1
|
Vazquez BN, Fernández-Duran I, Hernandez Y, Tarighi S, Thackray JK, Espinosa-Alcantud M, Kumari P, Ianni A, Cesaire L, Braun T, Esteller M, Tischfield J, Vaquero A, Serrano L. SIRT7 and p53 interaction in embryonic development and tumorigenesis. Front Cell Dev Biol 2024; 11:1281730. [PMID: 38234684 PMCID: PMC10791984 DOI: 10.3389/fcell.2023.1281730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
p53 is a hallmark tumor suppressor due in part to its role in cell cycle progression, DNA damage repair, and cellular apoptosis; its protein activity interrelates with the Sirtuin family of proteins, major regulators of the cellular response to metabolic, oxidative, and genotoxic stress. In the recent years, mammalian Sirtuin 7 (SIRT7) has emerged as a pivotal regulator of p53, fine-tuning its activity in a context dependent manner. SIRT7 is frequently overexpressed in human cancer, yet its precise role in tumorigenesis and whether it involves p53 regulation is insufficiently understood. Depletion of SIRT7 in mice results in impaired embryo development and premature aging. While p53 activity has been suggested to contribute to tissue specific dysfunction in adult Sirt7 -/- mice, whether this also applies during development is currently unknown. By generating SIRT7 and p53 double-knockout mice, here we show that the demise of SIRT7-deficient embryos is not the result of p53 activity. Notably, although SIRT7 is commonly considered an oncogene, SIRT7 haploinsufficiency increases tumorigenesis in p53 knockout mice. Remarkably, in specific human tumors harboring p53 mutation, we identified that SIRT7 low expression correlates with poor patient prognosis. Transcriptomic analysis unveils a previously unrecognized interplay between SIRT7 and p53 in epithelial-to-mesenchymal transition (EMT) and extracellular matrix regulation with major implications for our understanding of embryonic development and tumor progression.
Collapse
Affiliation(s)
- Berta N. Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Unitat de Citologia i Histologia, Departament de Biologia Cel.lular, de Fisiologia i d’Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - Irene Fernández-Duran
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Yurdiana Hernandez
- Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), Rutgers University, Piscataway, NJ, United States
| | - Shahriar Tarighi
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Joshua K. Thackray
- Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), Rutgers University, Piscataway, NJ, United States
| | - Maria Espinosa-Alcantud
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Poonam Kumari
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandro Ianni
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Lionel Cesaire
- Department of Science, Borough of Manhattan Community College (BMCC), The City University of New York (CUNY), New York, NY, United States
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Jay Tischfield
- Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), Rutgers University, Piscataway, NJ, United States
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Lourdes Serrano
- Department of Science, Borough of Manhattan Community College (BMCC), The City University of New York (CUNY), New York, NY, United States
| |
Collapse
|
2
|
Anderson MJ, Misaghian S, Sharma N, Perantoni AO, Lewandoski M. Fgf8 promotes survival of nephron progenitors by regulating BAX/BAK-mediated apoptosis. Differentiation 2023; 130:7-15. [PMID: 36527791 PMCID: PMC10718080 DOI: 10.1016/j.diff.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (Fgfs) have long been implicated in processes critical to embryonic development, such as cell survival, migration, and differentiation. Several mouse models of organ development ascribe a prosurvival requirement specifically to FGF8. Here, we explore the potential role of prosurvival FGF8 signaling in kidney development. We have previously demonstrated that conditional deletion of Fgf8 in the mesodermal progenitors that give rise to the kidney leads to renal aplasia in the mutant neonate. Deleterious consequences caused by loss of FGF8 begin to manifest by E14.5 when massive aberrant cell death occurs in the cortical nephrogenic zone in the rudimentary kidney as well as in the renal vesicles that give rise to the nephrons. To rescue cell death in the Fgf8 mutant kidney, we inactivate the genes encoding the pro-apoptotic factors BAK and BAX. In a wild-type background, the loss of Bak and Bax abrogates normal cell death and has minimal effect on renal development. However, in Fgf8 mutants, the combined loss of Bak and Bax rescues aberrant cell death in the kidneys and restores some measure of kidney development: 1) the nephron progenitor population is greatly increased; 2) some glomeruli form, which are rarely observed in Fgf8 mutants; and 3) kidney size is rescued by about 50% at E18.5. The development of functional nephrons, however, is not rescued. Thus, FGF8 signaling is required for nephron progenitor survival by regulating BAK/BAX and for subsequent steps involving, as yet, undefined roles in kidney development.
