1
|
Zou H, Huang X, Xiao W, He H, Liu S, Zeng H. Recent advancements in bacterial anti-phage strategies and the underlying mechanisms altering susceptibility to antibiotics. Microbiol Res 2025; 295:128107. [PMID: 40023108 DOI: 10.1016/j.micres.2025.128107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
The rapid spread of multidrug-resistant bacteria and the challenges in developing new antibiotics have brought renewed international attention to phage therapy. However, in bacteria-phage co-evolution, the rapid development of bacterial resistance to phage has limited its clinical application. This review consolidates the latest advancements in research on anti-phage mechanisms, encompassing strategies such as systems associated with reduced nicotinamide adenine dinucleotide (NAD+) to halt the propagation of the phage, symbiotic bacteria episymbiont-mediated modulation of gene expression in host bacteria to resist phage infection, and defence-related reverse transcriptase (DRT) encoded by bacteria to curb phage infections. We conduct an in-depth analysis of the underlying mechanisms by which bacteria undergo alterations in antibiotic susceptibility after developing phage resistance. We also discuss the remaining challenges and promising directions for phage-based therapy in the future.
Collapse
Affiliation(s)
- Huanhuan Zou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyi Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenyue Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haoxuan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shenshen Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Margolis SR, Meeske AJ. Crosstalk between three CRISPR-Cas types enables primed type VI-A adaptation in Listeria seeligeri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620265. [PMID: 39484522 PMCID: PMC11527137 DOI: 10.1101/2024.10.25.620265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
CRISPR-Cas systems confer adaptive immunity to their prokaryotic hosts through the process of adaptation, where sequences are captured from foreign nucleic acids and integrated as spacers in the CRISPR array, and thereby enable crRNA-guided interference against new threats. While the Cas1-2 integrase is critical for adaptation, it is absent from many CRISPR-Cas loci, rendering the mechanism of spacer acquisition unclear for these systems. Here we show that the RNA-targeting type VI-A CRISPR system of Listeria seeligeri acquires spacers from DNA substrates through the action of a promiscuous Cas1-2 integrase encoded by a co-occurring type II-C system, in a transcription-independent manner. We further demonstrate that the type II-C integration complex is strongly stimulated by preexisting spacers in a third CRISPR system (type I-B) which imperfectly match phage targets and prime type VI-A adaptation. Altogether, our results reveal an unprecedented degree of communication among CRISPR-Cas loci encoded by a single organism.
Collapse
|
3
|
Hu K, Chou CW, Wilke CO, Finkelstein IJ. Distinct horizontal transfer mechanisms for type I and type V CRISPR-associated transposons. Nat Commun 2024; 15:6653. [PMID: 39103341 DOI: 10.1038/s41467-024-50816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
CASTs use both CRISPR-associated proteins and Tn7-family transposons for RNA-guided vertical and horizontal transmission. CASTs encode minimal CRISPR arrays but can't acquire new spacers. Here, we report that CASTs can co-opt defense-associated CRISPR arrays for horizontal transmission. A bioinformatic analysis shows that CASTs co-occur with defense-associated CRISPR systems, with the highest prevalence for type I-B and type V CAST sub-types. Using an E. coli quantitative transposition assay and in vitro reconstitution, we show that CASTs can use CRISPR RNAs from these defense systems. A high-resolution structure of the type I-F CAST-Cascade in complex with a type III-B CRISPR RNA reveals that Cas6 recognizes direct repeats via sequence-independent π - π interactions. In addition to using heterologous CRISPR arrays, type V CASTs can also transpose via an unguided mechanism, even when the S15 co-factor is over-expressed. Over-expressing S15 and the trans-activating CRISPR RNA or a single guide RNA reduces, but does not abrogate, off-target integration for type V CASTs. Our findings suggest that some CASTs may exploit defense-associated CRISPR arrays and that this fact must be considered when porting CASTs to heterologous bacterial hosts. More broadly, this work will guide further efforts to engineer the activity and specificity of CASTs for gene editing applications.
Collapse
Affiliation(s)
- Kuang Hu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Chia-Wei Chou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Claus O Wilke
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
4
|
Hoikkala V, Graham S, White MF. Bioinformatic analysis of type III CRISPR systems reveals key properties and new effector families. Nucleic Acids Res 2024; 52:7129-7141. [PMID: 38808661 PMCID: PMC11229360 DOI: 10.1093/nar/gkae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Recognition of RNA from invading mobile genetic elements (MGE) prompts type III CRISPR systems to activate an HD nuclease domain and/or a nucleotide cyclase domain in the Cas10 subunit, eliciting an immune response. The cyclase domain can generate a range of nucleotide second messengers, which in turn activate a diverse family of ancillary effector proteins. These provide immunity by non-specific degradation of host and MGE nucleic acids or proteins, perturbation of membrane potentials, transcriptional responses, or the arrest of translation. The wide range of nucleotide activators and downstream effectors generates a complex picture that is gradually being resolved. Here, we carry out a global bioinformatic analysis of type III CRISPR loci in prokaryotic genomes, defining the relationships of Cas10 proteins and their ancillary effectors. Our study reveals that cyclic tetra-adenylate is by far the most common signalling molecule used and that many loci have multiple effectors. These typically share the same activator and may work synergistically to combat MGE. We propose four new candidate effector protein families and confirm experimentally that the Csm6-2 protein, a highly diverged, fused Csm6 effector, is a ribonuclease activated by cyclic hexa-adenylate.
Collapse
Affiliation(s)
- Ville Hoikkala
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| |
Collapse
|
5
|
Hu WF, Yang JY, Wang JJ, Yuan SF, Yue XJ, Zhang Z, Zhang YQ, Meng JY, Li YZ. Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria. mSystems 2024; 9:e0121023. [PMID: 38747603 PMCID: PMC11237760 DOI: 10.1128/msystems.01210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. IMPORTANCE Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
Collapse
Affiliation(s)
- Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jiang-Yu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Fei Yuan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Qi Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun-Yan Meng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Lucas-Elío P, ElAlami T, Martínez A, Sanchez-Amat A. Marinomonas mediterranea synthesizes an R-type bacteriocin. Appl Environ Microbiol 2024; 90:e0127323. [PMID: 38169292 PMCID: PMC10870725 DOI: 10.1128/aem.01273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Prophages integrated into bacterial genomes can become cryptic or defective prophages, which may evolve to provide various traits to bacterial cells. Previous research on Marinomonas mediterranea MMB-1 demonstrated the production of defective particles. In this study, an analysis of the genomes of three different strains (MMB-1, MMB-2, and MMB-3) revealed the presence of a region named MEDPRO1, spanning approximately 52 kb, coding for a defective prophage in strains MMB-1 and MMB-2. This prophage seems to have been lost in strain MMB-3, possibly due to the presence of spacers recognizing this region in an I-F CRISPR array in this strain. However, all three strains produce remarkably similar defective particles. Using strain MMB-1 as a model, mass spectrometry analyses indicated that the structural proteins of the defective particles are encoded by a second defective prophage situated within the MEDPRO2 region, spanning approximately 13 kb. This finding was further validated through the deletion of this second defective prophage. Genomic region analyses and the detection of antimicrobial activity of the defective prophage against other Marinomonas species suggest that it is an R-type bacteriocin. Marinomonas mediterranea synthesizes antimicrobial proteins with lysine oxidase activity, and the synthesis of an R-type bacteriocin constitutes an additional mechanism in microbial competition for the colonization of habitats such as the surface of marine plants.IMPORTANCEThe interactions between bacterial strains inhabiting the same environment determine the final composition of the microbiome. In this study, it is shown that some extracellular defective phage particles previously observed in Marinomonas mediterranea are in fact R-type bacteriocins showing antimicrobial activity against other Marinomonas strains. The operon coding for the R-type bacteriocin has been identified.
