1
|
Dejou J, Mandairon N, Didier A. Olfactory neurogenesis plays different parts at successive stages of life, implications for mental health. Front Neural Circuits 2024; 18:1467203. [PMID: 39175668 PMCID: PMC11338910 DOI: 10.3389/fncir.2024.1467203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
The olfactory bulb is a unique site of continuous neurogenesis, primarily generating inhibitory interneurons, a process that begins at birth and extends through infancy and adulthood. This review examines the characteristics of olfactory bulb neurogenesis, focusing on granule cells, the most numerous interneurons, and how their age and maturation affect their function. Adult-born granule cells, while immature, contribute to the experience-dependent plasticity of the olfactory circuit by enabling structural and functional synaptic changes. In contrast, granule cells born early in life form the foundational elements of the olfactory bulb circuit, potentially facilitating innate olfactory information processing. The implications of these neonatal cells on early life olfactory memory and their impact on adult perception, particularly in response to aversive events and susceptibility to emotional disorders, warrant further investigation.
Collapse
Affiliation(s)
- Jules Dejou
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
| | - Nathalie Mandairon
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
| | - Anne Didier
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Terrier C, Greco-Vuilloud J, Cavelius M, Thevenet M, Mandairon N, Didier A, Richard M. Long-term olfactory enrichment promotes non-olfactory cognition, noradrenergic plasticity and remodeling of brain functional connectivity in older mice. Neurobiol Aging 2024; 136:133-156. [PMID: 38364691 DOI: 10.1016/j.neurobiolaging.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Brain functional and structural changes lead to cognitive decline during aging, but a high level of cognitive stimulation during life can improve cognitive performances in the older adults, forming the cognitive reserve. Noradrenaline has been proposed as a molecular link between environmental stimulation and constitution of the cognitive reserve. Taking advantage of the ability of olfactory stimulation to activate noradrenergic neurons of the locus coeruleus, we used repeated olfactory enrichment sessions over the mouse lifespan to enable the cognitive reserve buildup. Mice submitted to olfactory enrichment, whether started in early or late adulthood, displayed improved olfactory discrimination at late ages and interestingly, improved spatial memory and cognitive flexibility. Moreover, olfactory and non-olfactory cognitive performances correlated with increased noradrenergic innervation in the olfactory bulb and dorsal hippocampus. Finally, c-Fos mapping and connectivity analysis revealed task-specific remodeling of functional neural networks in enriched older mice. Long-term olfactory enrichment thus triggers structural noradrenergic plasticity and network remodeling associated with better cognitive aging and thereby forms a promising mouse model of the cognitive reserve buildup.
Collapse
Affiliation(s)
- Claire Terrier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Juliette Greco-Vuilloud
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Matthias Cavelius
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Marc Thevenet
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Nathalie Mandairon
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Anne Didier
- Institut universitaire de France (IUF), France
| | - Marion Richard
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France.
| |
Collapse
|
3
|
Meng JH, Riecke H. Structural spine plasticity: Learning and forgetting of odor-specific subnetworks in the olfactory bulb. PLoS Comput Biol 2022; 18:e1010338. [PMID: 36279303 PMCID: PMC9632792 DOI: 10.1371/journal.pcbi.1010338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/03/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Learning to discriminate between different sensory stimuli is essential for survival. In rodents, the olfactory bulb, which contributes to odor discrimination via pattern separation, exhibits extensive structural synaptic plasticity involving the formation and removal of synaptic spines, even in adult animals. The network connectivity resulting from this plasticity is still poorly understood. To gain insight into this connectivity we present here a computational model for the structural plasticity of the reciprocal synapses between the dominant population of excitatory principal neurons and inhibitory interneurons. It incorporates the observed modulation of spine stability by odor exposure. The model captures the striking experimental observation that the exposure to odors does not always enhance their discriminability: while training with similar odors enhanced their discriminability, training with dissimilar odors actually reduced the discriminability of the training stimuli. Strikingly, this differential learning does not require the activity-dependence of the spine stability and occurs also in a model with purely random spine dynamics in which the spine density is changed homogeneously, e.g., due to a global signal. However, the experimentally observed odor-specific reduction in the response of principal cells as a result of extended odor exposure and the concurrent disinhibition of a subset of principal cells arise only in the activity-dependent model. Moreover, this model predicts the experimentally testable recovery of odor response through weak but not through strong odor re-exposure and the forgetting of odors via exposure to interfering odors. Combined with the experimental observations, the computational model provides strong support for the prediction that odor exposure leads to the formation of odor-specific subnetworks in the olfactory bulb. A key feature of the brain is its ability to learn through the plasticity of its network. The olfactory bulb in the olfactory system is a remarkable brain area whose anatomical structure evolves substantially still in adult animals by establishing new synaptic connections and removing existing ones. We present a computational model for this process and employ it to interpret recent experimental results. By comparing the results of our model with those of a random control model we identify various experimental observations that lend strong support to the notion that the network of the olfactory bulb comprises learned, odor-specific subnetworks. Moreover, our model explains the recent observation that the learning of odors does not always improve their discriminability and provides testable predictions for the recovery of odor response after repeated odor exposure and for when the learning of new odors interferes with retaining the memory of familiar odors.
