1
|
Zhang R, Wang J, Cai X, Tang R, Lu HD. Dynamic grouping of ongoing activity in V1 hypercolumns. Neuroimage 2025; 310:121157. [PMID: 40120782 DOI: 10.1016/j.neuroimage.2025.121157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Neurons' spontaneous activity provides rich information about the brain. A single neuron's activity has close relationships with the local network. In order to understand such relationships, we studied the spontaneous activity of thousands of neurons in macaque V1 and V2 with two-photon calcium imaging. In V1, the ongoing activity was dominated by global fluctuations in which the activity of majority of neurons were correlated. Neurons' activity also relied on their relative locations within the local functional architectures, including ocular dominance, orientation, and color maps. Neurons with similar preferences dynamically grouped into co-activating ensembles and exhibited spatial patterns resembling the local functional maps. Different ensembles had different strengths and frequencies. This observation was consistent across all hypercolumn-sized V1 locations we examined. In V2, different imaging sites had different orientation and color features. However, the spontaneous activity in the sampled regions also correlated with the underlying functional architectures. These results indicate that functional architectures play an essential role in influencing neurons' spontaneous activity.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiayu Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xingya Cai
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Rendong Tang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Haidong D Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Li D, Hudetz AG. Anesthesia alters complexity of spontaneous and stimulus-related neuronal firing patterns in rat visual cortex. Neuroscience 2025; 565:440-456. [PMID: 39631661 DOI: 10.1016/j.neuroscience.2024.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Complexity of neuronal firing patterns may serve as an indicator of sensory information processing across different states of consciousness. Recent studies have shown that spontaneous changes in brain states can occur during general anesthesia, which may influence neuronal complexity and the state of consciousness. In this study, we investigated how the firing patterns of cortical neurons, both at rest and during visual stimulation, are affected by spontaneously changing brain states under varying levels of anesthesia. Extracellular unit activity was measured in the primary visual cortex of unrestrained rats as the inhaled concentration of desflurane was incrementally reduced to 6%, 4%, 2%, and 0%. Using dimensionality reduction and density-based clustering on individual unit activities, we identified five distinct population states, which underwent dynamic transitions independent of the anesthetic level during both resting and stimulus conditions. One population state that occurred mainly in deep anesthesia exhibited a paradoxically increased number of active neurons and asynchronous spiking, suggesting a spontaneous reversal towards an awake-like condition. However, this was contradicted by the observation of low neuronal complexity in both spontaneous and stimulus-related spike activity, which more closely aligns with unconsciousness. Our findings reveal that transient neuronal states with distinct spiking patterns can emerge in visual cortex at constant anesthetic concentrations. The reduced complexity in states associated with deep anesthesia likely indicates a disruption of conscious sensory information processing.
Collapse
Affiliation(s)
- Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony G Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Ruthig P, Müller G, Fink M, Scherf N, Morawski M, Schönwiesner M. Hemispheric Asymmetry of Intracortical Myelin Orientation in the Mouse Auditory Cortex. Eur J Neurosci 2025; 61:e16675. [PMID: 39831689 PMCID: PMC11744913 DOI: 10.1111/ejn.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Communication sound processing in mouse AC is lateralized. Both left and right AC are highly specialised and differ in auditory stimulus representation, functional connectivity and field topography. Previous studies have highlighted intracortical functional circuits that explain hemispheric stimulus preference. However, the underlying microstructure remains poorly understood. In this study, we examine structural lateralization of AC on the basis of immunohistochemically stained and tissue-cleared adult mouse brains (n = 11). We found hemispheric asymmetries of intracortical myelination, most prominently in layer 2/3, which featured more intercolumnar connections in the right AC. Furthermore, we found a larger structural asymmetry in the right AC. We also investigated sex differences. In male mice, myelination direction in the right AC is tilted to the anterior side. This pattern is inverted in female mice. However, the spatial distribution of neuronal cell bodies in the left and right AC along the laminar axis of the cortex was remarkably symmetric in all samples. These results suggest that basic developmentally defined structures such as cortical columns remain untouched by lateral specialisation, but more plastic myelinated axons show diverse hemispheric asymmetries. These asymmetries may contribute to specialisation on lateralized tasks such as vocal communication processing or specialisation on spectral or temporal complexity of stimuli.
Collapse
Affiliation(s)
- Philip Ruthig
- Faculty of Life SciencesLeipzig UniversityLeipzigGermany
- Paul Flechsig Institute–Centre of Neuropathology and Brain Research, Medical FacultyUniversity of LeipzigLeipzigGermany
- IMPRS NeurocomMax Planck Institute for Human Cognitive and Brain ScienceLeipzigGermany
| | - Gesine Fiona Müller
- Faculty of Computer ScienceTU Dresden University of TechnologyDresdenGermany
| | - Marion Fink
- Faculty of Life SciencesLeipzig UniversityLeipzigGermany
| | - Nico Scherf
- Methods and Development Group Neural Data Science and Statistical ComputingMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Markus Morawski
- Paul Flechsig Institute–Centre of Neuropathology and Brain Research, Medical FacultyUniversity of LeipzigLeipzigGermany
| | - Marc Schönwiesner
- Faculty of Life SciencesLeipzig UniversityLeipzigGermany
- Department of PsychologyUniversité de MontréalMontréalCanada
| |
Collapse
|
4
|
Hu C, Hasenstaub AR, Schreiner CE. Basic Properties of Coordinated Neuronal Ensembles in the Auditory Thalamus. J Neurosci 2024; 44:e1729232024. [PMID: 38561224 PMCID: PMC11079962 DOI: 10.1523/jneurosci.1729-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Coordinated neuronal activity has been identified to play an important role in information processing and transmission in the brain. However, current research predominantly focuses on understanding the properties and functions of neuronal coordination in hippocampal and cortical areas, leaving subcortical regions relatively unexplored. In this study, we use single-unit recordings in female Sprague Dawley rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity in the auditory thalamus-the medial geniculate body (MGB). We reliably identify coordinated neuronal ensembles (cNEs), which are groups of neurons that fire synchronously, in the MGB. cNEs are shown not to be the result of false-positive detections or by-products of slow-state oscillations in anesthetized animals. We demonstrate that cNEs in the MGB have enhanced information-encoding properties over individual neurons. Their neuronal composition is stable between spontaneous and evoked activity, suggesting limited stimulus-induced ensemble dynamics. These MGB cNE properties are similar to what is observed in cNEs in the primary auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing local networks and play a fundamental role in sensory processing within the brain.