Collapse
Affiliation(s)
- Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Tarik ElAlami
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Alicia Martínez
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | | |
Collapse
|
7
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
8
|
Khot V, Strous M, Dong X, Kiesser AK. Viral diversity and dynamics and CRISPR-Cas-mediated immunity in a robust alkaliphilic cyanobacterial consortium. Microbiol Spectr 2023; 11:e0221723. [PMID: 37819096 PMCID: PMC10715143 DOI: 10.1128/spectrum.02217-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Biotechnology applications utilizing the function of microbial communities have become increasingly important solutions as we strive for sustainable applications. Although viral infections are known to have a significant impact on microbial turnover and nutrient cycling, viral dynamics have remained largely overlooked in these engineered communities. Predatory perturbations to the functional stability of these microbial biotechnology applications must be investigated in order to design more robust applications. In this study, we closely examine virus-microbe dynamics in a model microbial community used in a biotechnology application. Our findings suggest that viral dynamics change significantly with environmental conditions and that microbial immunity may play an important role in maintaining functional stability. We present this study as a comprehensive template for other researchers interested in exploring predatory dynamics in engineered microbial communities.
Collapse
Affiliation(s)
- Varada Khot
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Alyse K. Kiesser
- School of Engineering, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
9
|
Zhao J, Xi Y, Zhang J, Jin Y, Yang H, Duan G, Chen S, Long J. Characterization and diversity of CRISPR/Cas systems in Klebsiella oxytoca. Mol Genet Genomics 2023; 298:1407-1417. [PMID: 37684555 DOI: 10.1007/s00438-023-02065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) system is a crucial adaptive immune system for bacteria to resist foreign DNA infection. In this study, we investigated the prevalence and diversity of CRISPR/Cas systems in 175 Klebsiella oxytoca (K. oxytoca) strains. Specifically, 58.86% (103/175) of these strains possessed at least one confirmed CRISPR locus. Two CRISPR/Cas system types, I-F and IV-A3, were identified in 69 strains. Type I-F system was the most prevalent in this species, which correlated well with MLST. Differently, type IV-A3 system was randomly distributed. Moreover, the type IV-A3 system was separated into two subgroups, with subgroup-specific cas genes and repeat sequences. In addition, spacer origin analysis revealed that approximately one-fifth of type I-F spacers and one-third of type IV-A3 spacers had a significant match to MGEs. The phage tail tape measure protein and conjunctive transfer system protein were important targets of type I-F and IV-A3 systems in K. oxytoca, respectively. PAM sequences were inferred to be 5'-NCC-3' for type I-F, 5'-AAG-3' for subgroup IV-A3-a, and 5'-AAN-3' for subgroup IV-A3-b. Collectively, our findings will shed light on the prevalence, diversity, and functional effects of the CRISPR/Cas system in K. oxytoca.
Collapse
Affiliation(s)
- Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | | | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
10
|
Xi Y, Zhao J, Zhang J, Jin Y, Yang H, Duan G, Chen S, Long J. Analysis of the features of 105 confirmed CRISPR loci in 487 Klebsiella variicola. Lett Appl Microbiol 2023; 76:ovad108. [PMID: 37715312 DOI: 10.1093/lambio/ovad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
Klebsiella variicola, an emerging human pathogen, poses a threat to public health. The horizontal gene transfer (HGT) of plasmids is an important driver of the emergence of multiple antibiotic-resistant K. variicola. Clustered regularly interspersed short palindromic repeats (CRISPR) coupled with CRISPR-associated genes (CRISPR/Cas) constitute an adaptive immune system in bacteria, and can provide acquired immunity against HGT. However, the information about the CRISPR/Cas system in K. variicola is still limited. In this study, 487 genomes of K. variicola obtained from the National Center for Biotechnology Information database were used to analyze the characteristics of CRISPR/Cas systems. Approximately 21.56% of genomes (105/487) harbor at least one confirmed CRISPR array. Three types of CRISPR/Cas systems, namely the type I-E, I-E*, and IV-A systems, were identified among 105 strains. Spacer origin analysis further revealed that approximately one-third of spacers significantly match plasmids or phages, which demonstrates the implication of CRISPR/Cas systems in controlling HGT. Moreover, spacers in K. variicola tend to target mobile genetic elements from K. pneumoniae. This finding provides new evidence of the interaction of K. variicola and K. pneumoniae during their evolution. Collectively, our results provide valuable insights into the role of CRISPR/Cas systems in K. variicola.
Collapse
Affiliation(s)
- Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jiangfeng Zhang
- Henan Provincial People's Hospital, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
11
|
Matrishin CB, Haase EM, Dewhirst FE, Mark Welch JL, Miranda-Sanchez F, Chen T, MacFarland DC, Kauffman KM. Phages are unrecognized players in the ecology of the oral pathogen Porphyromonas gingivalis. MICROBIOME 2023; 11:161. [PMID: 37491415 PMCID: PMC10367356 DOI: 10.1186/s40168-023-01607-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Porphyromonas gingivalis (hereafter "Pg") is an oral pathogen that has been hypothesized to act as a keystone driver of inflammation and periodontal disease. Although Pg is most readily recovered from individuals with actively progressing periodontal disease, healthy individuals and those with stable non-progressing disease are also colonized by Pg. Insights into the factors shaping the striking strain-level variation in Pg, and its variable associations with disease, are needed to achieve a more mechanistic understanding of periodontal disease and its progression. One of the key forces often shaping strain-level diversity in microbial communities is infection of bacteria by their viral (phage) predators and symbionts. Surprisingly, although Pg has been the subject of study for over 40 years, essentially nothing is known of its phages, and the prevailing paradigm is that phages are not important in the ecology of Pg. RESULTS Here we systematically addressed the question of whether Pg are infected by phages-and we found that they are. We found that prophages are common in Pg, they are genomically diverse, and they encode genes that have the potential to alter Pg physiology and interactions. We found that phages represent unrecognized targets of the prevalent CRISPR-Cas defense systems in Pg, and that Pg strains encode numerous additional mechanistically diverse candidate anti-phage defense systems. We also found that phages and candidate anti-phage defense system elements together are major contributors to strain-level diversity and the species pangenome of this oral pathogen. Finally, we demonstrate that prophages harbored by a model Pg strain are active in culture, producing extracellular viral particles in broth cultures. CONCLUSION This work definitively establishes that phages are a major unrecognized force shaping the ecology and intra-species strain-level diversity of the well-studied oral pathogen Pg. The foundational phage sequence datasets and model systems that we establish here add to the rich context of all that is already known about Pg, and point to numerous avenues of future inquiry that promise to shed new light on fundamental features of phage impacts on human health and disease broadly. Video Abstract.
Collapse
Affiliation(s)
- Cole B Matrishin
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Elaine M Haase
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Donald C MacFarland
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Kathryn M Kauffman
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
12
|
Hu K, Chia-Wei C, Wilke CO, Finkelstein IJ. Distinct horizontal transfer mechanisms for type I and type V CRISPR-associated transposons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531003. [PMID: 37502928 PMCID: PMC10369902 DOI: 10.1101/2023.03.03.531003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
CRISPR-associated transposons (CASTs) co-opt CRISPR-Cas proteins and Tn7-family transposons for RNA-guided vertical and horizontal transmission. CASTs encode minimal CRISPR arrays but can't acquire new spacers. Here, we show that CASTs instead co-opt defense-associated CRISPR arrays for horizontal transmission. A bioinformatic analysis shows that all CAST sub-types co-occur with defense-associated CRISPR-Cas systems. Using an E. coli quantitative transposition assay, we show that CASTs use CRISPR RNAs (crRNAs) from these defense systems for horizontal gene transfer. A high-resolution structure of the type I-F CAST-Cascade in complex with a type III-B crRNA reveals that Cas6 recognizes direct repeats via sequence-independent π - π interactions. In addition to using heterologous CRISPR arrays, type V CASTs can also transpose via a crRNA-independent unguided mechanism, even when the S15 co-factor is over-expressed. Over-expressing S15 and the trans-activating CRISPR RNA (tracrRNA) or a single guide RNA (sgRNA) reduces, but does not abrogate, off-target integration for type V CASTs. Exploiting new spacers in defense-associated CRISPR arrays explains how CASTs horizontally transfer to new hosts. More broadly, this work will guide further efforts to engineer the activity and specificity of CASTs for gene editing applications.
