc
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Malini Ahuja
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Shmuel Muallem
- The Epithelial Signaling and Transport Section and The National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Jan LY, Jan YN. Wide-ranging cellular functions of ion channels and lipid scramblases in the structurally related TMC, TMEM16 and TMEM63 families. Nat Struct Mol Biol 2025; 32:222-236. [PMID: 39715905 DOI: 10.1038/s41594-024-01444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/31/2024] [Indexed: 12/25/2024]
Abstract
Calcium (Ca2+)-activated ion channels and lipid scramblases in the transmembrane protein 16 (TMEM16) family are structurally related to mechanosensitive ion channels in the TMEM63 and transmembrane channel-like (TMC) families. Members of this structurally related superfamily share similarities in gating transitions and serve a wide range of physiological functions, which is evident from their disease associations. The TMEM16, TMEM63 and TMC families include members with important functions in the cell membrane and/or intracellular organelles such as the endoplasmic reticulum, membrane contact sites, endosomes and lysosomes. Moreover, some members of the TMEM16 family and the TMC family perform dual functions of ion channel and lipid scramblase, leading to intriguing physiological implications. In addition to their physiological functions such as mediating phosphatidylserine exposure and facilitation of extracellular vesicle generation and cell fusion, scramblases are involved in the entry and replication of enveloped viruses. Comparisons of structurally diverse scramblases may uncover features in the lipid-scrambling mechanisms that are likely shared by scramblases.
Collapse
Affiliation(s)
- Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Yuh Nung Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Pant S, Tam SW, Long SB. The pentameric chloride channel BEST1 is activated by extracellular GABA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624909. [PMID: 39605608 PMCID: PMC11601618 DOI: 10.1101/2024.11.22.624909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bestrophin 1 (BEST1) is chloride channel expressed in the eye, central nervous system (CNS), and other tissues in the body. A link between BEST1 and the principal inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been proposed. The most appreciated receptors for extracellular GABA are the GABAB G-protein coupled receptors and the pentameric GABAA chloride channels, both of which have fundamental roles in the CNS. Here, we demonstrate that BEST1 is directly activated by GABA. Through functional studies and atomic-resolution structures of human and chicken BEST1, we identify a GABA binding site on the channel's extracellular side and determine the mechanism by which GABA binding induces opening of the channel's central gate. This same gate is activated by intracellular [Ca2+], indicating that BEST1 is controlled by ligands from both sides of the membrane. The studies demonstrate that BEST1, which shares no structural homology with GABAA, is a GABA-activated chloride channel. The physiological implications of this finding remain to be studied.
Collapse
Affiliation(s)
- Swati Pant
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, USA
| | - Stephanie W. Tam
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, USA
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
9
|
Feng Z, Di Zanni E, Alvarenga O, Chakraborty S, Rychlik N, Accardi A. In or out of the groove? Mechanisms of lipid scrambling by TMEM16 proteins. Cell Calcium 2024; 121:102896. [PMID: 38749289 PMCID: PMC11178363 DOI: 10.1016/j.ceca.2024.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Phospholipid scramblases mediate the rapid movement of lipids between membrane leaflets, a key step in establishing and maintaining membrane homeostasis of the membranes of all eukaryotic cells and their organelles. Thus, impairment of lipid scrambling can lead to a variety of pathologies. How scramblases catalyzed the transbilayer movement of lipids remains poorly understood. Despite the availability of direct structural information on three unrelated families of scramblases, the TMEM16s, the Xkrs, and ATG-9, a unifying mechanism has failed to emerge thus far. Among these, the most extensively studied and best understood are the Ca2+ activated TMEM16s, which comprise ion channels and/or scramblases. Early work supported the view that these proteins provided a hydrophilic, membrane-exposed groove through which the lipid headgroups could permeate. However, structural, and functional experiments have since challenged this mechanism, leading to the proposal that the TMEM16s distort and thin the membrane near the groove to facilitate lipid scrambling. Here, we review our understanding of the structural and mechanistic underpinnings of lipid scrambling by the TMEM16s and discuss how the different proposals account for the various experimental observations.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Eleonora Di Zanni
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Omar Alvarenga
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Nicole Rychlik
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
10
|
Yang F, Begemann A, Reichhart N, Haeckel A, Steindl K, Schellenberger E, Sturm RF, Barth M, Bassani S, Boonsawat P, Courtin T, Delobel B, Gunning B, Hardies K, Jennesson M, Legoff L, Linnankivi T, Prouteau C, Smal N, Spodenkiewicz M, Toelle SP, Van Gassen K, Van Paesschen W, Verbeek N, Ziegler A, Zweier M, Horn AHC, Sticht H, Lerche H, Weckhuysen S, Strauß O, Rauch A. Missense variants in ANO4 cause sporadic encephalopathic or familial epilepsy with evidence for a dominant-negative effect. Am J Hum Genet 2024; 111:1184-1205. [PMID: 38744284 PMCID: PMC11179416 DOI: 10.1016/j.ajhg.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.
Collapse
Affiliation(s)
- Fang Yang
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Anais Begemann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Akvile Haeckel
- Institute for Radiology and Children's Radiology, Charité-Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Eyk Schellenberger
- Institute for Radiology and Children's Radiology, Charité-Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Ronja Fini Sturm
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Magalie Barth
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Sissy Bassani
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Paranchai Boonsawat
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Thomas Courtin
- Sorbonne Université, INSERM, CNRS, Institut du Cerveau - Paris Brain Institute - ICM, 75013 Paris, France; Hôpital Pitié-Salpêtrière, DMU BioGe'M, AP-HP, 75013 Paris, France
| | - Bruno Delobel
- Service de Cytogénétique, GH de l'Institut Catholique de Lille, Hopital Saint Vincent de Paul, Lille, France
| | | | - Katia Hardies
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Louis Legoff
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Tarja Linnankivi
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland; Department of Pediatric Neurology and Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, 00029 HUS Helsinki, Finland
| | - Clément Prouteau
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Noor Smal
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerp, Belgium
| | - Marta Spodenkiewicz
- Department of Genetics, La Réunion University Hospital, Saint-Pierre, France
| | - Sandra P Toelle
- Department of Pediatric Neurology, Children's University Hospital Zurich, Zurich, Switzerland
| | - Koen Van Gassen
- University Medical Center Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, and Neurology Department, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Nienke Verbeek
- University Medical Center Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Alban Ziegler
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Antwerp, Belgium; Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, 2610 Antwerp, Belgium
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Children's University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Moran O, Tammaro P. Identification of determinants of lipid and ion transport in TMEM16/anoctamin proteins through a Bayesian statistical analysis. Biophys Chem 2024; 308:107194. [PMID: 38401241 DOI: 10.1016/j.bpc.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/26/2024]
Abstract
The TMEM16/Anoctamin protein family (TMEM16x) is composed of members with different functions; some members form Ca2+-activated chloride channels, while others are lipid scramblases or combine the two functions. TMEM16x proteins are typically activated in response to agonist-induced rises of intracellular Ca2+; thus, they couple Ca2+-signalling with cell electrical activity or plasmalemmal lipid homeostasis. The structural domains underlying these functions are not fully defined. We used a Naïve Bayes classifier to gain insights into these domains. The method enabled identification of regions involved in either ion or lipid transport, and suggested domains for possible pharmacological exploitation. The method allowed the prediction of the transport property of any given TMEM16x. We envisage this strategy could be exploited to illuminate the structure-function relationship of any protein family composed of members playing different molecular roles.
