1
|
Wikinson MGT, Wang XY, Cowan NJ, Moss CF. Echolocating bats adjust sonar call features and head/ear position as they track moving targets in the presence of clutter. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:2236-2247. [PMID: 40145789 DOI: 10.1121/10.0036252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Echolocating bats often encounter clutter as they pursue insect prey. To probe the adaptive behaviors bats employ to mitigate the effects of clutter, this study quantified echolocation call features and head movements of big brown bats (Eptesicus fuscus) as they tracked a moving prey target in the dark. Bats were trained to rest on a perch and track an approaching target for a food reward. Clutter was positioned at different distances and angular offsets from the bat and the path of a moving target. This study hypothesized that bats dynamically adjust call features and head direction to facilitate target localization in the presence of clutter. The results show that bats shortened call duration and interval and increased head movements when the target was close to clutter. The study also revealed that bats increase the production of sonar strobe groups in cluttered environments, which may sharpen sonar spatial resolution. Spectral analysis showed that maximum call power shifted to lower frequencies when clutter was close to the target. These data demonstrate the big brown bat's range of adaptive behaviors that support target tracking in cluttered environments.
Collapse
Affiliation(s)
- Michael G T Wikinson
- Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - XingYao York Wang
- Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Noah J Cowan
- Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Cynthia F Moss
- Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
2
|
Cui Z, Yu C, Wang X, Yin K, Luo J. Prevalent Harmonic Interaction in the Bat Inferior Colliculus. J Neurosci 2024; 44:e0916242024. [PMID: 39424367 PMCID: PMC11622178 DOI: 10.1523/jneurosci.0916-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Animal vocalizations and human speech are typically characterized by a complex spectrotemporal structure, composed of multiple harmonics, and patterned as temporally organized sequences. However, auditory research often employed simple artificial acoustic stimuli or their combinations. Here we addressed the question of whether the neuronal responses to natural echolocation call sequences can be predicted by manipulated sequences of incomplete constituents at the midbrain inferior colliculus (IC). We characterized the extracellular single-unit activity of IC neurons in the great roundleaf bat, Hipposideros armiger (both sexes), using natural call sequences, various manipulated sequences of incomplete vocalizations, and pure tones. We report that approximately two-thirds of IC neurons exhibited a harmonic interaction. Neurons with high harmonic interactions exhibited greater selectivity to natural call sequences, and the degree of harmonic interaction was robust to the natural amplitude variations between call harmonics. For 81% of the IC neurons, the responses to the natural echolocation call sequence could not be predicted by altered sequences of missing call components. Surprisingly, nearly 70% of the neurons that showed a harmonic interaction were characterized by a single excitatory response peak as revealed by pure tones. Our results suggest that prevalent harmonic processing has already emerged in the auditory midbrain IC in the echolocating bat.
Collapse
Affiliation(s)
- Zhongdan Cui
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Chao Yu
- Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
| | - Xindong Wang
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
| | - Jinhong Luo
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Las L, Ulanovsky N. Bats. Nat Methods 2024; 21:1135-1137. [PMID: 38997589 DOI: 10.1038/s41592-024-02330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Affiliation(s)
- Liora Las
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nachum Ulanovsky
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Reichert MS, Bolek MG, McCullagh EA. Parasite effects on receivers in animal communication: Hidden impacts on behavior, ecology, and evolution. Proc Natl Acad Sci U S A 2023; 120:e2300186120. [PMID: 37459523 PMCID: PMC10372545 DOI: 10.1073/pnas.2300186120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Parasites exert a profound effect on biological processes. In animal communication, parasite effects on signalers are well-known drivers of the evolution of communication systems. Receiver behavior is also likely to be altered when they are parasitized or at risk of parasitism, but these effects have received much less attention. Here, we present a broad framework for understanding the consequences of parasitism on receivers for behavioral, ecological, and evolutionary processes. First, we outline the different kinds of effects parasites can have on receivers, including effects on signal processing from the many parasites that inhabit, occlude, or damage the sensory periphery and the central nervous system or that affect physiological processes that support these organs, and effects on receiver response strategies. We then demonstrate how understanding parasite effects on receivers could answer important questions about the mechanistic causes and functional consequences of variation in animal communication systems. Variation in parasitism levels is a likely source of among-individual differences in response to signals, which can affect receiver fitness and, through effects on signaler fitness, impact population levels of signal variability. The prevalence of parasitic effects on specific sensory organs may be an important selective force for the evolution of elaborate and multimodal signals. Finally, host-parasite coevolution across heterogeneous landscapes will generate geographic variation in communication systems, which could ultimately lead to evolutionary divergence. We discuss applications of experimental techniques to manipulate parasitism levels and point the way forward by calling for integrative research collaborations between parasitologists, neurobiologists, and behavioral and evolutionary ecologists.
Collapse
Affiliation(s)
- Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK74078
| | - Matthew G. Bolek
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK74078
| | | |
Collapse
|
5
|
Salles A, Wohlgemuth MJ, Moss CF. Neural coding of 3D spatial location, orientation, and action selection in echolocating bats. Trends Neurosci 2023; 46:5-7. [PMID: 36280458 PMCID: PMC9976350 DOI: 10.1016/j.tins.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 12/28/2022]
Abstract
Echolocating bats are among the only mammals capable of powered flight, and they rely on active sensing to find food and steer around obstacles in 3D environments. These natural behaviors depend on neural circuits that support 3D auditory localization, audio-motor integration, navigation, and flight control, which are modulated by spatial attention and action selection.