Collapse
Affiliation(s)
- John Hongyu Meng
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
| | - Hermann Riecke
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
4
|
Changes in Dendritic Spine Morphology and Density of Granule Cells in the Olfactory Bulb of Anguilla anguilla (L., 1758): A Possible Way to Understand Orientation and Migratory Behavior. BIOLOGY 2022; 11:biology11081244. [PMID: 36009870 PMCID: PMC9405168 DOI: 10.3390/biology11081244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary The olfactory bulb can process odour cues through granular cells (GCs) and dendritic spines, changing their synaptic plasticity properties and their morphology. The GCs’ dendritic spines density and morphology were analysed in Anguilla anguilla, considering the olfaction as a driver involved in fish orientation and migration. For the head and neck morphology, spines were classified as mushroom, long thin, stubby, and filopodia. Spines’ density decreased from juvenile migrants to no-migrant stages and increased in the adult migrants. Spines’ density was comparable between glass and silver eels as an adaptation to migration, while at non-migrating phases, spines’ density decreased. For its phylogenetic Elopomorph attribution and its complex life cycle, A. anguilla could be recommended as a model species to study the development of dendritic spines in GCs of the olfactory bulb. Considering the role of olfaction in the orientation and migration of A. anguilla, the modification of environmental stimuli (ocean alterations and climate change) could represent contributing factors that threaten this critically endangered species. Abstract Olfaction could represent a pivotal process involved in fish orientation and migration. The olfactory bulb can manage olfactive signals at the granular cell (GC) and dendritic spine levels for their synaptic plasticity properties and changing their morphology and structural stability after environmental odour cues. The GCs’ dendritic spine density and morphology were analysed across the life stages of the catadromous Anguilla anguilla. According to the head and neck morphology, spines were classified as mushroom (M), long thin (LT), stubby (S), and filopodia (F). Total spines’ density decreased from juvenile migrants to no-migrant stages, to increase again in the adult migrant stage. Mean spines’ density was comparable between glass and silver eels as an adaptation to migration. At non-migrating phases, spines’ density decreased for M and LT, while M, LT, and S density increased in silver eels. A great dendritic spine development was found in the two migratory phases, regressing in trophic phases, but that could be recreated in adults, tracing the migratory memory of the routes travelled in juvenile phases. For its phylogenetic Elopomorph attribution and its complex life cycle, A. anguilla could be recommended as a model species to study the development of dendritic spines in GCs of the olfactory bulb as an index of synaptic plasticity involved in the modulation of olfactory stimuli. If olfaction is involved in the orientation and migration of A. anguilla and if eels possess a memory, these processes could be influenced by the modification of environmental stimuli (ocean alterations and rapid climate change) contributing to threatening this critically endangered species.