Collapse
Affiliation(s)
- Congcong Hu
- John & Edward Coleman Memorial Laboratory, University of California-San Francisco, San Francisco, California 94158
- Neuroscience Graduate Program, University of California-San Francisco, San Francisco, California 94158
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, California 94158
| | - Andrea R Hasenstaub
- John & Edward Coleman Memorial Laboratory, University of California-San Francisco, San Francisco, California 94158
- Neuroscience Graduate Program, University of California-San Francisco, San Francisco, California 94158
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, California 94158
| | - Christoph E Schreiner
- John & Edward Coleman Memorial Laboratory, University of California-San Francisco, San Francisco, California 94158
- Neuroscience Graduate Program, University of California-San Francisco, San Francisco, California 94158
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, California 94158
| |
Collapse
|
5
|
Bandet MV, Winship IR. Aberrant cortical activity, functional connectivity, and neural assembly architecture after photothrombotic stroke in mice. eLife 2024; 12:RP90080. [PMID: 38687189 PMCID: PMC11060715 DOI: 10.7554/elife.90080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within 'remapped' forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.
Collapse
Affiliation(s)
- Mischa Vance Bandet
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| | - Ian Robert Winship
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| |
Collapse
|
6
|
Papadopoulos L, Jo S, Zumwalt K, Wehr M, McCormick DA, Mazzucato L. Modulation of metastable ensemble dynamics explains optimal coding at moderate arousal in auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588209. [PMID: 38617286 PMCID: PMC11014582 DOI: 10.1101/2024.04.04.588209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Performance during perceptual decision-making exhibits an inverted-U relationship with arousal, but the underlying network mechanisms remain unclear. Here, we recorded from auditory cortex (A1) of behaving mice during passive tone presentation, while tracking arousal via pupillometry. We found that tone discriminability in A1 ensembles was optimal at intermediate arousal, revealing a population-level neural correlate of the inverted-U relationship. We explained this arousal-dependent coding using a spiking network model with a clustered architecture. Specifically, we show that optimal stimulus discriminability is achieved near a transition between a multi-attractor phase with metastable cluster dynamics (low arousal) and a single-attractor phase (high arousal). Additional signatures of this transition include arousal-induced reductions of overall neural variability and the extent of stimulus-induced variability quenching, which we observed in the empirical data. Altogether, this study elucidates computational principles underlying interactions between pupil-linked arousal, sensory processing, and neural variability, and suggests a role for phase transitions in explaining nonlinear modulations of cortical computations.
Collapse
Affiliation(s)
| | - Suhyun Jo
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Kevin Zumwalt
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Michael Wehr
- Institute of Neuroscience, University of Oregon, Eugene, Oregon and Department of Psychology, University of Oregon, Eugene, Oregon
| | - David A McCormick
- Institute of Neuroscience, University of Oregon, Eugene, Oregon and Department of Biology, University of Oregon, Eugene, Oregon
| | - Luca Mazzucato
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
- Department of Biology, University of Oregon, Eugene, Oregon
- Department of Mathematics, University of Oregon, Eugene, Oregon and Department of Physics, University of Oregon, Eugene, Oregon
| |
Collapse
|
7
|
Bowen Z, Shilling-Scrivo K, Losert W, Kanold PO. Fractured columnar small-world functional network organization in volumes of L2/3 of mouse auditory cortex. PNAS NEXUS 2024; 3:pgae074. [PMID: 38415223 PMCID: PMC10898513 DOI: 10.1093/pnasnexus/pgae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
The sensory cortices of the brain exhibit large-scale functional topographic organization, such as the tonotopic organization of the primary auditory cortex (A1) according to sound frequency. However, at the level of individual neurons, layer 2/3 (L2/3) A1 appears functionally heterogeneous. To identify if there exists a higher-order functional organization of meso-scale neuronal networks within L2/3 that bridges order and disorder, we used in vivo two-photon calcium imaging of pyramidal neurons to identify networks in three-dimensional volumes of L2/3 A1 in awake mice. Using tonal stimuli, we found diverse receptive fields with measurable colocalization of similarly tuned neurons across depth but less so across L2/3 sublayers. These results indicate a fractured microcolumnar organization with a column radius of ∼50 µm, with a more random organization of the receptive field over larger radii. We further characterized the functional networks formed within L2/3 by analyzing the spatial distribution of signal correlations (SCs). Networks show evidence of Rentian scaling in physical space, suggesting effective spatial embedding of subnetworks. Indeed, functional networks have characteristics of small-world topology, implying that there are clusters of functionally similar neurons with sparse connections between differently tuned neurons. These results indicate that underlying the regularity of the tonotopic map on large scales in L2/3 is significant tuning diversity arranged in a hybrid organization with microcolumnar structures and efficient network topologies.
Collapse
Affiliation(s)
- Zac Bowen
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Fraunhofer USA Center Mid-Atlantic, Riverdale, MD 20737, USA
| | - Kelson Shilling-Scrivo
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21230, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 20215, USA
| |
Collapse
|
8
|
Lestang JH, Cai H, Averbeck BB, Cohen YE. Functional network properties of the auditory cortex. Hear Res 2023; 433:108768. [PMID: 37075536 PMCID: PMC10205700 DOI: 10.1016/j.heares.2023.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The auditory system transforms auditory stimuli from the external environment into perceptual auditory objects. Recent studies have focused on the contribution of the auditory cortex to this transformation. Other studies have yielded important insights into the contributions of neural activity in the auditory cortex to cognition and decision-making. However, despite this important work, the relationship between auditory-cortex activity and behavior/perception has not been fully elucidated. Two of the more important gaps in our understanding are (1) the specific and differential contributions of different fields of the auditory cortex to auditory perception and behavior and (2) the way networks of auditory neurons impact and facilitate auditory information processing. Here, we focus on recent work from non-human-primate models of hearing and review work related to these gaps and put forth challenges to further our understanding of how single-unit activity and network activity in different cortical fields contribution to behavior and perception.