Collapse
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Paolo Tammaro
- Department Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
12
|
Zhang Y, Wu K, Li Y, Wu S, Warshel A, Bai C. Predicting Mutational Effects on Ca 2+-Activated Chloride Conduction of TMEM16A Based on a Simulation Study. J Am Chem Soc 2024; 146:4665-4679. [PMID: 38319142 DOI: 10.1021/jacs.3c11940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The dysfunction and defects of ion channels are associated with many human diseases, especially for loss-of-function mutations in ion channels such as cystic fibrosis transmembrane conductance regulator mutations in cystic fibrosis. Understanding ion channels is of great current importance for both medical and fundamental purposes. Such an understanding should include the ability to predict mutational effects and describe functional and mechanistic effects. In this work, we introduce an approach to predict mutational effects based on kinetic information (including reaction barriers and transition state locations) obtained by studying the working mechanism of target proteins. Specifically, we take the Ca2+-activated chloride channel TMEM16A as an example and utilize the computational biology model to predict the mutational effects of key residues. Encouragingly, we verified our predictions through electrophysiological experiments, demonstrating a 94% prediction accuracy regarding mutational directions. The mutational strength assessed by Pearson's correlation coefficient is -0.80 between our calculations and the experimental results. These findings suggest that the proposed methodology is reliable and can provide valuable guidance for revealing functional mechanisms and identifying key residues of the TMEM16A channel. The proposed approach can be extended to a broad scope of biophysical systems.
Collapse
Affiliation(s)
- Yue Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Kang Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Yuqing Li
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
13
|
Nguyen DM, Chen TY. Structure and Function of Calcium-Activated Chloride Channels and Phospholipid Scramblases in the TMEM16 Family. Handb Exp Pharmacol 2024; 283:153-180. [PMID: 35792944 DOI: 10.1007/164_2022_595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated chloride channels and phospholipid scramblases. Ten mammalian TMEM16 proteins, TMEM16A-K (with no TMEM16I), and several non-mammalian TMEM16 proteins, such as afTMEM16 and nhTMEM16, have been discovered. All known TMEM16 proteins are homodimeric proteins containing two subunits. Each subunit consists of ten transmembrane helices with Ca2+-binding sites and a single ion-permeation/phospholipid transport pathway. The ion-permeation pathway and the phospholipid transport pathway of TMEM16 proteins have a wide intracellular vestibule, a narrow neck, and a smaller extracellular vestibule. Interestingly, the lining wall of the ion-permeation/phospholipid transport pathway may be formed, at least partially, by membrane phospholipids, though the degree of pore-wall forming by phospholipids likely varies among TMEM16 proteins. Thus, the biophysical properties and activation mechanisms of TMEM16 proteins could differ from each other accordingly. Here we review the current understanding of the structure and function of TMEM16 molecules.
Collapse
Affiliation(s)
- Dung Manh Nguyen
- Center for Neuroscience, University of California, Davis, CA, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Tsung-Yu Chen
- Department of Neurology, Center for Neuroscience, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Lam AKM, Dutzler R. Mechanistic basis of ligand efficacy in the calcium-activated chloride channel TMEM16A. EMBO J 2023; 42:e115030. [PMID: 37984335 PMCID: PMC10711664 DOI: 10.15252/embj.2023115030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Agonist binding in ligand-gated ion channels is coupled to structural rearrangements around the binding site, followed by the opening of the channel pore. In this process, agonist efficacy describes the equilibrium between open and closed conformations in a fully ligand-bound state. Calcium-activated chloride channels in the TMEM16 family are important sensors of intracellular calcium signals and are targets for pharmacological modulators, yet a mechanistic understanding of agonist efficacy has remained elusive. Using a combination of cryo-electron microscopy, electrophysiology, and autocorrelation analysis, we now show that agonist efficacy in the ligand-gated channel TMEM16A is dictated by the conformation of the pore-lining helix α6 around the Ca2+ -binding site. The closure of the binding site, which involves the formation of a π-helix below a hinge region in α6, appears to be coupled to the opening of the inner pore gate, thereby governing the channel's open probability and conductance. Our results provide a mechanism for agonist binding and efficacy and a structural basis for the design of potentiators and partial agonists in the TMEM16 family.
Collapse
Affiliation(s)
- Andy KM Lam
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Raimund Dutzler
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| |
Collapse
|
15
|
Talbi K, Ousingsawat J, Centeio R, Schreiber R, Kunzelmann K. KCNE1 does not shift TMEM16A from a Ca 2+ dependent to a voltage dependent Cl - channel and is not expressed in renal proximal tubule. Pflugers Arch 2023:10.1007/s00424-023-02829-5. [PMID: 37442855 PMCID: PMC10359377 DOI: 10.1007/s00424-023-02829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
The TMEM16A (ANO1) Cl- channel is activated by Ca2+ in a voltage-dependent manner. It is broadly expressed and was shown to be also present in renal proximal tubule (RPT). KCNQ1 is an entirely different K+ selective channel that forms the cardiac IKS potassium channel together with its ß-subunit KCNE1. Surprisingly, KCNE1 has been claimed to interact with TMEM16A, and to be required for activation of TMEM16A in mouse RPT. Interaction with KCNE1 was reported to switch TMEM16A from a Ca22+-dependent to a voltage-dependent ion channel. Here we demonstrate that KCNE1 is not expressed in mouse RPT. TMEM16A expressed in RPT is activated by angiotensin II and ATP in a KCNE1-independent manner. Coexpression of KCNE1 does not change TMEM16A to a voltage gated Cl- channel and Ca2+-dependent regulation of TMEM16A is fully maintained in the presence of KCNE1. While overexpressed KCNE1 slightly affects Ca2+-dependent regulation of TMEM16A, the data provide no evidence for KCNE1 being an auxiliary functional subunit for TMEM16A.
Collapse
Affiliation(s)
- Khaoula Talbi
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany.
| |
Collapse
|
16
|
Zhong J, Xuan W, Lu S, Cui S, Zhou Y, Tang M, Qu X, Lu W, Huo H, Zhang C, Zhang N, Niu B. Discovery of ANO1 Inhibitors based on Machine learning and molecule docking simulation approaches. Eur J Pharm Sci 2023; 184:106408. [PMID: 36842513 DOI: 10.1016/j.ejps.2023.106408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
Calcium-activated chloride channels (CaCCs) are chloride channels that are regulated according to intracellular calcium ion concentrations. The channel protein ANO1 is widely present in cells and is involved in physiological activities including cellular secretion, signaling, cell proliferation and vasoconstriction and diastole. In this study, the ANO1 inhibitors were investigated with machine learning and molecular simulation. Two-dimensional structure-activity relationship (2D-SAR) and three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for the qualitative and quantitative prediction of ANO1 inhibitors. The results showed that the prediction accuracies of the model were 85.9% and 87.8% for the training and test sets, respectively, and 85.9% and 87.8% for the rotating forest (RF) in the 2D-SAR model. The CoMFA and CoMSIA methods were then used for 3D QSAR modeling of ANO1 inhibitors, respectively. The q2 coefficients for model cross-validation were all greater than 0.5, implying that we were able to obtain a stable model for drug activity prediction. Molecular docking was further used to simulate the interactions between the five most promising compounds predicted by the model and the ANO1 protein. The total score for the docking results between all five compounds and the target protein was greater than 6, indicating that they interacted strongly in the form of hydrogen bonds. Finally, simulations of amino acid mutations around the docking cavity of the target proteins showed that each molecule had two or more sites of reduced affinity following a single mutation, indicating outstanding specificity of the screened drug molecules and their protein ligands.