Collapse
|
5
|
The facets of olfactory learning. Curr Opin Neurobiol 2022; 76:102623. [PMID: 35998474 DOI: 10.1016/j.conb.2022.102623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Volatile chemicals in the environment provide ethologically important information to many animals. However, how animals learn to use this information is only beginning to be understood. This review highlights recent experimental advances elucidating olfactory learning in rodents, ranging from adaptations to the environment to task-dependent refinement and multisensory associations. The broad range of phenomena, mechanisms, and brain areas involved demonstrate the complex and multifaceted nature of olfactory learning.
Collapse
|
6
|
12 months is a pivotal age for olfactory perceptual learning and its underlying neuronal plasticity in aging mice. Neurobiol Aging 2022; 114:73-83. [DOI: 10.1016/j.neurobiolaging.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
7
|
Rebeca H, Karen PA, Elva A, Carmen C, Fernando P. Main Olfactory Bulb Reconfiguration by Prolonged Passive Olfactory Experience Correlates with Increased Brain‐Derived Neurotrophic Factor and Improved Innate Olfaction. Eur J Neurosci 2022; 55:1141-1161. [DOI: 10.1111/ejn.15610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Hernández‐Soto Rebeca
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM‐Campus Juriquilla México
| | - Pimentel‐Farfan Ana Karen
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM‐Campus Juriquilla México
| | - Adan‐Castro Elva
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, UNAM‐Campus Juriquilla México
| | - Clapp Carmen
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, UNAM‐Campus Juriquilla México
| | - Peña‐Ortega Fernando
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM‐Campus Juriquilla México
| |
Collapse
|
8
|
Forest J, Chalençon L, Midroit M, Terrier C, Caillé I, Sacquet J, Benetollo C, Martin K, Richard M, Didier A, Mandairon N. Role of Adult-Born Versus Preexisting Neurons Born at P0 in Olfactory Perception in a Complex Olfactory Environment in Mice. Cereb Cortex 2021; 30:534-549. [PMID: 31216001 DOI: 10.1093/cercor/bhz105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/26/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
Olfactory perceptual learning is defined as an improvement in the discrimination of perceptually close odorants after passive exposure to these odorants. In mice, simple olfactory perceptual learning involving the discrimination of two odorants depends on an increased number of adult-born neurons in the olfactory bulb, which refines the bulbar output. However, the olfactory environment is complex, raising the question of the adjustment of the bulbar network to multiple discrimination challenges. Perceptual learning of 1 to 6 pairs of similar odorants led to discrimination of all learned odor pairs. Increasing complexity did not increase adult-born neuron survival but enhanced the number of adult-born neurons responding to learned odorants and their spine density. Moreover, only complex learning induced morphological changes in neurons of the granule cell layer born during the first day of life (P0). Selective optogenetic inactivation of either population confirmed functional involvement of adult-born neurons regardless of the enrichment complexity, while preexisting neurons were required for complex discrimination only.
Collapse
Affiliation(s)
- Jérémy Forest
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Laura Chalençon
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Maëllie Midroit
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Claire Terrier
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Isabelle Caillé
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 06, Centre National de la Recherche Scientifique, UMR8246, INSERM U1130, Institut de Biologie Paris Seine, Neuroscience Paris Seine, and Sorbonne Paris Cité, Université Paris Diderot-Paris 7, Paris, France
| | - Joëlle Sacquet
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Claire Benetollo
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Neurogenetic and Optogenetic Platform, University Lyon 1 and University of Lyon, Lyon F-69000, France
| | - Killian Martin
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Marion Richard
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Anne Didier
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Nathalie Mandairon
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| |
Collapse
|
9
|
Midroit M, Chalençon L, Renier N, Milton A, Thevenet M, Sacquet J, Breton M, Forest J, Noury N, Richard M, Raineteau O, Ferdenzi C, Fournel A, Wesson DW, Bensafi M, Didier A, Mandairon N. Neural processing of the reward value of pleasant odorants. Curr Biol 2021; 31:1592-1605.e9. [PMID: 33607032 DOI: 10.1016/j.cub.2021.01.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Pleasant odorants are represented in the posterior olfactory bulb (pOB) in mice. How does this hedonic information generate odor-motivated behaviors? Using optogenetics, we report here that stimulating the representation of pleasant odorants in a sensory structure, the pOB, can be rewarding, self-motivating, and is accompanied by ventral tegmental area activation. To explore the underlying neural circuitry downstream of the olfactory bulb (OB), we use 3D high-resolution imaging and optogenetics and determine that the pOB preferentially projects to the olfactory tubercle, whose increased activity is related to odorant attraction. We further show that attractive odorants act as reinforcers in dopamine-dependent place preference learning. Finally, we extend those findings to humans, who exhibit place preference learning and an increase BOLD signal in the olfactory tubercle in response to attractive odorants. Thus, strong and persistent attraction induced by some odorants is due to a direct gateway from the pOB to the reward system.
