1
|
Xi S, Nguyen T, Murray S, Lorenz P, Mellor J. Size fractionated NET-Seq reveals a conserved architecture of transcription units around yeast genes. Yeast 2024; 41:222-241. [PMID: 38433440 DOI: 10.1002/yea.3931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.
Collapse
Affiliation(s)
- Shidong Xi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Tania Nguyen
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Struan Murray
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Phil Lorenz
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Wei C, Tao T, Zhou J, Zhu X. Leveraging a Genomic Instability-Derived Signature to Predict the Prognosis and Therapy Sensitivity of Clear Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2024; 22:134-148.e8. [PMID: 37919101 DOI: 10.1016/j.clgc.2023.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Kidney cancer is a significant health concern with growing treatment resistance, often linked to genomic instability. This study used datasets from 72 renal and 952 clear cell renal cell carcinoma samples to identify genomic instability-derived lncRNAs and develop a prognostic index (GILPI). METHODS The study involved differential expression analysis, weighted gene co-expression network analysis, Cox analyses to construct GILPI, and its validation through survival analysis. SNP, TMB, and MSI data were integrated, and GSEA analysis explored associated pathways. A predictive nomogram was created, and immune cell infiltration was assessed. Targeted treatments for low-GILPI patients were identified through molecular docking and network pharmacology. RESULTS GILPI proved reliable in predicting prognosis (P<0.001, AUC=0.68) and in combination with other factors. GSEA revealed distinct pathway enrichments for different GILPI subgroups. The nomogram exhibited strong predictive performance (AUC=0.902). Immune cell differences suggest potential for immunotherapy in high-GILPI patients and targeted treatment in low-GILPI patients. Lapatinib and nilotinib were identified as effective drugs for low-GILPI patients. CONCLUSION This study identified a GILPI for kidney cancer prognosis, integrating various factors for a comprehensive assessment. It highlighted potential treatment strategies based on GILPI subgroups, enhancing personalized treatment approaches.
Collapse
Affiliation(s)
- Chuzhong Wei
- Kidney Department, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Clinical Research Center, Zibo Central Hospital, Zibo, China
| | - Jiajun Zhou
- Kidney Department, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
3
|
Chorostecki U, Bologna NG, Ariel F. The plant noncoding transcriptome: a versatile environmental sensor. EMBO J 2023; 42:e114400. [PMID: 37735935 PMCID: PMC10577639 DOI: 10.15252/embj.2023114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Nicolas G. Bologna
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Federico Ariel
- Instituto de Agrobiotecnologia del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
4
|
Marquardt S, Petrillo E, Manavella PA. Cotranscriptional RNA processing and modification in plants. THE PLANT CELL 2023; 35:1654-1670. [PMID: 36259932 PMCID: PMC10226594 DOI: 10.1093/plcell/koac309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/14/2022] [Indexed: 05/30/2023]
Abstract
The activities of RNA polymerases shape the epigenetic landscape of genomes with profound consequences for genome integrity and gene expression. A fundamental event during the regulation of eukaryotic gene expression is the coordination between transcription and RNA processing. Most primary RNAs mature through various RNA processing and modification events to become fully functional. While pioneering results positioned RNA maturation steps after transcription ends, the coupling between the maturation of diverse RNA species and their transcription is becoming increasingly evident in plants. In this review, we discuss recent advances in our understanding of the crosstalk between RNA Polymerase II, IV, and V transcription and nascent RNA processing of both coding and noncoding RNAs.