Collapse
Affiliation(s)
- Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Salvia Misaghian
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Nirmala Sharma
- Renal Differentiation and Neoplasia Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Alan O Perantoni
- Renal Differentiation and Neoplasia Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
3
|
Dong XC. Sirtuin 6-A Key Regulator of Hepatic Lipid Metabolism and Liver Health. Cells 2023; 12:cells12040663. [PMID: 36831330 PMCID: PMC9954390 DOI: 10.3390/cells12040663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Sirtuin 6 (SIRT6) is an NAD-dependent deacetylase/deacylase/mono-ADP ribosyltransferase, a member of the sirtuin protein family. SIRT6 has been implicated in hepatic lipid homeostasis and liver health. Hepatic lipogenesis is driven by several master regulators including liver X receptor (LXR), carbohydrate response element binding protein (ChREBP), and sterol regulatory element binding protein 1 (SREBP1). Interestingly, these three transcription factors can be negatively regulated by SIRT6 through direct deacetylation. Fatty acid oxidation is regulated by peroxisome proliferator activated receptor alpha (PPARα) in the liver. SIRT6 can promote fatty acid oxidation by the activation of PPARα or the suppression of miR-122. SIRT6 can also directly modulate acyl-CoA synthetase long chain family member 5 (ACSL5) activity for fatty acid oxidation. SIRT6 also plays a critical role in the regulation of total cholesterol and low-density lipoprotein (LDL)-cholesterol through the regulation of SREBP2 and proprotein convertase subtilisin/kexin type 9 (PCSK9), respectively. Hepatic deficiency of Sirt6 in mice has been shown to cause hepatic steatosis, inflammation, and fibrosis, hallmarks of alcoholic and nonalcoholic steatohepatitis. SIRT6 can dampen hepatic inflammation through the modulation of macrophage polarization from M1 to M2 type. Hepatic stellate cells are a key cell type in hepatic fibrogenesis. SIRT6 plays a strong anti-fibrosis role by the suppression of multiple fibrogenic pathways including the transforming growth factor beta (TGFβ)-SMAD family proteins and Hippo pathways. The role of SIRT6 in liver cancer is quite complicated, as both tumor-suppressive and tumor-promoting activities have been documented in the literature. Overall, SIRT6 has multiple salutary effects on metabolic homeostasis and liver health, and it may serve as a therapeutic target for hepatic metabolic diseases. To date, numerous activators and inhibitors of SIRT6 have been developed for translational research.
Collapse
Affiliation(s)
- X. Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Zeng J, Guo J, Huang S, Cheng Y, Luo F, Xu X, Chen R, Ma G, Wang Y. The roles of sirtuins in ferroptosis. Front Physiol 2023; 14:1131201. [PMID: 37153222 PMCID: PMC10157232 DOI: 10.3389/fphys.2023.1131201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis represents a novel non-apoptotic form of regulated cell death that is driven by iron-dependent lipid peroxidation and plays vital roles in various diseases including cardiovascular diseases, neurodegenerative disorders and cancers. Plenty of iron metabolism-related proteins, regulators of lipid peroxidation, and oxidative stress-related molecules are engaged in ferroptosis and can regulate this complex biological process. Sirtuins have broad functional significance and are targets of many drugs in the clinic. Recently, a growing number of studies have revealed that sirtuins can participate in the occurrence of ferroptosis by affecting many aspects such as redox balance, iron metabolism, and lipid metabolism. This article reviewed the studies on the roles of sirtuins in ferroptosis and the related molecular mechanisms, highlighting valuable targets for the prevention and treatment of ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jieqing Zeng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Junhao Guo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Si Huang
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Fei Luo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Xusan Xu
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| | - Yajun Wang
- Institute of Respiratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| |
Collapse
|
5
|
Guo Z, Li P, Ge J, Li H. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging Dis 2022; 13:1787-1822. [PMID: 36465178 PMCID: PMC9662279 DOI: 10.14336/ad.2022.0413] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/13/2022] [Indexed: 07/28/2023] Open
Abstract
As an important NAD+-dependent enzyme, SIRT6 has received significant attention since its discovery. In view of observations that SIRT6-deficient animals exhibit genomic instability and metabolic disorders and undergo early death, SIRT6 has long been considered a protein of longevity. Recently, growing evidence has demonstrated that SIRT6 functions as a deacetylase, mono-ADP-ribosyltransferase and long fatty deacylase and participates in a variety of cellular signaling pathways from DNA damage repair in the early stage to disease progression. In this review, we elaborate on the specific substrates and molecular mechanisms of SIRT6 in various physiological and pathological processes in detail, emphasizing its links to aging (genomic damage, telomere integrity, DNA repair), metabolism (glycolysis, gluconeogenesis, insulin secretion and lipid synthesis, lipolysis, thermogenesis), inflammation and cardiovascular diseases (atherosclerosis, cardiac hypertrophy, heart failure, ischemia-reperfusion injury). In addition, the most recent advances regarding SIRT6 modulators (agonists and inhibitors) as potential therapeutic agents for SIRT6-mediated diseases are reviewed.
Collapse
Affiliation(s)
- Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Peek SL, Bosch PJ, Bahl E, Iverson BJ, Parida M, Bais P, Manak JR, Michaelson JJ, Burgess RW, Weiner JA. p53-mediated neurodegeneration in the absence of the nuclear protein Akirin2. iScience 2022; 25:103814. [PMID: 35198879 PMCID: PMC8844820 DOI: 10.1016/j.isci.2022.103814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Proper gene regulation is critical for both neuronal development and maintenance as the brain matures. We previously demonstrated that Akirin2, an essential nuclear protein that interacts with transcription factors and chromatin remodeling complexes, is required for the embryonic formation of the cerebral cortex. Here we show that Akirin2 plays a mechanistically distinct role in maintaining healthy neurons during cortical maturation. Restricting Akirin2 loss to excitatory cortical neurons resulted in progressive neurodegeneration via necroptosis and severe cortical atrophy with age. Comparing transcriptomes from Akirin2-null postnatal neurons and cortical progenitors revealed that targets of the tumor suppressor p53, a regulator of both proliferation and cell death encoded by Trp53, were consistently upregulated. Reduction of Trp53 rescued neurodegeneration in Akirin2-null neurons. These data: (1) implicate Akirin2 as a critical neuronal maintenance protein, (2) identify p53 pathways as mediators of Akirin2 functions, and (3) suggest Akirin2 dysfunction may be relevant to neurodegenerative diseases.
