1
|
Ottens F, Efstathiou S, Hoppe T. Cutting through the stress: RNA decay pathways at the endoplasmic reticulum. Trends Cell Biol 2024; 34:1056-1068. [PMID: 38008608 DOI: 10.1016/j.tcb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
The endoplasmic reticulum (ER) is central to the processing of luminal, transmembrane, and secretory proteins, and maintaining a functional ER is essential for organismal physiology and health. Increased protein-folding load on the ER causes ER stress, which activates quality control mechanisms to restore ER function and protein homeostasis. Beyond protein quality control, mRNA decay pathways have emerged as potent ER fidelity regulators, but their mechanistic roles in ER quality control and their interrelationships remain incompletely understood. Herein, we review ER-associated RNA decay pathways - including regulated inositol-requiring enzyme 1α (IRE1α)-dependent mRNA decay (RIDD), nonsense-mediated mRNA decay (NMD), and Argonaute-dependent RNA silencing - in ER homeostasis, and highlight the intricate coordination of ER-targeted RNA and protein decay mechanisms and their association with antiviral defense.
Collapse
Affiliation(s)
- Franziska Ottens
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sotirios Efstathiou
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Ishiwata-Kimata Y, Kimata Y. Fundamental and Applicative Aspects of the Unfolded Protein Response in Yeasts. J Fungi (Basel) 2023; 9:989. [PMID: 37888245 PMCID: PMC10608004 DOI: 10.3390/jof9100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Upon the dysfunction or functional shortage of the endoplasmic reticulum (ER), namely, ER stress, eukaryotic cells commonly provoke a protective gene expression program called the unfolded protein response (UPR). The molecular mechanism of UPR has been uncovered through frontier genetic studies using Saccharomyces cerevisiae as a model organism. Ire1 is an ER-located transmembrane protein that directly senses ER stress and is activated as an RNase. During ER stress, Ire1 promotes the splicing of HAC1 mRNA, which is then translated into a transcription factor that induces the expression of various genes, including those encoding ER-located molecular chaperones and protein modification enzymes. While this mainstream intracellular UPR signaling pathway was elucidated in the 1990s, new intriguing insights have been gained up to now. For instance, various additional factors allow UPR evocation strictly in response to ER stress. The UPR machineries in other yeasts and fungi, including pathogenic species, are another important research topic. Moreover, industrially beneficial yeast strains carrying an enforced and enlarged ER have been produced through the artificial and constitutive induction of the UPR. In this article, we review canonical and up-to-date insights concerning the yeast UPR, mainly from the viewpoint of the functions and regulation of Ire1 and HAC1.
Collapse
Affiliation(s)
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
3
|
Abstract
The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number of canonical UPR sensors/transducers has increased during evolution, from one (IRE1) in yeast to three (IRE1, PERK, and ATF6) in invertebrates and five (IRE1α, IRE1β, PERK, ATF6α, and ATF6β) in vertebrates. Here, I initially describe the four major changes that have occurred during evolution: (1) advent of PERK in metazoans; (2) switch in transcription factor downstream of IRE1 in metazoans; (3) switch in regulator of ER chaperone induction in vertebrates; and (4) increase in the number of ATF6-like local factors in vertebrates. I then discuss the causes of the phenotypes of vertebrate knockout animals and refer to regulated IRE1-dependent decay of mRNAs.
Collapse
Affiliation(s)
- Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Li W, Singer RH. Detecting the Non-conventional mRNA Splicing and Translational Activation of HAC1 in Budding Yeast. Methods Mol Biol 2022; 2378:113-120. [PMID: 34985697 DOI: 10.1007/978-1-0716-1732-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein-folding homeostasis in the endoplasmic reticulum (ER) is maintained by the unfolded protein response (UPR). UPR in Saccharomyces cerevisiae is regulated by a bZIP transcription factor, Hac1p. Under non-stress condition, HAC1 mRNA is translationally repressed. When un- or mis-folded proteins accumulate in the ER, HAC1 mRNA undergoes non-conventional mRNA splicing. The spliced HAC1 mRNA is translationally active and produces functional Hac1p, which initiates a transcriptional response that restores ER protein-folding homeostasis. Thus, the activation of yeast UPR is tightly regulated by HAC1 mRNA splicing. Here, we describe two methods that are used to monitor the splicing and translational status of HAC1 mRNA in budding yeast.