Collapse
Affiliation(s)
- Junjie Zhong
- School of life Science, Shanghai University, 99 Shangda Road,200444, China.
| | - Wendi Xuan
- School of life Science, Shanghai University, 99 Shangda Road,200444, China.
| | - Sheng Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Shihao Cui
- School of life Science, Shanghai University, 99 Shangda Road,200444, China.
| | - Yuhang Zhou
- School of life Science, Shanghai University, 99 Shangda Road,200444, China.
| | - Mengting Tang
- School of life Science, Shanghai University, 99 Shangda Road,200444, China.
| | - Xiaosheng Qu
- National Engineering laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, China.
| | - Wencong Lu
- Chemistry Department, College of Science, Shanghai University, 99 Shangda Road,200444, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Chi Zhang
- Huaxia Eye Hospital of Foshan, Huaxia Eye Hospital Group, Foshan, Guangdong 528000, China.
| | - Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road,200444, China.
| |
Collapse
|
17
|
Dwivedi R, Drumm BT, Alkawadri T, Martin SL, Sergeant GP, Hollywood MA, Thornbury KD. The TMEM16A blockers benzbromarone and MONNA cause intracellular Ca2+-release in mouse bronchial smooth muscle cells. Eur J Pharmacol 2023; 947:175677. [PMID: 36967079 DOI: 10.1016/j.ejphar.2023.175677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
We investigated effects of TMEM16A blockers benzbromarone, MONNA, CaCCinhA01 and Ani9 on isometric contractions in mouse bronchial rings and on intracellular calcium in isolated bronchial myocytes. Separate concentrations of carbachol (0.1-10 μM) were applied for 10 min periods to bronchial rings, producing concentration-dependent contractions that were well maintained throughout each application period. Benzbromarone (1 μM) markedly reduced the contractions with a more pronounced effect on their sustained component (at 10 min) compared to their initial component (at 2 min). Iberiotoxin (0.3 μM) enhanced the contractions, but they were still blocked by benzbromarone. MONNA (3 μM) and CaCCinhA01 (10 μM) had similar effects to benzbromarone, but were less potent. In contrast, Ani9 (10 μM) had no effect on carbachol-induced contractions. Confocal imaging revealed that benzbromarone (0.3 μM), MONNA (1 μM) and CaCCinhA01 (10 μM) increased intracellular calcium in isolated myocytes loaded with Fluo-4AM. In contrast, Ani9 (10 μM) had no effect on intracellular calcium. Benzbromarone and MONNA also increased calcium in calcium-free extracellular solution, but failed to do so when intracellular stores were discharged with caffeine (10 mM). Caffeine was unable to cause further discharge of the store when applied in the presence of benzbromarone. Ryanodine (100 μM) blocked the ability of benzbromarone (0.3 μM) to increase calcium, while tetracaine (100 μM) reversibly reduced the rise in calcium induced by benzbromarone. We conclude that benzbromarone and MONNA caused intracellular calcium release, probably by opening ryanodine receptors. Their ability to block carbachol contractions was likely due to this off-target effect.
Collapse
|
18
|
Jimenez C, Hawn MB, Akin E, Leblanc N. Translational potential of targeting Anoctamin-1-Encoded Calcium-Activated chloride channels in hypertension. Biochem Pharmacol 2022; 206:115320. [PMID: 36279919 DOI: 10.1016/j.bcp.2022.115320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Calcium-activated chloride channels (CaCC) provide a depolarizing stimulus to a variety of tissues through chloride efflux in response to a rise in internal Ca2+ and voltage. One of these channels, Anoctamin-1 (ANO1 or TMEM16A) is now recognized to play a central role in promoting smooth muscle tone in various types of blood vessels. Its role in hypertension, and thus the therapeutic promise of targeting ANO1, is less straightforward. This review gives an overview of our current knowledge about the potential role ANO1 may play in hypertension within the systemic, portal, and pulmonary vascular systems and the importance of this information when pursuing potential treatment strategies. While the role of ANO1 is well-established in several forms of pulmonary hypertension, its contributions to both the generation of vascular tone and its role in hypertension within the systemic and portal systems are much less clear. This, combined with ANO1's various roles throughout a multitude of tissues throughout the body, command caution when targeting ANO1 as a therapeutic target and may require tissue-selective strategies.
Collapse
Affiliation(s)
- Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Matthew B Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Elizabeth Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA.
| |
Collapse
|
19
|
Arndt M, Alvadia C, Straub MS, Clerico Mosina V, Paulino C, Dutzler R. Structural basis for the activation of the lipid scramblase TMEM16F. Nat Commun 2022; 13:6692. [PMID: 36335104 PMCID: PMC9637102 DOI: 10.1038/s41467-022-34497-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
TMEM16F, a member of the conserved TMEM16 family, plays a central role in the initiation of blood coagulation and the fusion of trophoblasts. The protein mediates passive ion and lipid transport in response to an increase in intracellular Ca2+. However, the mechanism of how the protein facilitates both processes has remained elusive. Here we investigate the basis for TMEM16F activation. In a screen of residues lining the proposed site of conduction, we identify mutants with strongly activating phenotype. Structures of these mutants determined herein by cryo-electron microscopy show major rearrangements leading to the exposure of hydrophilic patches to the membrane, whose distortion facilitates lipid diffusion. The concomitant opening of a pore promotes ion conduction in the same protein conformation. Our work has revealed a mechanism that is distinct for this branch of the family and that will aid the development of a specific pharmacology for a promising drug target.
Collapse
Affiliation(s)
- Melanie Arndt
- grid.7400.30000 0004 1937 0650Department of Biochemistry University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Carolina Alvadia
- grid.7400.30000 0004 1937 0650Department of Biochemistry University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Monique S. Straub
- grid.7400.30000 0004 1937 0650Department of Biochemistry University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Vanessa Clerico Mosina
- grid.4830.f0000 0004 0407 1981Department of Structural Biology and Membrane Enzymology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Cristina Paulino
- grid.4830.f0000 0004 0407 1981Department of Structural Biology and Membrane Enzymology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Raimund Dutzler
- grid.7400.30000 0004 1937 0650Department of Biochemistry University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Cheng X, Khelashvili G, Weinstein H. The permeation of potassium ions through the lipid scrambling path of the membrane protein nhTMEM16. Front Mol Biosci 2022; 9:903972. [PMID: 35942471 PMCID: PMC9356224 DOI: 10.3389/fmolb.2022.903972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The TMEM16 family of transmembrane proteins includes Ca2+-activated phospholipid scramblases (PLS) that can also function as non-selective ion channels. Extensive structural and functional studies have established that a membrane-exposed hydrophilic groove in TMEM16 PLS can serve as a translocation pathway for lipids. However, it is still unclear how the TMEM16 PLS conduct ions. A “protein-delimited pore” model suggests that ions are translocated through a narrow opening of the groove region, which is not sufficiently wide to allow lipid movement, whereas a “proteolipidic pore” model envisions ions and lipids translocating through an open conformation of the groove. We investigated the dynamic path of potassium ion (K+) translocation that occurs when an open groove state of nhTMEM16 is obtained from long atomistic molecular dynamics (MD) simulations, and calculated the free energy profile of the ion movement through the groove with umbrella sampling methodology. The free energy profile identifies effects of specific interactions along the K+ permeation path. The same calculations were performed to investigate ion permeation through a groove closed to lipid permeation in the nhTMEM16 L302A mutant which exhibits a stable conformation of the groove that does not permit lipid scrambling. Our results identify structural and energy parameters that enable K+ permeation, and suggest that the presence of lipids in the nhTMEM16 groove observed in the simulations during scrambling or in/out diffusion, affect the efficiency of K+ permeation to various extents.