Collapse
Affiliation(s)
- Stacey L. Peek
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Peter J. Bosch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Ethan Bahl
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Brianna J. Iverson
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Mrutyunjaya Parida
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Departments of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
- Roy J. Carver Center for Genomics, University of Iowa, Iowa City, IA 52242, USA
| | - Preeti Bais
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - J. Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Departments of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
- Roy J. Carver Center for Genomics, University of Iowa, Iowa City, IA 52242, USA
| | - Jacob J. Michaelson
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Communication Sciences and Disorders, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | | | - Joshua A. Weiner
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Li L, Zhang H, Chen B, Xia B, Zhu R, Liu Y, Dai X, Ye Z, Zhao D, Mo F, Gao S, Orekhov AN, Prentki M, Wang L, Guo S, Zhang D. BaZiBuShen alleviates cognitive deficits and regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways in aging mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114653. [PMID: 34547420 DOI: 10.1016/j.jep.2021.114653] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE BaZiBuShen formula (BZBS) is clinically used to counteract mental fatigue and to retard the aging process. Brain aging echoes in major risks of human sufferings and has become one of the main challenges to our societies and the health-care systems. AIM OF THE STUDY To investigate the effect and mode of action of BZBS on aging-associated cognitive impairments. MATERIALS AND METHODS BZBS was orally administered to D-galactose and NaNO2-induced aging mice. Premature senescence was assessed using the Morris water maze, step-down type passive avoidance, and pole-climbing tests. Telomere length was examined by qPCR analysis. Telomerase activity was assessed using PCR ELISA assay. Mitochondrial complex IV activity was examined by biochemical test. The levels of redox and immune status were determined by ELISA or biochemical assay. The expressions of sirtuin 6 (Sirt6), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), P53, telomerase reverse transcriptase (TERT), heme oxygenase-1 (HO-1), phospho(p)-nuclear factor erythroid-2 related factor 2 (NRF2), caspase-3, Bcl-2 associated x (Bax), and B-cell lymphoma-2 (Bcl-2) in the cerebral cortex were examined by Western blot and/or immunohistochemical staining. RESULTS BZBS intervention ameliorated reduced brain performances in aging mice, including memory, cognitive, and motor functions. In addition, BZBS administration to aging mice preserved redox homeostasis, attenuated immunosenescence, and maintained telomerase activity and telomere length. Moreover, BZBS treatment were associated with a declines in P53, caspase-3, Bax expressions and an increase in Sirt6, p-HO-1, p-NRF2, PGC-1α, and Bcl-2 expressions in the brains of this rapid aging mouse. CONCLUSIONS BZBS attenuates premature senescence possibly via the preservation of redox homeostasis and telomere integrity, and inhibition of apoptosis in rapid aging mouse. The mechanism governing the alterations may be associated with through the activation of Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways. The results suggest that BZBS may provide a novel strategy for confronting aging and age-associated diseases.
Collapse
Affiliation(s)
- Lin Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hao Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Beibei Chen
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bingke Xia
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ruyuan Zhu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zimengwei Ye
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dandan Zhao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fangfang Mo
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sihua Gao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, H2X 0A9, QC, Canada.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shuzhen Guo
- Department of Scientific Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongwei Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Wu S, Lan J, Li L, Wang X, Tong M, Fu L, Zhang Y, Xu J, Chen X, Chen H, Li R, Wu Y, Xin J, Yan X, Li H, Xue K, Li X, Zhuo C, Jiang W. Sirt6 protects cardiomyocytes against doxorubicin-induced cardiotoxicity by inhibiting P53/Fas-dependent cell death and augmenting endogenous antioxidant defense mechanisms. Cell Biol Toxicol 2021; 39:237-258. [PMID: 34713381 DOI: 10.1007/s10565-021-09649-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Sirt6, a class III NAD+-dependent deacetylase of the sirtuin family, is a highly specific H3 deacetylase and plays important roles in regulating cellular growth and death. The induction of oxidative stress and death is the critical mechanism involved in cardiomyocyte injury and cardiac dysfunction in doxorubicin-induced cardiotoxicity, but the regulatory role of Sirt6 in the fate of DOX-impaired cardiomyocytes is poorly understood. In the present study, we exposed Sirt6 heterozygous (Sirt6+/-) mice and their littermates as well as cultured neonatal rat cardiomyocytes to DOX, then investigated the role of Sirt6 in mitigating oxidative stress and cardiac injury in the DOX-treated myocardium. Sirt6 partial knockout or silencing worsened cardiac damage, remodeling, and oxidative stress injury in mice or cultured cardiomyocytes with DOX challenge. Cardiomyocytes infected with adenoviral constructs encoding Sirt6 showed reversal of this DOX-induced damage. Intriguingly, Sirt6 reduced oxidative stress injury by upregulating endogenous antioxidant levels, interacted with oxidative stress-stirred p53, and acted as a co-repressor of p53 in nuclei. Sirt6 was recruited by p53 to the promoter regions of the target genes Fas and FasL and further suppressed p53 transcription activity by reducing histone acetylation. Sirt6 inhibited Fas/FasL signaling and attenuated both Fas-FADD-caspase-8 apoptotic and Fas-RIP3 necrotic pathways. These results indicate that Sirt6 protects the heart against DOX-induced cardiotoxicity by upregulating endogenous antioxidants, as well as suppressing oxidative stress and cell death signaling pathways dependent on ROS-stirred p53 transcriptional activation, thus reducing Fas-FasL-mediated apoptosis and necrosis. •Sirt6 is significantly decreased in DOX-insulted mouse hearts and cardiomyocytes. •Sirt6 attenuates DOX-induced cardiac atrophy, dysfunction and oxidative stress. • Sirt6 reduces oxidative stress injury by upregulating endogenous antioxidants. • Sirt6 interacts with p53 as a co-repressor to suppress p53 transcriptional regulation and inhibits Fas-FasL-mediated apoptosis and necrosis downstream of p53.