Collapse
Affiliation(s)
- Jean-Hugues Lestang
- Departments of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huaizhen Cai
- Departments of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yale E Cohen
- Departments of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Trepka EB, Zhu S, Xia R, Chen X, Moore T. Functional interactions among neurons within single columns of macaque V1. eLife 2022; 11:e79322. [PMID: 36321687 PMCID: PMC9662816 DOI: 10.7554/elife.79322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recent developments in high-density neurophysiological tools now make it possible to record from hundreds of single neurons within local, highly interconnected neural networks. Among the many advantages of such recordings is that they dramatically increase the quantity of identifiable, functional interactions between neurons thereby providing an unprecedented view of local circuits. Using high-density, Neuropixels recordings from single neocortical columns of primary visual cortex in nonhuman primates, we identified 1000s of functionally interacting neuronal pairs using established crosscorrelation approaches. Our results reveal clear and systematic variations in the synchrony and strength of functional interactions within single cortical columns. Despite neurons residing within the same column, both measures of interactions depended heavily on the vertical distance separating neuronal pairs, as well as on the similarity of stimulus tuning. In addition, we leveraged the statistical power afforded by the large numbers of functionally interacting pairs to categorize interactions between neurons based on their crosscorrelation functions. These analyses identified distinct, putative classes of functional interactions within the full population. These classes of functional interactions were corroborated by their unique distributions across defined laminar compartments and were consistent with known properties of V1 cortical circuitry, such as the lead-lag relationship between simple and complex cells. Our results provide a clear proof-of-principle for the use of high-density neurophysiological recordings to assess circuit-level interactions within local neuronal networks.
Collapse
Affiliation(s)
- Ethan B Trepka
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Neurosciences Program, Stanford UniversityStanfordUnited States
| | - Shude Zhu
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Ruobing Xia
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Xiaomo Chen
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Center for Neuroscience, Department of Neurobiology, Physiology, and Behavior, University of California, DavisDavisUnited States
| | - Tirin Moore
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
10
|
Davenport CM, Teubner BJW, Han SB, Patton MH, Eom TY, Garic D, Lansdell BJ, Shirinifard A, Chang TC, Klein J, Pruett-Miller SM, Blundon JA, Zakharenko SS. Innate frequency-discrimination hyperacuity in Williams-Beuren syndrome mice. Cell 2022; 185:3877-3895.e21. [PMID: 36152627 PMCID: PMC9588278 DOI: 10.1016/j.cell.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of ∼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.
Collapse
Affiliation(s)
- Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seung Baek Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dusan Garic
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin J Lansdell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
11
|
Filipchuk A, Schwenkgrub J, Destexhe A, Bathellier B. Awake perception is associated with dedicated neuronal assemblies in the cerebral cortex. Nat Neurosci 2022; 25:1327-1338. [PMID: 36171431 PMCID: PMC9534770 DOI: 10.1038/s41593-022-01168-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/18/2022] [Indexed: 12/05/2022]
Abstract
Neural activity in the sensory cortex combines stimulus responses and ongoing activity, but it remains unclear whether these reflect the same underlying dynamics or separate processes. In the present study, we show in mice that, during wakefulness, the neuronal assemblies evoked by sounds in the auditory cortex and thalamus are specific to the stimulus and distinct from the assemblies observed in ongoing activity. By contrast, under three different anesthetics, evoked assemblies are indistinguishable from ongoing assemblies in the cortex. However, they remain distinct in the thalamus. A strong remapping of sensory responses accompanies this dynamic state change produced by anesthesia. Together, these results show that the awake cortex engages dedicated neuronal assemblies in response to sensory inputs, which we suggest is a network correlate of sensory perception.
Collapse
Affiliation(s)
- Anton Filipchuk
- Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience, Saclay, France
- Healthy Mind, Institut du Cerveau - ICM, Paris, France
| | - Joanna Schwenkgrub
- Institut Pasteur, Université de Paris, INSERM, Institut de l'Audition, Paris, France
| | - Alain Destexhe
- Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience, Saclay, France.
| | - Brice Bathellier
- Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience, Saclay, France.
- Institut Pasteur, Université de Paris, INSERM, Institut de l'Audition, Paris, France.
| |
Collapse
|
12
|
Bigelow J, Morrill RJ, Olsen T, Hasenstaub AR. Visual modulation of firing and spectrotemporal receptive fields in mouse auditory cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100040. [PMID: 36518337 PMCID: PMC9743056 DOI: 10.1016/j.crneur.2022.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022] Open
Abstract
Recent studies have established significant anatomical and functional connections between visual areas and primary auditory cortex (A1), which may be important for cognitive processes such as communication and spatial perception. These studies have raised two important questions: First, which cell populations in A1 respond to visual input and/or are influenced by visual context? Second, which aspects of sound encoding are affected by visual context? To address these questions, we recorded single-unit activity across cortical layers in awake mice during exposure to auditory and visual stimuli. Neurons responsive to visual stimuli were most prevalent in the deep cortical layers and included both excitatory and inhibitory cells. The overwhelming majority of these neurons also responded to sound, indicating unimodal visual neurons are rare in A1. Other neurons for which sound-evoked responses were modulated by visual context were similarly excitatory or inhibitory but more evenly distributed across cortical layers. These modulatory influences almost exclusively affected sustained sound-evoked firing rate (FR) responses or spectrotemporal receptive fields (STRFs); transient FR changes at stimulus onset were rarely modified by visual context. Neuron populations with visually modulated STRFs and sustained FR responses were mostly non-overlapping, suggesting spectrotemporal feature selectivity and overall excitability may be differentially sensitive to visual context. The effects of visual modulation were heterogeneous, increasing and decreasing STRF gain in roughly equal proportions of neurons. Our results indicate visual influences are surprisingly common and diversely expressed throughout layers and cell types in A1, affecting nearly one in five neurons overall.
Collapse
Affiliation(s)
- James Bigelow
- Coleman Memorial Laboratory, University of California, San Francisco, USA
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, 94143, USA
| | - Ryan J. Morrill
- Coleman Memorial Laboratory, University of California, San Francisco, USA
- Neuroscience Graduate Program, University of California, San Francisco, USA
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, 94143, USA
| | - Timothy Olsen
- Coleman Memorial Laboratory, University of California, San Francisco, USA
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, 94143, USA
| | - Andrea R. Hasenstaub
- Coleman Memorial Laboratory, University of California, San Francisco, USA
- Neuroscience Graduate Program, University of California, San Francisco, USA
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, 94143, USA
| |
Collapse
|
13
|
Learning-induced biases in the ongoing dynamics of sensory representations predict stimulus generalization. Cell Rep 2022; 38:110340. [PMID: 35139386 DOI: 10.1016/j.celrep.2022.110340] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Sensory stimuli have long been thought to be represented in the brain as activity patterns of specific neuronal assemblies. However, we still know relatively little about the long-term dynamics of sensory representations. Using chronic in vivo calcium imaging in the mouse auditory cortex, we find that sensory representations undergo continuous recombination, even under behaviorally stable conditions. Auditory cued fear conditioning introduces a bias into these ongoing dynamics, resulting in a long-lasting increase in the number of stimuli activating the same subset of neurons. This plasticity is specific for stimuli sharing representational similarity to the conditioned sound prior to conditioning and predicts behaviorally observed stimulus generalization. Our findings demonstrate that learning-induced plasticity leading to a representational linkage between the conditioned stimulus and non-conditioned stimuli weaves into ongoing dynamics of the brain rather than acting on an otherwise static substrate.