Collapse
Affiliation(s)
- Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
5
|
Väth K, Mattes C, Reinhard J, Covino R, Stumpf H, Hummer G, Ernst R. Cysteine cross-linking in native membranes establishes the transmembrane architecture of Ire1. J Cell Biol 2021; 220:212449. [PMID: 34196665 PMCID: PMC8256922 DOI: 10.1083/jcb.202011078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
The ER is a key organelle of membrane biogenesis and crucial for the folding of both membrane and secretory proteins. Sensors of the unfolded protein response (UPR) monitor the unfolded protein load in the ER and convey effector functions for maintaining ER homeostasis. Aberrant compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent activators of the UPR. How the distinct signals from lipid bilayer stress and unfolded proteins are processed by the conserved UPR transducer Ire1 remains unknown. Here, we have generated a functional, cysteine-less variant of Ire1 and performed systematic cysteine cross-linking experiments in native membranes to establish its transmembrane architecture in signaling-active clusters. We show that the transmembrane helices of two neighboring Ire1 molecules adopt an X-shaped configuration independent of the primary cause for ER stress. This suggests that different forms of stress converge in a common, signaling-active transmembrane architecture of Ire1.
Collapse
Affiliation(s)
- Kristina Väth
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,Preclinical Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Carsten Mattes
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,Preclinical Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - John Reinhard
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,Preclinical Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Roberto Covino
- Frankfurt Institute of Advanced Sciences, Goethe-University, Frankfurt, Germany
| | - Heike Stumpf
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,Preclinical Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany.,Institute of Biophysics, Goethe-University, Frankfurt, Germany
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,Preclinical Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
6
|
Li W, Crotty K, Garrido Ruiz D, Voorhies M, Rivera C, Sil A, Mullins RD, Jacobson MP, Peschek J, Walter P. Protomer alignment modulates specificity of RNA substrate recognition by Ire1. eLife 2021; 10:e67425. [PMID: 33904404 PMCID: PMC8104961 DOI: 10.7554/elife.67425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
The unfolded protein response (UPR) maintains protein folding homeostasis in the endoplasmic reticulum (ER). In metazoan cells, the Ire1 branch of the UPR initiates two functional outputs-non-conventional mRNA splicing and selective mRNA decay (RIDD). By contrast, Ire1 orthologs from Saccharomyces cerevisiae and Schizosaccharomyces pombe are specialized for only splicing or RIDD, respectively. Previously, we showed that the functional specialization lies in Ire1's RNase activity, which is either stringently splice-site specific or promiscuous (Li et al., 2018). Here, we developed an assay that reports on Ire1's RNase promiscuity. We found that conversion of two amino acids within the RNase domain of S. cerevisiae Ire1 to their S. pombe counterparts rendered it promiscuous. Using biochemical assays and computational modeling, we show that the mutations rewired a pair of salt bridges at Ire1 RNase domain's dimer interface, changing its protomer alignment. Thus, Ire1 protomer alignment affects its substrates specificity.
Collapse
Affiliation(s)
- Weihan Li
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Kelly Crotty
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California at San FranciscoSan FranciscoUnited States
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California at San FranciscoSan FranciscoUnited States
| | - Carlos Rivera
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| | - Anita Sil
- Department of Microbiology and Immunology, University of California at San FranciscoSan FranciscoUnited States
| | - R Dyche Mullins
- Howard Hughes Medical InstituteSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California at San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California at San FranciscoSan FranciscoUnited States
| | - Jirka Peschek
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteSan FranciscoUnited States
| |
Collapse
|
7
|
High expression of spliced X-Box Binding Protein 1 in lung tumors is associated with cancer aggressiveness and epithelial-to-mesenchymal transition. Sci Rep 2020; 10:10188. [PMID: 32576923 PMCID: PMC7311525 DOI: 10.1038/s41598-020-67243-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Proteostasis imbalance is emerging as a major hallmark of cancer, driving tumor growth and aggressiveness. Endoplasmic Reticulum (ER) stress has been documented in most major cancers, and the ability to tolerate persistent ER stress through an effective unfolded protein response enhances cancer cell survival, angiogenesis, metastasis, drug resistance and immunosuppression. The ER stress sensor IRE1α contributes to tumor progression through XBP1 mRNA splicing and regulated IRE1α-dependent decay of mRNA and miRNA. The aim of this study was to perform a molecular characterization of series of tumor samples to explore the impact of intratumoral IRE1 signaling in non-small cell lung cancer characteristics. To monitor IRE1 splicing activity, we adopted a fragment length analysis to detect changes in the length of the XBP1 mRNA before and after splicing as a method for measuring sXBP1 mRNA levels in tumors because sXBP1 mRNA is not probed by standard transcriptomic analyses. We demonstrate for the first time that XBP1 splicing is a valuable marker of lung cancer aggressiveness, and our results support a model in which IRE1 downstream signaling could act as a regulator of Epithelial to Mesenchymal Transition (EMT). Our findings study highlights the role of IRE1α downstream signaling in non-small cell lung cancer and opens a conceptual framework to determine how IRE1α endoribonuclease activity shapes the EMT program.