Collapse
Affiliation(s)
- Sisi Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.,Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jie Lan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lingyu Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiaoxiao Wang
- Cancer Hospital, Chongqing University, Chongqing, China.,Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Mingming Tong
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Li Fu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanjing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiayi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuemei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Hongying Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ruli Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yao Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Juanjuan Xin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Yan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - He Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kunyue Xue
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Caili Zhuo
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
9
|
Garcia-Venzor A, Toiber D. SIRT6 Through the Brain Evolution, Development, and Aging. Front Aging Neurosci 2021; 13:747989. [PMID: 34720996 PMCID: PMC8548377 DOI: 10.3389/fnagi.2021.747989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
During an organism's lifespan, two main phenomena are critical for the organism's survival. These are (1) a proper embryonic development, which permits the new organism to function with high fitness, grow and reproduce, and (2) the aging process, which will progressively undermine its competence and fitness for survival, leading to its death. Interestingly these processes present various similarities at the molecular level. Notably, as organisms became more complex, regulation of these processes became coordinated by the brain, and failure in brain activity is detrimental in both development and aging. One of the critical processes regulating brain health is the capacity to keep its genomic integrity and epigenetic regulation-deficiency in DNA repair results in neurodevelopmental and neurodegenerative diseases. As the brain becomes more complex, this effect becomes more evident. In this perspective, we will analyze how the brain evolved and became critical for human survival and the role Sirt6 plays in brain health. Sirt6 belongs to the Sirtuin family of histone deacetylases that control several cellular processes; among them, Sirt6 has been associated with the proper embryonic development and is associated with the aging process. In humans, Sirt6 has a pivotal role during brain aging, and its loss of function is correlated with the appearance of neurodegenerative diseases such as Alzheimer's disease. However, Sirt6 roles during brain development and aging, especially the last one, are not observed in all species. It appears that during the brain organ evolution, Sirt6 has gained more relevance as the brain becomes bigger and more complex, observing the most detrimental effect in the brains of Homo sapiens. In this perspective, we part from the evolution of the brain in metazoans, the biological similarities between brain development and aging, and the relevant functions of Sirt6 in these similar phenomena to conclude with the evidence suggesting a more relevant role of Sirt6 gained in the brain evolution.
Collapse
Affiliation(s)
- Alfredo Garcia-Venzor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
10
|
Shi X, Jiang Y, Kitano A, Hu T, Murdaugh RL, Li Y, Hoegenauer KA, Chen R, Takahashi K, Nakada D. Nuclear NAD + homeostasis governed by NMNAT1 prevents apoptosis of acute myeloid leukemia stem cells. SCIENCE ADVANCES 2021; 7:7/30/eabf3895. [PMID: 34290089 PMCID: PMC8294764 DOI: 10.1126/sciadv.abf3895] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/03/2021] [Indexed: 05/13/2023]
Abstract
Metabolic dysregulation underlies malignant phenotypes attributed to cancer stem cells, such as unlimited proliferation and differentiation blockade. Here, we demonstrate that NAD+ metabolism enables acute myeloid leukemia (AML) to evade apoptosis, another hallmark of cancer stem cells. We integrated whole-genome CRISPR screening and pan-cancer genetic dependency mapping to identify NAMPT and NMNAT1 as AML dependencies governing NAD+ biosynthesis. While both NAMPT and NMNAT1 were required for AML, the presence of NAD+ precursors bypassed the dependence of AML on NAMPT but not NMNAT1, pointing to NMNAT1 as a gatekeeper of NAD+ biosynthesis. Deletion of NMNAT1 reduced nuclear NAD+, activated p53, and increased venetoclax sensitivity. Conversely, increased NAD+ biosynthesis promoted venetoclax resistance. Unlike leukemia stem cells (LSCs) in both murine and human AML xenograft models, NMNAT1 was dispensable for hematopoietic stem cells and hematopoiesis. Our findings identify NMNAT1 as a previously unidentified therapeutic target that maintains NAD+ for AML progression and chemoresistance.