Collapse
|
14
|
Ruthig P, Schönwiesner M. Common principles in the lateralisation of auditory cortex structure and function for vocal communication in primates and rodents. Eur J Neurosci 2022; 55:827-845. [PMID: 34984748 DOI: 10.1111/ejn.15590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022]
Abstract
This review summarises recent findings on the lateralisation of communicative sound processing in the auditory cortex (AC) of humans, non-human primates, and rodents. Functional imaging in humans has demonstrated a left hemispheric preference for some acoustic features of speech, but it is unclear to which degree this is caused by bottom-up acoustic feature selectivity or top-down modulation from language areas. Although non-human primates show a less pronounced functional lateralisation in AC, the properties of AC fields and behavioral asymmetries are qualitatively similar. Rodent studies demonstrate microstructural circuits that might underlie bottom-up acoustic feature selectivity in both hemispheres. Functionally, the left AC in the mouse appears to be specifically tuned to communication calls, whereas the right AC may have a more 'generalist' role. Rodents also show anatomical AC lateralisation, such as differences in size and connectivity. Several of these functional and anatomical characteristics are also lateralized in human AC. Thus, complex vocal communication processing shares common features among rodents and primates. We argue that a synthesis of results from humans, non-human primates, and rodents is necessary to identify the neural circuitry of vocal communication processing. However, data from different species and methods are often difficult to compare. Recent advances may enable better integration of methods across species. Efforts to standardise data formats and analysis tools would benefit comparative research and enable synergies between psychological and biological research in the area of vocal communication processing.
Collapse
Affiliation(s)
- Philip Ruthig
- Faculty of Life Sciences, Leipzig University, Leipzig, Sachsen.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
| | | |
Collapse
|
15
|
Weissbourd B, Momose T, Nair A, Kennedy A, Hunt B, Anderson DJ. A genetically tractable jellyfish model for systems and evolutionary neuroscience. Cell 2021; 184:5854-5868.e20. [PMID: 34822783 PMCID: PMC8629132 DOI: 10.1016/j.cell.2021.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Jellyfish are radially symmetric organisms without a brain that arose more than 500 million years ago. They achieve organismal behaviors through coordinated interactions between autonomously functioning body parts. Jellyfish neurons have been studied electrophysiologically, but not at the systems level. We introduce Clytia hemisphaerica as a transparent, genetically tractable jellyfish model for systems and evolutionary neuroscience. We generate stable F1 transgenic lines for cell-type-specific conditional ablation and whole-organism GCaMP imaging. Using these tools and computational analyses, we find that an apparently diffuse network of RFamide-expressing umbrellar neurons is functionally subdivided into a series of spatially localized subassemblies whose synchronous activation controls directional food transfer from the tentacles to the mouth. These data reveal an unanticipated degree of structured neural organization in this species. Clytia affords a platform for systems-level studies of neural function, behavior, and evolution within a clade of marine organisms with growing ecological and economic importance.
Collapse
Affiliation(s)
- Brandon Weissbourd
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Aditya Nair
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ann Kennedy
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bridgett Hunt
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - David J Anderson
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
16
|
Downer JD, Verhein JR, Rapone BC, O'Connor KN, Sutter ML. An Emergent Population Code in Primary Auditory Cortex Supports Selective Attention to Spectral and Temporal Sound Features. J Neurosci 2021; 41:7561-7577. [PMID: 34210783 PMCID: PMC8425978 DOI: 10.1523/jneurosci.0693-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Textbook descriptions of primary sensory cortex (PSC) revolve around single neurons' representation of low-dimensional sensory features, such as visual object orientation in primary visual cortex (V1), location of somatic touch in primary somatosensory cortex (S1), and sound frequency in primary auditory cortex (A1). Typically, studies of PSC measure neurons' responses along few (one or two) stimulus and/or behavioral dimensions. However, real-world stimuli usually vary along many feature dimensions and behavioral demands change constantly. In order to illuminate how A1 supports flexible perception in rich acoustic environments, we recorded from A1 neurons while rhesus macaques (one male, one female) performed a feature-selective attention task. We presented sounds that varied along spectral and temporal feature dimensions (carrier bandwidth and temporal envelope, respectively). Within a block, subjects attended to one feature of the sound in a selective change detection task. We found that single neurons tend to be high-dimensional, in that they exhibit substantial mixed selectivity for both sound features, as well as task context. We found no overall enhancement of single-neuron coding of the attended feature, as attention could either diminish or enhance this coding. However, a population-level analysis reveals that ensembles of neurons exhibit enhanced encoding of attended sound features, and this population code tracks subjects' performance. Importantly, surrogate neural populations with intact single-neuron tuning but shuffled higher-order correlations among neurons fail to yield attention- related effects observed in the intact data. These results suggest that an emergent population code not measurable at the single-neuron level might constitute the functional unit of sensory representation in PSC.SIGNIFICANCE STATEMENT The ability to adapt to a dynamic sensory environment promotes a range of important natural behaviors. We recorded from single neurons in monkey primary auditory cortex (A1), while subjects attended to either the spectral or temporal features of complex sounds. Surprisingly, we found no average increase in responsiveness to, or encoding of, the attended feature across single neurons. However, when we pooled the activity of the sampled neurons via targeted dimensionality reduction (TDR), we found enhanced population-level representation of the attended feature and suppression of the distractor feature. This dissociation of the effects of attention at the level of single neurons versus the population highlights the synergistic nature of cortical sound encoding and enriches our understanding of sensory cortical function.
