1
|
Okita H, Murayama K, Asanuma H. Chirality-Promoted Chemical Ligation and Reverse Transcription of Acyclic Threoninol Nucleic Acid. J Am Chem Soc 2025; 147:17967-17974. [PMID: 40245353 PMCID: PMC12123609 DOI: 10.1021/jacs.5c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The building blocks of current life on Earth are chiral compounds, such as 2'-deoxy-D-ribose of DNA and L-amino acids with homochirality, which play an important role in various biological reactions. We investigated the effect of chirality on the template-directed chemical synthesis of nucleic acids as a model for primitive replication of genetic materials in the absence of enzymes. The efficiency of the template-directed chemical ligation of two acyclic nucleic acids, achiral serinol nucleic acid (SNA) and chiral acyclic l-threoninol nucleic acid (L-aTNA), induced by N-cyanoimidazole and a divalent metal cation, was evaluated. The chemical ligation of SNA fragments on an SNA template was much slower than the ligation of L-aTNA fragments on an L-aTNA template. Examination of L-aTNA and SNA heteroligation and the effects of chimeric template strands revealed the crucial importance of L-aTNA chirality, which induces helical propagation and fixes the local conformation of the reactive phosphate group for effective chemical ligation. DNA and RNA templates also enhanced the ligation of SNA and L-aTNA fragments. "Reverse transcription" from template RNA to L-aTNA was also demonstrated. Our findings show that scaffold chirality is crucial for chemical replication and reverse transcription in XNA-based systems. Furthermore, the reverse transcription from RNA to L-aTNA will find applications in XNA-based in vitro selection, the creation of artificial life, and nanotechnologies.
Collapse
Affiliation(s)
- Hikari Okita
- Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
| |
Collapse
|
2
|
Horning DP. Emergent and Convergent Features in the Laboratory Evolution of Polymerase Ribozymes. Biochemistry 2025. [PMID: 40389381 DOI: 10.1021/acs.biochem.5c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
In modern biology, molecular heredity is established by polymerase proteins that copy genetic information encoded in the sequence of nucleic acids. Prior to the emergence of coded protein synthesis, this role may have been filled by RNA polymerase ribozymes. Although such enzymes can no longer be found in extant life, ribozymes first evolved from random sequence populations have been progressively engineered in the laboratory to function as general RNA-dependent RNA polymerases. Polymerase ribozymes discovered in the past ten years can catalyze hundreds of sequential RNA synthesis reactions, match the complexity and catalytic sophistication of biological RNA enzymes, and employ many of the same strategies used by polymerase proteins to copy nucleic acids. This review describes the approaches to directed in vitro evolution that have led to the discovery of RNA enzymes that copy RNA molecules processively and accurately, and surveys how laboratory evolution has shaped biochemical and structural adaptations in these enzymes. The review then considers the challenges and opportunities that remain in the effort to propagate and evolve RNA genes with RNA catalysts alone.
Collapse
Affiliation(s)
- David P Horning
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Han X, Müller UF. Assembly of catalytic complexes from randomized oligonucleotides. SCIENCE ADVANCES 2025; 11:eadu2647. [PMID: 40305600 PMCID: PMC12042897 DOI: 10.1126/sciadv.adu2647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
The early evolution of life relied on catalytic RNAs (ribozymes) for central functions. To test whether early catalysts could have assembled from multiple short nucleic acid fragments in random sequence environments, we performed an in vitro selection from a short RNA library in the presence of 256 different DNA 20-nucleotide oligomers. High-throughput sequencing and biochemical analysis showed that most of the selected 1331 RNA sequences required at least one DNA for activity. Representatives for four of six RNA clusters that depended on DNA cofactors were active even when the 256 DNAs were replaced by completely random DNA 20-nucleotide oligomers. The formation of these catalytic complexes and the recruitment of oligonucleotide cofactors from completely random libraries demonstrate an important principle for the emergence of the earliest oligonucleotide catalysts.
Collapse
Affiliation(s)
- Xu Han
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
5
|
Chen HA, Okuda T, Lenz AK, Scheitl CPM, Schindelin H, Höbartner C. Structure and catalytic activity of the SAM-utilizing ribozyme SAMURI. Nat Chem Biol 2025:10.1038/s41589-024-01808-w. [PMID: 39779902 DOI: 10.1038/s41589-024-01808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Ribozymes that catalyze site-specific RNA modification have recently gained increasing interest for their ability to mimic methyltransferase enzymes and for their application to install molecular tags. Recently, we reported SAMURI as a site-specific alkyltransferase ribozyme using S-adenosylmethionine (SAM) or a stabilized analog to transfer a methyl or propargyl group to N3 of an adenosine. Here, we report the crystal structures of SAMURI in the postcatalytic state. The structures reveal a three-helix junction with the catalytic core folded into four stacked layers, harboring the cofactor and the modified nucleotide. Detailed structure-activity analyses explain the cofactor scope and the structural basis for site selectivity. A structural comparison of SAMURI with SAM riboswitches sheds light on how the synthetic ribozyme overcomes the strategies of natural riboswitches to avoid self-methylation. Our results suggest that SAM and its analogs may serve as substrates for various RNA-catalyzed reactions, for which the corresponding ribozymes remain to be identified.
Collapse
Affiliation(s)
- Hsuan-Ai Chen
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Takumi Okuda
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ann-Kathrin Lenz
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Carolin P M Scheitl
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | - Claudia Höbartner
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Sanders QCC, Verbeem A, Higgs PG. Maintaining an autocatalytic reaction system in a protocell: Nonenzymatic RNA templating and the link between replication and metabolism. Phys Rev E 2025; 111:014424. [PMID: 39972848 DOI: 10.1103/physreve.111.014424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025]
Abstract
The first protocells must have been driven by a reaction system in which autocatalysis is maintained inside the cell while food molecules outside the cell are unreactive. We show that if there is a second-order autocatalytic mechanism, then an active state can be stable inside the cell with a high catalyst concentration while the environment remains stable in an unreactive state with no catalyst. Addition of a small amount of catalyst to the environment does not cause the initiation of the autocatalytic cycle outside the cell. In contrast, for a first-order mechanism, addition of a small amount of catalyst initiates the reaction outside the cell unless there is continual removal of the catalyst from the environment. Hence, a second-order reaction mechanism maintains the difference between the inside and outside of a protocell much better than a first-order mechanism. The formose reaction, although a prebiotically plausible autocatalytic system, is first order and therefore is unlikely as a means of support for the first protocells. We give other theoretical examples of first- and second-order reaction networks but note there are few known real-world chemical systems that fit these schemes. However, we show that nonenzymatic RNA templating constitutes a second-order autocatalytic system with the necessary properties to support a protocell. Templating is maintained inside the cell but is not initiated outside the cell. If the reaction is driven by an external supply of activated nucleotides, then templating is itself a metabolic cycle. It is not necessary to have an additional separate metabolic cycle before templating reactions can occur. In this view, templating reactions, which are usually considered as the origin of replication and heredity, are also the origin of metabolism.
Collapse
Affiliation(s)
- Quentin C C Sanders
- McMaster University, Department of Biology, Hamilton, Ontario L8S 4L8, Canada
| | - Alex Verbeem
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Paul G Higgs
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Scripps Research Institute, Department of Chemistry, The , La Jolla, California 92037, USA
| |
Collapse
|
7
|
Seelig B, Chen IA. Intellectual frameworks to understand complex biochemical systems at the origin of life. Nat Chem 2025; 17:11-19. [PMID: 39762573 DOI: 10.1038/s41557-024-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Understanding the emergence of complex biochemical systems, such as protein translation, is a great challenge. Although synthetic approaches can provide insight into the potential early stages of life, they do not address the equally important question of why the complex systems of life would have evolved. In particular, the intricacies of the mechanisms governing the transfer of information from nucleic acid sequences to proteins make it difficult to imagine how coded protein synthesis could have emerged from a prebiotic soup. Here we discuss the use of intellectual frameworks in studying the emergence of life. We discuss how one such framework, namely the RNA world theory, has spurred research, and provide an overview of its limitations. We suggest that the emergence of coded protein synthesis could be broken into experimentally tractable problems by treating it as a molecular bricolage-a complex system integrating many different parts, each of which originally evolved for uses unrelated to its modern function-to promote a concrete understanding of its origin.