Collapse
Affiliation(s)
- Kuang Hu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Chou Chia-Wei
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Claus O. Wilke
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
13
|
Gao Z, Feng Y. Bacteriophage strategies for overcoming host antiviral immunity. Front Microbiol 2023; 14:1211793. [PMID: 37362940 PMCID: PMC10286901 DOI: 10.3389/fmicb.2023.1211793] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Phages and their bacterial hosts together constitute a vast and diverse ecosystem. Facing the infection of phages, prokaryotes have evolved a wide range of antiviral mechanisms, and phages in turn have adopted multiple tactics to circumvent or subvert these mechanisms to survive. An in-depth investigation into the interaction between phages and bacteria not only provides new insight into the ancient coevolutionary conflict between them but also produces precision biotechnological tools based on anti-phage systems. Moreover, a more complete understanding of their interaction is also critical for the phage-based antibacterial measures. Compared to the bacterial antiviral mechanisms, studies into counter-defense strategies adopted by phages have been a little slow, but have also achieved important advances in recent years. In this review, we highlight the numerous intracellular immune systems of bacteria as well as the countermeasures employed by phages, with an emphasis on the bacteriophage strategies in response to host antiviral immunity.
Collapse
Affiliation(s)
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
14
|
McBride TM, Cameron SC, Fineran PC, Fagerlund RD. The biology and type I/III hybrid nature of type I-D CRISPR-Cas systems. Biochem J 2023; 480:471-488. [PMID: 37052300 PMCID: PMC10212523 DOI: 10.1042/bcj20220073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 04/14/2023]
Abstract
Prokaryotes have adaptive defence mechanisms that protect them from mobile genetic elements and viral infection. One defence mechanism is called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins). There are six different types of CRISPR-Cas systems and multiple subtypes that vary in composition and mode of action. Type I and III CRISPR-Cas systems utilise multi-protein complexes, which differ in structure, nucleic acid binding and cleaving preference. The type I-D system is a chimera of type I and III systems. Recently, there has been a burst of research on the type I-D CRISPR-Cas system. Here, we review the mechanism, evolution and biotechnological applications of the type I-D CRISPR-Cas system.
Collapse
Affiliation(s)
- Tess M. McBride
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Shaharn C. Cameron
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D. Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
15
|
Stokar-Avihail A, Fedorenko T, Hör J, Garb J, Leavitt A, Millman A, Shulman G, Wojtania N, Melamed S, Amitai G, Sorek R. Discovery of phage determinants that confer sensitivity to bacterial immune systems. Cell 2023; 186:1863-1876.e16. [PMID: 37030292 DOI: 10.1016/j.cell.2023.02.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 04/10/2023]
Abstract
Over the past few years, numerous anti-phage defense systems have been discovered in bacteria. Although the mechanism of defense for some of these systems is understood, a major unanswered question is how these systems sense phage infection. To systematically address this question, we isolated 177 phage mutants that escape 15 different defense systems. In many cases, these escaper phages were mutated in the gene sensed by the defense system, enabling us to map the phage determinants that confer sensitivity to bacterial immunity. Our data identify specificity determinants of diverse retron systems and reveal phage-encoded triggers for multiple abortive infection systems. We find general themes in phage sensing and demonstrate that mechanistically diverse systems have converged to sense either the core replication machinery of the phage, phage structural components, or host takeover mechanisms. Combining our data with previous findings, we formulate key principles on how bacterial immune systems sense phage invaders.
Collapse
Affiliation(s)
- Avigail Stokar-Avihail
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Taya Fedorenko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jens Hör
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gabriela Shulman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nicole Wojtania
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
16
|
Chen Y, Zeng Z, She Q, Han W. The abortive infection functions of CRISPR-Cas and Argonaute. Trends Microbiol 2023; 31:405-418. [PMID: 36463018 DOI: 10.1016/j.tim.2022.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
CRISPR-Cas and prokaryotic Argonaute (pAgo) are nucleic acid (NA)-guided defense systems that protect prokaryotes against the invasion of mobile genetic elements. Previous studies established that they are directed by NA fragments (guides) to recognize invading complementary NA (targets), and that they cleave the targets to silence the invaders. Nevertheless, growing evidence indicates that many CRISPR-Cas and pAgo systems exploit the abortive infection (Abi) strategy to confer immunity. The CRISPR-Cas and pAgo Abi systems typically sense invaders using the NA recognition ability and activate various toxic effectors to kill the infected cells to prevent the invaders from spreading. This review summarizes the diverse mechanisms of these CRISPR-Cas and pAgo systems, and highlights their critical roles in the arms race between microbes and invaders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhifeng Zeng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo, 266237, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
17
|
Webb EA, Held NA, Zhao Y, Graham ED, Conover AE, Semones J, Lee MD, Feng Y, Fu FX, Saito MA, Hutchins DA. Importance of mobile genetic element immunity in numerically abundant Trichodesmium clades. ISME COMMUNICATIONS 2023; 3:15. [PMID: 36823453 PMCID: PMC9950141 DOI: 10.1038/s43705-023-00214-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 02/25/2023]
Abstract
The colony-forming cyanobacteria Trichodesmium spp. are considered one of the most important nitrogen-fixing genera in the warm, low nutrient ocean. Despite this central biogeochemical role, many questions about their evolution, physiology, and trophic interactions remain unanswered. To address these questions, we describe Trichodesmium pangenomic potential via significantly improved genomic assemblies from two isolates and 15 new >50% complete Trichodesmium metagenome-assembled genomes from hand-picked, Trichodesmium colonies spanning the Atlantic Ocean. Phylogenomics identified ~four N2 fixing clades of Trichodesmium across the transect, with T. thiebautii dominating the colony-specific reads. Pangenomic analyses showed that all T. thiebautii MAGs are enriched in COG defense mechanisms and encode a vertically inherited Type III-B Clustered Regularly Interspaced Short Palindromic Repeats and associated protein-based immunity system (CRISPR-Cas). Surprisingly, this CRISPR-Cas system was absent in all T. erythraeum genomes, vertically inherited by T. thiebautii, and correlated with increased signatures of horizontal gene transfer. Additionally, the system was expressed in metaproteomic and transcriptomic datasets and CRISPR spacer sequences with 100% identical hits to field-assembled, putative phage genome fragments were identified. While the currently CO2-limited T. erythraeum is expected to be a 'winner' of anthropogenic climate change, their genomic dearth of known phage resistance mechanisms, compared to T. thiebautii, could put this outcome in question. Thus, the clear demarcation of T. thiebautii maintaining CRISPR-Cas systems, while T. erythraeum does not, identifies Trichodesmium as an ecologically important CRISPR-Cas model system, and highlights the need for more research on phage-Trichodesmium interactions.
Collapse
Affiliation(s)
- Eric A Webb
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Noelle A Held
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
| | - Yiming Zhao
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Elaina D Graham
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Asa E Conover
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jake Semones
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Michael D Lee
- Blue Marble Space Institute of Science, NASA Ames Research Center, Mountain View, CA, 94035, USA
| | - Yuanyuan Feng
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fei-Xue Fu
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mak A Saito
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - David A Hutchins
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
18
|
Tesson F, Bernheim A. Synergy and regulation of antiphage systems: toward the existence of a bacterial immune system? Curr Opin Microbiol 2023; 71:102238. [PMID: 36423502 DOI: 10.1016/j.mib.2022.102238] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Bacteria encode a vast repertoire of diverse antiphage defense systems. Recent studies revealed that different defense systems are often encoded within the same genome, raising the question of their possible interactions in a cell. Here, we review the known synergies and coregulations of antiphage systems. The emerging complexities suggest a potential existence of an additional level of organization of antiviral defense in prokaryotes. We argue that this organization could be compared with immune systems of animals and plants. We discuss this concept and explore what it could mean in bacteria.
Collapse
|
19
|
Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA. Nature 2023; 613:588-594. [PMID: 36599979 PMCID: PMC9811890 DOI: 10.1038/s41586-022-05559-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 01/05/2023]
Abstract
Bacterial abortive-infection systems limit the spread of foreign invaders by shutting down or killing infected cells before the invaders can replicate1,2. Several RNA-targeting CRISPR-Cas systems (that is, types III and VI) cause abortive-infection phenotypes by activating indiscriminate nucleases3-5. However, a CRISPR-mediated abortive mechanism that leverages indiscriminate DNase activity of an RNA-guided single-effector nuclease has yet to be observed. Here we report that RNA targeting by the type V single-effector nuclease Cas12a2 drives abortive infection through non-specific cleavage of double-stranded DNA (dsDNA). After recognizing an RNA target with an activating protospacer-flanking sequence, Cas12a2 efficiently degrades single-stranded RNA (ssRNA), single-stranded DNA (ssDNA) and dsDNA. Within cells, the activation of Cas12a2 induces an SOS DNA-damage response and impairs growth, preventing the dissemination of the invader. Finally, we harnessed the collateral activity of Cas12a2 for direct RNA detection, demonstrating that Cas12a2 can be repurposed as an RNA-guided RNA-targeting tool. These findings expand the known defensive abilities of CRISPR-Cas systems and create additional opportunities for CRISPR technologies.