Collapse
Affiliation(s)
- Angeles Salles
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
6
|
Wohlgemuth M, Salles A, Moss C. Spatial attention in natural tasks [version 1; peer review: 2 approved with reservations]. MOLECULAR PSYCHOLOGY 2022; 1:4. [PMID: 37325441 PMCID: PMC10269881 DOI: 10.12688/molpsychol.17488.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Little is known about fine scale neural dynamics that accompany rapid shifts in spatial attention in freely behaving animals, primarily because reliable indicators of attention are lacking in standard model organisms engaged in natural tasks. The echolocating bat can serve to bridge this gap, as it exhibits robust dynamic behavioral indicators of overt spatial attention as it explores its environment. In particular, the bat actively shifts the aim of its sonar beam to inspect objects in different directions, akin to eye movements and foveation in humans and other visually dominant animals. Further, the bat adjusts the temporal features of sonar calls to attend to objects at different distances, yielding a metric of acoustic gaze along the range axis. Thus, an echolocating bat's call features not only convey the information it uses to probe its surroundings, but also provide fine scale metrics of auditory spatial attention in 3D natural tasks. These explicit metrics of overt spatial attention can be leveraged to uncover general principles of neural coding in the mammalian brain.
Collapse
Affiliation(s)
| | - Angeles Salles
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Cynthia Moss
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
7
|
Sarel A, Palgi S, Blum D, Aljadeff J, Las L, Ulanovsky N. Natural switches in behaviour rapidly modulate hippocampal coding. Nature 2022; 609:119-127. [PMID: 36002570 PMCID: PMC9433324 DOI: 10.1038/s41586-022-05112-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Throughout their daily lives, animals and humans often switch between different behaviours. However, neuroscience research typically studies the brain while the animal is performing one behavioural task at a time, and little is known about how brain circuits represent switches between different behaviours. Here we tested this question using an ethological setting: two bats flew together in a long 135 m tunnel, and switched between navigation when flying alone (solo) and collision avoidance as they flew past each other (cross-over). Bats increased their echolocation click rate before each cross-over, indicating attention to the other bat1–9. Hippocampal CA1 neurons represented the bat’s own position when flying alone (place coding10–14). Notably, during cross-overs, neurons switched rapidly to jointly represent the interbat distance by self-position. This neuronal switch was very fast—as fast as 100 ms—which could be revealed owing to the very rapid natural behavioural switch. The neuronal switch correlated with the attention signal, as indexed by echolocation. Interestingly, the different place fields of the same neuron often exhibited very different tuning to interbat distance, creating a complex non-separable coding of position by distance. Theoretical analysis showed that this complex representation yields more efficient coding. Overall, our results suggest that during dynamic natural behaviour, hippocampal neurons can rapidly switch their core computation to represent the relevant behavioural variables, supporting behavioural flexibility. During rapid behavioural switches in flying bats, hippocampal neurons can rapidly switch their core computation to represent the relevant behavioural variables, supporting behavioural flexibility.
Collapse
Affiliation(s)
- Ayelet Sarel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shaked Palgi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Blum
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Johnatan Aljadeff
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.,Department of Neurobiology, University of California, San Diego, CA, USA
| | - Liora Las
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Nachum Ulanovsky
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Wang R, Liu Y, Müller R. Detection of passageways in natural foliage using biomimetic sonar. BIOINSPIRATION & BIOMIMETICS 2022; 17:056009. [PMID: 35728778 DOI: 10.1088/1748-3190/ac7aff] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The ability of certain bat species to navigate in dense vegetation based on trains of short biosonar echoes could provide for an alternative parsimonious approach to obtaining the sensory information that is needed to achieve autonomy in complex natural environments. Although bat biosonar has much lower data rates and spatial (angular) resolution than commonly used human-made sensing systems such as LiDAR or stereo cameras, bat species that live in dense habitats have the ability to reliably detect narrow passageways in foliage. To study the sensory information that the animals may have available to accomplish this, we have used a biomimetic sonar system that was combined with a camera to record echoes and synchronized images from 10 different field sites that featured narrow passageways in foliage. The synchronized camera and sonar data allowed us to create a large data set (130 000 samples) of labeled echoes using a teacher-student approach that used class labels derived from the images to provide training data for echo-based classifiers. The performance achieved in detecting passageways based on the field data closely matched previous results obtained for gaps in an artificial foliage setup in the laboratory. With a deep feature extraction neural network (VGG16) a foliage-versus-passageway classification accuracy of 96.64% was obtained. A transparent artificial intelligence approach (class-activation mapping) indicated that the classifier network relied heavily on the initial rising flank of the echoes. This finding could be exploited with a neuromorphic echo representation that consisted of times where the echo envelope crossed a certain amplitude threshold in a given frequency channel. Whereas a single amplitude threshold was sufficient for this in the previous laboratory study, multiple thresholds were needed to achieve an accuracy of 92.23%. These findings indicate that despite many sources of variability that shape clutter echoes from natural environments, these signals contain sufficient sensory information to enable the detection of passageways in foliage.
Collapse
Affiliation(s)
- Ruihao Wang
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Yimeng Liu
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Rolf Müller
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
9
|
Luo J, Lu M, Wang X, Wang H, Moss CF. Doppler shift compensation performance in Hipposideros pratti across experimental paradigms. Front Syst Neurosci 2022; 16:920703. [PMID: 35979415 PMCID: PMC9376230 DOI: 10.3389/fnsys.2022.920703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
A central aim of neuroethological research is to discover the mechanisms of natural behaviors in controlled laboratory studies. This goal, however, comes with challenges, namely the selection of experimental paradigms that allow full expression of natural behaviors. Here, we explore this problem in echolocating bats that evolved Doppler shift compensation (DSC) of sonar vocalizations to yield close matching between echo frequency and hearing sensitivity. We ask if behavioral tasks influence the precision of DSC in Pratt's roundleaf bat, Hipposideros pratti, in three classic laboratory paradigms evoking audio-vocal adjustments: Stationary bats listening to echo playbacks, bats transported on a moving pendulum, and bats flying freely. We found that experimental conditions had a strong influence on the expression of the audiovocal frequency adjustments in bats. H. pratti exhibited robust DSC in both free-flying and moving-pendulum experiments but did not exhibit consistent audiovocal adjustments in echo playback experiments. H. pratti featured a maximum compensation magnitude of 87% and a compensation precision of 0.27% in the free flight experiment. Interestingly, in the moving pendulum experiment H. pratti displayed surprisingly high-precision DSC, with an 84% maximum compensation magnitude and a 0.27% compensation precision. Such DSC performance places H. pratti among the bat species exhibiting the most precise audio-vocal control of echo frequency. These data support the emerging view that Hipposiderid bats have a high-precision DSC system and highlight the importance of selecting experimental paradigms that yield the expression of robust natural behaviors.