Collapse
Affiliation(s)
- Sebastian Marquardt
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, Denmark
| | - Ezequiel Petrillo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, C1428EHA, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| |
Collapse
|
5
|
Novačić A, Menéndez D, Ljubas J, Barbarić S, Stutz F, Soudet J, Stuparević I. Antisense non-coding transcription represses the PHO5 model gene at the level of promoter chromatin structure. PLoS Genet 2022; 18:e1010432. [PMID: 36215302 PMCID: PMC9584416 DOI: 10.1371/journal.pgen.1010432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/20/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Pervasive transcription of eukaryotic genomes generates non-coding transcripts with regulatory potential. We examined the effects of non-coding antisense transcription on the regulation of expression of the yeast PHO5 gene, a paradigmatic case for gene regulation through promoter chromatin remodeling. A negative role for antisense transcription at the PHO5 gene locus was demonstrated by leveraging the level of overlapping antisense transcription through specific mutant backgrounds, expression from a strong promoter in cis, and use of the CRISPRi system. Furthermore, we showed that enhanced elongation of PHO5 antisense leads to a more repressive chromatin conformation at the PHO5 gene promoter, which is more slowly remodeled upon gene induction. The negative effect of antisense transcription on PHO5 gene transcription is mitigated upon inactivation of the histone deacetylase Rpd3, showing that PHO5 antisense RNA acts via histone deacetylation. This regulatory pathway leads to Rpd3-dependent decreased recruitment of the RSC chromatin remodeling complex to the PHO5 gene promoter upon induction of antisense transcription. Overall, the data in this work reveal an additional level in the complex regulatory mechanism of PHO5 gene expression by showing antisense transcription-mediated repression at the level of promoter chromatin structure remodeling.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Dario Menéndez
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Jurica Ljubas
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Slobodan Barbarić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Françoise Stutz
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Julien Soudet
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (J.S.); (I.S.)
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
- * E-mail: (J.S.); (I.S.)
| |
Collapse
|
6
|
Wu AC, Vivori C, Patel H, Sideri T, Moretto F, van Werven FJ. RSC and GRFs confer promoter directionality by restricting divergent noncoding transcription. Life Sci Alliance 2022; 5:e202201394. [PMID: 36114005 PMCID: PMC9481977 DOI: 10.26508/lsa.202201394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
The directionality of gene promoters-the ratio of protein-coding over divergent noncoding transcription-is highly variable. How promoter directionality is controlled remains poorly understood. Here, we show that the chromatin remodelling complex RSC and general regulatory factors (GRFs) dictate promoter directionality by attenuating divergent transcription relative to protein-coding transcription. At gene promoters that are highly directional, depletion of RSC leads to a relative increase in divergent noncoding transcription and thus to a decrease in promoter directionality. We find that RSC has a modest effect on nucleosome positioning upstream in promoters at the sites of divergent transcription. These promoters are also enriched for the binding of GRFs such as Reb1 and Abf1. Ectopic targeting of divergent transcription initiation sites with GRFs or the dCas9 DNA-binding protein suppresses divergent transcription. Our data suggest that RSC and GRFs play a pervasive role in limiting divergent transcription relative to coding direction transcription. We propose that any DNA-binding factor, when stably associated with cryptic transcription start sites, forms a barrier which represses divergent transcription, thereby promoting promoter directionality.
Collapse
Affiliation(s)
- Andrew Ck Wu
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | - Claudia Vivori
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Theodora Sideri
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | - Fabien Moretto
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Folkert J van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
7
|
Soudet J, Beyrouthy N, Pastucha AM, Maffioletti A, Menéndez D, Bakir Z, Stutz F. Antisense-mediated repression of SAGA-dependent genes involves the HIR histone chaperone. Nucleic Acids Res 2022; 50:4515-4528. [PMID: 35474134 PMCID: PMC9071385 DOI: 10.1093/nar/gkac264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 03/25/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic genomes are pervasively transcribed by RNA polymerase II (RNAPII), and transcription of long non-coding RNAs often overlaps with coding gene promoters. This might lead to coding gene repression in a process named Transcription Interference (TI). In Saccharomyces cerevisiae, TI is mainly driven by antisense non-coding transcription and occurs through re-shaping of promoter Nucleosome-Depleted Regions (NDRs). In this study, we developed a genetic screen to identify new players involved in Antisense-Mediated Transcription Interference (AMTI). Among the candidates, we found the HIR histone chaperone complex known to be involved in de novo histone deposition. Using genome-wide approaches, we reveal that HIR-dependent histone deposition represses the promoters of SAGA-dependent genes via antisense non-coding transcription. However, while antisense transcription is enriched at promoters of SAGA-dependent genes, this feature is not sufficient to define the mode of gene regulation. We further show that the balance between HIR-dependent nucleosome incorporation and transcription factor binding at promoters directs transcription into a SAGA- or TFIID-dependent regulation. This study sheds light on a new connection between antisense non-coding transcription and the nature of coding transcription initiation.