Collapse
|
20
|
Abstract
CRISPR-Cas is a widespread adaptive immune system in bacteria and archaea that protects against viral infection by targeting specific invading nucleic acid sequences. Whereas some CRISPR-Cas systems sense and cleave viral DNA, type III and type VI CRISPR-Cas systems sense RNA that results from viral transcription and perhaps invasion by RNA viruses. The sequence-specific detection of viral RNA evokes a cell-wide response that typically involves global damage to halt the infection. How can one make sense of an immune strategy that encompasses broad, collateral effects rather than specific, targeted destruction? In this Review, we summarize the current understanding of RNA-targeting CRISPR-Cas systems. We detail the composition and properties of type III and type VI systems, outline the cellular defence processes that are instigated upon viral RNA sensing and describe the biological rationale behind the broad RNA-activated immune responses as an effective strategy to combat viral infection.
Collapse
|
21
|
Yadav G, Singh R. In silico analysis reveals the co-existence of CRISPR-Cas type I-F1 and type I-F2 systems and its association with restricted phage invasion in Acinetobacter baumannii. Front Microbiol 2022; 13:909886. [PMID: 36060733 PMCID: PMC9428484 DOI: 10.3389/fmicb.2022.909886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Acinetobacter baumannii, an opportunistic pathogen, rapidly acquires antibiotic resistance, thus compelling researchers to develop alternative treatments at utmost priority. Phage-based therapies are of appreciable benefit; however, CRISPR-Cas systems are a major constraint in this approach. Hence for effective implementation and a promising future of phage-based therapies, a multifaceted understanding of the CRISPR-Cas systems is necessary. Methods This study investigated 4,977 RefSeq genomes of A. baumannii from the NCBI database to comprehend the distribution and association of CRISPR-Cas systems with genomic determinants. Results Approximately 13.84% (n = 689/4,977) isolates were found to carry the CRSIPR-Cas system, and a small fraction of isolates, 1.49% (n = 74/4,977), exhibited degenerated CRISPR-Cas systems. Of these CRISPR-Cas positive (+) isolates, 67.48% (465/689) isolates harbored type I-F1, 28.59% (197/689) had type I-F2, and 3.7% (26/689) had co-existence of both type I-F1 and type I-F2 systems. Co-existing type I-F1 and type I-F2 systems are located distantly (∼1.733 Mb). We found a strong association of CRISPR-Cas systems within STs for type I-F1 and type I-F2, whereas the type I-F1 + F2 was not confined to any particular ST. Isolates with type I-F1 + F2 exhibited a significantly high number of mean spacers (n = 164.58 ± 46.41) per isolate as compared to isolates with type I-F2 (n = 82.87 ± 36.14) and type I-F1 (n = 54.51 ± 26.27) with majority targeting the phages. Isolates with type I-F1 (p < 0.0001) and type I-F2 (p < 0.0115) displayed significantly larger genome sizes than type I-F1 + F2. A significantly reduced number of integrated phages in isolates with co-existence of type I-F1 + F2 compared with other counterparts was observed (p = 0.0041). In addition, the isolates carrying type I-F1 + F2 did not exhibit reduced resistance and virulence genes compared to CRISPR-Cas(-) and CRISPR-Cas (+) type I-F1 and type I-F2, except for bap, abaI, and abaR. Conclusion Our observation suggests that the co-existence of type I-F1 and F2 is more effective in constraining the horizontal gene transfer and phage invasion in A. baumannii than the isolates exhibiting only type I-F1 and only type I-F2 systems.
Collapse
Affiliation(s)
- Gulshan Yadav
- Indian Council of Medical Research (ICMR)—National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Ruchi Singh
- Indian Council of Medical Research (ICMR)—National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
22
|
Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2022; 50:4315-4328. [PMID: 34606604 DOI: 10.1093/nar/gkab859/40506127/gkab859.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 05/27/2023] Open
Abstract
Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Zhang X, An X. Adaptation by Type III CRISPR-Cas Systems: Breakthrough Findings and Open Questions. Front Microbiol 2022; 13:876174. [PMID: 35495695 PMCID: PMC9048733 DOI: 10.3389/fmicb.2022.876174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems acquire heritable defense memory against invading nucleic acids through adaptation. Type III CRISPR-Cas systems have unique and intriguing features of defense and are important in method development for Genetics research. We started to understand the common and unique properties of type III CRISPR-Cas adaptation in recent years. This review summarizes our knowledge regarding CRISPR-Cas adaptation with the emphasis on type III systems and discusses open questions for type III adaptation studies.
Collapse
Affiliation(s)
- Xinfu Zhang
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, United States
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center of Tree breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Xinfu Zhang,
| | - Xinmin An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center of Tree breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Xinmin An,
| |
Collapse
|
24
|
Bari SMN, Chou-Zheng L, Howell O, Hossain M, Hill CM, Boyle TA, Cater K, Dandu VS, Thomas A, Aslan B, Hatoum-Aslan A. A unique mode of nucleic acid immunity performed by a multifunctional bacterial enzyme. Cell Host Microbe 2022; 30:570-582.e7. [PMID: 35421352 DOI: 10.1016/j.chom.2022.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
The perpetual arms race between bacteria and their viruses (phages) has given rise to diverse immune systems, including restriction-modification and CRISPR-Cas, which sense and degrade phage-derived nucleic acids. These complex systems rely upon production and maintenance of multiple components to achieve antiphage defense. However, the prevalence and effectiveness of minimal, single-component systems that cleave DNA remain unknown. Here, we describe a unique mode of nucleic acid immunity mediated by a single enzyme with nuclease and helicase activities, herein referred to as Nhi (nuclease-helicase immunity). This enzyme provides robust protection against diverse staphylococcal phages and prevents phage DNA accumulation in cells stripped of all other known defenses. Our observations support a model in which Nhi targets and degrades phage-specific replication intermediates. Importantly, Nhi homologs are distributed in diverse bacteria and exhibit functional conservation, highlighting the versatility of such compact weapons as major players in antiphage defense.
Collapse
Affiliation(s)
- S M Nayeemul Bari
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Lucy Chou-Zheng
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Olivia Howell
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Motaher Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Courtney M Hill
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Tori A Boyle
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Katie Cater
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Vidya Sree Dandu
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Alexander Thomas
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Barbaros Aslan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA.