Collapse
Affiliation(s)
- Xiaolu Cheng
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Harel Weinstein,
| |
Collapse
|
21
|
Akyuz N, Karavitaki KD, Pan B, Tamvakologos PI, Brock KP, Li Y, Marks DS, Corey DP. Mechanical gating of the auditory transduction channel TMC1 involves the fourth and sixth transmembrane helices. SCIENCE ADVANCES 2022; 8:eabo1126. [PMID: 35857511 PMCID: PMC9278870 DOI: 10.1126/sciadv.abo1126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/27/2022] [Indexed: 05/27/2023]
Abstract
The transmembrane (TM) channel-like 1 (TMC1) and TMC2 proteins play a central role in auditory transduction, forming ion channels that convert sound into electrical signals. However, the molecular mechanism of their gating remains unknown. Here, using predicted structural models as a guide, we probed the effects of 12 mutations on the mechanical gating of the transduction currents in native hair cells of Tmc1/2-null mice expressing virally introduced TMC1 variants. Whole-cell electrophysiological recordings revealed that mutations within the pore-lining TM4 and TM6 helices modified gating, reducing the force sensitivity or shifting the open probability of the channels, or both. For some of the mutants, these changes were accompanied by a change in single-channel conductance. Our observations are in line with a model wherein conformational changes in the TM4 and TM6 helices are involved in the mechanical gating of the transduction channel.
Collapse
Affiliation(s)
- Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bifeng Pan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Kelly P. Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yaqiao Li
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Al-Hosni R, Ilkan Z, Agostinelli E, Tammaro P. The pharmacology of the TMEM16A channel: therapeutic opportunities. Trends Pharmacol Sci 2022; 43:712-725. [PMID: 35811176 DOI: 10.1016/j.tips.2022.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
The TMEM16A Ca2+-gated Cl- channel is involved in a variety of vital physiological functions and may be targeted pharmacologically for therapeutic benefit in diseases such as hypertension, stroke, and cystic fibrosis (CF). The determination of the TMEM16A structure and high-throughput screening efforts, alongside ex vivo and in vivo animal studies and clinical investigations, are hastening our understanding of the physiology and pharmacology of this channel. Here, we offer a critical analysis of recent developments in TMEM16A pharmacology and reflect on the therapeutic opportunities provided by this target.
Collapse
Affiliation(s)
- Rumaitha Al-Hosni
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Zeki Ilkan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Emilio Agostinelli
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
23
|
Zhang Y, Zhu X, Zhang H, Yan J, Xu P, Wu P, Wu S, Bai C. Mechanism Study of Proteins under Membrane Environment. MEMBRANES 2022; 12:membranes12070694. [PMID: 35877897 PMCID: PMC9322369 DOI: 10.3390/membranes12070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Membrane proteins play crucial roles in various physiological processes, including molecule transport across membranes, cell communication, and signal transduction. Approximately 60% of known drug targets are membrane proteins. There is a significant need to deeply understand the working mechanism of membrane proteins in detail, which is a challenging work due to the lack of available membrane structures and their large spatial scale. Membrane proteins carry out vital physiological functions through conformational changes. In the current study, we utilized a coarse-grained (CG) model to investigate three representative membrane protein systems: the TMEM16A channel, the family C GPCRs mGlu2 receptor, and the P4-ATPase phospholipid transporter. We constructed the reaction pathway of conformational changes between the two-end structures. Energy profiles and energy barriers were calculated. These data could provide reasonable explanations for TMEM16A activation, the mGlu2 receptor activation process, and P4-ATPase phospholipid transport. Although they all belong to the members of membrane proteins, they behave differently in terms of energy. Our work investigated the working mechanism of membrane proteins and could give novel insights into other membrane protein systems of interest.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Xiaohong Zhu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Honghui Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Junfang Yan
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Peiyi Xu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
- Correspondence: (S.W.); (C.B.)
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
- Chenzhu Biotechnology Co., Ltd., Hangzhou 310005, China
- Correspondence: (S.W.); (C.B.)
| |
Collapse
|
24
|
Guo S, Zhang L, Li N. ANO1: More Than Just Calcium-Activated Chloride Channel in Cancer. Front Oncol 2022; 12:922838. [PMID: 35734591 PMCID: PMC9207239 DOI: 10.3389/fonc.2022.922838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
ANO1, a calcium-activated chloride channel (CACC), is also known as transmembrane protein 16A (TMEM16A). It plays a vital role in the occurrence, development, metastasis, proliferation, and apoptosis of various malignant tumors. This article reviews the mechanism of ANO1 involved in the replication, proliferation, invasion and apoptosis of various malignant tumors. Various molecules and Stimuli control the expression of ANO1, and the regulatory mechanism of ANO1 is different in tumor cells. To explore the mechanism of ANO1 overexpression and activation of tumor cells by studying the different effects of ANO1. Current studies have shown that ANO1 expression is controlled by 11q13 gene amplification and may also exert cell-specific effects through its interconnected protein network, phosphorylation of different kinases, and signaling pathways. At the same time, ANO1 also resists tumor apoptosis and promotes tumor immune escape. ANO1 can be used as a promising biomarker for detecting certain malignant tumors. Further studies on the channels and the mechanism of protein activity of ANO1 are needed. Finally, the latest inhibitors of ANO1 are summarized, which provides the research direction for the tumor-promoting mechanism of ANO1.
Collapse
Affiliation(s)
- Saisai Guo
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linna Zhang
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Lam AKM, Rutz S, Dutzler R. Inhibition mechanism of the chloride channel TMEM16A by the pore blocker 1PBC. Nat Commun 2022; 13:2798. [PMID: 35589730 PMCID: PMC9120017 DOI: 10.1038/s41467-022-30479-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
TMEM16A, a calcium-activated chloride channel involved in multiple cellular processes, is a proposed target for diseases such as hypertension, asthma, and cystic fibrosis. Despite these therapeutic promises, its pharmacology remains poorly understood. Here, we present a cryo-EM structure of TMEM16A in complex with the channel blocker 1PBC and a detailed functional analysis of its inhibition mechanism. A pocket located external to the neck region of the hourglass-shaped pore is responsible for open-channel block by 1PBC and presumably also by its structural analogs. The binding of the blocker stabilizes an open-like conformation of the channel that involves a rearrangement of several pore helices. The expansion of the outer pore enhances blocker sensitivity and enables 1PBC to bind at a site within the transmembrane electric field. Our results define the mechanism of inhibition and gating and will facilitate the design of new, potent TMEM16A modulators.