Collapse
Affiliation(s)
- Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Duzdevich D, Carr CE, Colville BWF, Aitken HRM, Szostak JW. Overcoming nucleotide bias in the nonenzymatic copying of RNA templates. Nucleic Acids Res 2024; 52:13515-13529. [PMID: 39530216 DOI: 10.1093/nar/gkae982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The RNA World hypothesis posits that RNA was the molecule of both heredity and function during the emergence of life. This hypothesis implies that RNA templates can be copied, and ultimately replicated, without the catalytic aid of evolved enzymes. A major problem with nonenzymatic template-directed polymerization has been the very poor copying of sequences containing rA and rU. Here, we overcome that problem by using a prebiotically plausible mixture of RNA mononucleotides and random-sequence oligonucleotides, all activated by methyl isocyanide chemistry, that direct the uniform copying of arbitrary-sequence templates, including those harboring rA and rU. We further show that the use of this mixture in copying reactions suppresses copying errors while also generating a more uniform distribution of mismatches than observed for simpler systems. We find that oligonucleotide competition for template binding sites, oligonucleotide ligation and the template binding properties of reactant intermediates work together to reduce product sequence bias and errors. Finally, we show that iterative cycling of templated polymerization and activation chemistry improves the yields of random-sequence products. These results for random-sequence template copying are a significant advance in the pursuit of nonenzymatic RNA replication.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
- Freiburg Institute for Advanced Studies, Albertstraße 19, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, School of Earth and Atmospheric Sciences, 275 Ferst Drive NW, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ben W F Colville
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| | - Harry R M Aitken
- Department of Molecular Biology, Center for Computational and Integrative Biology, 185 Cambridge Street, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, 185 Cambridge Street, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Synak J, Rybarczyk A, Kasprzak M, Blazewicz J. RNA World with Inhibitors. ENTROPY (BASEL, SWITZERLAND) 2024; 26:1012. [PMID: 39766641 PMCID: PMC11726725 DOI: 10.3390/e26121012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/15/2025]
Abstract
During the evolution of the RNA World, compartments, which were fragments of space surrounded by a primitive lipid membrane, had to have emerged. These led eventually to the formation of modern cellular membranes. Inside these compartments, another process had to take place-switching from RNA to DNA as a primary storage of genetic information. The latter part needed a handful of enzymes for the DNA to be able to perform its function. A natural question arises, i.e., how the concentration of all vital molecules could have been kept in check without modern cellular mechanisms. The authors propose a theory on how it could have worked during early stages, using only short RNA molecules, which could have emerged spontaneously. The hypothesis was analysed mathematically and tested against different scenarios by using computer simulations.
Collapse
Affiliation(s)
- Jaroslaw Synak
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- European Center for Bioinformatics and Genomics, 60-965 Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- European Center for Bioinformatics and Genomics, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Marta Kasprzak
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- European Center for Bioinformatics and Genomics, 60-965 Poznan, Poland
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- European Center for Bioinformatics and Genomics, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
10
|
Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 2024; 8:817-832. [PMID: 39333736 DOI: 10.1038/s41570-024-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/30/2024]
Abstract
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
11
|
DasGupta S, Weiss Z, Nisler C, Szostak JW. Evolution of the substrate specificity of an RNA ligase ribozyme from phosphorimidazole to triphosphate activation. Proc Natl Acad Sci U S A 2024; 121:e2407325121. [PMID: 39269776 PMCID: PMC11420214 DOI: 10.1073/pnas.2407325121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
The acquisition of new RNA functions through evolutionary processes was essential for the diversification of RNA-based primordial biology and its subsequent transition to modern biology. However, the mechanisms by which RNAs access new functions remain unclear. Do RNA enzymes need completely new folds to support new but related functions, or is reoptimization of the active site sufficient? What are the roles of neutral and adaptive mutations in evolutionary innovation? Here, we address these questions experimentally by focusing on the evolution of substrate specificity in RNA-catalyzed RNA assembly. We use directed in vitro evolution to show that a ligase ribozyme that uses prebiotically relevant 5'-phosphorimidazole-activated substrates can be evolved to catalyze ligation with substrates that are 5'-activated with the biologically relevant triphosphate group. Interestingly, despite catalyzing a related reaction, the new ribozyme folds into a completely new structure and exhibits promiscuity by catalyzing RNA ligation with both triphosphate and phosphorimidazole-activated substrates. Although distinct in sequence and structure, the parent phosphorimidazolide ligase and the evolved triphosphate ligase ribozymes can be connected by a series of point mutations where the intermediate sequences retain at least some ligase activity. The existence of a quasi-neutral pathway between these distinct ligase ribozymes suggests that neutral drift is sufficient to enable the acquisition of new substrate specificity, thereby providing opportunities for subsequent adaptive optimization. The transition from RNA-catalyzed RNA assembly using phosphorimidazole-activated substrates to triphosphate-activated substrates may have foreshadowed the later evolution of the protein enzymes that use monomeric triphosphates (nucleoside triphosphates, NTPs) for RNA synthesis.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- HHMI, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Zoe Weiss
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- HHMI, Massachusetts General Hospital, Boston, MA02114
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Collin Nisler
- HHMI, The University of Chicago, Chicago, IL60637
- Department of Chemistry, The University of Chicago, Chicago, IL60637
| | - Jack W. Szostak
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- HHMI, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
12
|
Paczkó M, Szathmáry E, Szilágyi A. Stochastic parabolic growth promotes coexistence and a relaxed error threshold in RNA-like replicator populations. eLife 2024; 13:RP93208. [PMID: 38669070 PMCID: PMC11052571 DOI: 10.7554/elife.93208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
The RNA world hypothesis proposes that during the early evolution of life, primordial genomes of the first self-propagating evolutionary units existed in the form of RNA-like polymers. Autonomous, non-enzymatic, and sustained replication of such information carriers presents a problem, because product formation and hybridization between template and copy strands reduces replication speed. Kinetics of growth is then parabolic with the benefit of entailing competitive coexistence, thereby maintaining diversity. Here, we test the information-maintaining ability of parabolic growth in stochastic multispecies population models under the constraints of constant total population size and chemostat conditions. We find that large population sizes and small differences in the replication rates favor the stable coexistence of the vast majority of replicator species ('genes'), while the error threshold problem is alleviated relative to exponential amplification. In addition, sequence properties (GC content) and the strength of resource competition mediated by the rate of resource inflow determine the number of coexisting variants, suggesting that fluctuations in building block availability favored repeated cycles of exploration and exploitation. Stochastic parabolic growth could thus have played a pivotal role in preserving viable sequences generated by random abiotic synthesis and providing diverse genetic raw material to the early evolution of functional ribozymes.
Collapse
Affiliation(s)
- Mátyás Paczkó
- Institute of Evolution, HUN-REN Centre for Ecological ResearchBudapestHungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Eörs Szathmáry
- Institute of Evolution, HUN-REN Centre for Ecological ResearchBudapestHungary
- Center for the Conceptual Foundations of Science, Parmenides FoundationPöckingGermany
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd UniversityBudapestHungary
| | - András Szilágyi
- Institute of Evolution, HUN-REN Centre for Ecological ResearchBudapestHungary
| |
Collapse
|
13
|
Paschek K, Lee M, Semenov DA, Henning TK. Prebiotic Vitamin B 3 Synthesis in Carbonaceous Planetesimals. Chempluschem 2024; 89:e202300508. [PMID: 37847591 DOI: 10.1002/cplu.202300508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Aqueous chemistry within carbonaceous planetesimals is promising for synthesizing prebiotic organic matter essential to all life. Meteorites derived from these planetesimals delivered these life building blocks to the early Earth, potentially facilitating the origins of life. Here, we studied the formation of vitamin B3 as it is an important precursor of the coenzyme NAD(P)(H), which is essential for the metabolism of all life as we know it. We propose a new reaction mechanism based on known experiments in the literature that explains the synthesis of vitamin B3. It combines the sugar precursors glyceraldehyde or dihydroxyacetone with the amino acids aspartic acid or asparagine in aqueous solution without oxygen or other oxidizing agents. We performed thermochemical equilibrium calculations to test the thermodynamic favorability. The predicted vitamin B3 abundances resulting from this new pathway were compared with measured values in asteroids and meteorites. We conclude that competition for reactants and decomposition by hydrolysis are necessary to explain the prebiotic content of meteorites. In sum, our model fits well into the complex network of chemical pathways active in this environment.