| |
Collapse
|
25
|
Wimmer F, Mougiakos I, Englert F, Beisel CL. Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons. Mol Cell 2022; 82:1210-1224.e6. [PMID: 35216669 DOI: 10.1016/j.molcel.2022.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
CRISPR-Cas biology and technologies have been largely shaped to date by the characterization and use of single-effector nucleases. By contrast, multi-subunit effectors dominate natural systems, represent emerging technologies, and were recently associated with RNA-guided DNA transposition. This disconnect stems from the challenge of working with multiple protein subunits in vitro and in vivo. Here, we apply cell-free transcription-translation (TXTL) systems to radically accelerate the characterization of multi-subunit CRISPR effectors and transposons. Numerous DNA constructs can be combined in one TXTL reaction, yielding defined biomolecular readouts in hours. Using TXTL, we mined phylogenetically diverse I-E effectors, interrogated extensively self-targeting I-C and I-F systems, and elucidated targeting rules for I-B and I-F CRISPR transposons using only DNA-binding components. We further recapitulated DNA transposition in TXTL, which helped reveal a distinct branch of I-B CRISPR transposons. These capabilities will facilitate the study and exploitation of the broad yet underexplored diversity of CRISPR-Cas systems and transposons.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Ioannis Mougiakos
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
26
|
Wentz TG, Tremblay BJM, Bradshaw M, Doxey AC, Sharma SK, Sauer JD, Pellett S. Endogenous CRISPR-Cas Systems in Group I Clostridium botulinum and Clostridium sporogenes Do Not Directly Target the Botulinum Neurotoxin Gene Cluster. Front Microbiol 2022; 12:787726. [PMID: 35222299 PMCID: PMC8865420 DOI: 10.3389/fmicb.2021.787726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
Most strains of proteolytic group I Clostridium botulinum (G1 C. botulinum) and some strains of Clostridium sporogenes possess genes encoding botulinum neurotoxin (BoNT), a potent neuroparalytic agent. Within G1 C. botulinum, conserved bont gene clusters of three major toxin serotypes (bont/A/B/F) can be found on conjugative plasmids and/or within chromosomal pathogenicity islands. CRISPR-Cas systems enable site-specific targeting of previously encountered mobile genetic elements (MGE) such as plasmids and bacteriophage through the creation of a spacer library complementary to protospacers within the MGEs. To examine whether endogenous CRISPR-Cas systems restrict the transfer of bont gene clusters across strains we conducted a bioinformatic analysis profiling endogenous CRISPR-Cas systems from 241 G1 C. botulinum and C. sporogenes strains. Approximately 6,200 CRISPR spacers were identified across the strains and Type I-B, III-A/B/D cas genes and CRISPR array features were identified in 83% of the strains. Mapping the predicted spacers against the masked strain and RefSeq plasmid dataset identified 56,000 spacer-protospacer matches. While spacers mapped heavily to targets within bont(+) plasmids, no protospacers were identified within the bont gene clusters. These results indicate the toxin is not a direct target of CRISPR-Cas but the plasmids predominantly responsible for its mobilization are. Finally, while the presence of a CRISPR-Cas system did not reliably indicate the presence or absence of a bont gene cluster, comparative genomics across strains indicates they often occupy the same hypervariable loci common to both species, potentially suggesting similar mechanisms are involved in the acquisition and curation of both genomic features.
Collapse
Affiliation(s)
- Travis G. Wentz
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, United States,Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States,Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Shashi K. Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States,*Correspondence: Sabine Pellett,
| |
Collapse
|
27
|
Xia P, Dutta A, Gupta K, Batish M, Parashar V. Structural basis of cyclic oligoadenylate binding to the transcription factor Csa3 outlines cross talk between type III and type I CRISPR systems. J Biol Chem 2022; 298:101591. [PMID: 35038453 PMCID: PMC8844856 DOI: 10.1016/j.jbc.2022.101591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/28/2023] Open
Abstract
RNA interference by type III CRISPR systems results in the synthesis of cyclic oligoadenylate (cOA) second messengers, which are known to bind and regulate various CARF domain-containing nuclease receptors. The CARF domain-containing Csa3 family of transcriptional factors associated with the DNA-targeting type I CRISPR systems regulate expression of various CRISPR and DNA repair genes in many prokaryotes. In this study, we extend the known receptor repertoire of cOA messengers to include transcriptional factors by demonstrating specific binding of cyclic tetra-adenylate (cA4) to Saccharolobus solfataricus Csa3 (Csa3Sso). Our 2.0-Å resolution X-ray crystal structure of cA4-bound full-length Csa3Sso reveals the binding of its CARF domain to an elongated conformation of cA4. Using cA4 binding affinity analyses of Csa3Sso mutants targeting the observed Csa3Sso•cA4 structural interface, we identified a Csa3-specific cA4 binding motif distinct from a more widely conserved cOA-binding CARF motif. Using a rational surface engineering approach, we increased the cA4 binding affinity of Csa3Sso up to ∼145-fold over the wildtype, which has potential applications for future second messenger-driven CRISPR gene expression and editing systems. Our in-solution Csa3Sso structural analysis identified cA4-induced allosteric and asymmetric conformational rearrangement of its C-terminal winged helix-turn-helix effector domains, which could potentially be incompatible to DNA binding. However, specific in vitro binding of the purified Csa3Sso to its putative promoter (PCas4a) was found to be cA4 independent, suggesting a complex mode of Csa3Sso regulation. Overall, our results support cA4-and Csa3-mediated cross talk between type III and type I CRISPR systems.
Collapse
Affiliation(s)
- Pengjun Xia
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Anirudha Dutta
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Kushol Gupta
- The Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Vijay Parashar
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
28
|
Aviram N, Thornal AN, Zeevi D, Marraffini LA. Different modes of spacer acquisition by the Staphylococcus epidermidis type III-A CRISPR-Cas system. Nucleic Acids Res 2022; 50:1661-1672. [PMID: 35048966 PMCID: PMC8860600 DOI: 10.1093/nar/gkab1299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 12/23/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotic organisms with an adaptive defense mechanism that acquires immunological memories of infections. This is accomplished by integration of short fragments from the genome of invaders such as phages and plasmids, called ‘spacers’, into the CRISPR locus of the host. Depending on their genetic composition, CRISPR-Cas systems can be classified into six types, I-VI, however spacer acquisition has been extensively studied only in type I and II systems. Here, we used an inducible spacer acquisition assay to study this process in the type III-A CRISPR-Cas system of Staphylococcus epidermidis, in the absence of phage selection. Similarly to type I and II spacer acquisition, this type III system uses Cas1 and Cas2 to preferentially integrate spacers from the chromosomal terminus and free dsDNA ends produced after DNA breaks, in a manner that is enhanced by the AddAB DNA repair complex. Surprisingly, a different mode of spacer acquisition from rRNA and tRNA loci, which spans only the transcribed sequences of these genes and is not enhanced by AddAB, was also detected. Therefore, our findings reveal both common mechanistic principles that may be conserved in all CRISPR-Cas systems, as well as unique and intriguing features of type III spacer acquisition.
Collapse
Affiliation(s)
- Naama Aviram
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Ashley N Thornal
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - David Zeevi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luciano A Marraffini
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
29
|
Rocha EPC, Bikard D. Microbial defenses against mobile genetic elements and viruses: Who defends whom from what? PLoS Biol 2022; 20:e3001514. [PMID: 35025885 PMCID: PMC8791490 DOI: 10.1371/journal.pbio.3001514] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Prokaryotes have numerous mobile genetic elements (MGEs) that mediate horizontal gene transfer (HGT) between cells. These elements can be costly, even deadly, and cells use numerous defense systems to filter, control, or inactivate them. Recent studies have shown that prophages, conjugative elements, their parasites (phage satellites and mobilizable elements), and other poorly described MGEs encode defense systems homologous to those of bacteria. These constitute a significant fraction of the repertoire of cellular defense genes. As components of MGEs, these defense systems have presumably evolved to provide them, not the cell, adaptive functions. While the interests of the host and MGEs are aligned when they face a common threat such as an infection by a virulent phage, defensive functions carried by MGEs might also play more selfish roles to fend off other antagonistic MGEs or to ensure their maintenance in the cell. MGEs are eventually lost from the surviving host genomes by mutational processes and their defense systems can be co-opted when they provide an advantage to the cell. The abundance of defense systems in MGEs thus sheds new light on the role, effect, and fate of the so-called "cellular defense systems," whereby they are not only merely microbial defensive weapons in a 2-partner arms race, but also tools of intragenomic conflict between multiple genetic elements with divergent interests that shape cell fate and gene flow at the population level.
Collapse
Affiliation(s)
- Eduardo P. C. Rocha
- Institut Pasteur, Université de Paris, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - David Bikard
- Institut Pasteur, Université de Paris, Synthetic Biology, Department of Microbiology, Paris, France
| |
Collapse
|
30
|
Zhang X, Garrett S, Graveley BR, Terns MP. Unique properties of spacer acquisition by the type III-A CRISPR-Cas system. Nucleic Acids Res 2021; 50:1562-1582. [PMID: 34893878 PMCID: PMC8860593 DOI: 10.1093/nar/gkab1193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Type III CRISPR-Cas systems have a unique mode of interference, involving crRNA-guided recognition of nascent RNA and leading to DNA and RNA degradation. How type III systems acquire new CRISPR spacers is currently not well understood. Here, we characterize CRISPR spacer uptake by a type III-A system within its native host, Streptococcus thermophilus. Adaptation by the type II-A system in the same host provided a basis for comparison. Cas1 and Cas2 proteins were critical for type III adaptation but deletion of genes responsible for crRNA biogenesis or interference did not detectably change spacer uptake patterns, except those related to host counter-selection. Unlike the type II-A system, type III spacers are acquired in a PAM- and orientation-independent manner. Interestingly, certain regions of plasmids and the host genome were particularly well-sampled during type III-A, but not type II-A, spacer uptake. These regions included the single-stranded origins of rolling-circle replicating plasmids, rRNA and tRNA encoding gene clusters, promoter regions of expressed genes and 5′ UTR regions involved in transcription attenuation. These features share the potential to form DNA secondary structures, suggesting a preferred substrate for type III adaptation. Lastly, the type III-A system adapted to and protected host cells from lytic phage infection.