Collapse
Affiliation(s)
- Andy K M Lam
- Department of Biochemistry, University of Zurich, Winterthurer Str. 190, CH-8057, Zurich, Switzerland.
| | - Sonja Rutz
- Department of Biochemistry, University of Zurich, Winterthurer Str. 190, CH-8057, Zurich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Winterthurer Str. 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
26
|
Korte N, Ilkan Z, Pearson CL, Pfeiffer T, Singhal P, Rock JR, Sethi H, Gill D, Attwell D, Tammaro P. The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia. J Clin Invest 2022; 132:e154118. [PMID: 35316222 PMCID: PMC9057602 DOI: 10.1172/jci154118] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Pericyte-mediated capillary constriction decreases cerebral blood flow in stroke after an occluded artery is unblocked. The determinants of pericyte tone are poorly understood. We show that a small rise in cytoplasmic Ca2+ concentration ([Ca2+]i) in pericytes activated chloride efflux through the Ca2+-gated anion channel TMEM16A, thus depolarizing the cell and opening voltage-gated calcium channels. This mechanism strongly amplified the pericyte [Ca2+]i rise and capillary constriction evoked by contractile agonists and ischemia. In a rodent stroke model, TMEM16A inhibition slowed the ischemia-evoked pericyte [Ca2+]i rise, capillary constriction, and pericyte death; reduced neutrophil stalling; and improved cerebrovascular reperfusion. Genetic analysis implicated altered TMEM16A expression in poor patient recovery from ischemic stroke. Thus, pericyte TMEM16A is a crucial regulator of cerebral capillary function and a potential therapeutic target for stroke and possibly other disorders of impaired microvascular flow, such as Alzheimer's disease and vascular dementia.
Collapse
Affiliation(s)
- Nils Korte
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Zeki Ilkan
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Claire L. Pearson
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Thomas Pfeiffer
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Prabhav Singhal
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Jason R. Rock
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Huma Sethi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, St Mary’s Hospital, Imperial College London, London, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Maltan L, Andova AM, Derler I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022; 12:biom12030352. [PMID: 35327543 PMCID: PMC8944985 DOI: 10.3390/biom12030352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
The composition and dynamics of the lipid membrane define the physical properties of the bilayer and consequently affect the function of the incorporated membrane transporters, which also applies for the prominent Ca2+ release-activated Ca2+ ion channel (CRAC). This channel is activated by receptor-induced Ca2+ store depletion of the endoplasmic reticulum (ER) and consists of two transmembrane proteins, STIM1 and Orai1. STIM1 is anchored in the ER membrane and senses changes in the ER luminal Ca2+ concentration. Orai1 is the Ca2+-selective, pore-forming CRAC channel component located in the plasma membrane (PM). Ca2+ store-depletion of the ER triggers activation of STIM1 proteins, which subsequently leads to a conformational change and oligomerization of STIM1 and its coupling to as well as activation of Orai1 channels at the ER-PM contact sites. Although STIM1 and Orai1 are sufficient for CRAC channel activation, their efficient activation and deactivation is fine-tuned by a variety of lipids and lipid- and/or ER-PM junction-dependent accessory proteins. The underlying mechanisms for lipid-mediated CRAC channel modulation as well as the still open questions, are presented in this review.
Collapse
|
28
|
Shi S, Pang C, Ren S, Sun F, Ma B, Guo S, Li J, Chen Y, An H. Molecular dynamics simulation of TMEM16A channel: Linking structure with gating. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183777. [PMID: 34537214 DOI: 10.1016/j.bbamem.2021.183777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
TMEM16A, the calcium-activated chloride channel, is broadly expressed and plays pivotal roles in diverse physiological processes. To understand the structural and functional relationships of TMEM16A, it is necessary to fully clarify the structural basis of the gating of the TMEM16A channel. Herein, we performed the protein electrostatic analysis and molecular dynamics simulation on the TMEM16A in the presence and absence of Ca2+. Data showed that the separation of TM4 and TM6 causes pore expansion, and Q646 may be a key residue for the formation of π-helix in the middle segment of TM6. Moreover, E705 was found to form a group of H-bond interactions with D554/K588/K645 below the hydrophobic gate to stabilize the closed conformation of the pore in the Ca2+-free state. Interestingly, in the Ca2+ bound state, the E705 side chain swings 100o to serve as Ca2+-binding coordination and released K645. K645 is closer to the hydrophobic gate in the calcium-bound state, which facilitates the provision of electrostatic forces for chloride ions as the ions pass through the hydrophobic gate. Our findings provide the structural-based insights to understanding the mechanisms of gating of TMEM16A.
Collapse
Affiliation(s)
- Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Shuxi Ren
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Fude Sun
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Shuai Guo
- College of Life Science, Hebei University, Baoding 071002, Hebei, China
| | - Junwei Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
29
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
30
|
Ramírez AS, Nosol K, Locher KP. Production of Human ABC Transporters and Oligosaccharyltransferase Complexes for Structural Studies. Methods Mol Biol 2022; 2507:273-294. [PMID: 35773587 DOI: 10.1007/978-1-0716-2368-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structural studies of membrane proteins require high-quality samples. The target proteins should not only be pure and homogeneous but should also be active and allow the capture of a functionally relevant state. Here we present optimized methods for the expression and purification of human ABC transporters and oligosaccharyltransferase (OST) complexes that can be used for high-resolution structure determination using single-particle cryo-electron microscopy (cryo-EM). The protocols are based on the generation of stable cell lines that enable tetracycline-inducible expression of the target proteins. For the multidrug exporter ABCB1, we describe a protocol for reconstitution into nanodiscs and evaluation of the ATPase activity in the presence of drugs. For human OST, we describe a strategy for the purification of OST-A and OST-B complexes, including techniques to evaluate their integrity and activity using in vitro glycosylation assays. These protocols can be adapted for the production of other human ABC transporters and multimeric membrane protein complexes.
Collapse
Affiliation(s)
- Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Kamil Nosol
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
31
|
Wray S, Prendergast C, Arrowsmith S. Calcium-Activated Chloride Channels in Myometrial and Vascular Smooth Muscle. Front Physiol 2021; 12:751008. [PMID: 34867456 PMCID: PMC8637852 DOI: 10.3389/fphys.2021.751008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
In smooth muscle tissues, calcium-activated chloride channels (CaCC) provide the major anionic channel. Opening of these channels leads to chloride efflux and depolarization of the myocyte membrane. In this way, activation of the channels by a rise of intracellular [Ca2+], from a variety of sources, produces increased excitability and can initiate action potentials and contraction or increased tone. We now have a good mechanistic understanding of how the channels are activated and regulated, due to identification of TMEM16A (ANO1) as the molecular entity of the channel, but key questions remain. In reviewing these channels and comparing two distinct smooth muscles, myometrial and vascular, we expose the differences that occur in their activation mechanisms, properties, and control. We find that the myometrium only expresses “classical,” Ca2+-activated, and voltage sensitive channels, whereas both tonic and phasic blood vessels express classical, and non-classical, cGMP-regulated CaCC, which are voltage insensitive. This translates to more complex activation and regulation in vascular smooth muscles, irrespective of whether they are tonic or phasic. We therefore tentatively conclude that although these channels are expressed and functionally important in all smooth muscles, they are probably not part of the mechanisms governing phasic activity. Recent knockdown studies have produced unexpected functional results, e.g. no effects on labour and delivery, and tone increasing in some but decreasing in other vascular beds, strongly suggesting that there is still much to be explored concerning CaCC in smooth muscle.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Clodagh Prendergast
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Arrowsmith
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
32
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
33
|
Le SC, Liang P, Lowry AJ, Yang H. Gating and Regulatory Mechanisms of TMEM16 Ion Channels and Scramblases. Front Physiol 2021; 12:787773. [PMID: 34867487 PMCID: PMC8640346 DOI: 10.3389/fphys.2021.787773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated ion channels and Ca2+-activated phospholipid scramblases (CaPLSases) that passively flip-flop phospholipids between the two leaflets of the membrane bilayer. Owing to their diverse functions, TMEM16 proteins have been implicated in various human diseases, including asthma, cancer, bleeding disorders, muscular dystrophy, arthritis, epilepsy, dystonia, ataxia, and viral infection. To understand TMEM16 proteins in health and disease, it is critical to decipher their molecular mechanisms of activation gating and regulation. Structural, biophysical, and computational characterizations over the past decade have greatly advanced the molecular understanding of TMEM16 proteins. In this review, we summarize major structural features of the TMEM16 proteins with a focus on regulatory mechanisms and gating.