Collapse
Affiliation(s)
- Jinhong Luo
- School of Life Sciences, Institute of Evolution and Ecology, Central China Normal University, Wuhan, China
| | - Manman Lu
- School of Life Sciences, Institute of Evolution and Ecology, Central China Normal University, Wuhan, China
| | - Xindong Wang
- School of Life Sciences, Institute of Evolution and Ecology, Central China Normal University, Wuhan, China
| | - Huimin Wang
- School of Life Sciences, Institute of Evolution and Ecology, Central China Normal University, Wuhan, China
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Chen ZS, Zhang X, Long X, Zhang SJ. Are Grid-Like Representations a Component of All Perception and Cognition? Front Neural Circuits 2022; 16:924016. [PMID: 35911570 PMCID: PMC9329517 DOI: 10.3389/fncir.2022.924016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Grid cells or grid-like responses have been reported in the rodent, bat and human brains during various spatial and non-spatial tasks. However, the functions of grid-like representations beyond the classical hippocampal formation remain elusive. Based on accumulating evidence from recent rodent recordings and human fMRI data, we make speculative accounts regarding the mechanisms and functional significance of the sensory cortical grid cells and further make theory-driven predictions. We argue and reason the rationale why grid responses may be universal in the brain for a wide range of perceptual and cognitive tasks that involve locomotion and mental navigation. Computational modeling may provide an alternative and complementary means to investigate the grid code or grid-like map. We hope that the new discussion will lead to experimentally testable hypotheses and drive future experimental data collection.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, New York University School of Medicine, New York, NY, United States
| | - Xiaohan Zhang
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, New York University School of Medicine, New York, NY, United States
| | - Xiaoyang Long
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Sheng-Jia Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Abstract
Fine audiovocal control is a hallmark of human speech production and depends on precisely coordinated muscle activity guided by sensory feedback. Little is known about shared audiovocal mechanisms between humans and other mammals. We hypothesized that real-time audiovocal control in bat echolocation uses the same computational principles as human speech. To test the prediction of this hypothesis, we applied state feedback control (SFC) theory to the analysis of call frequency adjustments in the echolocating bat, Hipposideros armiger. This model organism exhibits well-developed audiovocal control to sense its surroundings via echolocation. Our experimental paradigm was analogous to one implemented in human subjects. We measured the bats' vocal responses to spectrally altered echolocation calls. Individual bats exhibited highly distinct patterns of vocal compensation to these altered calls. Our findings mirror typical observations of speech control in humans listening to spectrally altered speech. Using mathematical modeling, we determined that the same computational principles of SFC apply to bat echolocation and human speech, confirming the prediction of our hypothesis.
Collapse
|
12
|
Non-invasive auditory brainstem responses to FM sweeps in awake big brown bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:505-516. [PMID: 35761119 PMCID: PMC9250914 DOI: 10.1007/s00359-022-01559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
We introduce two EEG techniques, one based on conventional monopolar electrodes and one based on a novel tripolar electrode, to record for the first time auditory brainstem responses (ABRs) from the scalp of unanesthetized, unrestrained big brown bats. Stimuli were frequency-modulated (FM) sweeps varying in sweep direction, sweep duration, and harmonic structure. As expected from previous invasive ABR recordings, upward-sweeping FM signals evoked larger amplitude responses (peak-to-trough amplitude in the latency range of 3–5 ms post-stimulus onset) than downward-sweeping FM signals. Scalp-recorded responses displayed amplitude-latency trading effects as expected from invasive recordings. These two findings validate the reliability of our noninvasive recording techniques. The feasibility of recording noninvasively in unanesthetized, unrestrained bats will energize future research uncovering electrophysiological signatures of perceptual and cognitive processing of biosonar signals in these animals, and allows for better comparison with ABR data from echolocating cetaceans, where invasive experiments are heavily restricted.