Collapse
|
8
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
9
|
Karagöz GE, Aragón T, Acosta-Alvear D. Recent advances in signal integration mechanisms in the unfolded protein response. F1000Res 2019; 8. [PMID: 31723416 PMCID: PMC6833987 DOI: 10.12688/f1000research.19848.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Since its discovery more than 25 years ago, great progress has been made in our understanding of the unfolded protein response (UPR), a homeostatic mechanism that adjusts endoplasmic reticulum (ER) function to satisfy the physiological demands of the cell. However, if ER homeostasis is unattainable, the UPR switches to drive cell death to remove defective cells in an effort to protect the health of the organism. This functional dichotomy places the UPR at the crossroads of the adaptation versus apoptosis decision. Here, we focus on new developments in UPR signaling mechanisms, in the interconnectivity among the signaling pathways that make up the UPR in higher eukaryotes, and in the coordination between the UPR and other fundamental cellular processes.
Collapse
Affiliation(s)
- G Elif Karagöz
- Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Tomás Aragón
- Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, Pamplona, Spain
| | - Diego Acosta-Alvear
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
10
|
Xia X. Translation Control of HAC1 by Regulation of Splicing in Saccharomyces cerevisiae. Int J Mol Sci 2019; 20:ijms20122860. [PMID: 31212749 PMCID: PMC6627864 DOI: 10.3390/ijms20122860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Hac1p is a key transcription factor regulating the unfolded protein response (UPR) induced by abnormal accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. The accumulation of unfolded/misfolded proteins is sensed by protein Ire1p, which then undergoes trans-autophosphorylation and oligomerization into discrete foci on the ER membrane. HAC1 pre-mRNA, which is exported to the cytoplasm but is blocked from translation by its intron sequence looping back to its 5’UTR to form base-pair interaction, is transported to the Ire1p foci to be spliced, guided by a cis-acting bipartite element at its 3’UTR (3’BE). Spliced HAC1 mRNA can be efficiently translated. The resulting Hac1p enters the nucleus and activates, together with coactivators, a large number of genes encoding proteins such as protein chaperones to restore and maintain ER homeostasis and secretary protein quality control. This review details the translation regulation of Hac1p production, mediated by the nonconventional splicing, in the broad context of translation control and summarizes the evolution and diversification of the UPR signaling pathway among fungal, metazoan and plant lineages.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada.
| |
Collapse
|
11
|
Ohe K, Tanaka T, Horita Y, Harada Y, Yamasaki T, Abe I, Tanabe M, Nomiyama T, Kobayashi K, Enjoji M, Yanase T. Circular IRE-type RNAs of the NR5A1 gene are formed in adrenocortical cells. Biochem Biophys Res Commun 2019; 512:1-6. [PMID: 30853179 DOI: 10.1016/j.bbrc.2019.02.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 11/17/2022]
Abstract
The recently discovered circular RNAs (circRNAs) are mostly formed by back-splicing where the downstream 5' splice site splices to the upstream 3' splice site by conventional pre-mRNA splicing. These circRNAs regulate gene expression by acting as sponges for micro-RNAs or RNA-binding proteins. Here we show that the NR5A1 (previously called Ad4BP or SF-1) gene which is exclusively expressed in the adrenal cortex and steroidogenic tissue can form atypical circRNAs by unconventional splicing. Two stem loops with inositol-requiring protein-1α (IRE1α) cleavage sites are connected by an IRE1α cleavage site to form a circRNA (circIRE RNA). From total RNA of normal human adrenal cortex, we detected a circIRE RNA with connected ends by IRE1α cleavage sites in exon 6 and exon 1 (circIRE NR5A1 ex6-1 RNA). circIRE NR5A1 ex6-1 RNA was not detected in the adrenocortical cancer cell line, H295R. When IRE1α was expressed in H295R cells a different circIRE NR5A1 RNA connecting IRE1-cleavage sites in exon 7 and exon 1 was detected (circIRE NR5A1 ex7-1 RNA). The expression of this circIRE RNA was inhibited by the IRE1 inhibitor 1, STF-083010, implicating that it was formed via the ER stress pathway, where IRE1α is a major factor. This is the first report of this type of circular RNA connected by IRE1-cleavage sites found to be expressed in mammalian cells in a tissue-specific manner. To our surprise, the concomitant expression of NR5A1 was increased by IRE1α implicating that NR5A1 was not subjected to IRE1-dependent decay of mRNA (RIDD) but rather activating a transcriptional regulatory network to cope with ER stress in steroidogenic tissue reminiscent to XBP1 in other tissue. We believe this is the first report of such tissue-specific transcriptional cascade responding to ER stress as well as the novel finding of circular RNAs connected by IRE1α cleavage sites expressed in mammalian tissue.
Collapse
Affiliation(s)
- Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan.