Collapse
Affiliation(s)
- Son C. Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Pengfei Liang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Augustus J. Lowry
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
34
|
TMEM16A/ANO1: Current Strategies and Novel Drug Approaches for Cystic Fibrosis. Cells 2021; 10:cells10112867. [PMID: 34831090 PMCID: PMC8616501 DOI: 10.3390/cells10112867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common of rare hereditary diseases in Caucasians, and it is estimated to affect 75,000 patients globally. CF is a complex disease due to the multiplicity of mutations found in the CF transmembrane conductance regulator (CFTR) gene causing the CFTR protein to become dysfunctional. Correctors and potentiators have demonstrated good clinical outcomes for patients with specific gene mutations; however, there are still patients for whom those treatments are not suitable and require alternative CFTR-independent strategies. Although CFTR is the main chloride channel in the lungs, others could, e.g., anoctamin-1 (ANO1 or TMEM16A), compensate for the deficiency of CFTR. This review summarizes the current knowledge on calcium-activated chloride channel (CaCC) ANO1 and presents ANO1 as an exciting target in CF.
Collapse
|
35
|
Kasahara Y, Narukawa M, Ishimaru Y, Kanda S, Umatani C, Takayama Y, Tominaga M, Oka Y, Kondo K, Kondo T, Takeuchi A, Misaka T, Abe K, Asakura T. TMC4 is a novel chloride channel involved in high-concentration salt taste sensation. J Physiol Sci 2021; 71:23. [PMID: 34429071 PMCID: PMC10717410 DOI: 10.1186/s12576-021-00807-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 12/27/2022]
Abstract
"Salty taste" sensation is evoked when sodium and chloride ions are present together in the oral cavity. The presence of an epithelial cation channel that receives Na+ has previously been reported. However, no molecular entity involving Cl- receptors has been elucidated. We report the strong expression of transmembrane channel-like 4 (TMC4) in the circumvallate and foliate papillae projected to the glossopharyngeal nerve, mediating a high-concentration of NaCl. Electrophysiological analysis using HEK293T cells revealed that TMC4 was a voltage-dependent Cl- channel and the consequent currents were completely inhibited by NPPB, an anion channel blocker. TMC4 allowed permeation of organic anions including gluconate, but their current amplitudes at positive potentials were less than that of Cl-. Tmc4-deficient mice showed significantly weaker glossopharyngeal nerve response to high-concentration of NaCl than the wild-type littermates. These results indicated that TMC4 is a novel chloride channel that responds to high-concentration of NaCl.
Collapse
Affiliation(s)
- Yoichi Kasahara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masataka Narukawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Food and Nutrition, Kyoto Women's University, 35 Kitahiyoshicho Imakumano Higashiyama, Kyoto, 605-8501, Japan
| | - Yoshiro Ishimaru
- Department of Agricultural Chemistry, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaijicho, Okazaki, Aichi, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaijicho, Okazaki, Aichi, 444-8787, Japan
- Thermal Biology Research Group, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaijicho, Okazaki, Aichi, 444-8787, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kaori Kondo
- Laboratory for Developmental Genetics, RIKEN-IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN-IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, and Life Science Innovation Center, University of Fukui, Fukui, 910-1193, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), LiSE 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
36
|
Abstract
TMEM16A Ca2+-activated chloride channels are involved in multiple cellular functions and are proposed targets for diseases such as hypertension, stroke, and cystic fibrosis. This therapeutic endeavor, however, suffers from paucity of selective and potent modulators. Here, exploiting a synthetic small molecule with a biphasic effect on the TMEM16A channel, anthracene-9-carboxylic acid (A9C), we shed light on sites of the channel amenable for pharmacological intervention. Mutant channels with the intracellular gate constitutively open were generated. These channels were entirely insensitive to extracellular A9C when intracellular Ca2+ was omitted. However, when physiological Ca2+ levels were reestablished, the mutants regained sensitivity to A9C. Thus, intracellular Ca2+ is mandatory for the channel response to an extracellular modulator. The underlying mechanism is a conformational change in the outer pore that enables A9C to enter the pore to reach its binding site. The explanation of this structural rearrangement highlights a critical site for pharmacological intervention and reveals an aspect of Ca2+ gating in the TMEM16A channel.
Collapse
|
37
|
Sukalskaia A, Straub MS, Deneka D, Sawicka M, Dutzler R. Cryo-EM structures of the TTYH family reveal a novel architecture for lipid interactions. Nat Commun 2021; 12:4893. [PMID: 34385445 PMCID: PMC8361169 DOI: 10.1038/s41467-021-25106-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
The Tweety homologs (TTYHs) are members of a conserved family of eukaryotic membrane proteins that are abundant in the brain. The three human paralogs were assigned to function as anion channels that are either activated by Ca2+ or cell swelling. To uncover their unknown architecture and its relationship to function, we have determined the structures of human TTYH1–3 by cryo-electron microscopy. All structures display equivalent features of a dimeric membrane protein that contains five transmembrane segments and an extended extracellular domain. As none of the proteins shows attributes reminiscent of an anion channel, we revisited functional experiments and did not find any indication of ion conduction. Instead, we find density in an extended hydrophobic pocket contained in the extracellular domain that emerges from the lipid bilayer, which suggests a role of TTYH proteins in the interaction with lipid-like compounds residing in the membrane. The human Tweety homologue (TTYH) family of transmembrane proteins have been suggested to act as chloride channels. Here the authors present cryo-EM structures of the 3 human TTYH paralogs that do not display the expected features of an anion channel, and instead appear to interact with lipid-like compounds residing in the membrane; suggesting an involvement in lipid-associated processes.