Collapse
Affiliation(s)
- Klaus Paschek
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| | - Mijin Lee
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| | - Dmitry A Semenov
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, House F, D-81377, Munich, Germany
| | - Thomas K Henning
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| |
Collapse
|
14
|
Papastavrou N, Horning DP, Joyce GF. RNA-catalyzed evolution of catalytic RNA. Proc Natl Acad Sci U S A 2024; 121:e2321592121. [PMID: 38437533 PMCID: PMC10945747 DOI: 10.1073/pnas.2321592121] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
An RNA polymerase ribozyme that was obtained by directed evolution can propagate a functional RNA through repeated rounds of replication and selection, thereby enabling Darwinian evolution. Earlier versions of the polymerase did not have sufficient copying fidelity to propagate functional information, but a new variant with improved fidelity can replicate the hammerhead ribozyme through reciprocal synthesis of both the hammerhead and its complement, with the products then being selected for RNA-cleavage activity. Two evolutionary lineages were carried out in parallel, using either the prior low-fidelity or the newer high-fidelity polymerase. The former lineage quickly lost hammerhead functionality as the population diverged toward random sequences, whereas the latter evolved new hammerhead variants with improved fitness compared to the starting RNA. The increase in fitness was attributable to specific mutations that improved the replicability of the hammerhead, counterbalanced by a small decrease in hammerhead activity. Deep sequencing analysis was used to follow the course of evolution, revealing the emergence of a succession of variants that progressively diverged from the starting hammerhead as fitness increased. This study demonstrates the critical importance of replication fidelity for maintaining heritable information in an RNA-based evolving system, such as is thought to have existed during the early history of life on Earth. Attempts to recreate RNA-based life in the laboratory must achieve further improvements in replication fidelity to enable the fully autonomous Darwinian evolution of RNA enzymes as complex as the polymerase itself.
Collapse
|
15
|
McRae EKS, Wan CJK, Kristoffersen EL, Hansen K, Gianni E, Gallego I, Curran JF, Attwater J, Holliger P, Andersen ES. Cryo-EM structure and functional landscape of an RNA polymerase ribozyme. Proc Natl Acad Sci U S A 2024; 121:e2313332121. [PMID: 38207080 PMCID: PMC10801858 DOI: 10.1073/pnas.2313332121] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
The emergence of an RNA replicase capable of self-replication is considered an important stage in the origin of life. RNA polymerase ribozymes (PR) - including a variant that uses trinucleotide triphosphates (triplets) as substrates - have been created by in vitro evolution and are the closest functional analogues of the replicase, but the structural basis for their function is poorly understood. Here we use single-particle cryogenic electron microscopy (cryo-EM) and high-throughput mutation analysis to obtain the structure of a triplet polymerase ribozyme (TPR) apoenzyme and map its functional landscape. The cryo-EM structure at 5-Å resolution reveals the TPR as an RNA heterodimer comprising a catalytic subunit and a noncatalytic, auxiliary subunit, resembling the shape of a left hand with thumb and fingers at a 70° angle. The two subunits are connected by two distinct kissing-loop (KL) interactions that are essential for polymerase function. Our combined structural and functional data suggest a model for templated RNA synthesis by the TPR holoenzyme, whereby heterodimer formation and KL interactions preorganize the TPR for optimal primer-template duplex binding, triplet substrate discrimination, and templated RNA synthesis. These results provide a better understanding of TPR structure and function and should aid the engineering of more efficient PRs.
Collapse
Affiliation(s)
- Ewan K. S. McRae
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus8000, Denmark
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council, Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Christopher J. K. Wan
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council, Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Emil L. Kristoffersen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus8000, Denmark
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council, Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Kalinka Hansen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus8000, Denmark
| | - Edoardo Gianni
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council, Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Isaac Gallego
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council, Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Joseph F. Curran
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council, Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - James Attwater
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council, Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Philipp Holliger
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council, Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Ebbe S. Andersen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus8000, Denmark
| |
Collapse
|
16
|
Zorc SA, Roy RN. Origin & influence of autocatalytic reaction networks at the advent of the RNA world. RNA Biol 2024; 21:78-92. [PMID: 39358873 PMCID: PMC11451275 DOI: 10.1080/15476286.2024.2405757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Research on the origin of life investigates the transition from abiotic chemistry to the emergence of biology, with the 'RNA world hypothesis' as the leading theory. RNA's dual role in storage and catalysis suggests its importance in this narrative. The discovery of natural ribozymes emphasizes RNA's catalytic capabilities in prebiotic environments, supporting the plausibility of an RNA world and prompting exploration of precellular evolution. Collective autocatalytic sets (CASs) mark a crucial milestone in this transition, fostering complexity through autocatalysis. While modern biology emphasizes sequence-specific polymerases, remnants of CASs persist in primary metabolism highlighting their significance. Autocatalysis, driven by CASs, promotes complexity through mutually interdependent catalytic sets. Yet, the transition from ribonucleotides to complex RNA oligomers remains puzzling. Questions persist about the genesis of the first self-replicating RNA molecule, RNA's stability in prebiotic conditions, and the shift to complex molecular reproduction. This review delves into diverse facets of the RNA world's emergence, addressing critical bottlenecks and scientific advances. Integrating insights from simulation and in vitro evolution research, we illuminate the multistep biogenesis of catalytic RNA from the abiotic world. Through this exploration, we aim to elucidate the journey from the primordial soup to the dawn of life, emphasizing the interplay between chemistry and biology in understanding life's origins.
Collapse
Affiliation(s)
- Stephen A. Zorc
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Raktim N. Roy
- Department of pathology and laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Lu H, Blokhuis A, Turk-MacLeod R, Karuppusamy J, Franconi A, Woronoff G, Jeancolas C, Abrishamkar A, Loire E, Ferrage F, Pelupessy P, Jullien L, Szathmary E, Nghe P, Griffiths AD. Small-molecule autocatalysis drives compartment growth, competition and reproduction. Nat Chem 2024; 16:70-78. [PMID: 37550391 DOI: 10.1038/s41557-023-01276-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
Sustained autocatalysis coupled to compartment growth and division is a key step in the origin of life, but an experimental demonstration of this phenomenon in an artificial system has previously proven elusive. We show that autocatalytic reactions within compartments-when autocatalysis, and reactant and solvent exchange outpace product exchange-drive osmosis and diffusion, resulting in compartment growth. We demonstrate, using the formose reaction compartmentalized in aqueous droplets in an emulsion, that compartment volume can more than double. Competition for a common reactant (formaldehyde) causes variation in droplet growth rate based on the composition of the surrounding droplets. These growth rate variations are partially transmitted after selective division of the largest droplets by shearing, which converts growth-rate differences into differences in droplet frequency. This shows how a combination of properties of living systems (growth, division, variation, competition, rudimentary heredity and selection) can arise from simple physical-chemical processes and may have paved the way for the emergence of evolution by natural selection.
Collapse
Affiliation(s)
- Heng Lu
- Laboratoire de Biochimie, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France
| | - Alex Blokhuis
- Laboratoire de Biochimie, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France
| | - Rebecca Turk-MacLeod
- Laboratoire de Biochimie, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France
| | - Jayaprakash Karuppusamy
- Laboratoire de Biochimie, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France
| | - Andrea Franconi
- Laboratoire de Biochimie, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France
| | - Gabrielle Woronoff
- Laboratoire de Biochimie, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France
| | - Cyrille Jeancolas
- Laboratoire de Biochimie, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France
| | - Afshin Abrishamkar
- Laboratoire de Biochimie, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France
| | - Estelle Loire
- Institut de Chimie Physique, Université Paris-Saclay, Orsay, France
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, Paris, France
| | - Philippe Pelupessy
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie, École Normale Supérieure, Université PSL, Sorbonne Université, Paris, France
| | - Eörs Szathmary
- Centre for Ecological Research, Institute of Evolution, Budapest, Hungary.
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, Hungary.
- Parmenides Foundation, Center for the Conceptual Foundations of Science, Pöcking, Germany.
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.
| | - Philippe Nghe
- Laboratoire de Biochimie, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France.
- Laboratoire Biophysique et Evolution, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France.
| | - Andrew D Griffiths
- Laboratoire de Biochimie, Chimie Biologie et Innovation, ESPCI Paris, Université PSL, Paris, France.
| |
Collapse
|
18
|
Mozumdar D, Roy RN. Origin of ribonucleotide recognition motifs through ligand mimicry at early earth. RNA Biol 2024; 21:107-121. [PMID: 39526332 PMCID: PMC11556283 DOI: 10.1080/15476286.2024.2423149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In an RNA world, the emergence of template-specific self-replication and catalysis necessitated the presence of motifs facilitating reliable recognition between RNA molecules. What did these motifs entail, and how did they evolve into the proteinaceous RNA recognition entities observed today? Direct observation of these primordial entities is hindered by rapid degradation over geological time scales. To overcome this challenge, researchers employ diverse approaches, including scrutiny of conserved sequences and structural motifs across extant organisms and employing directed evolution experiments to generate RNA molecules with specific catalytic abilities. In this review, we delve into the theme of ribonucleotide recognition across key periods of early Earth's evolution. We explore scenarios of RNA interacting with small molecules and examine hypotheses regarding the role of minerals and metal ions in enabling structured ribonucleotide recognition and catalysis. Additionally, we highlight instances of RNA-protein mimicry in interactions with other RNA molecules. We propose a hypothesis where RNA initially recognizes small molecules and metal ions/minerals, with subsequent mimicry by proteins leading to the emergence of proteinaceous RNA binding domains.