Collapse
Affiliation(s)
- Joshua D Downer
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Francisco, California 94143
| | - Jessica R Verhein
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- School of Medicine, Stanford University, Stanford, California 94305
| | - Brittany C Rapone
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- School of Social Sciences, Oxford Brookes University, Oxford, OX4 0BP, United Kingdom
| | - Kevin N O'Connor
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95618
| | - Mitchell L Sutter
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95618
| |
Collapse
|
17
|
Herzog R, Morales A, Mora S, Araya J, Escobar MJ, Palacios AG, Cofré R. Scalable and accurate method for neuronal ensemble detection in spiking neural networks. PLoS One 2021; 16:e0251647. [PMID: 34329314 PMCID: PMC8323916 DOI: 10.1371/journal.pone.0251647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
We propose a novel, scalable, and accurate method for detecting neuronal ensembles from a population of spiking neurons. Our approach offers a simple yet powerful tool to study ensemble activity. It relies on clustering synchronous population activity (population vectors), allows the participation of neurons in different ensembles, has few parameters to tune and is computationally efficient. To validate the performance and generality of our method, we generated synthetic data, where we found that our method accurately detects neuronal ensembles for a wide range of simulation parameters. We found that our method outperforms current alternative methodologies. We used spike trains of retinal ganglion cells obtained from multi-electrode array recordings under a simple ON-OFF light stimulus to test our method. We found a consistent stimuli-evoked ensemble activity intermingled with spontaneously active ensembles and irregular activity. Our results suggest that the early visual system activity could be organized in distinguishable functional ensembles. We provide a Graphic User Interface, which facilitates the use of our method by the scientific community.
Collapse
Affiliation(s)
- Rubén Herzog
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Arturo Morales
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Soraya Mora
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Laboratorio de Biología Computacional, Fundación Ciencia y Vida, Santiago, Chile
| | - Joaquín Araya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile
| | - María-José Escobar
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodrigo Cofré
- CIMFAV Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
18
|
Romero S, Hight AE, Clayton KK, Resnik J, Williamson RS, Hancock KE, Polley DB. Cellular and Widefield Imaging of Sound Frequency Organization in Primary and Higher Order Fields of the Mouse Auditory Cortex. Cereb Cortex 2021; 30:1603-1622. [PMID: 31667491 DOI: 10.1093/cercor/bhz190] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mouse auditory cortex (ACtx) contains two core fields-primary auditory cortex (A1) and anterior auditory field (AAF)-arranged in a mirror reversal tonotopic gradient. The best frequency (BF) organization and naming scheme for additional higher order fields remain a matter of debate, as does the correspondence between smoothly varying global tonotopy and heterogeneity in local cellular tuning. Here, we performed chronic widefield and two-photon calcium imaging from the ACtx of awake Thy1-GCaMP6s reporter mice. Data-driven parcellation of widefield maps identified five fields, including a previously unidentified area at the ventral posterior extreme of the ACtx (VPAF) and a tonotopically organized suprarhinal auditory field (SRAF) that extended laterally as far as ectorhinal cortex. Widefield maps were stable over time, where single pixel BFs fluctuated by less than 0.5 octaves throughout a 1-month imaging period. After accounting for neuropil signal and frequency tuning strength, BF organization in neighboring layer 2/3 neurons was intermediate to the heterogeneous salt and pepper organization and the highly precise local organization that have each been described in prior studies. Multiscale imaging data suggest there is no ultrasonic field or secondary auditory cortex in the mouse. Instead, VPAF and a dorsal posterior (DP) field emerged as the strongest candidates for higher order auditory areas.
Collapse
Affiliation(s)
- Sandra Romero
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Kameron K Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Jennifer Resnik
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Ross S Williamson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
19
|
Nelson CJ, Bonner S. Neuronal Graphs: A Graph Theory Primer for Microscopic, Functional Networks of Neurons Recorded by Calcium Imaging. Front Neural Circuits 2021; 15:662882. [PMID: 34177469 PMCID: PMC8222695 DOI: 10.3389/fncir.2021.662882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Connected networks are a fundamental structure of neurobiology. Understanding these networks will help us elucidate the neural mechanisms of computation. Mathematically speaking these networks are "graphs"-structures containing objects that are connected. In neuroscience, the objects could be regions of the brain, e.g., fMRI data, or be individual neurons, e.g., calcium imaging with fluorescence microscopy. The formal study of graphs, graph theory, can provide neuroscientists with a large bank of algorithms for exploring networks. Graph theory has already been applied in a variety of ways to fMRI data but, more recently, has begun to be applied at the scales of neurons, e.g., from functional calcium imaging. In this primer we explain the basics of graph theory and relate them to features of microscopic functional networks of neurons from calcium imaging-neuronal graphs. We explore recent examples of graph theory applied to calcium imaging and we highlight some areas where researchers new to the field could go awry.
Collapse
Affiliation(s)
- Carl J. Nelson
- School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | - Stephen Bonner
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
Downer JD, Bigelow J, Runfeldt MJ, Malone BJ. Temporally precise population coding of dynamic sounds by auditory cortex. J Neurophysiol 2021; 126:148-169. [PMID: 34077273 DOI: 10.1152/jn.00709.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluctuations in the amplitude envelope of complex sounds provide critical cues for hearing, particularly for speech and animal vocalizations. Responses to amplitude modulation (AM) in the ascending auditory pathway have chiefly been described for single neurons. How neural populations might collectively encode and represent information about AM remains poorly characterized, even in primary auditory cortex (A1). We modeled population responses to AM based on data recorded from A1 neurons in awake squirrel monkeys and evaluated how accurately single trial responses to modulation frequencies from 4 to 512 Hz could be decoded as functions of population size, composition, and correlation structure. We found that a population-based decoding model that simulated convergent, equally weighted inputs was highly accurate and remarkably robust to the inclusion of neurons that were individually poor decoders. By contrast, average rate codes based on convergence performed poorly; effective decoding using average rates was only possible when the responses of individual neurons were segregated, as in classical population decoding models using labeled lines. The relative effectiveness of dynamic rate coding in auditory cortex was explained by shared modulation phase preferences among cortical neurons, despite heterogeneity in rate-based modulation frequency tuning. Our results indicate significant population-based synchrony in primary auditory cortex and suggest that robust population coding of the sound envelope information present in animal vocalizations and speech can be reliably achieved even with indiscriminate pooling of cortical responses. These findings highlight the importance of firing rate dynamics in population-based sensory coding.NEW & NOTEWORTHY Fundamental questions remain about population coding in primary auditory cortex (A1). In particular, issues of spike timing in models of neural populations have been largely ignored. We find that spike-timing in response to sound envelope fluctuations is highly similar across neuron populations in A1. This property of shared envelope phase preference allows for a simple population model involving unweighted convergence of neuronal responses to classify amplitude modulation frequencies with high accuracy.