Collapse
Affiliation(s)
| | - Monique S Straub
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Dawid Deneka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marta Sawicka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Niu Y, Tao X, Vaisey G, Olinares PDB, Alwaseem H, Chait BT, MacKinnon R. Analysis of the mechanosensor channel functionality of TACAN. eLife 2021; 10:71188. [PMID: 34374644 PMCID: PMC8376246 DOI: 10.7554/elife.71188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Mechanosensitive ion channels mediate transmembrane ion currents activated by mechanical forces. A mechanosensitive ion channel called TACAN was recently reported. We began to study TACAN with the intent to understand how it senses mechanical forces and functions as an ion channel. Using cellular patch-recording methods, we failed to identify mechanosensitive ion channel activity. Using membrane reconstitution methods, we found that TACAN, at high protein concentrations, produces heterogeneous conduction levels that are not mechanosensitive and are most consistent with disruptions of the lipid bilayer. We determined the structure of TACAN using single-particle cryo-electron microscopy and observed that it is a symmetrical dimeric transmembrane protein. Each protomer contains an intracellular-facing cleft with a coenzyme A cofactor, confirmed by mass spectrometry. The TACAN protomer is related in three-dimensional structure to a fatty acid elongase, ELOVL7. Whilst its physiological function remains unclear, we anticipate that TACAN is not a mechanosensitive ion channel.
Collapse
Affiliation(s)
- Yiming Niu
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, United States
| | - Xiao Tao
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, United States.,Howard Hughes Medical Institute, New York, United States
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, United States.,Howard Hughes Medical Institute, New York, United States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, United States
| | - Hanan Alwaseem
- Proteomics Resource Center, Rockefeller University, New York, United States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, United States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, United States.,Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
39
|
Wang Y, Gao J, Zhao S, Song Y, Huang H, Zhu G, Jiao P, Xu X, Zhang G, Wang K, Zhang L, Liu Z. Discovery of 4-arylthiophene-3-carboxylic acid as inhibitor of ANO1 and its effect as analgesic agent. Acta Pharm Sin B 2021; 11:1947-1964. [PMID: 34386330 PMCID: PMC8343189 DOI: 10.1016/j.apsb.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
Anoctamin 1 (ANO1) is a kind of calcium-activated chloride channel involved in nerve depolarization. ANO1 inhibitors display significant analgesic activity by the local peripheral and intrathecal administration. In this study, several thiophenecarboxylic acid and benzoic acid derivatives were identified as novel ANO1 inhibitors through the shape-based virtual screening, among which the 4-arylthiophene-3-carboxylic acid analogues with the best ANO1 inhibitory activity were designed, synthesized and compound 42 (IC50 = 0.79 μmol/L) was finally obtained. Compound 42 selectively inhibited ANO1 without affecting ANO2 and intracellular Ca2+ concentration. Subsequently, the analgesic effect was investigated by intragastric administration in pain models. Compound 42 significantly attenuated allodynia which was induced by formalin and chronic constriction injury. Through homology modeling and molecular dynamics, the binding site was predicted to be located near the calcium-binding region between α6 and α8. Our study validates ANO1 inhibitors having a significant analgesic effect by intragastric administration and also provides selective molecular tools for ANO1-related research.
Collapse
|
40
|
The Groovy TMEM16 Family: Molecular Mechanisms of Lipid Scrambling and Ion Conduction. J Mol Biol 2021; 433:166941. [PMID: 33741412 DOI: 10.1016/j.jmb.2021.166941] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022]
Abstract
The TMEM16 family of membrane proteins displays a remarkable functional dichotomy - while some family members function as Ca2+-activated anion channels, the majority of characterized TMEM16 homologs are Ca2+-activated lipid scramblases, which catalyze the exchange of phospholipids between the two membrane leaflets. Furthermore, some TMEM16 scramblases can also function as channels. Due to their involvement in important physiological processes, the family has been actively studied ever since their molecular identity was unraveled. In this review, we will summarize the recent advances in the field and how they influenced our view of TMEM16 family function and evolution. Structural, functional and computational studies reveal how relatively small rearrangements in the permeation pathway are responsible for the observed functional duality: while TMEM16 scramblases can adopt both ion- and lipid conductive conformations, TMEM16 channels can only populate the former. Recent data further provides the molecular details of a stepwise activation mechanism, which is initiated by Ca2+ binding and modulated by various cellular factors, including lipids. TMEM16 function and the surrounding membrane properties are inextricably intertwined, with the protein inducing bilayer deformations associated with scrambling, while the surrounding lipids modulate TMEM16 conformation and activity.
Collapse
|
41
|
Jia Z, Chen J. Specific PIP 2 binding promotes calcium activation of TMEM16A chloride channels. Commun Biol 2021; 4:259. [PMID: 33637964 PMCID: PMC7910439 DOI: 10.1038/s42003-021-01782-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 02/01/2021] [Indexed: 11/09/2022] Open
Abstract
TMEM16A is a widely expressed Ca2+-activated Cl− channel that regulates crucial physiological functions including fluid secretion, neuronal excitability, and smooth muscle contraction. There is a critical need to understand the molecular mechanisms of TMEM16A gating and regulation. However, high-resolution TMEM16A structures have failed to reveal an activated state with an unobstructed permeation pathway even with saturating Ca2+. This has been attributed to the requirement of PIP2 for preventing TMEM16A desensitization. Here, atomistic simulations show that specific binding of PIP2 to TMEM16A can lead to spontaneous opening of the permeation pathway in the Ca2+-bound state. The predicted activated state is highly consistent with a wide range of mutagenesis and functional data. It yields a maximal Cl− conductance of ~1 pS, similar to experimental estimates, and recapitulates the selectivity of larger SCN− over Cl−. The resulting molecular mechanism of activation provides a basis for understanding the interplay of multiple signals in controlling TMEM16A channel function. Chen and Jia investigate the synergistic regulating role of Ca2+ binding and the signaling lipid PIP2 in TMEM16A channel gating. Their study is significant as it provides new insights into the activated state of TMEM16A and highlights an example of functional importance of lipids in regulating membrane-associated proteins.
Collapse
Affiliation(s)
- Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA. .,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
42
|
Divalent Cation Modulation of Ion Permeation in TMEM16 Proteins. Int J Mol Sci 2021; 22:ijms22042209. [PMID: 33672260 PMCID: PMC7926781 DOI: 10.3390/ijms22042209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
Intracellular divalent cations control the molecular function of transmembrane protein 16 (TMEM16) family members. Both anion channels (such as TMEM16A) and phospholipid scramblases (such as TMEM16F) in this family are activated by intracellular Ca2+ in the low µM range. In addition, intracellular Ca2+ or Co2+ at mM concentrations have been shown to further potentiate the saturated Ca2+-activated current of TMEM16A. In this study, we found that all alkaline earth divalent cations in mM concentrations can generate similar potentiation effects in TMEM16A when applied intracellularly, and that manipulations thought to deplete membrane phospholipids weaken the effect. In comparison, mM concentrations of divalent cations minimally potentiate the current of TMEM16F but significantly change its cation/anion selectivity. We suggest that divalent cations may increase local concentrations of permeant ions via a change in pore electrostatic potential, possibly acting through phospholipid head groups in or near the pore. Monovalent cations appear to exert a similar effect, although with a much lower affinity. Our findings resolve controversies regarding the ion selectivity of TMEM16 proteins. The physiological role of this mechanism, however, remains elusive because of the nearly constant high cation concentrations in cytosols.