Collapse
|
13
|
Beetz MJ, Hechavarría JC. Neural Processing of Naturalistic Echolocation Signals in Bats. Front Neural Circuits 2022; 16:899370. [PMID: 35664459 PMCID: PMC9157489 DOI: 10.3389/fncir.2022.899370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Echolocation behavior, a navigation strategy based on acoustic signals, allows scientists to explore neural processing of behaviorally relevant stimuli. For the purpose of orientation, bats broadcast echolocation calls and extract spatial information from the echoes. Because bats control call emission and thus the availability of spatial information, the behavioral relevance of these signals is undiscussable. While most neurophysiological studies, conducted in the past, used synthesized acoustic stimuli that mimic portions of the echolocation signals, recent progress has been made to understand how naturalistic echolocation signals are encoded in the bat brain. Here, we review how does stimulus history affect neural processing, how spatial information from multiple objects and how echolocation signals embedded in a naturalistic, noisy environment are processed in the bat brain. We end our review by discussing the huge potential that state-of-the-art recording techniques provide to gain a more complete picture on the neuroethology of echolocation behavior.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julio C. Hechavarría
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Teshima Y, Yamada Y, Tsuchiya T, Heim O, Hiryu S. Analysis of echolocation behavior of bats in "echo space" using acoustic simulation. BMC Biol 2022; 20:59. [PMID: 35282831 PMCID: PMC8919609 DOI: 10.1186/s12915-022-01253-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Echolocating bats use echo information to perceive space, control their behavior, and adjust flight navigation strategies in various environments. However, the echolocation behavior of bats, including echo information, has not been thoroughly investigated as it is technically difficult to measure all the echoes that reach the bats during flight, even with the conventional telemetry microphones currently in use. Therefore, we attempted to reproduce the echoes received at the location of bats during flight by combining acoustic simulation and behavioral experiments with acoustic measurements. By using acoustic simulation, echoes can be reproduced as temporal waveforms (including diffracted waves and multiple reflections), and detailed echo analysis is possible even in complex obstacle environments. RESULTS We visualized the spatiotemporal changes in the echo incidence points detected by bats during flight, which enabled us to investigate the "echo space" revealed through echolocation for the first time. We then hypothesized that by observing the differences in the "echo space" before and after spatial learning, the bats' attentional position would change. To test this hypothesis, we examined how the distribution of visualized echoes concentrated at the obstacle edges after the bats became more familiar with their environment. The echo incidence points appeared near the edge even when the pulse direction was not toward the edge. Furthermore, it was found that the echo direction correlated with the turn rate of the bat's flight path, revealing for the first time the relationship between the echo direction and the bat's flight path. CONCLUSIONS We were able to clarify for the first time how echoes space affects echolocation behavior in bats by combining acoustic simulations and behavioral experiments.
Collapse
Affiliation(s)
- Yu Teshima
- Faculty of Life and Medical Sciences, Doshisha University, Kyōtanabe, Kyoto, Japan.
| | - Yasufumi Yamada
- Department of Mathematical and Life Sciences, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Takao Tsuchiya
- Faculty of Sciences and Engineering, Doshisha University, Kyōtanabe, Kyoto, Japan
| | - Olga Heim
- Faculty of Life and Medical Sciences, Doshisha University, Kyōtanabe, Kyoto, Japan
| | - Shizuko Hiryu
- Faculty of Life and Medical Sciences, Doshisha University, Kyōtanabe, Kyoto, Japan
| |
Collapse
|
15
|
Yu C, Moss CF. Natural acoustic stimuli evoke selective responses in the hippocampus of passive listening bats. Hippocampus 2022; 32:298-309. [PMID: 35085416 PMCID: PMC9306857 DOI: 10.1002/hipo.23407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022]
Abstract
A growing body of research details spatial representation in bat hippocampus, and experiments have yet to explore hippocampal neuron responses to sonar signals in animals that rely on echolocation for spatial navigation. To bridge this gap, we investigated bat hippocampal responses to natural echolocation sounds in a non‐spatial context. In this experiment, we recorded from CA1 of the hippocampus of three awake bats that listened passively to single echolocation calls, call‐echo pairs, or natural echolocation sequences. Our data analysis identified a subset of neurons showing response selectivity to the duration of single echolocation calls. However, the sampled population of CA1 neurons did not respond selectively to call‐echo delay, a stimulus dimension posited to simulate target distance in recordings from auditory brain regions of bats. A population analysis revealed ensemble coding of call duration and sequence identity. These findings open the door to many new investigations of auditory coding in the mammalian hippocampus.
Collapse
Affiliation(s)
- Chao Yu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Allen KM, Lawlor J, Salles A, Moss CF. Orienting our view of the superior colliculus: specializations and general functions. Curr Opin Neurobiol 2021; 71:119-126. [PMID: 34826675 PMCID: PMC8996328 DOI: 10.1016/j.conb.2021.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 10/20/2021] [Indexed: 11/15/2022]
Abstract
The mammalian superior colliculus (SC) and its non-mammalian homolog, the optic tectum are implicated in sensorimotor transformations. Historically, emphasis on visuomotor functions of the SC has led to a popular view that it operates as an oculomotor structure rather than a more general orienting structure. In this review, we consider comparative work on the SC/optic tectum, with a particular focus on non-visual sensing and orienting, which reveals a broader perspective on SC functions and their role in species-specific behaviors. We highlight several recent studies that consider ethological context and natural behaviors to advance knowledge of the SC as a site of multi-sensory integration and motor initiation in diverse species.
Collapse
Affiliation(s)
- Kathryne M Allen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Angeles Salles
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, USA.