Collapse
Affiliation(s)
- Joshua D Downer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | - James Bigelow
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | - Melissa J Runfeldt
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | - Brian J Malone
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California
| |
Collapse
|
21
|
Homma NY, Hullett PW, Atencio CA, Schreiner CE. Auditory Cortical Plasticity Dependent on Environmental Noise Statistics. Cell Rep 2021; 30:4445-4458.e5. [PMID: 32234479 PMCID: PMC7326484 DOI: 10.1016/j.celrep.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 03/05/2020] [Indexed: 01/14/2023] Open
Abstract
During critical periods, neural circuits develop to form receptive fields that adapt to the sensory environment and enable optimal performance of relevant tasks. We hypothesized that early exposure to background noise can improve signal-in-noise processing, and the resulting receptive field plasticity in the primary auditory cortex can reveal functional principles guiding that important task. We raised rat pups in different spectro-temporal noise statistics during their auditory critical period. As adults, they showed enhanced behavioral performance in detecting vocalizations in noise. Concomitantly, encoding of vocalizations in noise in the primary auditory cortex improves with noise-rearing. Significantly, spectro-temporal modulation plasticity shifts cortical preferences away from the exposed noise statistics, thus reducing noise interference with the foreground sound representation. Auditory cortical plasticity shapes receptive field preferences to optimally extract foreground information in noisy environments during noise-rearing. Early noise exposure induces cortical circuits to implement efficient coding in the joint spectral and temporal modulation domain. After rearing rats in moderately loud spectro-temporally modulated background noise, Homma et al. investigated signal-in-noise processing in the primary auditory cortex. Noise-rearing improved vocalization-in-noise performance in both behavioral testing and neural decoding. Cortical plasticity shifted neuronal spectro-temporal modulation preferences away from the exposed noise statistics.
Collapse
Affiliation(s)
- Natsumi Y Homma
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick W Hullett
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Craig A Atencio
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christoph E Schreiner
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
See JZ, Homma NY, Atencio CA, Sohal VS, Schreiner CE. Information diversity in individual auditory cortical neurons is associated with functionally distinct coordinated neuronal ensembles. Sci Rep 2021; 11:4064. [PMID: 33603027 PMCID: PMC7893178 DOI: 10.1038/s41598-021-83565-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Abstract
Neuronal activity in auditory cortex is often highly synchronous between neighboring neurons. Such coordinated activity is thought to be crucial for information processing. We determined the functional properties of coordinated neuronal ensembles (cNEs) within primary auditory cortical (AI) columns relative to the contributing neurons. Nearly half of AI cNEs showed robust spectro-temporal receptive fields whereas the remaining cNEs showed little or no acoustic feature selectivity. cNEs can therefore capture either specific, time-locked information of spectro-temporal stimulus features or reflect stimulus-unspecific, less-time specific processing aspects. By contrast, we show that individual neurons can represent both of those aspects through membership in multiple cNEs with either high or absent feature selectivity. These associations produce functionally heterogeneous spikes identifiable by instantaneous association with different cNEs. This demonstrates that single neuron spike trains can sequentially convey multiple aspects that contribute to cortical processing, including stimulus-specific and unspecific information.
Collapse
Affiliation(s)
- Jermyn Z. See
- grid.266102.10000 0001 2297 6811Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444 USA ,Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory, University of Caliornia, San Francisco, USA
| | - Natsumi Y. Homma
- grid.266102.10000 0001 2297 6811Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444 USA ,Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory, University of Caliornia, San Francisco, USA
| | - Craig A. Atencio
- grid.266102.10000 0001 2297 6811Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444 USA ,Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory, University of Caliornia, San Francisco, USA
| | - Vikaas S. Sohal
- grid.266102.10000 0001 2297 6811Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444 USA ,grid.266102.10000 0001 2297 6811Department of Psychiatry, University of California, San Francisco, USA
| | - Christoph E. Schreiner
- grid.266102.10000 0001 2297 6811Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444 USA ,Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory, University of Caliornia, San Francisco, USA
| |
Collapse
|
23
|
Juárez-Vidales JDJ, Pérez-Ortega J, Lorea-Hernández JJ, Méndez-Salcido F, Peña-Ortega F. Configuration and dynamics of dominant inspiratory multineuronal activity patterns during eupnea and gasping generation in vitro. J Neurophysiol 2021; 125:1289-1306. [PMID: 33502956 DOI: 10.1152/jn.00563.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pre-Bötzinger complex (preBötC), located within the ventral respiratory column, produces inspiratory bursts in varying degrees of synchronization/amplitude. This wide range of population burst patterns reflects the flexibility of the preBötC neurons, which is expressed in variations in the onset/offset times of their activations and their activity during the population bursts, with respiratory neurons exhibiting a large cycle-to-cycle timing jitter both at the population activity onset and at the population activity peak, suggesting that respiratory neurons are stochastically activated before and during the inspiratory bursts. However, it is still unknown whether this stochasticity is maintained while evaluating the coactivity of respiratory neuronal ensembles. Moreover, the preBötC topology also remains unknown. In this study, by simultaneously recording tens of preBötC neurons and using coactivation analysis during the inspiratory periods, we found that the preBötC has a scale-free configuration (mixture of not many highly connected nodes, hubs, with abundant poorly connected elements) exhibiting the rich-club phenomenon (hubs more likely interconnected with each other). PreBötC neurons also produce multineuronal activity patterns (MAPs) that are highly stable and change during the hypoxia-induced reconfiguration. Moreover, preBötC contains a coactivating core network shared by all its MAPs. Finally, we found a distinctive pattern of sequential coactivation of core network neurons at the beginning of the inspiratory periods, indicating that, when evaluated at the multicellular level, the coactivation of respiratory neurons seems not to be stochastic.NEW & NOTEWORTHY By means of multielectrode recordings of preBötC neurons, we evaluated their configuration in normoxia and hypoxia, finding that the preBötC exhibits a scale-free configuration with a rich-club phenomenon. preBötC neurons produce multineuronal activity patterns that are highly stable but change during hypoxia. The preBötC contains a coactivating core network that exhibit a distinctive pattern of coactivation at the beginning of inspirations. These results reveal some network basis of inspiratory rhythm generation and its reconfiguration during hypoxia.