Collapse
Affiliation(s)
- Xinfu Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sandra Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
31
|
Lucas-Elío P, Molina-Quintero LR, Xu H, Sánchez-Amat A. A histidine kinase and a response regulator provide phage resistance to Marinomonas mediterranea via CRISPR-Cas regulation. Sci Rep 2021; 11:20564. [PMID: 34663886 PMCID: PMC8523701 DOI: 10.1038/s41598-021-99740-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
CRISPR-Cas systems are used by many prokaryotes to defend against invading genetic elements. In many cases, more than one CRISPR-Cas system co-exist in the same cell. Marinomonas mediterranea MMB-1 possesses two CRISPR-Cas systems, of type I-F and III-B respectively, which collaborate in phage resistance raising questions on how their expression is regulated. This study shows that the expression of both systems is controlled by the histidine kinase PpoS and a response regulator, PpoR, identified and cloned in this study. These proteins show similarity to the global regulators BarA/UvrY. In addition, homologues to the sRNAs CsrB and CsrC and the gene coding for the post-transcriptional repressor CsrA have been also identified indicating the conservation of the elements of the BarA/UvrY regulatory cascade in M. mediterranea. RNA-Seq analyses have revealed that all these genetics elements are regulated by PpoS/R supporting their participation in the regulatory cascade. The regulation by PpoS and PpoR of the CRISPR-Cas systems plays a role in phage defense since mutants in these proteins show an increase in phage sensitivity.
Collapse
Affiliation(s)
- Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, 30100, Murcia, Spain
| | | | - Hengyi Xu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Antonio Sánchez-Amat
- Department of Genetics and Microbiology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
32
|
Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2021; 50:4315-4328. [PMID: 34606604 PMCID: PMC9071438 DOI: 10.1093/nar/gkab859] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.,Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
33
|
Vink JNA, Baijens JHL, Brouns SJJ. PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR-Cas systems. Genome Biol 2021; 22:281. [PMID: 34593010 PMCID: PMC8482600 DOI: 10.1186/s13059-021-02495-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database. RESULTS By using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders. CONCLUSIONS This study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known.
Collapse
Affiliation(s)
- Jochem N A Vink
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Jan H L Baijens
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.
- Kavli Institute of Nanoscience, Delft, The Netherlands.
| |
Collapse
|
34
|
Le Gratiet T, Le Marechal C, Devaere M, Chemaly M, Woudstra C. Exploration of the Diversity of Clustered Regularly Interspaced Short Palindromic Repeats-Cas Systems in Clostridium novyi sensu lato. Front Microbiol 2021; 12:711413. [PMID: 34589070 PMCID: PMC8473940 DOI: 10.3389/fmicb.2021.711413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Classified as the genospecies Clostridium novyi sensu lato and distributed into four lineages (I-IV), Clostridium botulinum (group III), Clostridium novyi, and Clostridium haemolyticum are clostridial pathogens that cause animal diseases. Clostridium novyi sensu lato contains a large mobilome consisting of plasmids and circular bacteriophages. Here, we explored clustered regularly interspaced short palindromic repeats (CRISPR) arrays and their associated proteins (Cas) to shed light on the link between evolution of CRISPR-Cas systems and the plasmid and phage composition in a study of 58 Clostridium novyi sensu lato genomes. In 55 of these genomes, types I-B (complete or partial), I-D, II-C, III-B, III-D, or V-U CRISPR-Cas systems were detected in chromosomes as well as in mobile genetic elements (MGEs). Type I-B predominated (67.2%) and was the only CRISPR type detected in the Ia, III, and IV genomic lineages. Putative type V-U CRISPR Cas14a genes were detected in two different cases: next to partial type-IB CRISPR loci on the phage encoding the botulinum neurotoxin (BoNT) in lineage Ia and in 12 lineage II genomes, as part of a putative integrative element related to a phage-inducible chromosomal island (PICI). In the putative PICI, Cas14a was associated with CRISPR arrays and restriction modification (RM) systems as part of an accessory locus. This is the first time a PICI containing such locus has been detected in C. botulinum. Mobilome composition and dynamics were also investigated based on the contents of the CRISPR arrays and the study of spacers. A large proportion of identified protospacers (20.2%) originated from Clostridium novyi sensu lato (p1_Cst, p4_BKT015925, p6_Cst, CWou-2020a, p1_BKT015925, and p2_BKT015925), confirming active exchanges within this genospecies and the key importance of specific MGEs in Clostridium novyi sensu lato.
Collapse
Affiliation(s)
- Thibault Le Gratiet
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
- UFR of Life Sciences and Environment, University of Rennes, Rennes, France
| | - Caroline Le Marechal
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Marie Devaere
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Cédric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
35
|
Dimitriu T, Szczelkun MD, Westra ER. Evolutionary Ecology and Interplay of Prokaryotic Innate and Adaptive Immune Systems. Curr Biol 2021; 30:R1189-R1202. [PMID: 33022264 DOI: 10.1016/j.cub.2020.08.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Like many organisms, bacteria and archaea have both innate and adaptive immune systems to defend against infection by viruses and other parasites. Innate immunity most commonly relies on the endonuclease-mediated cleavage of any incoming DNA that lacks a specific epigenetic modification, through a system known as restriction-modification. CRISPR-Cas-mediated adaptive immunity relies on the insertion of short DNA sequences from parasite genomes into CRISPR arrays on the host genome to provide sequence-specific protection. The discovery of each of these systems has revolutionised our ability to carry out genetic manipulations, and, as a consequence, the enzymes involved have been characterised in exquisite detail. In comparison, much less is known about the importance of these two arms of the defence for the ecology and evolution of prokaryotes and their parasites. Here, we review our current ecological and evolutionary understanding of these systems in isolation, and discuss the need to study how innate and adaptive immune responses are integrated when they coexist in the same cell.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| |
Collapse
|
36
|
Rahlff J, Turzynski V, Esser SP, Monsees I, Bornemann TLV, Figueroa-Gonzalez PA, Schulz F, Woyke T, Klingl A, Moraru C, Probst AJ. Lytic archaeal viruses infect abundant primary producers in Earth's crust. Nat Commun 2021; 12:4642. [PMID: 34330907 PMCID: PMC8324899 DOI: 10.1038/s41467-021-24803-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The continental subsurface houses a major portion of life's abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems.
Collapse
Affiliation(s)
- Janina Rahlff
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Victoria Turzynski
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Sarah P Esser
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Indra Monsees
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Andreas Klingl
- Plant Development & Electron Microscopy, Biocenter LMU Munich, Planegg-Martinsried, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Oldenburg, Germany
| | - Alexander J Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
37
|
Abstract
CRISPR-Cas systems are immune systems that protect bacteria and archaea against their viruses, bacteriophages. Immunity is achieved through the acquisition of short DNA fragments from the viral invader’s genome. CRISPR-Cas immune systems adapt to new threats by acquiring new spacers from invading nucleic acids such as phage genomes. However, some CRISPR-Cas loci lack genes necessary for spacer acquisition despite variation in spacer content between microbial strains. It has been suggested that such loci may use acquisition machinery from cooccurring CRISPR-Cas systems within the same strain. Here, following infection by a virulent phage with a double-stranded DNA (dsDNA) genome, we observed spacer acquisition in the native host Flavobacterium columnare that carries an acquisition-deficient CRISPR-Cas subtype VI-B system and a complete subtype II-C system. We show that the VI-B locus acquires spacers from both the bacterial and phage genomes, while the newly acquired II-C spacers mainly target the viral genome. Both loci preferably target the terminal end of the phage genome, with priming-like patterns around a preexisting II-C protospacer. Through gene deletion, we show that the RNA-cleaving VI-B system acquires spacers in trans using acquisition machinery from the DNA-cleaving II-C system. Our observations support the concept of cross talk between CRISPR-Cas systems and raise further questions regarding the plasticity of adaptation modules.