| |
Collapse
|
17
|
Abstract
In order to understand ecologically meaningful social behaviors and their neural substrates in humans and other animals, researchers have been using a variety of social stimuli in the laboratory with a goal of extracting specific processes in real-life scenarios. However, certain stimuli may not be sufficiently effective at evoking typical social behaviors and neural responses. Here, we review empirical research employing different types of social stimuli by classifying them into five levels of naturalism. We describe the advantages and limitations while providing selected example studies for each level. We emphasize the important trade-off between experimental control and ecological validity across the five levels of naturalism. Taking advantage of newly emerging tools, such as real-time videos, virtual avatars, and wireless neural sampling techniques, researchers are now more than ever able to adopt social stimuli at a higher level of naturalism to better capture the dynamics and contingency of real-life social interaction.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Psychology, University of Turin, Torino, Italy
| | - Steve W.C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
18
|
Parlevliet PP, Kanaev A, Hung CP, Schweiger A, Gregory FD, Benosman R, de Croon GCHE, Gutfreund Y, Lo CC, Moss CF. Autonomous Flying With Neuromorphic Sensing. Front Neurosci 2021; 15:672161. [PMID: 34054420 PMCID: PMC8160287 DOI: 10.3389/fnins.2021.672161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Autonomous flight for large aircraft appears to be within our reach. However, launching autonomous systems for everyday missions still requires an immense interdisciplinary research effort supported by pointed policies and funding. We believe that concerted endeavors in the fields of neuroscience, mathematics, sensor physics, robotics, and computer science are needed to address remaining crucial scientific challenges. In this paper, we argue for a bio-inspired approach to solve autonomous flying challenges, outline the frontier of sensing, data processing, and flight control within a neuromorphic paradigm, and chart directions of research needed to achieve operational capabilities comparable to those we observe in nature. One central problem of neuromorphic computing is learning. In biological systems, learning is achieved by adaptive and relativistic information acquisition characterized by near-continuous information retrieval with variable rates and sparsity. This results in both energy and computational resource savings being an inspiration for autonomous systems. We consider pertinent features of insect, bat and bird flight behavior as examples to address various vital aspects of autonomous flight. Insects exhibit sophisticated flight dynamics with comparatively reduced complexity of the brain. They represent excellent objects for the study of navigation and flight control. Bats and birds enable more complex models of attention and point to the importance of active sensing for conducting more complex missions. The implementation of neuromorphic paradigms for autonomous flight will require fundamental changes in both traditional hardware and software. We provide recommendations for sensor hardware and processing algorithm development to enable energy efficient and computationally effective flight control.
Collapse
Affiliation(s)
| | - Andrey Kanaev
- U.S. Office of Naval Research Global, London, United Kingdom
| | - Chou P. Hung
- United States Army Research Laboratory, Aberdeen Proving Ground, Maryland, MD, United States
| | | | - Frederick D. Gregory
- U.S. Army Research Laboratory, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ryad Benosman
- Institut de la Vision, INSERM UMRI S 968, Paris, France
- Biomedical Science Tower, University of Pittsburgh, Pittsburgh, PA, United States
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Guido C. H. E. de Croon
- Micro Air Vehicle Laboratory, Department of Control and Operations, Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands
| | - Yoram Gutfreund
- The Neuroethological lab, Department of Neurobiology, The Rappaport Institute for Biomedical Research, Technion – Israel Institute of Technology, Haifa, Israel
| | - Chung-Chuan Lo
- Brain Research Center/Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Cynthia F. Moss
- Laboratory of Comparative Neural Systems and Behavior, Department of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
19
|
Genzel D, Yartsev MM. The fully automated bat (FAB) flight room: A human-free environment for studying navigation in flying bats and its initial application to the retrosplenial cortex. J Neurosci Methods 2021; 348:108970. [PMID: 33065152 PMCID: PMC8857751 DOI: 10.1016/j.jneumeth.2020.108970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Bats can offer important insight into the neural computations underlying complex forms of navigation. Up to now, this had been done with the confound of the human experimenter being present in the same environment the bat was navigating in. NEW METHOD We, therefore, developed a novel behavioral setup, the fully automated bat (FAB) flight room, to obtain a detailed and quantitative understanding of bat navigation flight behavior while studying its relevant neural circuits, but importantly without human intervention. As a demonstration of the FAB flight room utility we trained bats on a four-target, visually-guided, foraging task and recorded neural activity from the retrosplenial cortex (RSC). RESULTS We find that bats can be efficiently trained and engaged in complex, multi-target, visuospatial behavior in the FAB flight room. Wireless neural recordings from the bat RSC during the task confirm the multiplexed characteristics of single RSC neurons encoding spatial positional information, target selection, reward obtainment and the intensity of visual cues used to guide navigation. COMPARISON WITH EXISTING METHODS In contrast to the methods introduced in previous studies, we now can investigate spatial navigation in bats without potential experimental biases that can be easily introduced by active physical involvement and presence of experimenters in the room. CONCLUSIONS Combined, we describe a novel experimental approach for studying spatial navigation in freely flying bats and provide support for the involvement of bat RSC in aerial visuospatial foraging behavior.
Collapse
Affiliation(s)
- Daria Genzel
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, 94720, United States; Department of Bioengineering, UC Berkeley, Berkeley, 94720, United States
| | - Michael M Yartsev
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, 94720, United States; Department of Bioengineering, UC Berkeley, Berkeley, 94720, United States.
| |
Collapse
|
20
|
Fukutomi M, Carlson BA. A History of Corollary Discharge: Contributions of Mormyrid Weakly Electric Fish. Front Integr Neurosci 2020; 14:42. [PMID: 32848649 PMCID: PMC7403230 DOI: 10.3389/fnint.2020.00042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/08/2020] [Indexed: 12/05/2022] Open
Abstract
Corollary discharge is an important brain function that allows animals to distinguish external from self-generated signals, which is critical to sensorimotor coordination. Since discovery of the concept of corollary discharge in 1950, neuroscientists have sought to elucidate underlying neural circuits and mechanisms. Here, we review a history of neurophysiological studies on corollary discharge and highlight significant contributions from studies using African mormyrid weakly electric fish. Mormyrid fish generate brief electric pulses to communicate with other fish and to sense their surroundings. In addition, mormyrids can passively locate weak, external electric signals. These three behaviors are mediated by different corollary discharge functions including inhibition, enhancement, and predictive “negative image” generation. Owing to several experimental advantages of mormyrids, investigations of these mechanisms have led to important general principles that have proven applicable to a wide diversity of animal species.