Collapse
Affiliation(s)
- Josué de Jesús Juárez-Vidales
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jesús Pérez-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Felipe Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| |
Collapse
|
24
|
Macias S, Bakshi K, Garcia-Rosales F, Hechavarria JC, Smotherman M. Temporal coding of echo spectral shape in the bat auditory cortex. PLoS Biol 2020; 18:e3000831. [PMID: 33170833 PMCID: PMC7678962 DOI: 10.1371/journal.pbio.3000831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/20/2020] [Accepted: 10/01/2020] [Indexed: 01/26/2023] Open
Abstract
Echolocating bats rely upon spectral interference patterns in echoes to reconstruct fine details of a reflecting object’s shape. However, the acoustic modulations required to do this are extremely brief, raising questions about how their auditory cortex encodes and processes such rapid and fine spectrotemporal details. Here, we tested the hypothesis that biosonar target shape representation in the primary auditory cortex (A1) is more reliably encoded by changes in spike timing (latency) than spike rates and that latency is sufficiently precise to support a synchronization-based ensemble representation of this critical auditory object feature space. To test this, we measured how the spatiotemporal activation patterns of A1 changed when naturalistic spectral notches were inserted into echo mimic stimuli. Neurons tuned to notch frequencies were predicted to exhibit longer latencies and lower mean firing rates due to lower signal amplitudes at their preferred frequencies, and both were found to occur. Comparative analyses confirmed that significantly more information was recoverable from changes in spike times relative to concurrent changes in spike rates. With this data, we reconstructed spatiotemporal activation maps of A1 and estimated the level of emerging neuronal spike synchrony between cortical neurons tuned to different frequencies. The results support existing computational models, indicating that spectral interference patterns may be efficiently encoded by a cascading tonotopic sequence of neural synchronization patterns within an ensemble of network activity that relates to the physical features of the reflecting object surface. Echolocating bats rely upon spectral interference patterns in echoes to reconstruct fine details of a reflecting object’s shape. This study shows that the latency shifts induced by spectral notch patterns can provide the foundation for an avalanche of neuronal synchrony that is sufficient to support encoding of auditory object shape features during active biosonar.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | | | - Julio C. Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
25
|
Carrillo-Reid L, Yuste R. Playing the piano with the cortex: role of neuronal ensembles and pattern completion in perception and behavior. Curr Opin Neurobiol 2020; 64:89-95. [PMID: 32320944 DOI: 10.1016/j.conb.2020.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/30/2022]
Abstract
Neuronal ensembles, i.e. coactive groups of neurons, have been long postulated to be functional building blocks of cortical circuits and units of the neural code. Calcium imaging of neuronal populations has demonstrated the widespread existence of spontaneous and sensory-evoked ensembles in cortical circuits in vivo. The development of two-photon optical techniques to simultaneously record and activate neurons with single cell resolution ("piano" experiments) has revealed the existence of pattern completion neurons, which can trigger an entire ensemble, and demonstrated a causal relation between ensembles and behavior. We review recent results controlling visual perception with targeted holographic manipulation of cortical ensembles by stimulating pattern completion neurons. Analyzing population activity as neuronal ensembles and exploiting pattern completion could enable control of brain states in health and disease.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- Neurobiology Institute, National Autonomous University of Mexico, Queretaro, Mexico.
| | - Rafael Yuste
- NeuroTechnology Center, Columbia University, New York, USA
| |
Collapse
|
26
|
Sorensen J, Spencer NJ. A novel method for quantifying periodicity and time delay in dynamic neural networks using unstable subaction potential threshold depolarizations. J Neurophysiol 2020; 123:1236-1246. [PMID: 31995437 DOI: 10.1152/jn.00716.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Techniques to identify and correlate the propagation of electrical signals (like action potentials) along neural networks are well described, using multisite recordings. In these cases, the waveform of action potentials is usually relatively stable and discriminating relevant electrical signals straightforward. However, problems can arise when attempting to identify and correlate the propagation of signals when their waveforms are unstable (e.g., fluctuations in amplitude or time course). This makes correlation of the degree of synchronization and time lag between propagating electrical events across two or more recording sites problematic. Here, we present novel techniques for the determination of the periodicity of electrical signals at individual sites. When recording from two independent sites, we present novel analytical techniques for joint determination of periodicity and time delay. The techniques presented exploit properties of the cross-correlation function, rather than utilizing the time lag at which the cross-correlation function is maximized. The approach allows determination of directionality of the spread of excitation along a neural network based on measurements of the time delay between recording sites. This new method is particularly applicable to analysis of signals in other biological systems that have unstable characteristics in waveform that show dynamic variability.NEW & NOTEWORTHY The determination of frequency(s) at which two sources are synchronized, and relative time delay between them, is a fundamental problem for a wide a range of signal-processing applications. In this methodology paper, we present novel procedures for periodicity estimation for single time series and joint periodicity and time delay estimation for two time series. The methods use properties of the cross-correlation function rather than the cross-correlation function explicitly.
Collapse
Affiliation(s)
- Julian Sorensen
- Cyber Sensing and Shaping, Cyber and Electronic Warfare Division, Defence, Science, and Technology Group, Edinburgh, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Kim KX, Atencio CA, Schreiner CE. Stimulus dependent transformations between synaptic and spiking receptive fields in auditory cortex. Nat Commun 2020; 11:1102. [PMID: 32107370 PMCID: PMC7046699 DOI: 10.1038/s41467-020-14835-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/06/2020] [Indexed: 11/09/2022] Open
Abstract
Auditory cortex neurons nonlinearly integrate synaptic inputs from the thalamus and cortex, and generate spiking outputs for simple and complex sounds. Directly comparing synaptic and spiking activity can determine whether this input-output transformation is stimulus-dependent. We employ in vivo whole-cell recordings in the mouse primary auditory cortex, using pure tones and broadband dynamic moving ripple stimuli, to examine properties of functional integration in tonal (TRFs) and spectrotemporal (STRFs) receptive fields. Spectral tuning in STRFs derived from synaptic, subthreshold and spiking responses proves to be substantially more selective than for TRFs. We describe diverse spectral and temporal modulation preferences and distinct nonlinearities, and their modifications between the input and output stages of neural processing. These results characterize specific processing differences at the level of synaptic convergence, integration and spike generation resulting in stimulus-dependent transformation patterns in the primary auditory cortex.