Collapse
|
38
|
Smith LM, Jackson SA, Malone LM, Ussher JE, Gardner PP, Fineran PC. The Rcs stress response inversely controls surface and CRISPR-Cas adaptive immunity to discriminate plasmids and phages. Nat Microbiol 2021; 6:162-172. [PMID: 33398095 DOI: 10.1038/s41564-020-00822-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Bacteria harbour multiple innate defences and adaptive CRISPR-Cas systems that provide immunity against bacteriophages and mobile genetic elements. Although some bacteria modulate defences in response to population density, stress and metabolic state, a lack of high-throughput methods to systematically reveal regulators has hampered efforts to understand when and how immune strategies are deployed. We developed a robust approach called SorTn-seq, which combines saturation transposon mutagenesis, fluorescence-activated cell sorting and deep sequencing to characterize regulatory networks controlling CRISPR-Cas immunity in Serratia sp. ATCC 39006. We applied our technology to assess csm gene expression for ~300,000 mutants and uncovered multiple pathways regulating type III-A CRISPR-Cas expression. Mutation of igaA or mdoG activated the Rcs outer-membrane stress response, eliciting cell-surface-based innate immunity against diverse phages via the transcriptional regulators RcsB and RcsA. Activation of this Rcs phosphorelay concomitantly attenuated adaptive immunity by three distinct type I and III CRISPR-Cas systems. Rcs-mediated repression of CRISPR-Cas defence enabled increased acquisition and retention of plasmids. Dual downregulation of cell-surface receptors and adaptive immunity in response to stress by the Rcs pathway enables protection from phage infection without preventing the uptake of plasmids that may harbour beneficial traits.
Collapse
Affiliation(s)
- Leah M Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul P Gardner
- Genetics Otago, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand. .,Genetics Otago, University of Otago, Dunedin, New Zealand. .,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
39
|
Molina R, Sofos N, Montoya G. Structural basis of CRISPR-Cas Type III prokaryotic defence systems. Curr Opin Struct Biol 2020; 65:119-129. [DOI: 10.1016/j.sbi.2020.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
|
40
|
Zink IA, Wimmer E, Schleper C. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules 2020; 10:E1523. [PMID: 33172134 PMCID: PMC7694759 DOI: 10.3390/biom10111523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.
Collapse
|
41
|
Conquering CRISPR: how phages overcome bacterial adaptive immunity. Curr Opin Biotechnol 2020; 68:30-36. [PMID: 33113496 DOI: 10.1016/j.copbio.2020.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
The rise of antibiotic-resistant bacteria has led to renewed interest in the use of their natural enemies, phages, for the prevention and treatment of infections. However, phage therapy requires detailed knowledge of the interactions between these entities. Bacteria defend themselves against phage predation with a large repertoire of defences. Among these, CRISPR-Cas systems stand out due to their adaptive character, mechanistic complexity and diversity, and present a significant hurdle for phage infection. Here, we provide an overview of how phages can circumvent CRISPR-Cas defence, ranging from target sequence mutations and DNA modifications to anti-CRISPR proteins and nucleus-like protective structures. An in-depth understanding of these phage evasion strategies is crucial for the successful development of phage therapy applications.
Collapse
|
42
|
Garrett S, Shiimori M, Watts EA, Clark L, Graveley BR, Terns MP. Primed CRISPR DNA uptake in Pyrococcus furiosus. Nucleic Acids Res 2020; 48:6120-6135. [PMID: 32421777 PMCID: PMC7293040 DOI: 10.1093/nar/gkaa381] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
CRISPR-Cas adaptive immune systems are used by prokaryotes to defend against invaders like viruses and other mobile genetic elements. Immune memories are stored in the form of 'spacers' which are short DNA sequences that are captured from invaders and added to the CRISPR array during a process called 'adaptation'. Spacers are transcribed and the resulting CRISPR (cr)RNAs assemble with different Cas proteins to form effector complexes that recognize matching nucleic acid and destroy it ('interference'). Adaptation can be 'naïve', i.e. independent of any existing spacer matches, or it can be 'primed', i.e. spurred by the crRNA-mediated detection of a complete or partial match to an invader sequence. Here we show that primed adaptation occurs in Pyrococcus furiosus. Although P. furiosus has three distinct CRISPR-Cas interference systems (I-B, I-A and III-B), only the I-B system and Cas3 were necessary for priming. Cas4, which is important for selection and processing of new spacers in naïve adaptation, was also essential for priming. Loss of either the I-B effector proteins or Cas3 reduced naïve adaptation. However, when Cas3 and all crRNP genes were deleted, uptake of correctly processed spacers was observed, indicating that none of these interference proteins are necessary for naïve adaptation.
Collapse
Affiliation(s)
- Sandra Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA
| | - Masami Shiimori
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth A Watts
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Landon Clark
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
43
|
Pourcel C, Touchon M, Villeriot N, Vernadet JP, Couvin D, Toffano-Nioche C, Vergnaud G. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res 2020; 48:D535-D544. [PMID: 31624845 PMCID: PMC7145573 DOI: 10.1093/nar/gkz915] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/20/2019] [Accepted: 10/04/2019] [Indexed: 12/28/2022] Open
Abstract
In Archaea and Bacteria, the arrays called CRISPRs for 'clustered regularly interspaced short palindromic repeats' and the CRISPR associated genes or cas provide adaptive immunity against viruses, plasmids and transposable elements. Short sequences called spacers, corresponding to fragments of invading DNA, are stored in-between repeated sequences. The CRISPR-Cas systems target sequences homologous to spacers leading to their degradation. To facilitate investigations of CRISPRs, we developed 12 years ago a website holding the CRISPRdb. We now propose CRISPRCasdb, a completely new version giving access to both CRISPRs and cas genes. We used CRISPRCasFinder, a program that identifies CRISPR arrays and cas genes and determine the system's type and subtype, to process public whole genome assemblies. Strains are displayed either in an alphabetic list or in taxonomic order. The database is part of the CRISPR-Cas++ website which also offers the possibility to analyse submitted sequences and to download programs. A BLAST search against lists of repeats and spacers extracted from the database is proposed. To date, 16 990 complete prokaryote genomes (16 650 bacteria from 2973 species and 340 archaea from 300 species) are included. CRISPR-Cas systems were found in 36% of Bacteria and 75% of Archaea strains. CRISPRCasdb is freely accessible at https://crisprcas.i2bc.paris-saclay.fr/.
Collapse
Affiliation(s)
- Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,CNRS, UMR3525, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Nicolas Villeriot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Jean-Philippe Vernadet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - David Couvin
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, 97139 Les Abymes, France
| | - Claire Toffano-Nioche
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
44
|
Type I-F CRISPR-Cas Distribution and Array Dynamics in Legionella pneumophila. G3-GENES GENOMES GENETICS 2020; 10:1039-1050. [PMID: 31937548 PMCID: PMC7056967 DOI: 10.1534/g3.119.400813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In bacteria and archaea, several distinct types of CRISPR-Cas systems provide adaptive immunity through broadly similar mechanisms: short nucleic acid sequences derived from foreign DNA, known as spacers, engage in complementary base pairing with invasive genetic elements setting the stage for nucleases to degrade the target DNA. A hallmark of type I CRISPR-Cas systems is their ability to acquire spacers in response to both new and previously encountered invaders (naïve and primed acquisition, respectively). Our phylogenetic analyses of 43 L. pneumophila type I-F CRISPR-Cas systems and their resident genomes suggest that many of these systems have been horizontally acquired. These systems are frequently encoded on plasmids and can co-occur with nearly identical chromosomal loci. We show that two such co-occurring systems are highly protective and undergo efficient primed acquisition in the lab. Furthermore, we observe that targeting by one system’s array can prime spacer acquisition in the other. Lastly, we provide experimental and genomic evidence for a model in which primed acquisition can efficiently replenish a depleted type I CRISPR array following a mass spacer deletion event.