Collapse
Affiliation(s)
- Deepto Mozumdar
- Department of Immunology & Microbiology, University of California San Francisco, San Francisco, CA, USA
| | - Raktim N. Roy
- Department of pathology & laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
19
|
Abstract
Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
20
|
Roy S, Sengupta S. The RNA-DNA world and the emergence of DNA-encoded heritable traits. RNA Biol 2024; 21:1-9. [PMID: 38785360 PMCID: PMC11135857 DOI: 10.1080/15476286.2024.2355391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.
Collapse
Affiliation(s)
- Suvam Roy
- Department of Physical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur, West Bengal, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur, West Bengal, India
| |
Collapse
|
21
|
Toparlak Ö, Sebastianelli L, Egas Ortuno V, Karki M, Xing Y, Szostak JW, Krishnamurthy R, Mansy SS. Cyclophospholipids Enable a Protocellular Life Cycle. ACS NANO 2023; 17:23772-23783. [PMID: 38038709 PMCID: PMC10722605 DOI: 10.1021/acsnano.3c07706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
There is currently no plausible path for the emergence of a self-replicating protocell, because prevalent formulations of model protocells are built with fatty acid vesicles that cannot withstand the concentrations of Mg2+ needed for the function and replication of nucleic acids. Although prebiotic chelates increase the survivability of fatty acid vesicles, the resulting model protocells are incapable of growth and division. Here, we show that protocells made of mixtures of cyclophospholipids and fatty acids can grow and divide in the presence of Mg2+-citrate. Importantly, these protocells retain encapsulated nucleic acids during growth and division, can acquire nucleotides from their surroundings, and are compatible with the nonenzymatic extension of an RNA oligonucleotide, chemistry needed for the replication of a primitive genome. Our work shows that prebiotically plausible mixtures of lipids form protocells that are active under the conditions necessary for the emergence of Darwinian evolution.
Collapse
Affiliation(s)
- Ö.
Duhan Toparlak
- Department
of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trentino, Italy
| | - Lorenzo Sebastianelli
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton Alberta T6G 2G2, Canada
| | - Veronica Egas Ortuno
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Megha Karki
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yanfeng Xing
- Department
of Biochemistry and Molecular Biology, University
of Chicago, Chicago, Illinois 60637, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ramanarayanan Krishnamurthy
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sheref S. Mansy
- Department
of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trentino, Italy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton Alberta T6G 2G2, Canada
| |
Collapse
|
22
|
Sabat N, Stämpfli A, Flamme M, Hanlon S, Bisagni S, Sladojevich F, Püntener K, Hollenstein M. Artificial nucleotide codons for enzymatic DNA synthesis. Chem Commun (Camb) 2023; 59:14547-14550. [PMID: 37987464 DOI: 10.1039/d3cc04933g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Herein, we report the high-yielding solid-phase synthesis of unmodified and chemically modified trinucleotide triphosphates (dN3TPs). These synthetic codons can be used for enzymatic DNA synthesis provided their scaffold is stabilized with phosphorothioate units. Enzymatic synthesis with three rather than one letter nucleotides will be useful to produce xenonucleic acids (XNAs) and for in vitro selection of modified functional nucleic acids.
Collapse
Affiliation(s)
- Nazarii Sabat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Andreas Stämpfli
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Marie Flamme
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Steven Hanlon
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Serena Bisagni
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
23
|
Spirov A. Evolution of the RNA world: From signals to codes. Biosystems 2023; 234:105043. [PMID: 37852409 DOI: 10.1016/j.biosystems.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
The accumulated material in evolutionary biology, greatly enhanced by the achievements of modern synthetic biology, allows us to envision certain key hypothetical stages of prebiotic (chemical) evolution. This is often understood as the further evolution in the RNA World towards the RNA-protein World. It is a path towards the emergence of translation and the genetic code (I), signaling pathways with signaling molecules (II), and the appearance of RNA-based components of future gene regulatory networks (III). We believe that these evolutionary paths can be constructively viewed from the perspective of the concept of biological codes (Barbieri, 2003). Crucial evolutionary events in these directions would involve the emergence of RNA-based adaptors. Such adaptors connect two families of functionally and chemically distinct molecules into one functional entity. The emergence of primitive translation processes is undoubtedly the major milestone in the evolutionary path towards modern life. The key aspect here is the appearance of adaptors between amino acids and their cognate triplet codons. The initial steps are believed to involve the emergence of proto-transfer RNAs capable of self-aminoacylation. The second significant evolutionary breakthrough is the development of biochemical regulatory networks based on signaling molecules of the RNA World (ribonucleotides and their derivatives), as well as receptors and effectors (riboswitches) for these messengers. Some authors refer to this as the "lost language of the RNA World." The third evolutionary step is the emergence of signal sequences for ribozymes on the molecules of their RNA targets. This level of regulation in the RNA World is comparable to the gene regulatory networks of modern organisms. We believe that the signal sequences on target molecules have been rediscovered and developed by evolution into the gene regulatory networks of modern cells. In conclusion, the immense diversity of modern biological codes, in some of its key characteristics, can be traced back to the achievements of prebiotic evolution.
Collapse
Affiliation(s)
- Alexander Spirov
- The Institute of Scientific Information for Social Sciences RAS, Moscow, Russia.
| |
Collapse
|
24
|
Li K, Xia J, Liu CG, Zhao XQ, Bai FW. Intracellular accumulation of c-di-GMP and its regulation on self-flocculation of the bacterial cells of Zymomonas mobilis. Biotechnol Bioeng 2023; 120:3234-3243. [PMID: 37526330 DOI: 10.1002/bit.28513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Zymomonas mobilis is an emerging chassis for being engineered to produce bulk products due to its unique glycolysis through the Entner-Doudoroff pathway with less ATP produced for lower biomass accumulation and higher product yield. When self-flocculated, the bacterial cells are more productive, since they can self-immobilize within bioreactors for high density, and are more tolerant to stresses for higher product titers, but this morphology needs to be controlled properly to avoid internal mass transfer limitation associated with their strong self-flocculation. Herewith we explored the regulation of cyclic diguanosine monophosphate (c-di-GMP) on self-flocculation of the bacterial cells through activating cellulose biosynthesis. While ZMO1365 and ZMO0919 with GGDEF domains for diguanylate cyclase activity catalyze c-di-GMP biosynthesis, ZMO1487 with an EAL domain for phosphodiesterase activity catalyzes c-di-GMP degradation, but ZMO1055 and ZMO0401 contain the dual domains with phosphodiesterase activity predominated. Since c-di-GMP is synthesized from GTP, the intracellular accumulation of this signal molecule through deactivating phosphodiesterase activity is preferred for activating cellulose biosynthesis to flocculate the bacterial cells, because such a strategy exerts less perturbance on intracellular processes regulated by GTP. These discoveries are significant for not only engineering unicellular Z. mobilis strains with the self-flocculating morphology to boost production but also understanding mechanism underlying c-di-GMP biosynthesis and degradation in the bacterium.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Kakoti A, Joyce GF. RNA Polymerase Ribozyme That Recognizes the Template-Primer Complex through Tertiary Interactions. Biochemistry 2023. [PMID: 37256719 DOI: 10.1021/acs.biochem.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
RNA enzymes (ribozymes) often rely on specific base-pairing interactions to engage RNA substrates, which limits the substrate sequence generality of these enzymes. An RNA polymerase ribozyme that was previously optimized by directed evolution to operate in a more efficient and sequence-general manner can now recognize the RNA template, RNA primer, and incoming nucleoside 5'-triphosphate (NTP) entirely through tertiary interactions. As with proteinaceous polymerases, these tertiary interactions are largely agnostic to the sequence of the template, which is an essential property for the unconstrained transmission of genetic information. The polymerase ribozyme exhibits Michaelis-Menten saturation kinetics, with a catalytic rate of 0.1-1 min-1 and a Km of 0.1-1 μM. Earlier forms of the polymerase did not exhibit a saturable substrate binding site, but this property emerged over the course of directed evolution as the ribozyme underwent a structural rearrangement of its catalytic center. The optimized polymerase makes tertiary contacts with both the template and primer, including a critical interaction at the C2' position of the template nucleotide that opposes the 3'-terminal nucleotide of the primer. UV cross-linking studies paint a picture of how several portions of the ribozyme, including regions that were remodeled by directed evolution, come together to position the template, primer, and NTP within the active site for RNA polymerization.