Collapse
Affiliation(s)
- Xiangguo Shi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yajian Jiang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ayumi Kitano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tianyuan Hu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rebecca L Murdaugh
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kevin A Hoegenauer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Li L, Chen B, An T, Zhang H, Xia B, Li R, Zhu R, Tian Y, Wang L, Zhao D, Mo F, Li Y, Yang G, Orekhov AN, Prentki M, Zhang D, Jiang G, Zhu X. BaZiBuShen alleviates altered testicular morphology and spermatogenesis and modulates Sirt6/P53 and Sirt6/NF-κB pathways in aging mice induced by D-galactose and NaNO 2. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113810. [PMID: 33508368 DOI: 10.1016/j.jep.2021.113810] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/12/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sperm infertility and testicular atrophy are symptoms associated with aging. BaZiBuShen formula (BZBS), a patented Chinese herbal prescription composed of Semen Cuscutae, Fructus Lycii, Epimedii Folium, Fructus Schisandrae Sphenantherae, Fructus Cnidii, Fructus Rosae Laevigatae, Semen Allii Tuberosi., Radix Morindae Officinalis, Herba Cistanches, Fructus Rubi, Radix Rehmanniae Recens, Radix Cyathulae, Radix Ginseng, Cervi Cornu Pantotrichum, Hippocampus, and Fuctus Toosendan, has been used as a kidney-tonifying and anti-aging drug as well as for the treatment of impotence and male infertility in traditional Chinese medicine. AIM OF THE STUDY We aimed at investigating whether BZBS preserves sperm and testes morphology in aging mice, and to explore the underlying mechanisms. MATERIALS AND METHODS BZBS was orally administered to aging mice induced by D-galactose (D-gal) and NaNO2 for 65 days. Sperm quality and testes pathophysiological alterations were examined by a Semen Analysis System, hematoxylin-eosin staining, transmission electron microscopy, and mitochondrial complex IV activity. In addition, serum levels of total antioxidant capacity (TAC), malondialdehyde (MDA), 8-hydroxy-desoxyguanosine (8-OH-dG), reduced glutathione (GSH), oxidized glutathione disulfide (GSSG), testosterone (T), follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) and tumor necrosis factor-α (TNF-α) were determined by ELISA. The expressions of P450 aromatase (CYP19), sirtuin 6 (Sirt6), P53, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB)-p65, and phospho-NF-κB-p65 (NF-κB-pp65) in the testes were examined by western blot and/or immunohistochemical staining. RESULTS Sustained exposure to D-gal/NaNO2 caused a deterioration of sperm quality and testes morphology in this rapid aging mouse model. BZBS treatment curtailed these alterations. These beneficial effects were associated with increased serum levels of TAC, GSH/GSSG, T, E2, and FSH, and decreased levels of MDA, TNF-α, and 8-OH-dG. BZBS treatment also downregulated the expressions of P53, iNOS, and NF-κB-pp65, as well as upregulated the expressions of Sirt6 and CYP19 in aging testes. CONCLUSIONS BZBS preserves testicular morphology and spermatogenesis possibly via inhibition of oxidative stress and the modulation of the Sirt6/P53 and Sirt6/NF-κB signaling pathways. The results shed light on the beneficial effect of BZBS on sperm quality and fertility in aging males.
Collapse
Affiliation(s)
- Lin Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Beibei Chen
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tian An
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hao Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bingke Xia
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Rui Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ruyuan Zhu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yimiao Tian
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dandan Zhao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fangfang Mo
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yu Li
- Department of Histo-embryology, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ge Yang
- The Geriatric Department, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China, Beijing, 100053, China.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, QC, Canada.
| | - Dongwei Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Guangjian Jiang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaofeng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
12
|
Wang M, Lin H. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annu Rev Biochem 2021; 90:245-285. [PMID: 33848425 DOI: 10.1146/annurev-biochem-082520-125411] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.
Collapse
Affiliation(s)
- Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA; .,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
13
|
Xia C, Jiang T, Wang Y, Chen X, Hu Y, Gao Y. The p53/miR-145a Axis Promotes Cellular Senescence and Inhibits Osteogenic Differentiation by Targeting Cbfb in Mesenchymal Stem Cells. Front Endocrinol (Lausanne) 2021; 11:609186. [PMID: 33505358 PMCID: PMC7829338 DOI: 10.3389/fendo.2020.609186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