Collapse
Affiliation(s)
- Matasaburo Fukutomi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
21
|
Neural oscillations in the fronto-striatal network predict vocal output in bats. PLoS Biol 2020; 18:e3000658. [PMID: 32191695 PMCID: PMC7081985 DOI: 10.1371/journal.pbio.3000658] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The ability to vocalize is ubiquitous in vertebrates, but neural networks underlying vocal control remain poorly understood. Here, we performed simultaneous neuronal recordings in the frontal cortex and dorsal striatum (caudate nucleus, CN) during the production of echolocation pulses and communication calls in bats. This approach allowed us to assess the general aspects underlying vocal production in mammals and the unique evolutionary adaptations of bat echolocation. Our data indicate that before vocalization, a distinctive change in high-gamma and beta oscillations (50–80 Hz and 12–30 Hz, respectively) takes place in the bat frontal cortex and dorsal striatum. Such precise fine-tuning of neural oscillations could allow animals to selectively activate motor programs required for the production of either echolocation or communication vocalizations. Moreover, the functional coupling between frontal and striatal areas, occurring in the theta oscillatory band (4–8 Hz), differs markedly at the millisecond level, depending on whether the animals are in a navigational mode (that is, emitting echolocation pulses) or in a social communication mode (emitting communication calls). Overall, this study indicates that fronto-striatal oscillations could provide a neural correlate for vocal control in bats. In bats, rhythmic activity in frontal and striatal areas of the brain provide a neural correlate for vocal control, which can be used to predict whether the ensuing vocalizations are for echolocation or social communication.
Collapse
|
22
|
Hoffmann S, Bley A, Matthes M, Firzlaff U, Luksch H. The Neural Basis of Dim-Light Vision in Echolocating Bats. BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:61-70. [PMID: 31747669 DOI: 10.1159/000504124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 11/19/2022]
Abstract
Echolocating bats evolved a sophisticated biosonar imaging system that allows for a life in dim-light habitats. However, especially for far-range operations such as homing, bats can support biosonar by vision. Large eyes and a retina that mainly consists of rods are assumed to be the optical adjustments that enable bats to use visual information at low light levels. In addition to optical mechanisms, many nocturnal animals evolved neural adaptations such as elongated integration times or enlarged spatial sampling areas to further increase the sensitivity of their visual system by temporal or spatial summation of visual information. The neural mechanisms that underlie the visual capabilities of echolocating bats have, however, so far not been investigated. To shed light on spatial and temporal response characteristics of visual neurons in an echolocating bat, Phyllostomus discolor, we recorded extracellular multiunit activity in the retino-recipient superficial layers of the superior colliculus (SC). We discovered that response latencies of these neurons were generally in the mammalian range, whereas neural spatial sampling areas were unusually large compared to those measured in the SC of other mammals. From this we suggest that echolocating bats likely use spatial but not temporal summation of visual input to improve visual performance under dim-light conditions. Furthermore, we hypothesize that bats compensate for the loss of visual spatial precision, which is a byproduct of spatial summation, by integration of spatial information provided by both the visual and the biosonar systems. Given that knowledge about neural adaptations to dim-light vision is mainly based on studies done in non-mammalian species, our novel data provide a valuable contribution to the field and demonstrate the suitability of echolocating bats as a nocturnal animal model to study the neurophysiological aspects of dim-light vision.
Collapse
Affiliation(s)
- Susanne Hoffmann
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany, .,Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Seewiesen, Germany,
| | - Alexandra Bley
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Mariana Matthes
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Uwe Firzlaff
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Harald Luksch
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
23
|
Beetz MJ, Kössl M, Hechavarría JC. Adaptations in the call emission pattern of frugivorous bats when orienting under challenging conditions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:457-467. [PMID: 30997534 DOI: 10.1007/s00359-019-01337-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Echolocating bats emit biosonar calls and use echoes arising from call reflections, for orientation. They often pattern their calls into groups which increases the rate of sensory feedback. Insectivorous bats emit call groups at a higher rate when orienting in cluttered compared to uncluttered environments. Frugivorous bats increase the rate of call group emission when they echolocate in noisy environments. In frugivorous bats, it remains unclear if call group emission represents an exclusive adaptation to avoid acoustic interference by signals of conspecifics or if it represents an adaptation that allows to orient under demanding environmental conditions. Here, we compared the emission pattern of the frugivorous bat Carolliaperspicillata when the bats were flying in narrow versus wide or cluttered versus non-cluttered corridors. The bats emitted larger call groups and they increased the call rate within call groups when navigating in narrow or cluttered environments. These adaptations resemble the ones shown when the bats navigate in noisy environments. Thus, call group emission represents an adaptive behavior when the bats orient in complex environments.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institute for Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany. .,Zoology II Emmy-Noether Animal Navigation Group, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany.
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany
| |
Collapse
|
24
|
Yu C, Luo J, Wohlgemuth M, Moss CF. Echolocating bats inspect and discriminate landmark features to guide navigation. ACTA ACUST UNITED AC 2019; 222:jeb.191965. [PMID: 30936268 DOI: 10.1242/jeb.191965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/26/2019] [Indexed: 11/20/2022]
Abstract
Landmark-guided navigation is a common behavioral strategy for way-finding, yet prior studies have not examined how animals collect sensory information to discriminate landmark features. We investigated this question in animals that rely on active sensing to guide navigation. Four echolocating bats (Eptesicus fuscus) were trained to use an acoustic landmark to find and navigate through a net opening for a food reward. In experimental trials, an object serving as a landmark was placed adjacent to a net opening and an object serving as a distractor was placed next to a barrier (covered opening). The location of the opening, barrier and objects were moved between trials, but the spatial relationships between the landmark and opening, and between the distractor and barrier were maintained. In probe trials, the landmark was placed next to a barrier, while the distractor was placed next to the opening, to test whether the bats relied on the landmark to guide navigation. Vocal and flight behaviors were recorded with an array of ultrasound microphones and high-speed infrared motion-capture cameras. All bats successfully learned to use the landmark to guide navigation through the net opening. Probe trials yielded an increase in both the time to complete the task and the number of net crashes, confirming that the bats relied largely on the landmark to find the net opening. Further, landmark acoustic distinctiveness influenced performance in probe trials and sonar inspection behaviors. Analyses of the animals' vocal behaviors also revealed differences between call features of bats inspecting landmarks compared with distractors, suggesting increased sonar attention to objects used to guide navigation.