Collapse
Affiliation(s)
- Ankana Kakoti
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gerald F Joyce
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Wozniak K, Brzezinski K. Biological Catalysis and Information Storage Have Relied on N-Glycosyl Derivatives of β-D-Ribofuranose since the Origins of Life. Biomolecules 2023; 13:biom13050782. [PMID: 37238652 DOI: 10.3390/biom13050782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Most naturally occurring nucleotides and nucleosides are N-glycosyl derivatives of β-d-ribose. These N-ribosides are involved in most metabolic processes that occur in cells. They are essential components of nucleic acids, forming the basis for genetic information storage and flow. Moreover, these compounds are involved in numerous catalytic processes, including chemical energy production and storage, in which they serve as cofactors or coribozymes. From a chemical point of view, the overall structure of nucleotides and nucleosides is very similar and simple. However, their unique chemical and structural features render these compounds versatile building blocks that are crucial for life processes in all known organisms. Notably, the universal function of these compounds in encoding genetic information and cellular catalysis strongly suggests their essential role in the origins of life. In this review, we summarize major issues related to the role of N-ribosides in biological systems, especially in the context of the origin of life and its further evolution, through the RNA-based World(s), toward the life we observe today. We also discuss possible reasons why life has arisen from derivatives of β-d-ribofuranose instead of compounds based on other sugar moieties.
Collapse
Affiliation(s)
- Katarzyna Wozniak
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
| | - Krzysztof Brzezinski
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
| |
Collapse
|
27
|
Salditt A, Karr L, Salibi E, Le Vay K, Braun D, Mutschler H. Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment. Nat Commun 2023; 14:1495. [PMID: 36932102 PMCID: PMC10023712 DOI: 10.1038/s41467-023-37206-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Enzyme-catalyzed replication of nucleic acid sequences is a prerequisite for the survival and evolution of biological entities. Before the advent of protein synthesis, genetic information was most likely stored in and replicated by RNA. However, experimental systems for sustained RNA-dependent RNA-replication are difficult to realise, in part due to the high thermodynamic stability of duplex products and the low chemical stability of catalytic RNAs. Using a derivative of a group I intron as a model for an RNA replicase, we show that heated air-water interfaces that are exposed to a plausible CO2-rich atmosphere enable sense and antisense RNA replication as well as template-dependent synthesis and catalysis of a functional ribozyme in a one-pot reaction. Both reactions are driven by autonomous oscillations in salt concentrations and pH, resulting from precipitation of acidified dew droplets, which transiently destabilise RNA duplexes. Our results suggest that an abundant Hadean microenvironment may have promoted both replication and synthesis of functional RNAs.
Collapse
Affiliation(s)
- Annalena Salditt
- Systems Biophysics and Center for NanoScience (CeNS), Ludwig Maximilian University Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Leonie Karr
- Systems Biophysics and Center for NanoScience (CeNS), Ludwig Maximilian University Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Kristian Le Vay
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Dieter Braun
- Systems Biophysics and Center for NanoScience (CeNS), Ludwig Maximilian University Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
28
|
Pavlinova P, Lambert CN, Malaterre C, Nghe P. Abiogenesis through gradual evolution of autocatalysis into template-based replication. FEBS Lett 2023; 597:344-379. [PMID: 36203246 DOI: 10.1002/1873-3468.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
How life emerged from inanimate matter is one of the most intriguing questions posed to modern science. Central to this research are experimental attempts to build systems capable of Darwinian evolution. RNA catalysts (ribozymes) are a promising avenue, in line with the RNA world hypothesis whereby RNA pre-dated DNA and proteins. Since evolution in living organisms relies on template-based replication, the identification of a ribozyme capable of replicating itself (an RNA self-replicase) has been a major objective. However, no self-replicase has been identified to date. Alternatively, autocatalytic systems involving multiple RNA species capable of ligation and recombination may enable self-reproduction. However, it remains unclear how evolution could emerge in autocatalytic systems. In this review, we examine how experimentally feasible RNA reactions catalysed by ribozymes could implement the evolutionary properties of variation, heredity and reproduction, and ultimately allow for Darwinian evolution. We propose a gradual path for the emergence of evolution, initially supported by autocatalytic systems leading to the later appearance of RNA replicases.
Collapse
Affiliation(s)
- Polina Pavlinova
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Camille N Lambert
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Christophe Malaterre
- Laboratory of Philosophy of Science (LAPS) and Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST), Université du Québec à Montréal (UQAM), Canada
| | - Philippe Nghe
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| |
Collapse
|
29
|
In vitro evolution of ribonucleases from expanded genetic alphabets. Proc Natl Acad Sci U S A 2022; 119:e2208261119. [PMID: 36279447 PMCID: PMC9636917 DOI: 10.1073/pnas.2208261119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of nucleic acids to catalyze reactions (as well as store and transmit information) is important for both basic and applied science, the first in the context of molecular evolution and the origin of life and the second for biomedical applications. However, the catalytic power of standard nucleic acids (NAs) assembled from just four nucleotide building blocks is limited when compared with that of proteins. Here, we assess the evolutionary potential of libraries of nucleic acids with six nucleotide building blocks as reservoirs for catalysis. We compare the outcomes of in vitro selection experiments toward RNA-cleavage activity of two nucleic acid libraries: one built from the standard four independently replicable nucleotides and the other from six, with the two added nucleotides coming from an artificially expanded genetic information system (AEGIS). Results from comparative experiments suggest that DNA libraries with increased chemical diversity, higher information density, and larger searchable sequence spaces are one order of magnitude richer reservoirs of molecules that catalyze the cleavage of a phosphodiester bond in RNA than DNA libraries built from a standard four-nucleotide alphabet. Evolved AEGISzymes with nitro-carrying nucleobase Z appear to exploit a general acid–base catalytic mechanism to cleave that bond, analogous to the mechanism of the ribonuclease A family of protein enzymes and heavily modified DNAzymes. The AEGISzyme described here represents a new type of catalysts evolved from libraries built from expanded genetic alphabets.
Collapse
|
30
|
Acquisition of Dual Ribozyme-Functions in Nonfunctional Short Hairpin RNAs through Kissing-Loop Interactions. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101561. [PMID: 36294996 PMCID: PMC9604999 DOI: 10.3390/life12101561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
The acquisition of functions via the elongation of nucleotides is an important factor in the development of the RNA world. In our previous study, we found that the introduction of complementary seven-membered kissing loops into inactive R3C ligase ribozymes revived their ligation activity. In this study, we applied the kissing complex formation-induced rearrangement of RNAs to two nonfunctional RNAs by introducing complementary seven-membered loops into each of them. By combining these two forms of RNAs, the ligase activity (derived from the R3C ligase ribozyme) as well as cleavage activity (derived from the hammerhead ribozyme) was obtained. Thus, effective RNA evolution toward the formation of a life system may require the achievement of “multiple” functions via kissing-loop interactions, as indicated in this study. Our results point toward the versatility of kissing-loop interactions in the evolution of RNA, i.e., two small nonfunctional RNAs can gain dual functions via a kissing-loop interaction.
Collapse
|
31
|
Rolling Circles as a Means of Encoding Genes in the RNA World. Life (Basel) 2022; 12:life12091373. [PMID: 36143408 PMCID: PMC9505818 DOI: 10.3390/life12091373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
The rolling circle mechanism found in viroids and some RNA viruses is a likely way that replication could have begun in the RNA World. Here, we consider simulations of populations of protocells, each containing multiple copies of rolling circle RNAs that can replicate non-enzymatically. The mechanism requires the presence of short self-cleaving ribozymes such as hammerheads, which can cleave and re-circularize RNA strands. A rolling circle must encode a hammerhead and the complement of a hammerhead, so that both plus and minus strands can cleave. Thus, the minimal functional length is twice the length of the hammerhead sequence. Selection for speed of replication will tend to reduce circles to this minimum length. However, if sequence errors occur when copying the hammerhead sequence, this prevents cleavage at one point, but still allows cleavage on the next passage around the rolling circle. Thus, there is a natural doubling mechanism that creates strands that are multiple times the length of the minimal sequence. This can provide space for the origin of new genes with beneficial functions. We show that if a beneficial gene appears in this new space, the longer sequence with the beneficial function can be selected, even though it replicates more slowly. This provides a route for the evolution of longer circles encoding multiple genes.