Collapse
Affiliation(s)
- Julien Soudet
- Correspondence may also be addressed to Julien Soudet.
| | - Nissrine Beyrouthy
- Dept. of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Anna Marta Pastucha
- Dept. of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Andrea Maffioletti
- Dept. of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Dario Menéndez
- Dept. of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Zahra Bakir
- Dept. of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Françoise Stutz
- To whom correspondence should be addressed. Tel: +41 22 379 6729;
| |
Collapse
|
8
|
Haidara N, Giannini M, Porrua O. Modulated termination of non-coding transcription partakes in the regulation of gene expression. Nucleic Acids Res 2022; 50:1430-1448. [PMID: 35037029 PMCID: PMC8860598 DOI: 10.1093/nar/gkab1304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Pervasive transcription is a universal phenomenon leading to the production of a plethora of non-coding RNAs. If left uncontrolled, pervasive transcription can be harmful for genome expression and stability. However, non-coding transcription can also play important regulatory roles, for instance by promoting the repression of specific genes by a mechanism of transcriptional interference. The efficiency of transcription termination can strongly influence the regulatory capacity of non-coding transcription events, yet very little is known about the mechanisms modulating the termination of non-coding transcription in response to environmental cues. Here, we address this question by investigating the mechanisms that regulate the activity of the main actor in termination of non-coding transcription in budding yeast, the helicase Sen1. We identify a phosphorylation at a conserved threonine of the catalytic domain of Sen1 and we provide evidence that phosphorylation at this site reduces the efficiency of Sen1-mediated termination. Interestingly, we find that this phosphorylation impairs termination at an unannotated non-coding gene, thus repressing the expression of a downstream gene encoding the master regulator of Zn homeostasis, Zap1. Consequently, many additional genes exhibit an expression pattern mimicking conditions of Zn excess, where ZAP1 is naturally repressed. Our findings provide a novel paradigm of gene regulatory mechanism relying on the direct modulation of non-coding transcription termination.
Collapse
Affiliation(s)
- Nouhou Haidara
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France.,Université Paris-Saclay, Gif sur Yvette, France
| | - Marta Giannini
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Odil Porrua
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
9
|
Wu J, Ren X, Wang N, Zhou R, Chen M, Cai Y, Lin S, Zhang H, Xie X, Dang C, Zhang S, Zhou Z. A Mutation-Related Long Noncoding RNA Signature of Genome Instability Predicts Immune Infiltration and Hepatocellular Carcinoma Prognosis. Front Genet 2021; 12:779554. [PMID: 34880908 PMCID: PMC8645863 DOI: 10.3389/fgene.2021.779554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) have been discovered to play a regulatory role in genomic instability (GI), which participates in the carcinogenesis of various cancers, including hepatocellular carcinoma (HCC). We endeavored to establish a GI-derived lncRNA signature (GILncSig) as a potential biomarker and explore its impact on immune infiltration and prognostic significance. Methods: Combining expression and somatic mutation profiles from The Cancer Genome Atlas database, we identified GI-related lncRNAs and conducted functional analyses on co-expressed genes. Based on Cox regression analysis, a GILncSig was established in the training cohort (n = 187), and an independent testing patient cohort (n = 183) was used to validate its predictive ability. Kaplan-Meier method and receiver operating characteristic curves were adopted to evaluate the performance. The correlation between GI and immune infiltration status was investigated based on the CIBERSORT algorithm and single sample gene set enrichment analysis. In addition, a comprehensive nomogram integrating the GILncSig and clinicopathological variables was constructed to efficiently assess HCC patient prognosis in clinical applications. Results: A total of 88 GI-related lncRNAs were screened out and the functional analyses indicated diversified effects on HCC progression. The GILncSig was established using four independent lncRNAs (AC116351.1, ZFPM2-AS1, AC145343.1, and MIR210HG) with significant prognostic value (p < 0.05). Following evaluation with the GILncSig, low-risk patients had significantly better clinical outcomes than high-risk patients in the training cohort (p < 0.001), which was subsequently validated in the independent testing cohort. High-risk group exhibited more immunocyte infiltration including B cells memory, macrophages M0 and neutrophils and higher expression of HLA gene set and immune checkpoint genes. Compared to existing HCC signatures, the GILncSig showed better prognosis predictive performance [area under the curve (AUC) = 0.709]. Furthermore, an integrated nomogram was constructed and validated to efficiently and reliably evaluate HCC patient prognosis (3-years survival AUC = 0.710 and 5-years survival AUC = 0.707). Conclusion: The GILncSig measuring GI and impacting immune infiltration serves as a potential biomarker and independent predictor of HCC patient prognosis. Our results highlight further investigation of GI and HCC molecular mechanisms.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xueting Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruina Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengsha Chen