Collapse
|
45
|
Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, Shah SA. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2020; 48:2000-2012. [PMID: 31879772 PMCID: PMC7038947 DOI: 10.1093/nar/gkz1197] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotes with adaptive immune functions against viruses and other genetic parasites. In contrast to all other types of CRISPR-Cas systems, type IV has remained largely overlooked. Here, we describe a previously uncharted diversity of type IV gene cassettes, primarily encoded by plasmid-like elements from diverse prokaryotic taxa. Remarkably, via a comprehensive analysis of their CRISPR spacer content, these systems were found to exhibit a strong bias towards the targeting of other plasmids. Our data indicate that the functions of type IV systems have diverged from those of other host-related CRISPR-Cas immune systems to adopt a role in mediating conflicts between plasmids. Furthermore, we find evidence for cross-talk between certain type IV and type I CRISPR-Cas systems that co-exist intracellularly, thus providing a simple answer to the enigmatic absence of type IV adaptation modules. Collectively, our results lead to the expansion and reclassification of type IV systems and provide novel insights into the biological function and evolution of these elusive systems.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Lennart Randau
- Philipps-Universität Marburg, Faculty of Biology, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| |
Collapse
|
46
|
Bernheim A, Bikard D, Touchon M, Rocha EPC. Atypical organizations and epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic elements. Nucleic Acids Res 2020; 48:748-760. [PMID: 31745554 PMCID: PMC7145637 DOI: 10.1093/nar/gkz1091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Prokaryotes use CRISPR-Cas systems for adaptive immunity, but the reasons for the frequent existence of multiple CRISPRs and cas clusters remain poorly understood. Here, we analysed the joint distribution of CRISPR and cas genes in a large set of fully sequenced bacterial genomes and their mobile genetic elements. Our analysis suggests few negative and many positive epistatic interactions between Cas subtypes. The latter often result in complex genetic organizations, where a locus has a single adaptation module and diverse interference mechanisms that might provide more effective immunity. We typed CRISPRs that could not be unambiguously associated with a cas cluster and found that such complex loci tend to have unique type I repeats in multiple CRISPRs. Many chromosomal CRISPRs lack a neighboring Cas system and they often have repeats compatible with the Cas systems encoded in trans. Phages and 25 000 prophages were almost devoid of CRISPR-Cas systems, whereas 3% of plasmids had CRISPR-Cas systems or isolated CRISPRs. The latter were often compatible with the chromosomal cas clusters, suggesting that plasmids can co-opt the latter. These results highlight the importance of interactions between CRISPRs and cas present in multiple copies and in distinct genomic locations in the function and evolution of bacterial immunity.
Collapse
Affiliation(s)
- Aude Bernheim
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25–28 rue Dr. Roux, Paris 75015, France
- Synthetic Biology Group, Institut Pasteur, 25–28 rue Dr. Roux, Paris 75015, France
- AgroParisTech, F-75005 Paris, France
- Ecole doctorale Frontières du vivant, Université Paris Diderot, Université Sorbonne Paris Cité, 75013 Paris, France
| | - David Bikard
- Synthetic Biology Group, Institut Pasteur, 25–28 rue Dr. Roux, Paris 75015, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25–28 rue Dr. Roux, Paris 75015, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25–28 rue Dr. Roux, Paris 75015, France
| |
Collapse
|
47
|
The arms race between bacteria and their phage foes. Nature 2020; 577:327-336. [PMID: 31942051 DOI: 10.1038/s41586-019-1894-8] [Citation(s) in RCA: 509] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022]
Abstract
Bacteria are under immense evolutionary pressure from their viral invaders-bacteriophages. Bacteria have evolved numerous immune mechanisms, both innate and adaptive, to cope with this pressure. The discovery and exploitation of CRISPR-Cas systems have stimulated a resurgence in the identification and characterization of anti-phage mechanisms. Bacteriophages use an extensive battery of counter-defence strategies to co-exist in the presence of these diverse phage defence mechanisms. Understanding the dynamics of the interactions between these microorganisms has implications for phage-based therapies, microbial ecology and evolution, and the development of new biotechnological tools. Here we review the spectrum of anti-phage systems and highlight their evasion by bacteriophages.
Collapse
|
48
|
Pourcel C, Touchon M, Villeriot N, Vernadet JP, Couvin D, Toffano-Nioche C, Vergnaud G. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res 2020. [PMID: 31624845 DOI: 10.1093/nar/gkz915.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Archaea and Bacteria, the arrays called CRISPRs for 'clustered regularly interspaced short palindromic repeats' and the CRISPR associated genes or cas provide adaptive immunity against viruses, plasmids and transposable elements. Short sequences called spacers, corresponding to fragments of invading DNA, are stored in-between repeated sequences. The CRISPR-Cas systems target sequences homologous to spacers leading to their degradation. To facilitate investigations of CRISPRs, we developed 12 years ago a website holding the CRISPRdb. We now propose CRISPRCasdb, a completely new version giving access to both CRISPRs and cas genes. We used CRISPRCasFinder, a program that identifies CRISPR arrays and cas genes and determine the system's type and subtype, to process public whole genome assemblies. Strains are displayed either in an alphabetic list or in taxonomic order. The database is part of the CRISPR-Cas++ website which also offers the possibility to analyse submitted sequences and to download programs. A BLAST search against lists of repeats and spacers extracted from the database is proposed. To date, 16 990 complete prokaryote genomes (16 650 bacteria from 2973 species and 340 archaea from 300 species) are included. CRISPR-Cas systems were found in 36% of Bacteria and 75% of Archaea strains. CRISPRCasdb is freely accessible at https://crisprcas.i2bc.paris-saclay.fr/.
Collapse
Affiliation(s)
- Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,CNRS, UMR3525, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Nicolas Villeriot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Jean-Philippe Vernadet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - David Couvin
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, 97139 Les Abymes, France
| | - Claire Toffano-Nioche
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
49
|
González-Delgado A, Mestre MR, Martínez-Abarca F, Toro N. Spacer acquisition from RNA mediated by a natural reverse transcriptase-Cas1 fusion protein associated with a type III-D CRISPR-Cas system in Vibrio vulnificus. Nucleic Acids Res 2019; 47:10202-10211. [PMID: 31504832 PMCID: PMC6821258 DOI: 10.1093/nar/gkz746] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
The association of reverse transcriptases (RTs) with CRISPR–Cas system has recently attracted interest because the RT activity appears to facilitate the RT-dependent acquisition of spacers from RNA molecules. However, our understanding of this spacer acquisition process remains limited. We characterized the in vivo acquisition of spacers mediated by an RT-Cas1 fusion protein linked to a type III-D system from Vibrio vulnificus strain YJ016, and showed that the adaptation module, consisting of the RT-Cas1 fusion, two different Cas2 proteins (A and B) and one of the two CRISPR arrays, was completely functional in a heterologous host. We found that mutations of the active site of the RT domain significantly decreased the acquisition of new spacers and showed that this RT-Cas1-associated adaptation module was able to incorporate spacers from RNA molecules into the CRISPR array. We demonstrated that the two Cas2 proteins of the adaptation module were required for spacer acquisition. Furthermore, we found that several sequence-specific features were required for the acquisition and integration of spacers derived from any region of the genome, with no bias along the 5′and 3′ends of coding sequences. This study provides new insight into the RT-Cas1 fusion protein-mediated acquisition of spacers from RNA molecules.
Collapse
Affiliation(s)
- Alejandro González-Delgado
- Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Mario Rodríguez Mestre
- Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Francisco Martínez-Abarca
- Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
50
|
The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 2019; 18:113-119. [PMID: 31695182 DOI: 10.1038/s41579-019-0278-2] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 11/08/2022]
Abstract
Viruses and their hosts are engaged in a constant arms race leading to the evolution of antiviral defence mechanisms. Recent studies have revealed that the immune arsenal of bacteria against bacteriophages is much more diverse than previously envisioned. These discoveries have led to seemingly contradictory observations: on one hand, individual microorganisms often encode multiple distinct defence systems, some of which are acquired by horizontal gene transfer, alluding to their fitness benefit. On the other hand, defence systems are frequently lost from prokaryotic genomes on short evolutionary time scales, suggesting that they impose a fitness cost. In this Perspective article, we present the 'pan-immune system' model in which we suggest that, although a single strain cannot carry all possible defence systems owing to their burden on fitness, it can employ horizontal gene transfer to access immune defence mechanisms encoded by closely related strains. Thus, the 'effective' immune system is not the one encoded by the genome of a single microorganism but rather by its pan-genome, comprising the sum of all immune systems available for a microorganism to horizontally acquire and use.
Collapse
|