The osteogenic differentiation capacity of senescent bone marrow mesenchymal stem cells (MSCs) is reduced. p53 not only regulates cellular senescence but also functions as a negative regulator in bone formation. However, the role of p53 in MSCs senescence and differentiation has not been extensively explored. In the present study, we investigated the molecular mechanism of p53 in MSCs senescence and osteogenic differentiation. We found that p53 was upregulated during cellular senescence and osteogenic differentiation of MSCs respectively induced by H2O2 and BMP9. Similarly, the expression of p53-induced miR-145a was increased significantly. Furthermore, Overexpression of miR-145a in MSCs promoted cellular senescence and inhibited osteogenic differentiation. Then, we identified that p53-induced miR-145a inhibited osteogenic differentiation by targeting core binding factor beta (Cbfb), and the restoration of Cbfb expression rescued the inhibitory effects of miRNA-145a. In summary, our results indicate that p53/miR-145a axis exert its functions both in promoting senescence and inhibiting osteogenesis of MSCs, and the novel p53/miR-145a/Cbfb axis in osteogenic differentiation of MSCs may represent new targets in the treatment of osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanhong Gao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Raj S, Dsouza LA, Singh SP, Kanwal A. Sirt6 Deacetylase: A Potential Key Regulator in the Prevention of Obesity, Diabetes and Neurodegenerative Disease. Front Pharmacol 2020; 11:598326. [PMID: 33442387 PMCID: PMC7797778 DOI: 10.3389/fphar.2020.598326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sirtuins, NAD + dependent proteins belonging to class III histone deacetylases, are involved in regulating numerous cellular processes including cellular stress, insulin resistance, inflammation, mitochondrial biogenesis, chromatin silencing, cell cycle regulation, transcription, and apoptosis. Of the seven mammalian sirtuins present in humans, Sirt6 is an essential nuclear sirtuin. Until recently, Sirt6 was thought to regulate chromatin silencing, but new research indicates its role in aging, diabetes, cardiovascular disease, lipid metabolism, neurodegenerative diseases, and cancer. Various murine models demonstrate that Sirt6 activation is beneficial in alleviating many disease conditions and increasing lifespan, showing that Sirt6 is a critical therapeutic target in the treatment of various disease conditions in humans. Sirt6 also regulates the pathogenesis of multiple diseases by acting on histone proteins and non-histone proteins. Endogenous and non-endogenous modulators regulate both activation and inhibition of Sirt6. Few Sirt6 specific non-endogenous modulators have been identified. Hence the identification of Sirt6 specific modulators may have potential therapeutic roles in the diseases described above. In this review, we describe the development of Sirt6, the role it plays in the human condition, the functional role and therapeutic importance in disease processes, and specific modulators and molecular mechanism of Sirt6 in the regulation of metabolic homeostasis, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Swapnil Raj
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Liston Augustine Dsouza
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shailendra Pratap Singh
- Department of Biomedical Engineering, School of Engineering and Technology, Central University of Rajasthan, Kishangarh, India
| | - Abhinav Kanwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| |
Collapse
|
15
|
Geng A, Tang H, Huang J, Qian Z, Qin N, Yao Y, Xu Z, Chen H, Lan L, Xie H, Zhang J, Jiang Y, Mao Z. The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2. Nucleic Acids Res 2020; 48:9181-9194. [PMID: 32789493 PMCID: PMC7498349 DOI: 10.1093/nar/gkaa661] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
The NAD+-dependent deacetylase and mono-ADP-ribosyl transferase SIRT6 stabilizes the genome by promoting DNA double strand break repair, thereby acting as a tumor suppressor. However, whether SIRT6 regulates nucleotide excision repair (NER) remains unknown. Here, we showed that SIRT6 was recruited to sites of UV-induced DNA damage and stimulated the repair of UV-induced DNA damage. Mechanistic studies further indicated that SIRT6 interacted with DDB2, the major sensor initiating global genome NER (GG-NER), and that the interaction was enhanced upon UV irradiation. SIRT6 deacetylated DDB2 at two lysine residues, K35 and K77, upon UV stress and then promoted DDB2 ubiquitination and segregation from chromatin, thereby facilitating downstream signaling. In addition, we characterized several SIRT6 mutations derived from melanoma patients. These SIRT6 mutants ablated the stimulatory effect of SIRT6 on NER and destabilized the genome due to (i) partial loss of enzymatic activity (P27S or H50Y), (ii) a nonsense mutation (R150*) or (iii) high turnover rates (G134W). Overall, we demonstrate that SIRT6 promotes NER by deacetylating DDB2, thereby preventing the onset of melanomagenesis.
Collapse
Affiliation(s)
- Anke Geng
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huanyin Tang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jin Huang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zhen Qian
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Nan Qin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yunxia Yao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhu Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hao Chen
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hongjuan Xie
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, 200025 Shanghai, China
| | - Ying Jiang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Tsingtao Advanced Research Institute, Tongji University, 67 Yinchuan West Road, Qingdao 266071, China
| |
Collapse
|
16
|
Wei H, Khawar MB, Tang W, Wang L, Wang L, Liu C, Jiang H, Li W. Sirt6 is required for spermatogenesis in mice. Aging (Albany NY) 2020; 12:17099-17113. [PMID: 32915773 PMCID: PMC7521524 DOI: 10.18632/aging.103641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
SIRT6, a nuclear protein, has been implicated in a number of essential cellular processes, such as the DNA damage response, metabolic homeostasis, inflammation, tumorigenesis and aging. However, the role of Sirt6 in the regulation of spermatogenesis is yet unknown. In the present study, we successfully generated Sirt6-/- mice on a C57BL6/ICR mixed background and found that some Sirt6-/- mice survived beyond eight weeks. We further revealed that spermatogenesis in Sirt6-/- mice was arrested at the elongated spermatid stage. Sirt6-/- male mice were completely infertile and had an increased number of apoptotic spermatids. To our surprise, deacetylation activities of SIRT6 on H3K9ac, H3K18ac and H3K56c were not required for spermatogenesis. Therefore, our findings establish a novel link between Sirt6 and male fertility, suggesting an essential role of Sirt6 in spermatogenesis.