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yifan Cai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhangjian Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Gowthaman U, Ivanov M, Schwarz I, Patel HP, Müller NA, García‐Pichardo D, Lenstra TL, Marquardt S. The Hda1 histone deacetylase limits divergent non-coding transcription and restricts transcription initiation frequency. EMBO J 2021; 40:e108903. [PMID: 34661296 PMCID: PMC8634119 DOI: 10.15252/embj.2021108903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Nucleosome-depleted regions (NDRs) at gene promoters support initiation of RNA polymerase II transcription. Interestingly, transcription often initiates in both directions, resulting in an mRNA and a divergent non-coding (DNC) transcript of unclear purpose. Here, we characterized the genetic architecture and molecular mechanism of DNC transcription in budding yeast. Using high-throughput reverse genetic screens based on quantitative single-cell fluorescence measurements, we identified the Hda1 histone deacetylase complex (Hda1C) as a repressor of DNC transcription. Nascent transcription profiling showed a genome-wide role of Hda1C in repression of DNC transcription. Live-cell imaging of transcription revealed that mutations in the Hda3 subunit increased the frequency of DNC transcription. Hda1C contributed to decreased acetylation of histone H3 in DNC transcription regions, supporting DNC transcription repression by histone deacetylation. Our data support the interpretation that DNC transcription results as a consequence of the NDR-based architecture of eukaryotic promoters, but that it is governed by locus-specific repression to maintain genome fidelity.
Collapse
Affiliation(s)
- Uthra Gowthaman
- Copenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Maxim Ivanov
- Copenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Isabel Schwarz
- Copenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Heta P Patel
- Division of Gene RegulationThe Netherlands Cancer Institute (NKI)Oncode InstituteAmsterdamThe Netherlands
| | - Niels A Müller
- Copenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Present address:
Thünen Institute of Forest GeneticsGrosshansdorfGermany
| | - Desiré García‐Pichardo
- Copenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Tineke L Lenstra
- Division of Gene RegulationThe Netherlands Cancer Institute (NKI)Oncode InstituteAmsterdamThe Netherlands
| | - Sebastian Marquardt
- Copenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
11
|
Zhang Y, Huang YX, Jin X, Chen J, Peng L, Wang DL, Li Y, Yao XY, Liao JY, He JH, Hu K, Lu D, Guo Y, Yin D. Overexpression of lncRNAs with endogenous lengths and functions using a lncRNA delivery system based on transposon. J Nanobiotechnology 2021; 19:303. [PMID: 34600532 PMCID: PMC8487477 DOI: 10.1186/s12951-021-01044-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play important roles in many physiological and pathological processes, this indicates that lncRNAs can serve as potential targets for gene therapy. Stable expression is a fundamental technology in the study of lncRNAs. The lentivirus is one of the most widely used delivery systems for stable expression. However, it was initially designed for mRNAs, and the applicability of lentiviral vectors for lncRNAs is largely unknown. RESULTS We found that the lentiviral vector produces lncRNAs with improper termination, appending an extra fragment of ~ 2 kb to the 3'-end. Consequently, the secondary structures were changed, the RNA-protein interactions were blocked, and the functions were impaired in certain lncRNAs, which indicated that lentiviral vectors are not ideal delivery systems of lncRNAs. Here, we developed a novel lncRNA delivery method called the Expression of LncRNAs with Endogenous Characteristics using the Transposon System (ELECTS). By inserting a termination signal after the lncRNA sequence, ELECTS produces transcripts without 3'-flanking sequences and retains the native features and function of lncRNAs, which cannot be achieved by lentiviral vectors. Moreover, ELECTS presents no potential risk of infection for the operators and it takes much less time. ELECTS provides a reliable, convenient, safe, and efficient delivery method for stable expression of lncRNAs. CONCLUSIONS Our study demonstrated that improper transcriptional termination from lentiviral vectors have fundamental effects on molecular action and cellular function of lncRNAs. The ELECTS system developed in this study will provide a convenient and reliable method for the lncRNA study.