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan; Department of Bioregulatory Science of Life-related Diseases, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuta Horita
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yoshihiro Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Takafumi Yamasaki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka, 818-8502, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Takashi Nomiyama
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka, 818-8502, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan; Department of Bioregulatory Science of Life-related Diseases, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan.
| |
Collapse
|
12
|
Cherry PD, Peach SE, Hesselberth JR. Multiple decay events target HAC1 mRNA during splicing to regulate the unfolded protein response. eLife 2019; 8:e42262. [PMID: 30874502 PMCID: PMC6456296 DOI: 10.7554/elife.42262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/14/2019] [Indexed: 01/24/2023] Open
Abstract
In the unfolded protein response (UPR), stress in the endoplasmic reticulum (ER) activates a large transcriptional program to increase ER folding capacity. During the budding yeast UPR, Ire1 excises an intron from the HAC1 mRNA and the exon products of cleavage are ligated, and the translated protein induces hundreds of stress-response genes. Using cells with mutations in RNA repair and decay enzymes, we show that phosphorylation of two different HAC1 splicing intermediates is required for their degradation by the 5'→3' exonuclease Xrn1 to enact opposing effects on the UPR. We also found that ligated but 2'-phosphorylated HAC1 mRNA is cleaved, yielding a decay intermediate with both 5'- and 2'-phosphates at its 5'-end that inhibit 5'→3' decay and suggesting that Ire1 degrades incompletely processed HAC1. These decay events expand the scope of RNA-based regulation in the budding yeast UPR and have implications for the control of the metazoan UPR.
Collapse
Affiliation(s)
- Patrick D Cherry
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
- RNA Bioscience Initiative, School of MedicineUniversity of ColoradoAuroraUnited States
| | - Sally E Peach
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
| |
Collapse
|
13
|
Acosta-Alvear D, Karagöz GE, Fröhlich F, Li H, Walther TC, Walter P. The unfolded protein response and endoplasmic reticulum protein targeting machineries converge on the stress sensor IRE1. eLife 2018; 7:43036. [PMID: 30582518 PMCID: PMC6336407 DOI: 10.7554/elife.43036] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022] Open
Abstract
The protein folding capacity of the endoplasmic reticulum (ER) is tightly regulated by a network of signaling pathways, known as the unfolded protein response (UPR). UPR sensors monitor the ER folding status to adjust ER folding capacity according to need. To understand how the UPR sensor IRE1 maintains ER homeostasis, we identified zero-length crosslinks of RNA to IRE1 with single nucleotide precision in vivo. We found that IRE1 specifically crosslinks to a subset of ER-targeted mRNAs, SRP RNA, ribosomal and transfer RNAs. Crosslink sites cluster in a discrete region of the ribosome surface spanning from the A-site to the polypeptide exit tunnel. Moreover, IRE1 binds to purified 80S ribosomes with high affinity, indicating association with ER-bound ribosomes. Our results suggest that the ER protein translocation and targeting machineries work together with the UPR to tune the ER’s protein folding load.
Collapse
Affiliation(s)
- Diego Acosta-Alvear
- Howard Hughes Medical Institute, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - G Elif Karagöz
- Howard Hughes Medical Institute, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Florian Fröhlich
- Harvard School of Public Health, Harvard Medical School, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Han Li
- Howard Hughes Medical Institute, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Tobias C Walther
- Howard Hughes Medical Institute, United States.,Harvard School of Public Health, Harvard Medical School, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Peter Walter
- Howard Hughes Medical Institute, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
14
|
McGrath EP, Logue SE, Mnich K, Deegan S, Jäger R, Gorman AM, Samali A. The Unfolded Protein Response in Breast Cancer. Cancers (Basel) 2018; 10:cancers10100344. [PMID: 30248920 PMCID: PMC6211039 DOI: 10.3390/cancers10100344] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 01/18/2023] Open
Abstract
In 2018, in the US alone, it is estimated that 268,670 people will be diagnosed with breast cancer, and that 41,400 will die from it. Since breast cancers often become resistant to therapies, and certain breast cancers lack therapeutic targets, new approaches are urgently required. A cell-stress response pathway, the unfolded protein response (UPR), has emerged as a promising target for the development of novel breast cancer treatments. This pathway is activated in response to a disturbance in endoplasmic reticulum (ER) homeostasis but has diverse physiological and disease-specific functions. In breast cancer, UPR signalling promotes a malignant phenotype and can confer tumours with resistance to widely used therapies. Here, we review several roles for UPR signalling in breast cancer, highlighting UPR-mediated therapy resistance and the potential for targeting the UPR alone or in combination with existing therapies.
Collapse
Affiliation(s)
- Eoghan P McGrath
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Susan E Logue
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Katarzyna Mnich
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Shane Deegan
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Richard Jäger
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany.
| | - Adrienne M Gorman
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| |
Collapse
|