Collapse
Affiliation(s)
- Huafang Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Tang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Lina Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China,Department of Andrology, Peking University Third Hospital, Beijing 100191, China,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Agudelo Garcia PA, Nagarajan P, Parthun MR. Hat1-Dependent Lysine Acetylation Targets Diverse Cellular Functions. J Proteome Res 2020; 19:1663-1673. [PMID: 32081014 DOI: 10.1021/acs.jproteome.9b00843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lysine acetylation has emerged as one of the most important post-translational modifications, regulating different biological processes. However, its regulation by lysine acetyltransferases is still unclear in most cases. Hat1 is a lysine acetyltransferase originally identified based on its ability to acetylate histones. Using an unbiased proteomics approach, we have determined how loss of Hat1 affects the mammalian acetylome. Hat1+/+ and Hat1-/- mouse embryonic fibroblast cell lines were grown in both glucose- and galactose-containing media, as Hat1 is required for growth on galactose, and Hat1-/- cells exhibit defects in mitochondrial function. Following trypsin digestion of whole cell extracts, acetylated peptides were enriched by acetyllysine affinity purification, and acetylated peptides were identified and analyzed by label-free quantitation. Comparison of the acetylome from Hat1+/+ cells grown on galactose and glucose demonstrated that there are large carbon source-dependent changes in the mammalian acetylome where the acetylation of enzymes involved in glycolysis were the most affected. Comparisons of the acetylomes from Hat1+/+ and Hat1-/- cells identified 65 proteins whose acetylation decreased by at least 2.5-fold in cells lacking Hat1. In Hat1-/- cells, acetylation of the autoregulatory loop of CBP (CREB-binding protein) was the most highly affected, decreasing by up to 20-fold. In addition to the proteins involved in chromatin structure, Hat1-dependent acetylation was also found in a number of transcriptional regulators, including p53 and mitochondrial proteins. Hat1 mitochondrial localization suggests that it may be directly involved in the acetylation of mitochondrial proteins. Data are available via ProteomeXchange with identifier PXD017362.
Collapse
Affiliation(s)
- Paula A Agudelo Garcia
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Chang AR, Ferrer CM, Mostoslavsky R. SIRT6, a Mammalian Deacylase with Multitasking Abilities. Physiol Rev 2020; 100:145-169. [PMID: 31437090 PMCID: PMC7002868 DOI: 10.1152/physrev.00030.2018] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian sirtuins have emerged in recent years as critical modulators of multiple biological processes, regulating cellular metabolism, DNA repair, gene expression, and mitochondrial biology. As such, they evolved to play key roles in organismal homeostasis, and defects in these proteins have been linked to a plethora of diseases, including cancer, neurodegeneration, and aging. In this review, we describe the multiple roles of SIRT6, a chromatin deacylase with unique and important functions in maintaining cellular homeostasis. We attempt to provide a framework for such different functions, for the ability of SIRT6 to interconnect chromatin dynamics with metabolism and DNA repair, and the open questions the field will face in the future, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew R Chang
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Christina M Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
19
|
Zhu Y, Gu L, Lin X, Liu C, Lu B, Cui K, Zhou F, Zhao Q, Prochownik EV, Fan C, Li Y. Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Mol Cell 2019; 77:138-149.e5. [PMID: 31735643 DOI: 10.1016/j.molcel.2019.10.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/14/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
PGAM5 is a mitochondrial serine/threonine phosphatase that regulates multiple metabolic pathways and contributes to tumorigenesis in a poorly understood manner. We show here that PGAM5 inhibition attenuates lipid metabolism and colorectal tumorigenesis in mice. PGAM5-mediated dephosphorylation of malic enzyme 1 (ME1) at S336 allows increased ACAT1-mediated K337 acetylation, leading to ME1 dimerization and activation, both of which are reversed by NEK1 kinase-mediated S336 phosphorylation. SIRT6 deacetylase antagonizes ACAT1 function in a manner that involves mutually exclusive ME1 S336 phosphorylation and K337 acetylation. ME1 also promotes nicotinamide adenine dinucleotide phosphate (NADPH) production, lipogenesis, and colorectal cancers in which ME1 transcripts are upregulated and ME1 protein is hypophosphorylated at S336 and hyperacetylated at K337. PGAM5 and ME1 upregulation occur via direct transcriptional activation mediated by β-catenin/TCF1. Thus, the balance between PGAM5-mediated dephosphorylation of ME1 S336 and ACAT1-mediated acetylation of K337 strongly influences NADPH generation, lipid metabolism, and the susceptibility to colorectal tumorigenesis.
Collapse
Affiliation(s)
- Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Li Gu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xi Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Cheng Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Bingjun Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071 China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071 China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
20
|
Nagarajan P, Agudelo Garcia PA, Iyer CC, Popova LV, Arnold WD, Parthun MR. Early-onset aging and mitochondrial defects associated with loss of histone acetyltransferase 1 (Hat1). Aging Cell 2019; 18:e12992. [PMID: 31290578 PMCID: PMC6718594 DOI: 10.1111/acel.12992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022] Open
Abstract
Histone acetyltransferase 1 (Hat1) is responsible for the acetylation of newly synthesized histone H4 on lysines 5 and 12 during the process of chromatin assembly. To understand the broader biological role of Hat1, we have generated a conditional mouse knockout model of this enzyme. We previously reported that Hat1 is required for viability and important for mammalian development and genome stability. In this study, we show that haploinsufficiency of Hat1 results in a significant decrease in lifespan. Defects observed in Hat1+/− mice are consistent with an early‐onset aging phenotype. These include lordokyphosis (hunchback), muscle atrophy, minor growth retardation, reduced subcutaneous fat, cancer, and paralysis. In addition, the expression of Hat1 is linked to the normal aging process as Hat1 mRNA and protein becomes undetectable in many tissues in old mice. At the cellular level, fibroblasts from Hat1 haploinsufficient embryos undergo early senescence and accumulate high levels of p21. Hat1+/− mouse embryonic fibroblasts (MEFs) display modest increases in endogenous DNA damage but have significantly higher levels of reactive oxygen species (ROS). Consistently, further studies show that Hat1−/− MEFs exhibit mitochondrial defects suggesting a critical role for Hat1 in mitochondrial function. Taken together, these data show that loss of Hat1 induces multiple hallmarks of early‐onset aging.