Collapse
Affiliation(s)
- Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yong-Xin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Xin Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Dan-Lan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Xin-Yi Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - KaiShun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
12
|
Lucero L, Ferrero L, Fonouni-Farde C, Ariel F. Functional classification of plant long noncoding RNAs: a transcript is known by the company it keeps. THE NEW PHYTOLOGIST 2021; 229:1251-1260. [PMID: 32880949 DOI: 10.1111/nph.16903] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/05/2020] [Indexed: 05/27/2023]
Abstract
The extraordinary maturation in high-throughput sequencing technologies has revealed the existence of a complex network of transcripts in eukaryotic organisms, including thousands of long noncoding (lnc) RNAs with little or no protein-coding capacity. Subsequent discoveries have shown that lncRNAs participate in a wide range of molecular processes, controlling gene expression and protein activity though direct interactions with proteins, DNA or other RNA molecules. Although significant advances have been achieved in the understanding of lncRNA biology in the animal kingdom, the functional characterization of plant lncRNAs is still in its infancy and remains a major challenge. In this review, we report emerging functional and mechanistic paradigms of plant lncRNAs and partner molecules, and discuss how cutting-edge technologies may help to identify and classify yet uncharacterized transcripts into functional groups.
Collapse
Affiliation(s)
- Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Lucía Ferrero
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| |
Collapse
|
13
|
Gowthaman U, García-Pichardo D, Jin Y, Schwarz I, Marquardt S. DNA Processing in the Context of Noncoding Transcription. Trends Biochem Sci 2020; 45:1009-1021. [DOI: 10.1016/j.tibs.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
|
14
|
Oncul S, Amero P, Rodriguez-Aguayo C, Calin GA, Sood AK, Lopez-Berestein G. Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum. RNA Biol 2020; 17:1523-1534. [PMID: 31847695 PMCID: PMC7567512 DOI: 10.1080/15476286.2019.1702283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), initially recognized as byproducts of the transcription process, have been proven to play crucial modulatory roles in preserving overall homoeostasis of cells and tissues. Furthermore, aberrant levels of these transcripts have been shown to contribute many diseases, including cancer. Among these, many aspects of ovarian cancer biology have been found to be regulated by lncRNAs, including cancer initiation, progression and dissemination. In this review, we summarize recent studies to highlight the various roles of lncRNAs in ovary in normal and pathological conditions, immune system, diagnosis, prognosis, and therapy. We address lncRNAs that have been extensively studied in ovarian cancer and their contribution to cellular dynamics.
Collapse
Affiliation(s)
- Selin Oncul
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry, Faculty of Pharmacy, The University of Hacettepe, Ankara, Turkey
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Wu M, Karadoulama E, Lloret-Llinares M, Rouviere JO, Vaagensø CS, Moravec M, Li B, Wang J, Wu G, Gockert M, Pelechano V, Jensen TH, Sandelin A. The RNA exosome shapes the expression of key protein-coding genes. Nucleic Acids Res 2020; 48:8509-8528. [PMID: 32710631 PMCID: PMC7470964 DOI: 10.1093/nar/gkaa594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
The ribonucleolytic exosome complex is central for nuclear RNA degradation, primarily targeting non-coding RNAs. Still, the nuclear exosome could have protein-coding (pc) gene-specific regulatory activities. By depleting an exosome core component, or components of exosome adaptor complexes, we identify ∼2900 transcription start sites (TSSs) from within pc genes that produce exosome-sensitive transcripts. At least 1000 of these overlap with annotated mRNA TSSs and a considerable portion of their transcripts share the annotated mRNA 3′ end. We identify two types of pc-genes, both employing a single, annotated TSS across cells, but the first type primarily produces full-length, exosome-sensitive transcripts, whereas the second primarily produces prematurely terminated transcripts. Genes within the former type often belong to immediate early response transcription factors, while genes within the latter are likely transcribed as a consequence of their proximity to upstream TSSs on the opposite strand. Conversely, when genes have multiple active TSSs, alternative TSSs that produce exosome-sensitive transcripts typically do not contribute substantially to overall gene expression, and most such transcripts are prematurely terminated. Our results display a complex landscape of sense transcription within pc-genes and imply a direct role for nuclear RNA turnover in the regulation of a subset of pc-genes.