Collapse
Affiliation(s)
- Maëllie Midroit
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Laura Chalençon
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Nicolas Renier
- Sorbonne Universités, Paris Brain Institute, ICM, Inserm, CNRS, Paris, France
| | - Adrianna Milton
- Department of Neurosciences, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Marc Thevenet
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Joëlle Sacquet
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Marine Breton
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Jérémy Forest
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Norbert Noury
- CNRS, UMR5270, Institute Nanotechnology Lyon, Biomedical Sensors Group, University of Lyon 1, Villeurbanne 69621, France
| | - Marion Richard
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Olivier Raineteau
- University Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Camille Ferdenzi
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Arnaud Fournel
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Moustafa Bensafi
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Anne Didier
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France
| | - Nathalie Mandairon
- CNRS, UMR 5292, INSERM, U1028, Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon 69000, France; University Lyon, Lyon, 69000, France; University Lyon 1, Villeurbanne 69000, France.
| |
Collapse
|
10
|
Shani-Narkiss H, Vinograd A, Landau ID, Tasaka G, Yayon N, Terletsky S, Groysman M, Maor I, Sompolinsky H, Mizrahi A. Young adult-born neurons improve odor coding by mitral cells. Nat Commun 2020; 11:5867. [PMID: 33203831 PMCID: PMC7673122 DOI: 10.1038/s41467-020-19472-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
New neurons are continuously generated in the adult brain through a process called adult neurogenesis. This form of plasticity has been correlated with numerous behavioral and cognitive phenomena, but it remains unclear if and how adult-born neurons (abNs) contribute to mature neural circuits. We established a highly specific and efficient experimental system to target abNs for causal manipulations. Using this system with chemogenetics and imaging, we found that abNs effectively sharpen mitral cells (MCs) tuning and improve their power to discriminate among odors. The effects on MCs responses peaked when abNs were young and decreased as they matured. To explain the mechanism of our observations, we simulated the olfactory bulb circuit by modelling the incorporation of abNs into the circuit. We show that higher excitability and broad input connectivity, two well-characterized features of young neurons, underlie their unique ability to boost circuit computation.
Collapse
Affiliation(s)
- H Shani-Narkiss
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Vinograd
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - I D Landau
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - G Tasaka
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - N Yayon
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Terletsky
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Groysman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - I Maor
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Sompolinsky
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
11
|
Noradrenergic Activity in the Olfactory Bulb Is a Key Element for the Stability of Olfactory Memory. J Neurosci 2020; 40:9260-9271. [PMID: 33097638 DOI: 10.1523/jneurosci.1769-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Memory stability is essential for animal survival when environment and behavioral state change over short or long time spans. The stability of a memory can be expressed by its duration, its perseverance when conditions change as well as its specificity to the learned stimulus. Using optogenetic and pharmacological manipulations in male mice, we show that the presence of noradrenaline in the olfactory bulb during acquisition renders olfactory memories more stable. We show that while inhibition of noradrenaline transmission during an odor-reward acquisition has no acute effects, it alters perseverance, duration, and specificity of the memory. We use a computational approach to propose a proof of concept model showing that a single, simple network effect of noradrenaline on olfactory bulb dynamics can underlie these seemingly different behavioral effects. Our results show that acute changes in network dynamics can have long-term effects that extend beyond the network that was manipulated.SIGNIFICANCE STATEMENT Olfaction guides the behavior of animals. For successful survival, animals have to remember previously learned information and at the same time be able to acquire new memories. We show here that noradrenaline in the olfactory bulb, the first cortical relay of the olfactory information, is important for creating stable and specific olfactory memories. Memory stability, as expressed in perseverance, duration and specificity of the memory, is enhanced when noradrenergic inputs to the olfactory bulb are unaltered. We show that, computationally, our diverse behavioral results can be ascribed to noradrenaline-driven changes in neural dynamics. These results shed light on how very temporary changes in neuromodulation can have a variety of long-lasting effects on neural processing and behavior.