Collapse
|
43
|
Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem 2021; 296:100411. [PMID: 33581114 PMCID: PMC8005811 DOI: 10.1016/j.jbc.2021.100411] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Formations of myofibers, osteoclasts, syncytiotrophoblasts, and fertilized zygotes share a common step, cell–cell fusion. Recent years have brought about considerable progress in identifying some of the proteins involved in these and other cell-fusion processes. However, even for the best-characterized cell fusions, we still do not know the mechanisms that regulate the timing of cell-fusion events. Are they fully controlled by the expression of fusogenic proteins or do they also depend on some triggering signal that activates these proteins? The latter scenario would be analogous to the mechanisms that control the timing of exocytosis initiated by Ca2+ influx and virus-cell fusion initiated by low pH- or receptor interaction. Diverse cell fusions are accompanied by the nonapoptotic exposure of phosphatidylserine at the surface of fusing cells. Here we review data on the dependence of membrane remodeling in cell fusion on phosphatidylserine and phosphatidylserine-recognizing proteins and discuss the hypothesis that cell surface phosphatidylserine serves as a conserved “fuse me” signal regulating the time and place of cell-fusion processes.
Collapse
|
44
|
Lam AKM, Dutzler R. Mechanism of pore opening in the calcium-activated chloride channel TMEM16A. Nat Commun 2021; 12:786. [PMID: 33542228 PMCID: PMC7862263 DOI: 10.1038/s41467-020-20788-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/16/2020] [Indexed: 01/14/2023] Open
Abstract
The anion channel TMEM16A is activated by intracellular Ca2+ in a highly cooperative process. By combining electrophysiology and autocorrelation analysis, we investigated the mechanism of channel activation and the concurrent rearrangement of the gate in the narrow part of the pore. Features in the fluctuation characteristics of steady-state current indicate the sampling of intermediate conformations that are successively occupied during gating. The initial step is related to conformational changes induced by Ca2+ binding, which is ensued by rearrangements that open the pore. Mutations in the gate shift the equilibrium of transitions in a manner consistent with a progressive destabilization of this region during pore opening. We come up with a mechanism of channel activation where the binding of Ca2+ induces conformational changes in the protein that, in a sequential manner, propagate from the binding site and couple to the gate in the narrow pore to allow ion permeation.
Collapse
Affiliation(s)
- Andy K M Lam
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
45
|
Lam AKM, Rheinberger J, Paulino C, Dutzler R. Gating the pore of the calcium-activated chloride channel TMEM16A. Nat Commun 2021; 12:785. [PMID: 33542223 PMCID: PMC7862301 DOI: 10.1038/s41467-020-20787-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
The binding of cytoplasmic Ca2+ to the anion-selective channel TMEM16A triggers a conformational change around its binding site that is coupled to the release of a gate at the constricted neck of an hourglass-shaped pore. By combining mutagenesis, electrophysiology, and cryo-electron microscopy, we identified three hydrophobic residues at the intracellular entrance of the neck as constituents of this gate. Mutation of each of these residues increases the potency of Ca2+ and results in pronounced basal activity. The structure of an activating mutant shows a conformational change of an α-helix that contributes to Ca2+ binding as a likely cause for the basal activity. Although not in physical contact, the three residues are functionally coupled to collectively contribute to the stabilization of the gate in the closed conformation of the pore, thus explaining the low open probability of the channel in the absence of Ca2+.
Collapse
Affiliation(s)
- Andy K M Lam
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Jan Rheinberger
- Department of Structural Biology and Membrane Enzymology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Cristina Paulino
- Department of Structural Biology and Membrane Enzymology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands.
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
46
|
Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res 2021; 383:429-443. [PMID: 33447881 DOI: 10.1007/s00441-020-03391-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023]
Abstract
Odor perception begins with the detection of odorant molecules by the main olfactory epithelium located in the nasal cavity. Odorant molecules bind to and activate a large family of G-protein-coupled odorant receptors and trigger a cAMP-mediated transduction cascade that converts the chemical stimulus into an electrical signal transmitted to the brain. Morever, odorant receptors and cAMP signaling plays a relevant role in olfactory sensory neuron development and axonal targeting to the olfactory bulb. This review will first explore the physiological response of olfactory sensory neurons to odorants and then analyze the different components of cAMP signaling and their different roles in odorant detection and olfactory sensory neuron development.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council (CNR), Genova, Italy.
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.,Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
47
|
Le SC, Yang H. Structure-Function of TMEM16 Ion Channels and Lipid Scramblases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:87-109. [PMID: 35138612 PMCID: PMC11020148 DOI: 10.1007/978-981-16-4254-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The TMEM16 protein family comprises two novel classes of structurally conserved but functionally distinct membrane transporters that function as Ca2+-dependent Cl- channels (CaCCs) or dual functional Ca2+-dependent ion channels and phospholipid scramblases. Extensive functional and structural studies have advanced our understanding of TMEM16 molecular mechanisms and physiological functions. TMEM16A and TMEM16B CaCCs control transepithelial fluid transport, smooth muscle contraction, and neuronal excitability, whereas TMEM16 phospholipid scramblases mediate the flip-flop of phospholipids across the membrane to allow phosphatidylserine externalization, which is essential in a plethora of important processes such as blood coagulation, bone development, and viral and cell fusion. In this chapter, we summarize the major methods in studying TMEM16 ion channels and scramblases and then focus on the current mechanistic understanding of TMEM16 Ca2+- and voltage-dependent channel gating as well as their ion and phospholipid permeation.
Collapse
Affiliation(s)
- Son C Le
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
48
|
An Additional Ca 2+ Binding Site Allosterically Controls TMEM16A Activation. Cell Rep 2020; 33:108570. [PMID: 33378669 PMCID: PMC7786149 DOI: 10.1016/j.celrep.2020.108570] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/18/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) is the primary stimulus for transmembrane protein 16 (TMEM16) Ca2+-activated chloride channels and phospholipid scramblases, which regulate important physiological processes ranging from smooth muscle contraction to blood coagulation and tumor progression. Binding of intracellular Ca2+ to two highly conserved orthosteric binding sites in transmembrane helices (TMs) 6-8 efficiently opens the permeation pathway formed by TMs 3-7. Recent structures of TMEM16K and TMEM16F scramblases revealed an additional Ca2+ binding site between TM2 and TM10, whose functional relevance remains unknown. Here, we report that Ca2+ binds with high affinity to the equivalent third Ca2+ site in TMEM16A to enhance channel activation. Our cadmium (Cd2+) metal bridging experiments reveal that the third Ca2+ site's conformational states can profoundly influence TMEM16A's opening. Our study thus confirms the existence of a third Ca2+ site in TMEM16A, defines its functional importance in channel gating, and provides insight into a long-range allosteric gating mechanism of TMEM16 channels and scramblases.
Collapse
|
49
|
Dulin NO. Calcium-Activated Chloride Channel ANO1/TMEM16A: Regulation of Expression and Signaling. Front Physiol 2020; 11:590262. [PMID: 33250781 PMCID: PMC7674831 DOI: 10.3389/fphys.2020.590262] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
Anoctamin-1 (ANO1), also known as TMEM16A, is the most studied member of anoctamin family of calcium-activated chloride channels with diverse cellular functions. ANO1 controls multiple cell functions including cell proliferation, survival, migration, contraction, secretion, and neuronal excitation. This review summarizes the current knowledge of the cellular mechanisms governing the regulation of ANO1 expression and of ANO1-mediated intracellular signaling. This includes the stimuli and mechanisms controlling ANO1 expression, agonists and processes that activate ANO1, and signal transduction mediated by ANO1. The major conclusion is that this field is poorly understood, remains highly controversial, and requires extensive and rigorous further investigation.
Collapse
Affiliation(s)
- Nickolai O Dulin
- Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
50
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|