Collapse
Affiliation(s)
- Kyunghee X Kim
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA.
| | - Craig A Atencio
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA
| | - Christoph E Schreiner
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, USA
- Center for Integrative Neuroscience, University of California San Francisco, San Francisco, USA
| |
Collapse
|
28
|
Lopez Espejo M, Schwartz ZP, David SV. Spectral tuning of adaptation supports coding of sensory context in auditory cortex. PLoS Comput Biol 2019; 15:e1007430. [PMID: 31626624 PMCID: PMC6821137 DOI: 10.1371/journal.pcbi.1007430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/30/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Perception of vocalizations and other behaviorally relevant sounds requires integrating acoustic information over hundreds of milliseconds. Sound-evoked activity in auditory cortex typically has much shorter latency, but the acoustic context, i.e., sound history, can modulate sound evoked activity over longer periods. Contextual effects are attributed to modulatory phenomena, such as stimulus-specific adaption and contrast gain control. However, an encoding model that links context to natural sound processing has yet to be established. We tested whether a model in which spectrally tuned inputs undergo adaptation mimicking short-term synaptic plasticity (STP) can account for contextual effects during natural sound processing. Single-unit activity was recorded from primary auditory cortex of awake ferrets during presentation of noise with natural temporal dynamics and fully natural sounds. Encoding properties were characterized by a standard linear-nonlinear spectro-temporal receptive field (LN) model and variants that incorporated STP-like adaptation. In the adapting models, STP was applied either globally across all input spectral channels or locally to subsets of channels. For most neurons, models incorporating local STP predicted neural activity as well or better than LN and global STP models. The strength of nonlinear adaptation varied across neurons. Within neurons, adaptation was generally stronger for spectral channels with excitatory than inhibitory gain. Neurons showing improved STP model performance also tended to undergo stimulus-specific adaptation, suggesting a common mechanism for these phenomena. When STP models were compared between passive and active behavior conditions, response gain often changed, but average STP parameters were stable. Thus, spectrally and temporally heterogeneous adaptation, subserved by a mechanism with STP-like dynamics, may support representation of the complex spectro-temporal patterns that comprise natural sounds across wide-ranging sensory contexts.
Collapse
Affiliation(s)
- Mateo Lopez Espejo
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR, United States of America
| | - Zachary P. Schwartz
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR, United States of America
| | - Stephen V. David
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
29
|
Yi HG, Leonard MK, Chang EF. The Encoding of Speech Sounds in the Superior Temporal Gyrus. Neuron 2019; 102:1096-1110. [PMID: 31220442 PMCID: PMC6602075 DOI: 10.1016/j.neuron.2019.04.023] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023]
Abstract
The human superior temporal gyrus (STG) is critical for extracting meaningful linguistic features from speech input. Local neural populations are tuned to acoustic-phonetic features of all consonants and vowels and to dynamic cues for intonational pitch. These populations are embedded throughout broader functional zones that are sensitive to amplitude-based temporal cues. Beyond speech features, STG representations are strongly modulated by learned knowledge and perceptual goals. Currently, a major challenge is to understand how these features are integrated across space and time in the brain during natural speech comprehension. We present a theory that temporally recurrent connections within STG generate context-dependent phonological representations, spanning longer temporal sequences relevant for coherent percepts of syllables, words, and phrases.
Collapse
Affiliation(s)
- Han Gyol Yi
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Matthew K Leonard
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Mölter J, Avitan L, Goodhill GJ. Detecting neural assemblies in calcium imaging data. BMC Biol 2018; 16:143. [PMID: 30486809 PMCID: PMC6262979 DOI: 10.1186/s12915-018-0606-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Activity in populations of neurons often takes the form of assemblies, where specific groups of neurons tend to activate at the same time. However, in calcium imaging data, reliably identifying these assemblies is a challenging problem, and the relative performance of different assembly-detection algorithms is unknown. RESULTS To test the performance of several recently proposed assembly-detection algorithms, we first generated large surrogate datasets of calcium imaging data with predefined assembly structures and characterised the ability of the algorithms to recover known assemblies. The algorithms we tested are based on independent component analysis (ICA), principal component analysis (Promax), similarity analysis (CORE), singular value decomposition (SVD), graph theory (SGC), and frequent item set mining (FIM-X). When applied to the simulated data and tested against parameters such as array size, number of assemblies, assembly size and overlap, and signal strength, the SGC and ICA algorithms and a modified form of the Promax algorithm performed well, while PCA-Promax and FIM-X did less well, for instance, showing a strong dependence on the size of the neural array. Notably, we identified additional analyses that can improve their importance. Next, we applied the same algorithms to a dataset of activity in the zebrafish optic tectum evoked by simple visual stimuli, and found that the SGC algorithm recovered assemblies closest to the averaged responses. CONCLUSIONS Our findings suggest that the neural assemblies recovered from calcium imaging data can vary considerably with the choice of algorithm, but that some algorithms reliably perform better than others. This suggests that previous results using these algorithms may need to be reevaluated in this light.
Collapse
Affiliation(s)
- Jan Mölter
- Queensland Brian Institute, The University of Queensland, Brisbane, 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, 4072, Australia
| | - Lilach Avitan
- Queensland Brian Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brian Institute, The University of Queensland, Brisbane, 4072, Australia. .,School of Mathematics and Physics, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
31
|
Abstract
Our ability to make sense of the auditory world results from neural processing that begins in the ear, goes through multiple subcortical areas, and continues in the cortex. The specific contribution of the auditory cortex to this chain of processing is far from understood. Although many of the properties of neurons in the auditory cortex resemble those of subcortical neurons, they show somewhat more complex selectivity for sound features, which is likely to be important for the analysis of natural sounds, such as speech, in real-life listening conditions. Furthermore, recent work has shown that auditory cortical processing is highly context-dependent, integrates auditory inputs with other sensory and motor signals, depends on experience, and is shaped by cognitive demands, such as attention. Thus, in addition to being the locus for more complex sound selectivity, the auditory cortex is increasingly understood to be an integral part of the network of brain regions responsible for prediction, auditory perceptual decision-making, and learning. In this review, we focus on three key areas that are contributing to this understanding: the sound features that are preferentially represented by cortical neurons, the spatial organization of those preferences, and the cognitive roles of the auditory cortex.
Collapse
Affiliation(s)
- Andrew J King
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Sundeep Teki
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Ben D B Willmore
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|