Collapse
|
12
|
Wu A, Yu B, Chen Q, Matthews GA, Lu C, Campbell E, Tye KM, Komiyama T. Context-dependent plasticity of adult-born neurons regulated by cortical feedback. SCIENCE ADVANCES 2020; 6:6/42/eabc8319. [PMID: 33067236 PMCID: PMC7567600 DOI: 10.1126/sciadv.abc8319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/02/2020] [Indexed: 05/26/2023]
Abstract
In a complex and dynamic environment, the brain flexibly adjusts its circuits to preferentially process behaviorally relevant information. Here, we investigated how the olfactory bulb copes with this demand by examining the plasticity of adult-born granule cells (abGCs). We found that learning of olfactory discrimination elevates odor responses of young abGCs and increases their apical dendritic spines. This plasticity did not occur in abGCs during passive odor experience nor in resident granule cells (rGCs) during learning. Furthermore, we found that feedback projections from the piriform cortex show elevated activity during learning, and activating piriform feedback elicited stronger excitatory postsynaptic currents in abGCs than rGCs. Inactivation of piriform feedback blocked abGC plasticity during learning, and activation of piriform feedback during passive experience induced learning-like plasticity of abGCs. Our work describes a neural circuit mechanism that uses adult neurogenesis to update a sensory circuit to flexibly adapt to new behavioral demands.
Collapse
Affiliation(s)
- An Wu
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Bin Yu
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Qiyu Chen
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Chen Lu
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Evan Campbell
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
| | - Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Takaki Komiyama
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Wallace J, Lord J, Dissing-Olesen L, Stevens B, Murthy VN. Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. eLife 2020; 9:e50531. [PMID: 32150529 PMCID: PMC7062469 DOI: 10.7554/elife.50531] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Microglia play key roles in regulating synapse development and refinement in the developing brain, but it is unknown whether they are similarly involved during adult neurogenesis. By transiently depleting microglia from the healthy adult mouse brain, we show that microglia are necessary for the normal functional development of adult-born granule cells (abGCs) in the olfactory bulb. Microglial depletion reduces the odor responses of developing, but not preexisting GCs in vivo in both awake and anesthetized mice. Microglia preferentially target their motile processes to interact with mushroom spines on abGCs, and when microglia are absent, abGCs develop smaller spines and receive weaker excitatory synaptic inputs. These results suggest that microglia promote the development of excitatory synapses onto developing abGCs, which may impact the function of these cells in the olfactory circuit.
Collapse
Affiliation(s)
- Jenelle Wallace
- Molecules, Cells, and Organisms Training Program, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- FM Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Julia Lord
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Lasse Dissing-Olesen
- FM Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Beth Stevens
- FM Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
- Howard Hughes Medical Institute, Boston Children’s HospitalBostonUnited States
| | - Venkatesh N Murthy
- Molecules, Cells, and Organisms Training Program, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
14
|
Fleming G, Wright BA, Wilson DA. The Value of Homework: Exposure to Odors in the Home Cage Enhances Odor-Discrimination Learning in Mice. Chem Senses 2020; 44:135-143. [PMID: 30590399 DOI: 10.1093/chemse/bjy083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Perceptual learning is an enhancement in discriminability of similar stimuli following experience with those stimuli. Here, we examined the efficacy of adding additional active training following a standard training session, compared with additional stimulus exposure in the absence of associated task performance. Mice were trained daily in an odor-discrimination task, and then, several hours later each day, received 1 of 3 different manipulations: 1) a second active-training session, 2) non-task-related odor exposure in the home cage, or 3) no second session. For home-cage exposure, odorants were presented in small tubes that mice could sniff and investigate for a similar period of time as in the active discrimination task each day. The results demonstrate that daily home-cage exposure was equivalent to active odor training in supporting improved odor discrimination. Daily home-cage exposure to odorants that did not match those used in the active task did not improve learning, yielding outcomes similar to those obtained with no second session. Piriform cortical local field potential recordings revealed that both sampling in the active learning task and investigation in the home cage evoked similar beta band oscillatory activity. Together the results suggest that odor-discrimination learning can be significantly enhanced by addition of odor exposure outside of the active training task, potentially because of the robust activity evoked in the olfactory system by both exposure paradigms. They further suggest that odorant exposure alone could enhance or maintain odor-discrimination abilities in conditions associated with olfactory impairment, such as aging or dementia.