Collapse
Affiliation(s)
- Chao Yu
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Jinhong Luo
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Melville Wohlgemuth
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
25
|
Kugler K, Luksch H, Peremans H, Vanderelst D, Wiegrebe L, Firzlaff U. Echo-acoustic and optic flow interact in bats. J Exp Biol 2019; 222:jeb.195404. [DOI: 10.1242/jeb.195404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
Abstract
Echolocating bats are known to fly and forage in complete darkness using the echoes of their actively emitted calls to navigate and to detect prey. However, under dim light conditions many bats can also rely on vision. Many flying animals have been shown to navigate by optic flow information, and recently, bats were shown to exploit echo-acoustic flow to navigate through dark habitats. Here we show for the bat Phyllostomus discolor that in lighted habitats where self-motion induced optic flow is strong, optic and echo-acoustic flow interact in their efficiency to guide navigation. Echo-acoustic flow showed a surprisingly strong effect compared to optic flow. We thus demonstrate multimodal interaction between two far-ranging spatial senses, vision and echolocation, available in this combination almost exclusively for bats and toothed whales. Our results highlight the importance of merging information from different sensory systems in a sensory-specialist animal to successfully navigate and hunt under difficult conditions.
Collapse
Affiliation(s)
- Kathrin Kugler
- Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, Munich, Germany
| | - Harald Luksch
- Chair of Zoology, Department of Animal Sciences, TU Munich, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Dieter Vanderelst
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati OH, USA
| | - Lutz Wiegrebe
- Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Uwe Firzlaff
- Chair of Zoology, Department of Animal Sciences, TU Munich, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| |
Collapse
|
26
|
Warnecke M, Macías S, Falk B, Moss CF. Echo interval and not echo intensity drives bat flight behavior in structured corridors. ACTA ACUST UNITED AC 2018; 221:jeb.191155. [PMID: 30355612 DOI: 10.1242/jeb.191155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
To navigate in the natural environment, animals must adapt their locomotion in response to environmental stimuli. The echolocating bat relies on auditory processing of echo returns to represent its surroundings. Recent studies have shown that echo flow patterns influence bat navigation, but the acoustic basis for flight path selection remains unknown. To investigate this problem, we released bats in a flight corridor with walls constructed of adjacent individual wooden poles, which returned cascades of echoes to the flying bat. We manipulated the spacing and echo strength of the poles comprising each corridor side, and predicted that bats would adapt their flight paths to deviate toward the corridor side returning weaker echo cascades. Our results show that the bat's trajectory through the corridor was not affected by the intensity of echo cascades. Instead, bats deviated toward the corridor wall with more sparsely spaced, highly reflective poles, suggesting that pole spacing, rather than echo intensity, influenced bat flight path selection. This result motivated investigation of the neural processing of echo cascades. We measured local evoked auditory responses in the bat inferior colliculus to echo playback recordings from corridor walls constructed of sparsely and densely spaced poles. We predicted that evoked neural responses would be discretely modulated by temporally distinct echoes recorded from the sparsely spaced pole corridor wall, but not by echoes from the more densely spaced corridor wall. The data confirm this prediction and suggest that the bat's temporal resolution of echo cascades may drive its flight behavior in the corridor.
Collapse
Affiliation(s)
- Michaela Warnecke
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Silvio Macías
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Benjamin Falk
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
27
|
Wohlgemuth MJ, Yu C, Moss CF. 3D Hippocampal Place Field Dynamics in Free-Flying Echolocating Bats. Front Cell Neurosci 2018; 12:270. [PMID: 30190673 PMCID: PMC6115611 DOI: 10.3389/fncel.2018.00270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
A large body of laboratory research has investigated the process by which environmental cues are acquired and used for spatial navigation in rodents; however, the key to differentiating between species specializations and general principles lies in comparative research. Rodent research has focused on a class of neurons in the hippocampus implicated in the representation of allocentric space - termed place cells - and the process by which these representations form. One class of models of hippocampal place field formation depends on continuous theta, a low frequency brain oscillation that is prevalent in crawling rodents. Comparative studies of hippocampal activity in echolocating bats have reported many findings that parallel the rodent literature, but also describe noteworthy species differences, especially with respect to theta rhythm. Here, we first discuss studies of the bat hippocampal formation and point to gaps in our knowledge, which motivate our new lines of inquiry. We present data from the free-flying laryngeal echolocating big brown bat, which shows 3-D place cells without continuous theta, similar to reports from the lingual echolocating Egyptian fruit bat. We also report findings, which demonstrate that the animal's control over echolocation call rate (sensory sampling) influences place field tuning. These results motivate future comparative research on hippocampal function in the context of natural sensory-guided behaviors.