Collapse
Affiliation(s)
- Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University Columbus Ohio
| | - Paula A. Agudelo Garcia
- Department of Biological Chemistry and Pharmacology, The Ohio State University Columbus Ohio
| | - Chitra C. Iyer
- Department of Neurology The Ohio State University Columbus Ohio
| | - Liudmila V. Popova
- Department of Biological Chemistry and Pharmacology, The Ohio State University Columbus Ohio
| | | | - Mark R. Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University Columbus Ohio
| |
Collapse
|
21
|
Zhao J, Wozniak A, Adams A, Cox J, Vittal A, Voss J, Bridges B, Weinman SA, Li Z. SIRT7 regulates hepatocellular carcinoma response to therapy by altering the p53-dependent cell death pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:252. [PMID: 31196136 PMCID: PMC6567523 DOI: 10.1186/s13046-019-1246-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Background Optimal therapeutic strategies for hepatocellular carcinoma (HCC) patients are still challenging due to the high recurrence rate after surgical resection and chemotherapy resistance. Growing evidence shows that genetic and epigenetic alterations are involved in HCC progression and resistance to therapy, however the molecular mechanisms underlying resistance to therapy have not been fully understood. Methods Expression of SIRT7 in 17 paired paraffin-embedded HCC tissues and adjacent nontumoral liver tissues was examined by immunohistochemistry and Western blot. The mRNA expression of SIRT7 in 20 paired frozen HCC tissues and adjacent nontumoral liver tissues was analyzed by quantitative RT-PCR. The biologic consequences of overexpression and knockdown of SIRT7 in HCC therapy sensitivity were studied in vitro and in vivo. Interaction between SIRT7 and p53 were studied in HCC cell lines. Results SIRT7 expression was frequently upregulated in clinical HCC samples, and its expression was highly associated with TACE-resistance and poor survival (P = 0.008.) Depletion of SIRT7 from multiple liver cancer cell lines significantly increased doxorubicin toxicity while overexpression of SIRT7 largely abolished doxorubicin induced apoptosis. At the molecular level, we observed that SIRT7 interacts with and induces deacetylation of p53 at lysines 320 and 373. Deacetylated p53 showed significantly less affinity for the NOXA promoter and its transcription. In mouse xenografts, SIRT7 suppression increased doxorubicin induced p53 activation, inhibited tumor growth and induced apoptosis. Conclusion The newly identified SIRT7-p53-NOXA axis partially illustrates the molecular mechanism of HCC resistance to therapy and represents a novel potential therapeutic target for HCC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1246-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Ann Wozniak
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Abby Adams
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Josiah Cox
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Anusha Vittal
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Jordan Voss
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Brian Bridges
- Liver Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA. .,Liver Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Zhuan Li
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
22
|
Kosciuk T, Wang M, Hong JY, Lin H. Updates on the epigenetic roles of sirtuins. Curr Opin Chem Biol 2019; 51:18-29. [PMID: 30875552 DOI: 10.1016/j.cbpa.2019.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Sirtuins are a class of enzyme with NAD+-dependent protein lysine deacylase activities. They were initially discovered to regulate transcription and life span via histone deacetylase activities. Later studies expanded their activities to other proteins and acyl lysine modifications. Through deacylating various substrate proteins, they regulate many biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Here, we review recent understandings of the epigenetic functions (broadly defined to include transcriptional, post-transcriptional regulation, and DNA repair) of mammalian sirtuins. Because of the important functions of sirtuins, their own regulation is of great interest and is also discussed.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
p53 cooperates with SIRT6 to regulate cardiolipin de novo biosynthesis. Cell Death Dis 2018; 9:941. [PMID: 30237540 PMCID: PMC6148051 DOI: 10.1038/s41419-018-0984-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/28/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023]
Abstract
The tumor suppressor p53 has critical roles in regulating lipid metabolism, but whether and how p53 regulates cardiolipin (CL) de novo biosynthesis is unknown. Here, we report that p53 physically interacts with histone deacetylase SIRT6 in vitro and in vivo, and this interaction increases following palmitic acid (PA) treatment. In response to PA, p53 and SIRT6 localize to chromatin in a p53-dependent manner. Chromatin p53 and SIRT6 bind the promoters of CDP-diacylglycerol synthase 1 and 2 (CDS1 and CDS2), two enzymes required to catalyze CL de novo biosynthesis. Here, SIRT6 serves as a co-activator of p53 and effectively recruits RNA polymerase II to the CDS1 and CDS2 promoters to enhance CL de novo biosynthesis. Our findings reveal a novel, cooperative model executed by p53 and SIRT6 to maintain lipid homeostasis.
Collapse
|
24
|
Lee Y, Lee SJV, Min KJ. Meeting report: Asian Society for Aging Research Symposium 2018. TRANSLATIONAL MEDICINE OF AGING 2018. [DOI: 10.1016/j.tma.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|