Collapse
Affiliation(s)
- Gloria Fleming
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Beverly A Wright
- Department of Communication Sciences and Disorders, Knowles Hearing Center, Northwestern University, Evanston, IL, USA.,Center for Neural Science, New York University, New York, NY, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Center for Neural Science, New York University, New York, NY, USA.,Department of Child and Adolescent Psychiatry, New York Langone School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Wu A, Yu B, Komiyama T. Plasticity in olfactory bulb circuits. Curr Opin Neurobiol 2020; 64:17-23. [PMID: 32062045 DOI: 10.1016/j.conb.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022]
Abstract
Olfaction is crucial for animal survival and human well-being. The olfactory bulb is the obligatory input station for olfactory information. In contrast to the traditional view as a static relay station, recent evidence indicates that the olfactory bulb dynamically processes olfactory information in an experience-dependent and context-dependent manner. Here, we review recent studies on experience-dependent plasticity of the main circuit components within the olfactory bulb of rodents. We argue that the olfactory bulb plasticity allows optimal representations of behaviorally-relevant odors in the continuously changing olfactory environment.
Collapse
Affiliation(s)
- An Wu
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bin Yu
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Short-term availability of adult-born neurons for memory encoding. Nat Commun 2019; 10:5609. [PMID: 31811134 PMCID: PMC6897887 DOI: 10.1038/s41467-019-13521-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023] Open
Abstract
Adult olfactory neurogenesis provides waves of new neurons involved in memory encoding. However, how the olfactory bulb deals with neuronal renewal to ensure the persistence of pertinent memories and the flexibility to integrate new events remains unanswered. To address this issue, mice performed two successive olfactory discrimination learning tasks with varying times between tasks. We show that with a short time between tasks, adult-born neurons supporting the first learning task appear to be highly sensitive to interference. Furthermore, targeting these neurons using selective light-induced inhibition altered memory of this first task without affecting that of the second, suggesting that neurons in their critical period of integration may only support one memory trace. A longer period between the two tasks allowed for an increased resilience to interference. Hence, newly formed adult-born neurons regulate the transience or persistence of a memory as a function of information relevance and retrograde interference. Olfactory bulb neurogenesis raises the question of how persistent olfactory memories are retained while remaining flexible to encode new memories. Here, the authors show that new neurons can only support a single odor memory within their critical period of integration into the circuit.
Collapse
|
17
|
Kedrov AV, Mineyeva OA, Enikolopov GN, Anokhin KV. Involvement of Adult-born and Preexisting Olfactory Bulb and Dentate Gyrus Neurons in Single-trial Olfactory Memory Acquisition and Retrieval. Neuroscience 2019; 422:75-87. [DOI: 10.1016/j.neuroscience.2019.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/24/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
|
18
|
Microglia Activated by Excess Cortisol Induce HMGB1 Acetylation and Neuroinflammation in the Hippocampal DG Region of Mice Following Cold Exposure. Biomolecules 2019; 9:biom9090426. [PMID: 31480279 PMCID: PMC6769965 DOI: 10.3390/biom9090426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/11/2023] Open
Abstract
Cold stress can induce neuroinflammation in the hippocampal dentate gyrus (DG), but the mechanism underlying neuronal apoptosis induced by cold stress is not well-understood. To address this issue, male and female C57BL/6 mice were exposed to a temperature of 4 °C for 3 h per day for 1 week, and glial cell activation, neuronal apoptosis, and neuroinflammation were evaluated by western blotting, immunofluorescence, terminal deoxynucleotidyl transferase 2’-deoxyuridine 5’-triphosphate (dUTP) nick end labeling, Nissl staining, and immunohistochemistry. Additionally, BV2 cells were treated with different concentrations of cortisol (CORT) for 3 h to mimic stress and molecular changes were assessed by western blotting, immunofluorescence, and co-immunoprecipitation. We found that excess CORT activated glial cells and increased neuroinflammation in the DG of mice exposed to cold temperatures, which was associated with increased acetylation and nuclear factor-κB signaling. These effects were mediated by the acetylation of lysine 9 of histone 3 and lysine 310 of p65, which resulted in increased mitogen-activated protein kinase phosphorylation, nuclear translocation of p65, microglia activation, and acetylation of high-mobility group box 1. Neuroinflammation was more severe in male compared to female mice. These findings provide new insight into the mechanisms of the cold stress response, which can inform the development of new strategies to combat the effects of hypothermia.