Collapse
Affiliation(s)
- Melville J. Wohlgemuth
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | | | | |
Collapse
|
28
|
Macías S, Luo J, Moss CF. Natural echolocation sequences evoke echo-delay selectivity in the auditory midbrain of the FM bat, Eptesicus fuscus. J Neurophysiol 2018; 120:1323-1339. [PMID: 29924708 DOI: 10.1152/jn.00160.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Echolocating bats must process temporal streams of sonar sounds to represent objects along the range axis. Neuronal echo-delay tuning, the putative mechanism of sonar ranging, has been characterized in the inferior colliculus (IC) of the mustached bat, an insectivorous species that produces echolocation calls consisting of constant frequency and frequency modulated (FM) components, but not in species that use FM signals alone. This raises questions about the mechanisms that give rise to echo-delay tuning in insectivorous bats that use different signal designs. To investigate whether stimulus context may account for species differences in echo-delay selectivity, we characterized single-unit responses in the IC of awake passively listening FM bats, Eptesicus fuscus, to broadcasts of natural sonar call-echo sequences, which contained dynamic changes in signal duration, interval, spectrotemporal structure, and echo-delay. In E. fuscus, neural selectivity to call-echo delay emerges in a population of IC neurons when stimulated with call-echo pairs presented at intervals mimicking those in a natural sonar sequence. To determine whether echo-delay selectivity also depends on the spectrotemporal features of individual sounds within natural sonar sequences, we studied responses to computer-generated echolocation signals that controlled for call interval, duration, bandwidth, sweep rate, and echo-delay. A subpopulation of IC neurons responded selectively to the combination of the spectrotemporal structure of natural call-echo pairs and their temporal patterning within a dynamic sonar sequence. These new findings suggest that the FM bat's fine control over biosonar signal parameters may modulate IC neuronal selectivity to the dimension of echo-delay. NEW & NOTEWORTHY Echolocating bats perform precise auditory temporal computations to estimate their distance to objects. Here, we report that response selectivity of neurons in the inferior colliculus of a frequency modulated bat to call-echo delay, or target range tuning, depends on the temporal patterning and spectrotemporal features of sound elements in a natural echolocation sequence. We suggest that echo responses to objects at different distances are gated by the bat's active control over the spectrotemporal patterning of its sonar emissions.
Collapse
Affiliation(s)
- Silvio Macías
- Department of Psychological and Brain Sciences, Johns Hopkins University , Baltimore, Maryland
| | - Jinhong Luo
- Department of Psychological and Brain Sciences, Johns Hopkins University , Baltimore, Maryland
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
29
|
Finkelstein A. Motor Control: Three-Dimensional Metric of Head Movements in the Mouse Brain. Curr Biol 2018; 28:R660-R662. [PMID: 29870704 DOI: 10.1016/j.cub.2018.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many forms of human and animal behavior involve head movements. A new study reveals the neural code for three-dimensional head movements in the midbrain of freely moving mice.
Collapse
Affiliation(s)
- Arseny Finkelstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.
| |
Collapse
|
30
|
Abstract
The acoustic representation of the outside world in the midbrain of a bat becomes more precise as it uses double clicks to locate closer objects.
Collapse
Affiliation(s)
- Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt/Main, Germany
| | - Julio Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
31
|
Kothari NB, Wohlgemuth MJ, Moss CF. Dynamic representation of 3D auditory space in the midbrain of the free-flying echolocating bat. eLife 2018; 7:e29053. [PMID: 29633711 PMCID: PMC5896882 DOI: 10.7554/elife.29053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 02/27/2018] [Indexed: 11/23/2022] Open
Abstract
Essential to spatial orientation in the natural environment is a dynamic representation of direction and distance to objects. Despite the importance of 3D spatial localization to parse objects in the environment and to guide movement, most neurophysiological investigations of sensory mapping have been limited to studies of restrained subjects, tested with 2D, artificial stimuli. Here, we show for the first time that sensory neurons in the midbrain superior colliculus (SC) of the free-flying echolocating bat encode 3D egocentric space, and that the bat's inspection of objects in the physical environment sharpens tuning of single neurons, and shifts peak responses to represent closer distances. These findings emerged from wireless neural recordings in free-flying bats, in combination with an echo model that computes the animal's instantaneous stimulus space. Our research reveals dynamic 3D space coding in a freely moving mammal engaged in a real-world navigation task.
Collapse
|
32
|
Kothari NB, Wohlgemuth MJ, Moss CF. Adaptive sonar call timing supports target tracking in echolocating bats. J Exp Biol 2018; 221:jeb.176537. [DOI: 10.1242/jeb.176537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/02/2018] [Indexed: 11/20/2022]
Abstract
Echolocating bats dynamically adapt the features of their sonar calls as they approach obstacles and track targets. As insectivorous bats forage, they increase sonar call rate with decreasing prey distance, and often embedded in bat insect approach sequences are clusters of sonar sounds, termed sonar sound groups (SSGs). The bat's production of SSGs has been observed in both field and laboratory conditions, and is hypothesized to sharpen spatiotemporal sonar resolution. When insectivorous bats hunt insects, they may encounter erratically moving prey, which increases the demands on the bat's sonar imaging system. Here, we studied the bat's adaptive vocal behavior in an experimentally controlled insect tracking task, allowing us to manipulate the predictability of target trajectories and measure the prevalence of SSGs. With this system, we trained bats to remain stationary on a platform and track a moving prey item, whose trajectory was programmed either to approach the bat, or to move back and forth, before arriving at the bat. We manipulated target motion predictability by varying the order in which different target trajectories were presented to the bats. During all trials, we recorded the bat's sonar calls and later analyzed the incidence of SSG production during the different target tracking conditions. Our results demonstrate that bats increase the production of SSGs when target unpredictability increases, and decrease the production of SSGs when target motion predictability increases. Further, bats produce the same number of sonar vocalizations irrespective of the target motion predictability, indicating that the animal's temporal clustering of sonar call sequences to produce SSGs is purposeful, and therefore involves sensorimotor planning.
Collapse
Affiliation(s)
- Ninad B. Kothari
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Melville J. Wohlgemuth
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F. Moss
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- The Solomon H. Snyder Department of Neuroscience, School of Medicine. Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Whiting School of Engineering. Johns Hopkins University, Baltimore, MD 21218, USA
- Behavioral Biology Program Chair. Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|