Collapse
|
32
|
Chamanian P, Higgs PG. Computer simulations of Template-Directed RNA Synthesis driven by temperature cycling in diverse sequence mixtures. PLoS Comput Biol 2022; 18:e1010458. [PMID: 36001640 PMCID: PMC9447872 DOI: 10.1371/journal.pcbi.1010458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/06/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
We present simulations of non-enzymatic template-directed RNA synthesis that incorporate primer extension, ligation, melting, and reannealing. Strand growth occurs over multiple heating/cooling cycles, producing strands of several hundred nucleotides in length, starting with random oligomers of 4 to 10 nucleotides. A strand typically grows by only 1 or 2 nucleotides in each cycle. Therefore, a strand is copied from many different templates, not from one specific complementary strand. A diverse sequence mixture is produced, and there is no exact copying of sequences, even if single base additions are fully accurate (no mutational errors). It has been proposed that RNA systems may contain a virtual circular genome, in which sequences partially overlap in a way that is mutually catalytic. We show that virtual circles do not emerge naturally in our simulations, and that a system initiated with a virtual circle can only maintain itself if there are no mutational errors and there is no input of new sequences formed by random polymerization. Furthermore, if a virtual sequence and its complement contain repeated short words, new sequences can be produced that were not on the original virtual circle. Therefore the virtual circle sequence cannot maintain itself. Functional sequences with secondary structures contain complementary words on opposite sides of stem regions. Both these words are repeated in the complementary sequence; hence, functional sequences cannot be encoded on a virtual circle. Additionally, we consider sequence replication in populations of protocells. We suppose that functional ribozymes benefit the cell which contains them. Nevertheless, scrambling of sequences occurs, and the functional sequence is not maintained, even when under positive selection. The earliest form of RNA replication may have been non-enzymatic, without requiring polymerase ribozymes. Non-enzymatic replication forms double strands that are unlikely to separate unless melting is driven by temperature cycling. However, re-annealing of existing strands occurs rapidly on cooling, and this prevents subsequent cycles of copying if there are multiple copies of similar sequences. In contrast, if there is a diverse mixture of sequences, partially matching sequences can reanneal in configurations that allow continued strand growth. We show that this allows continued synthesis of populations of random sequences that are quite long. We test the idea that a virtual circular genome could exist in such a mixture. We show that a virtual genome does not arise spontaneously and that it cannot be maintained except in unrealistic ideal cases. We conclude that functional sequence information cannot be encoded on the fragments of a virtual circle.
Collapse
Affiliation(s)
- Pouyan Chamanian
- Origins Institute and Dept of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Paul G. Higgs
- Origins Institute and Dept of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Janzen E, Shen Y, Vázquez-Salazar A, Liu Z, Blanco C, Kenchel J, Chen IA. Emergent properties as by-products of prebiotic evolution of aminoacylation ribozymes. Nat Commun 2022; 13:3631. [PMID: 35752631 PMCID: PMC9233669 DOI: 10.1038/s41467-022-31387-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Systems of catalytic RNAs presumably gave rise to important evolutionary innovations, such as the genetic code. Such systems may exhibit particular tolerance to errors (error minimization) as well as coding specificity. While often assumed to result from natural selection, error minimization may instead be an emergent by-product. In an RNA world, a system of self-aminoacylating ribozymes could enforce the mapping of amino acids to anticodons. We measured the activity of thousands of ribozyme mutants on alternative substrates (activated analogs for tryptophan, phenylalanine, leucine, isoleucine, valine, and methionine). Related ribozymes exhibited shared preferences for substrates, indicating that adoption of additional amino acids by existing ribozymes would itself lead to error minimization. Furthermore, ribozyme activity was positively correlated with specificity, indicating that selection for increased activity would also lead to increased specificity. These results demonstrate that by-products of ribozyme evolution could lead to adaptive value in specificity and error tolerance.
Collapse
Affiliation(s)
- Evan Janzen
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Yuning Shen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Celia Blanco
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Josh Kenchel
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Irene A Chen
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA. .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA. .,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
34
|
RNA World Modeling: A Comparison of Two Complementary Approaches. ENTROPY 2022; 24:e24040536. [PMID: 35455198 PMCID: PMC9027272 DOI: 10.3390/e24040536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Despite years of dedicated research, scientists are still not sure what the first ”living” cell would have looked like. One of the most well-known hypotheses is the RNA world hypothesis, which assumes that, in the beginning, life relied on RNA molecules instead of DNA as information carriers and primitive enzymes. The population of such RNAs is made up of self-replicating molecules (replicases) that could make copies of themselves and parasite molecules that could only be copied by replicases. In this study, we further investigated the interplay between these hypothetical prebiotic RNA species, since it plays a crucial role in generating diversity and complexity in prebiotic molecular evolution. We compared two approaches that are commonly used to investigate such simple prebiotic systems, representing different modeling and observation scales—namely, microscopic and macroscopic. In both cases, we were able to obtain consistent results. Abstract The origin of life remains one of the major scientific questions in modern biology. Among many hypotheses aiming to explain how life on Earth started, RNA world is probably the most extensively studied. It assumes that, in the very beginning, RNA molecules served as both enzymes and as genetic information carriers. However, even if this is true, there are many questions that still need to be answered—for example, whether the population of such molecules could achieve stability and retain genetic information for many generations, which is necessary in order for evolution to start. In this paper, we try to answer this question based on the parasite–replicase model (RP model), which divides RNA molecules into enzymes (RNA replicases) capable of catalyzing replication and parasites that do not possess replicase activity but can be replicated by RNA replicases. We describe the aforementioned system using partial differential equations and, based on the analysis of the simulation, surmise general rules governing its evolution. We also compare this approach with one where the RP system is modeled and implemented using a multi-agent modeling technique. We show that approaching the description and analysis of the RP system from different perspectives (microscopic represented by MAS and macroscopic depicted by PDE) provides consistent results. Therefore, applying MAS does not lead to erroneous results and allows us to study more complex situations where many cases are concerned, which would not be possible through the PDE model.
Collapse
|
35
|
Göppel T, Rosenberger JH, Altaner B, Gerland U. Thermodynamic and Kinetic Sequence Selection in Enzyme-Free Polymer Self-Assembly Inside a Non-Equilibrium RNA Reactor. Life (Basel) 2022; 12:life12040567. [PMID: 35455058 PMCID: PMC9032526 DOI: 10.3390/life12040567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
The RNA world is one of the principal hypotheses to explain the emergence of living systems on the prebiotic Earth. It posits that RNA oligonucleotides acted as both carriers of information as well as catalytic molecules, promoting their own replication. However, it does not explain the origin of the catalytic RNA molecules. How could the transition from a pre-RNA to an RNA world occur? A starting point to answer this question is to analyze the dynamics in sequence space on the lowest level, where mononucleotide and short oligonucleotides come together and collectively evolve into larger molecules. To this end, we study the sequence-dependent self-assembly of polymers from a random initial pool of short building blocks via templated ligation. Templated ligation requires two strands that are hybridized adjacently on a third strand. The thermodynamic stability of such a configuration crucially depends on the sequence context and, therefore, significantly influences the ligation probability. However, the sequence context also has a kinetic effect, since non-complementary nucleotide pairs in the vicinity of the ligation site stall the ligation reaction. These sequence-dependent thermodynamic and kinetic effects are explicitly included in our stochastic model. Using this model, we investigate the system-level dynamics inside a non-equilibrium ‘RNA reactor’ enabling a fast chemical activation of the termini of interacting oligomers. Moreover, the RNA reactor subjects the oligomer pool to periodic temperature changes inducing the reshuffling of the system. The binding stability of strands typically grows with the number of complementary nucleotides forming the hybridization site. While shorter strands unbind spontaneously during the cold phase, larger complexes only disassemble during the temperature peaks. Inside the RNA reactor, strand growth is balanced by cleavage via hydrolysis, such that the oligomer pool eventually reaches a non-equilibrium stationary state characterized by its length and sequence distribution. How do motif-dependent energy and stalling parameters affect the sequence composition of the pool of long strands? As a critical factor for self-enhancing sequence selection, we identify kinetic stalling due to non-complementary base pairs at the ligation site. Kinetic stalling enables cascades of self-amplification that result in a strong reduction of occupied states in sequence space. Moreover, we discuss the significance of the symmetry breaking for the transition from a pre-RNA to an RNA world.