Collapse
Affiliation(s)
- Mengjun Wu
- The Bioinformatics Centre, Department of Biology and Biotech and Research Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Evdoxia Karadoulama
- The Bioinformatics Centre, Department of Biology and Biotech and Research Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, Aarhus 8000, Denmark
| | - Marta Lloret-Llinares
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, Aarhus 8000, Denmark.,European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jerome Olivier Rouviere
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, Aarhus 8000, Denmark
| | - Christian Skov Vaagensø
- The Bioinformatics Centre, Department of Biology and Biotech and Research Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Martin Moravec
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, Aarhus 8000, Denmark
| | - Bingnan Li
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Jingwen Wang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Guifen Wu
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, Aarhus 8000, Denmark
| | - Maria Gockert
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, Aarhus 8000, Denmark
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, Aarhus 8000, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology and Biotech and Research Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| |
Collapse
|
16
|
du Mee DJM, Bak M, Østergaard E, Rasmussen LJ. Mitochondrial dysfunction induced by variation in the non-coding genome - A proposed workflow to improve diagnostics. Mitochondrion 2020; 53:255-259. [PMID: 32497723 DOI: 10.1016/j.mito.2020.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022]
Abstract
Mitochondrial disorders are one of the most common inherited metabolic disorders and are caused by variants in nuclear genes or the mitochondrial genome. Additionally, there is a large group of patients displaying clinical symptoms, where the genetic background is unknown. Mitochondrial disorders have a huge variety in their clinical presentation, making diagnostics challenging. Genomes of higher organisms contain around 95% non-protein-coding DNA. Recently, non-protein-coding sequences have been shown to affect gene expression in many cellular processes, including mitochondrial functioning. As these insights are not frequently incorporated in diagnostics we propose a workflow utilizing this knowledge for faster diagnostics of patients lacking a molecular diagnosis.
Collapse
Affiliation(s)
- Dorine Jeanne Mariëtte du Mee
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
17
|
Lucero L, Fonouni-Farde C, Crespi M, Ariel F. Long noncoding RNAs shape transcription in plants. Transcription 2020; 11:160-171. [PMID: 32406332 DOI: 10.1080/21541264.2020.1764312] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The advent of novel high-throughput sequencing techniques has revealed that eukaryotic genomes are massively transcribed although only a small fraction of RNAs exhibits protein-coding capacity. In the last years, long noncoding RNAs (lncRNAs) have emerged as regulators of eukaryotic gene expression in a wide range of molecular mechanisms. Plant lncRNAs can be transcribed by alternative RNA polymerases, acting directly as long transcripts or can be processed into active small RNAs. Several lncRNAs have been recently shown to interact with chromatin, DNA or nuclear proteins to condition the epigenetic environment of target genes or modulate the activity of transcriptional complexes. In this review, we will summarize the recent discoveries about the actions of plant lncRNAs in the regulation of gene expression at the transcriptional level.
Collapse
Affiliation(s)
- Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Batiment 630 , Gif Sur Yvette, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| |
Collapse
|
18
|
Fine Chromatin-Driven Mechanism of Transcription Interference by Antisense Noncoding Transcription. Cell Rep 2020; 31:107612. [DOI: 10.1016/j.celrep.2020.107612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/12/2020] [Accepted: 04/14/2020] [Indexed: 01/04/2023] Open
|
19
|
Soudet J, Stutz F. Regulation of Gene Expression and Replication Initiation by Non‐Coding Transcription: A Model Based on Reshaping Nucleosome‐Depleted Regions. Bioessays 2019; 41:e1900043. [DOI: 10.1002/bies.201900043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/19/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Julien Soudet
- Department of Cell BiologyUniversity of Geneva 1211 Geneva Switzerland
| | - Françoise Stutz
- Department of Cell BiologyUniversity of Geneva 1211 Geneva Switzerland
| |
Collapse
|
20
|
He X, Zhao X, Su L, Zhao B, Miao J. MROH7-TTC4 read-through lncRNA suppresses vascular endothelial cell apoptosis and is upregulated by inhibition of ANXA7 GTPase activity. FEBS J 2019; 286:4937-4950. [PMID: 31408583 DOI: 10.1111/febs.15038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/23/2019] [Accepted: 08/11/2019] [Indexed: 12/14/2022]
Abstract
Apoptosis of vascular endothelial cells (VEC) is the main form of vascular injury that is closely linked to numerous cardiovascular diseases. Therefore, it is important to find new factors that can suppress VEC apoptosis. By using long noncoding RNA (lncRNA) microarray analysis, we found a new read-through lncRNA, MROH7-TTC4, which acted as an apoptosis inhibitor in VECs. Furthermore, by using the inhibitor (ABO) of annexin A7 (ANXA7) GTPase, we discovered that ANXA7 translocated into nucleus and interacted with 5'→3' exoribonuclease (XRN2). The decreased XRN2 phosphorylation induced by ANXA7 GTPase activity inhibition, promoted MROH7-TTC4 expression. Moreover, T-cell intracellular antigen-1 (TIA1), a binding protein of MROH7-TTC4, processed it into MROH7 and TTC4 that could inhibit VEC apoptosis. Here, we conclude that inhibiting ANXA7 GTPase activity promotes the interaction of ANXA7 and XRN2 in nucleus, which regulates the read-through transcription of MROH7-TTC4, and TIA1 is responsible for the process of MROH7-TTC4 that inhibits apoptosis through MROH7 and TTC4.