Collapse
|
19
|
Borthakur A, Cleland TA. A Spike Time-Dependent Online Learning Algorithm Derived From Biological Olfaction. Front Neurosci 2019; 13:656. [PMID: 31316339 PMCID: PMC6610532 DOI: 10.3389/fnins.2019.00656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023] Open
Abstract
We have developed a spiking neural network (SNN) algorithm for signal restoration and identification based on principles extracted from the mammalian olfactory system and broadly applicable to input from arbitrary sensor arrays. For interpretability and development purposes, we here examine the properties of its initial feedforward projection. Like the full algorithm, this feedforward component is fully spike timing-based, and utilizes online learning based on local synaptic rules such as spike timing-dependent plasticity (STDP). Using an intermediate metric to assess the properties of this initial projection, the feedforward network exhibits high classification performance after few-shot learning without catastrophic forgetting, and includes a none of the above outcome to reflect classifier confidence. We demonstrate online learning performance using a publicly available machine olfaction dataset with challenges including relatively small training sets, variable stimulus concentrations, and 3 years of sensor drift.
Collapse
Affiliation(s)
- Ayon Borthakur
- Computational Physiology Laboratory, Field of Computational Biology, Cornell University, Ithaca, NY, United States
| | - Thomas A. Cleland
- Computational Physiology Laboratory, Department of Psychology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Maier AM, Breer H, Strotmann J. Adult Born Periglomerular Cells of Odorant Receptor Specific Glomeruli. Front Neuroanat 2018; 12:26. [PMID: 29692711 PMCID: PMC5902569 DOI: 10.3389/fnana.2018.00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
The OR37 subsystem is characterized by a variety of unique features. The odorant receptors (ORs) of this subfamily are selectively tuned to specific ligands which are supposed to play a role in social communication. OR37 expressing sensory neurons project their axons to a single receptor specific glomerulus per bulb which have been shown to be unusually stable in size and to possess a distinct repertoire of periglomerular cells. Since the neuronal network surrounding glomeruli is typically modified by the integration of adult born neurons, in this study it was investigated whether the number of adult born cells might be different for OR37 glomeruli compared to other OR-specific glomeruli. Towards this goal, 23 days after BrdU injection, BrdU labeled cells in the proximity of OR37A glomeruli as well as around OR18-2 and OR256-17 glomeruli were determined. It was found that the number of BrdU labeled cells in the periglomerular region of OR37A glomeruli was significantly lower compared to glomeruli of the other OR types. This finding was in line with a lower number of neuroblasts visualized by the marker protein doublecortin. Double labeling experiments for BrdU and marker proteins revealed that despite a relatively high number of calretinin expressing cells at the OR37A glomeruli, the number of cells co-stained with BrdU was quite low compared to other glomeruli, which may point to an individual turnover rate of this cell type for different glomeruli. Together, the results of the present study support the notion that the neuronal network at the OR37 glomeruli is less dynamic than that of other glomerulus types. This indicates a specific processing of social information in OR37 glomerular networks.
Collapse
Affiliation(s)
- Anna-Maria Maier
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Strotmann
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|