Collapse
|
36
|
Kristoffersen EL, Burman M, Noy A, Holliger P. Rolling circle RNA synthesis catalysed by RNA. eLife 2022; 11:75186. [PMID: 35108196 PMCID: PMC8937235 DOI: 10.7554/elife.75186] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-catalyzed RNA replication is widely considered a key step in the emergence of life’s first genetic system. However, RNA replication can be impeded by the extraordinary stability of duplex RNA products, which must be dissociated for re-initiation of the next replication cycle. Here, we have explored rolling circle synthesis (RCS) as a potential solution to this strand separation problem. We observe sustained RCS by a triplet polymerase ribozyme beyond full-length circle synthesis with strand displacement yielding concatemeric RNA products. Furthermore, we show RCS of a circular Hammerhead ribozyme capable of self-cleavage and re-circularization. Thus, all steps of a viroid-like RNA replication pathway can be catalyzed by RNA alone. Finally, we explore potential RCS mechanisms by molecular dynamics simulations, which indicate a progressive build-up of conformational strain upon RCS with destabilization of nascent strand 5′- and 3′-ends. Our results have implications for the emergence of RNA replication and for understanding the potential of RNA to support complex genetic processes. Many organisms today rely on a trio of molecules for their survival: DNA, to store their genetic information; proteins, to conduct the biological processes required for growth or replication; and RNA, to mainly act as an intermediary between DNA and proteins. Yet, how these inanimate molecules first came together to form a living system remains unclear. Circumstantial evidence suggests that the first lifeforms relied to a much greater exrtent on RNA to conduct all necessary biological processes. There is no trace of this ‘RNA world’ today, but molecular ‘fossils’ may exist in current biology. Viroids, for example, are agents which can infect and replicate inside plant cells. They are formed of nothing but a circular strand of RNA that serves not only as genetic storage but also as ribozymes (RNA-based enzymes). Viroids need proteins from the host plant to replicate, but scientists have been able to engineer ribozymes that can copy complex RNA strands. This suggests that viroid-like replication could be achieved using only RNA. Kristoffersen et al. put this idea to the test and showed that it is possible to use RNA enzymatic activity alone to carry out all the steps of a viroid-like copying mechanism. This process included copying a viroid-like RNA circle with RNA, followed by trimming the copy to the right size and reforming the circle. These two latter steps could be carried out by a ribozyme that could itself be encoded on the RNA circle. A computer simulation indicated that RNA synthesis on the circle caused increasing tension that could ease some of the barriers to replication. These results increase our understanding of how RNA copying by RNA could be possible. This may lead to developing molecular models of a primordial RNA-based replication, which could be used to investigate early genetic systems and may have potential applications in synthetic biology.
Collapse
Affiliation(s)
| | - Matthew Burman
- Department of Physics, University of York, York, United Kingdom
| | - Agnes Noy
- Department of Physics, University of York, York, United Kingdom
| | | |
Collapse
|
37
|
Asanuma H, Kamiya Y, Kashida H, Murayama K. Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties. Chem Commun (Camb) 2022; 58:3993-4004. [DOI: 10.1039/d1cc05868a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA and RNA have significance as a genetic materials, therapeutic potential, and supramolecular properties. Advances in nucleic acid chemistry have enabled large-scale synthesis of DNA and RNA oligonucleotides and oligomers...
Collapse
|
38
|
Genome Evolution from Random Ligation of RNAs of Autocatalytic Sets. Int J Mol Sci 2021; 22:ijms222413526. [PMID: 34948321 PMCID: PMC8707343 DOI: 10.3390/ijms222413526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The evolutionary origin of the genome remains elusive. Here, I hypothesize that its first iteration, the protogenome, was a multi-ribozyme RNA. It evolved, likely within liposomes (the protocells) forming in dry-wet cycling environments, through the random fusion of ribozymes by a ligase and was amplified by a polymerase. The protogenome thereby linked, in one molecule, the information required to seed the protometabolism (a combination of RNA-based autocatalytic sets) in newly forming protocells. If this combination of autocatalytic sets was evolutionarily advantageous, the protogenome would have amplified in a population of multiplying protocells. It likely was a quasispecies with redundant information, e.g., multiple copies of one ribozyme. As such, new functionalities could evolve, including a genetic code. Once one or more components of the protometabolism were templated by the protogenome (e.g., when a ribozyme was replaced by a protein enzyme), and/or addiction modules evolved, the protometabolism became dependent on the protogenome. Along with increasing fidelity of the RNA polymerase, the protogenome could grow, e.g., by incorporating additional ribozyme domains. Finally, the protogenome could have evolved into a DNA genome with increased stability and storage capacity. I will provide suggestions for experiments to test some aspects of this hypothesis, such as evaluating the ability of ribozyme RNA polymerases to generate random ligation products and testing the catalytic activity of linked ribozyme domains.
Collapse
|
39
|
Freund N, Fürst MJLJ, Holliger P. New chemistries and enzymes for synthetic genetics. Curr Opin Biotechnol 2021; 74:129-136. [PMID: 34883451 DOI: 10.1016/j.copbio.2021.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
Beyond the natural nucleic acids DNA and RNA, nucleic acid chemistry has unlocked a whole universe of modifications to their canonical chemical structure, which can in various ways modify and enhance nucleic acid function and utility for applications in biotechnology and medicine. Unlike the natural modifications of tRNA and rRNA or the epigenetic modifications in mRNA and genomic DNA, these altered chemistries are not found in nature and therefore these molecules are referred to as xeno-nucleic acids (XNAs). In this review we aim to focus specifically on recent progress in a subsection of this vast field-synthetic genetics-concerned with encoded synthesis, reverse transcription, and evolution of XNAs.
Collapse
Affiliation(s)
- Niklas Freund
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
40
|
Jiang H, Gao Y, Zhang L, Chen D, Gan J, Murchie AIH. The identification and characterization of a selected SAM-dependent methyltransferase ribozyme that is present in natural sequences. Nat Catal 2021. [DOI: 10.1038/s41929-021-00685-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Higgs PG. When Is a Reaction Network a Metabolism? Criteria for Simple Metabolisms That Support Growth and Division of Protocells. Life (Basel) 2021; 11:life11090966. [PMID: 34575115 PMCID: PMC8469938 DOI: 10.3390/life11090966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
With the aim of better understanding the nature of metabolism in the first cells and the relationship between the origin of life and the origin of metabolism, we propose three criteria that a chemical reaction system must satisfy in order to constitute a metabolism that would be capable of sustaining growth and division of a protocell. (1) Biomolecules produced by the reaction system must be maintained at high concentration inside the cell while they remain at low or zero concentration outside. (2) The total solute concentration inside the cell must be higher than outside, so there is a positive osmotic pressure that drives cell growth. (3) The metabolic rate (i.e., the rate of mass throughput) must be higher inside the cell than outside. We give examples of small-molecule reaction systems that satisfy these criteria, and others which do not, firstly considering fixed-volume compartments, and secondly, lipid vesicles that can grow and divide. If the criteria are satisfied, and if a supply of lipid is available outside the cell, then continued growth of membrane surface area occurs alongside the increase in volume of the cell. If the metabolism synthesizes more lipid inside the cell, then the membrane surface area can increase proportionately faster than the cell volume, in which case cell division is possible. The three criteria can be satisfied if the reaction system is bistable, because different concentrations can exist inside and out while the rate constants of all the reactions are the same. If the reaction system is monostable, the criteria can only be satisfied if there is a reason why the rate constants are different inside and out (for example, the decay rates of biomolecules are faster outside, or the formation rates of biomolecules are slower outside). If this difference between inside and outside does not exist, a monostable reaction system cannot sustain cell growth and division. We show that a reaction system for template-directed RNA polymerization can satisfy the requirements for a metabolism, even if the small-molecule reactions that make the single nucleotides do not.
Collapse
Affiliation(s)
- Paul G Higgs
- Department of Physics and Astronomy, Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
42
|
Jeancolas C, Matsubara YJ, Vybornyi M, Lambert CN, Blokhuis A, Alline T, Griffiths AD, Ameta S, Krishna S, Nghe P. RNA diversification by a self-reproducing ribozyme revealed by deep sequencing and kinetic modelling. Chem Commun (Camb) 2021; 57:7517-7520. [PMID: 34235521 PMCID: PMC8320737 DOI: 10.1039/d1cc02290c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We demonstrate that a recombinase ribozyme achieves multiple functions in the same reaction network: self-reproduction, iterative elongation and circularization of other RNAs, leading to synthesis of diverse products predicted by a kinetic model. This shows that key mechanisms can be integrated and controlled toward Darwinian evolution in RNA reaction networks. The integration of self-reproduction and diversification mechanisms in RNA reaction networks paves the way for experimental tests of prebiotic evolution.![]()
Collapse
Affiliation(s)
- Cyrille Jeancolas
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231, Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, Paris 75005, France. and Laboratoire d'Anthropologie Sociale, Collège de France, 52 rue du Cardinal Lemoine, Paris 75005, France
| | - Yoshiya J Matsubara
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bellary Road, Bangalore 560 065, Karnataka, India
| | - Mykhailo Vybornyi
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231, Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, Paris 75005, France.
| | - Camille N Lambert
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231, Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, Paris 75005, France.