Collapse
Affiliation(s)
- Xiaoying He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Xuan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Baoxiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, China
| |
Collapse
|
21
|
Wu AC, Van Werven FJ. Transcribe this way: Rap1 confers promoter directionality by repressing divergent transcription. Transcription 2019; 10:164-170. [PMID: 31057041 PMCID: PMC6602560 DOI: 10.1080/21541264.2019.1608716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, divergent transcription is a major source of noncoding RNAs. Recent studies have uncovered that in yeast, the transcription factor Rap1 restricts transcription in the divergent direction and thereby controls promoter directionality. Here, we summarize these findings, propose regulatory principles, and discuss the implications for eukaryotic gene regulation.
Collapse
Affiliation(s)
- Andrew C.K. Wu
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | | |
Collapse
|
22
|
Transcription-driven chromatin repression of Intragenic transcription start sites. PLoS Genet 2019; 15:e1007969. [PMID: 30707695 PMCID: PMC6373976 DOI: 10.1371/journal.pgen.1007969] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/13/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Progression of RNA polymerase II (RNAPII) transcription relies on the appropriately positioned activities of elongation factors. The resulting profile of factors and chromatin signatures along transcription units provides a “positional information system” for transcribing RNAPII. Here, we investigate a chromatin-based mechanism that suppresses intragenic initiation of RNAPII transcription. We demonstrate that RNAPII transcription across gene promoters represses their function in plants. This repression is characterized by reduced promoter-specific molecular signatures and increased molecular signatures associated with RNAPII elongation. The conserved FACT histone chaperone complex is required for this repression mechanism. Genome-wide Transcription Start Site (TSS) mapping reveals thousands of discrete intragenic TSS positions in fact mutants, including downstream promoters that initiate alternative transcript isoforms. We find that histone H3 lysine 4 mono-methylation (H3K4me1), an Arabidopsis RNAPII elongation signature, is enriched at FACT-repressed intragenic TSSs. Our analyses suggest that FACT is required to repress intragenic TSSs at positions that are in part characterized by elevated H3K4me1 levels. In sum, conserved and plant-specific chromatin features correlate with the co-transcriptional repression of intragenic TSSs. Our insights into TSS repression by RNAPII transcription promise to inform the regulation of alternative transcript isoforms and the characterization of gene regulation through the act of pervasive transcription across eukaryotic genomes. Genes represent DNA elements that are transcribed into mRNA. However, the position where transcription actually starts can be dynamically regulated to expand the diversity of RNA isoforms produced from a single gene. Functionally, alternative Transcription Start Sites (TSSs) may generate protein isoforms with differing N-terminal regions and distinct cellular functions. In plants, light signaling regulates protein isoforms largely through regulated TSS selection, emphasizing the biological significance of this mechanism. Despite the importance of alternative TSS selection, little is known about the underlying molecular mechanisms. Here, we characterize for the first time how transcription initiation from an upstream promoter represses alternative downstream promoter activity in plants. This repression mechanism is associated with chromatin changes that are required to maintain precise gene expression control. Specific chromatin signatures are established during transcription via dynamic interactions between the transcription machinery and associated factors. The conserved histone chaperone complex FACT is one such factor involved in regulating the chromatin environment along genes during transcription. We find that mutant plants with reduced FACT activity specifically initiate transcription from thousands of intragenic positions, thus expanding RNA isoform diversity. Overall, our study reveals conserved and plant-specific chromatin features associated with the co-transcriptional repression of downstream intragenic TSSs. These findings promise to help inform the molecular mechanism underlying environmentally-triggered TSS regulation in plants.
Collapse
|