| | - Alex Blokhuis
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231, Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, Paris 75005, France. and Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Thomas Alline
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231, Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, Paris 75005, France.
| | - Andrew D Griffiths
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231, Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, Paris 75005, France.
| | - Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bellary Road, Bangalore 560 065, Karnataka, India
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bellary Road, Bangalore 560 065, Karnataka, India
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231, Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, Paris 75005, France.
| |
Collapse
|
43
|
Portillo X, Huang YT, Breaker RR, Horning DP, Joyce GF. Witnessing the structural evolution of an RNA enzyme. eLife 2021; 10:71557. [PMID: 34498588 PMCID: PMC8460264 DOI: 10.7554/elife.71557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
An RNA polymerase ribozyme that has been the subject of extensive directed evolution efforts has attained the ability to synthesize complex functional RNAs, including a full-length copy of its own evolutionary ancestor. During the course of evolution, the catalytic core of the ribozyme has undergone a major structural rearrangement, resulting in a novel tertiary structural element that lies in close proximity to the active site. Through a combination of site-directed mutagenesis, structural probing, and deep sequencing analysis, the trajectory of evolution was seen to involve the progressive stabilization of the new structure, which provides the basis for improved catalytic activity of the ribozyme. Multiple paths to the new structure were explored by the evolving population, converging upon a common solution. Tertiary structural remodeling of RNA is known to occur in nature, as evidenced by the phylogenetic analysis of extant organisms, but this type of structural innovation had not previously been observed in an experimental setting. Despite prior speculation that the catalytic core of the ribozyme had become trapped in a narrow local fitness optimum, the evolving population has broken through to a new fitness locale, raising the possibility that further improvement of polymerase activity may be achievable.
Collapse
Affiliation(s)
- Xavier Portillo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | | | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Howard Hughes Medical Institute, New Haven, United States
| | | | | |
Collapse
|
44
|
Miao X, Paikar A, Lerner B, Diskin‐Posner Y, Shmul G, Semenov SN. Kinetic Selection in the Out‐of‐Equilibrium Autocatalytic Reaction Networks that Produce Macrocyclic Peptides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoming Miao
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Arpita Paikar
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Benjamin Lerner
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Yael Diskin‐Posner
- Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
| | - Guy Shmul
- Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
| | - Sergey N. Semenov
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
45
|
Miao X, Paikar A, Lerner B, Diskin-Posner Y, Shmul G, Semenov SN. Kinetic Selection in the Out-of-Equilibrium Autocatalytic Reaction Networks that Produce Macrocyclic Peptides. Angew Chem Int Ed Engl 2021; 60:20366-20375. [PMID: 34144635 DOI: 10.1002/anie.202105790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Autocatalytic reaction networks are instrumental for validating scenarios for the emergence of life on Earth and for synthesizing life de novo. Here, we demonstrate that dimeric thioesters of tripeptides with the general structure (Cys-Xxx-Gly-SEt)2 form strongly interconnected autocatalytic reaction networks that predominantly generate macrocyclic peptides up to 69 amino acids long. Some macrocycles of 6-12 amino acids were isolated from the product pool and were characterized by NMR spectroscopy and single-crystal X-ray analysis. We studied the autocatalytic formation of macrocycles in a flow reactor in the presence of acrylamide, whose conjugate addition to thiols served as a model "removal" reaction. These results indicate that even not template-assisted autocatalytic production combined with competing removal of molecular species in an open compartment could be a feasible route for selecting functional molecules during the pre-Darwinian stages of molecular evolution.
Collapse
Affiliation(s)
- Xiaoming Miao
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Arpita Paikar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Benjamin Lerner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Guy Shmul
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
46
|
Chang T, He S, Amini R, Li Y. Functional Nucleic Acids Under Unusual Conditions. Chembiochem 2021; 22:2368-2383. [PMID: 33930229 DOI: 10.1002/cbic.202100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Functional nucleic acids (FNAs), including naturally occurring ribozymes and riboswitches as well as artificially created DNAzymes and aptamers, have been popular molecular toolboxes for diverse applications. Given the high chemical stability of nucleic acids and their ability to fold into diverse sequence-dependent structures, FNAs are suggested to be highly functional under unusual reaction conditions. This review will examine the progress of research on FNAs under conditions of low pH, high temperature, freezing conditions, and the inclusion of organic solvents and denaturants that are known to disrupt nucleic acid structures. The FNA species to be discussed include ribozymes, riboswitches, G-quadruplex-based peroxidase mimicking DNAzymes, RNA-cleaving DNAzymes, and aptamers. Research within this space has not only revealed the hidden talents of FNAs but has also laid important groundwork for pursuing these intriguing functional macromolecules for unique applications.
Collapse
Affiliation(s)
- Tianjun Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, P. R. China
| | - Sisi He
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, 518055, Guangdong, P. R. China
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
47
|
Rolling-circle and strand-displacement mechanisms for non-enzymatic RNA replication at the time of the origin of life. J Theor Biol 2021; 527:110822. [PMID: 34214567 DOI: 10.1016/j.jtbi.2021.110822] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
It is likely that RNA replication began non-enzymatically, and that polymerases were later selected to speed up the process. We consider replication mechanisms in modern viruses and ask which of these is possible non-enzymatically, using mathematical models and experimental data found in the literature to estimate rates of RNA synthesis and replication. Replication via alternating plus and minus strands is found in some single-stranded RNA viruses. However, if this occurred non-enzymatically it would lead to double-stranded RNA that would not separate. With some form of environmental cycling, such as temperature, salinity, or pH cycling, double-stranded RNA can be melted to form single-stranded RNA, although re-annealing of existing strands would then occur much faster than synthesis of new strands. We show that re-annealing blocks this form of replication at a very low concentration of strands. Other kinds of viruses synthesize linear double strands from single strands and then make new single strands from double strands via strand-displacement. This does not require environmental cycling and is not blocked by re-annealing. However, under non-enzymatic conditions, if strand-displacement occurs from a linear template, we expect the incomplete new strand to be almost always displaced by the tail end of the old strand through toehold-mediated displacement. A third kind of replication in viruses and viroids is rolling-circle replication which occurs via strand-displacement on a circular template. Rolling-circle replication does not require environmental cycling and is not prevented by toehold-mediated displacement. Rolling-circle replication is therefore expected to occur non-enzymatically and is a likely starting point for the evolution of polymerase-catalysed replication.
Collapse
|
48
|
Lehman NE, Kauffman SA. Constraint Closure Drove Major Transitions in the Origins of Life. ENTROPY (BASEL, SWITZERLAND) 2021; 23:E105. [PMID: 33451001 PMCID: PMC7828513 DOI: 10.3390/e23010105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
Life is an epiphenomenon for which origins are of tremendous interest to explain. We provide a framework for doing so based on the thermodynamic concept of work cycles. These cycles can create their own closure events, and thereby provide a mechanism for engendering novelty. We note that three significant such events led to life as we know it on Earth: (1) the advent of collective autocatalytic sets (CASs) of small molecules; (2) the advent of CASs of reproducing informational polymers; and (3) the advent of CASs of polymerase replicases. Each step could occur only when the boundary conditions of the system fostered constraints that fundamentally changed the phase space. With the realization that these successive events are required for innovative forms of life, we may now be able to focus more clearly on the question of life's abundance in the universe.
Collapse
Affiliation(s)
- Niles E. Lehman
- Edac Research, 1879 Camino Cruz Blanca, Santa Fe, NM 87505, USA;
| | | |
Collapse
|
49
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
50
|
Abstract
Thresholds are widespread in origin of life scenarios, from the emergence of chirality, to the appearance of vesicles, of autocatalysis, all the way up to Darwinian evolution. Here, we analyze the “error threshold,” which poses a condition for sustaining polymer replication, and generalize the threshold approach to other properties of prebiotic systems. Thresholds provide theoretical predictions, prescribe experimental tests, and integrate interdisciplinary knowledge. The coupling between systems and their environment determines how thresholds can be crossed, leading to different categories of prebiotic transitions. Articulating multiple thresholds reveals evolutionary properties in prebiotic scenarios. Overall, thresholds indicate how to assess, revise, and compare origin of life scenarios.
Collapse
Affiliation(s)
- Cyrille Jeancolas
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France.,Laboratoire d'Anthropologie Sociale, Collège de France, 52 rue du Cardinal Lemoine, 75005 Paris, France
| | - Christophe Malaterre
- Département de Philosophie and Centre de Recherche Interuniversitaire sur la Science et la Technologie (CIRST), Université du Québec à Montréal (UQAM), 455 boulevard René-Lévesque Est, Montréal, QC H3C 3P8, Canada
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|