1
|
Beau M, Herzfeld DJ, Naveros F, Hemelt ME, D'Agostino F, Oostland M, Sánchez-López A, Chung YY, Maibach M, Kyranakis S, Stabb HN, Martínez Lopera MG, Lajko A, Zedler M, Ohmae S, Hall NJ, Clark BA, Cohen D, Lisberger SG, Kostadinov D, Hull C, Häusser M, Medina JF. A deep learning strategy to identify cell types across species from high-density extracellular recordings. Cell 2025; 188:2218-2234.e22. [PMID: 40023155 DOI: 10.1016/j.cell.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/20/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025]
Abstract
High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals and reveal the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep learning classifier that predicts cell types with greater than 95% accuracy based on the waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously recorded cell types during behavior.
Collapse
Affiliation(s)
- Maxime Beau
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - David J Herzfeld
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Francisco Naveros
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Computer Engineering, Automation and Robotics, Research Centre for Information and Communication Technologies, University of Granada, Granada, Spain
| | - Marie E Hemelt
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Federico D'Agostino
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Marlies Oostland
- Wolfson Institute for Biomedical Research, University College London, London, UK; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Young Yoon Chung
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Michael Maibach
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Stephen Kyranakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Hannah N Stabb
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | - Agoston Lajko
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Marie Zedler
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Shogo Ohmae
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Nathan J Hall
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Beverley A Clark
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Dimitar Kostadinov
- Wolfson Institute for Biomedical Research, University College London, London, UK; Centre for Developmental Neurobiology, King's College London, London, UK
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK; School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Jin S, Hull C. Reward-driven cerebellar climbing fiber activity influences both neural and behavioral learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617466. [PMID: 39416023 PMCID: PMC11482817 DOI: 10.1101/2024.10.09.617466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The cerebellum plays a key role in motor coordination and learning. In contrast with classical supervised learning models, recent work has revealed that CFs can signal reward-predictive information in some behaviors. This raises the question of whether CFs may also operate according to principles similar to those described by reinforcement learning models. To test how CFs operate during reward-guided behavior, and evaluate the role of reward-related CF activity in learning, we have measured CF responses in Purkinje cells of the lateral cerebellum during a Pavlovian task using 2-photon calcium imaging. Specifically, we have performed multi-stimulus experiments to determine whether CF activity meets the requirements of a reward prediction error (rPE) signal for transfer from an unexpected reward to a reward-predictive cue. We find that once CF activity is transferred to a conditioned stimulus, and there is no longer a response to reward, CFs cannot generate learned responses to a second conditioned stimulus that carries the same reward prediction. In addition, by expressing the inhibitory opsin GtACR2 in neurons of the inferior olive, and optically inhibiting these neurons across behavioral training at the time of unexpected reward, we find that the transfer of CF signals to the conditioned stimulus is impaired. Moreover, this optogenetic inhibition also impairs learning, resulting in a deficit in anticipatory lick timing. Together, these results indicate that CF signals can exhibit several characteristics in common with rPEs during reinforcement learning, and that the cerebellum can harness these learning signals to generate accurately timed motor behavior.
Collapse
|
3
|
Chen C, Niehaus JK, Dinc F, Huang KL, Barnette AL, Tassou A, Shuster SA, Wang L, Lemire A, Menon V, Ritola K, Hantman AW, Zeng H, Schnitzer MJ, Scherrer G. Neural circuit basis of placebo pain relief. Nature 2024; 632:1092-1100. [PMID: 39048016 PMCID: PMC11358037 DOI: 10.1038/s41586-024-07816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Placebo effects are notable demonstrations of mind-body interactions1,2. During pain perception, in the absence of any treatment, an expectation of pain relief can reduce the experience of pain-a phenomenon known as placebo analgesia3-6. However, despite the strength of placebo effects and their impact on everyday human experience and the failure of clinical trials for new therapeutics7, the neural circuit basis of placebo effects has remained unclear. Here we show that analgesia from the expectation of pain relief is mediated by rostral anterior cingulate cortex (rACC) neurons that project to the pontine nucleus (rACC→Pn)-a precerebellar nucleus with no established function in pain. We created a behavioural assay that generates placebo-like anticipatory pain relief in mice. In vivo calcium imaging of neural activity and electrophysiological recordings in brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an abundance of opioid receptors, further suggesting a role in pain modulation. Inhibition of the rACC→Pn pathway disrupted placebo analgesia and decreased pain thresholds, whereas activation elicited analgesia in the absence of placebo conditioning. Finally, Purkinje cells exhibited activity patterns resembling those of rACC→Pn neurons during pain-relief expectation, providing cellular-level evidence for a role of the cerebellum in cognitive pain modulation. These findings open the possibility of targeting this prefrontal cortico-ponto-cerebellar pathway with drugs or neurostimulation to treat pain.
Collapse
Affiliation(s)
- Chong Chen
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fatih Dinc
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
| | - Karen L Huang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander L Barnette
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Andrew Shuster
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andrew Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Vilas Menon
- Department of Neurology, Columbia University, New York, NY, USA
| | - Kimberly Ritola
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam W Hantman
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mark J Schnitzer
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- James H. Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Lin TF, Busch SE, Hansel C. Intrinsic and synaptic determinants of receptive field plasticity in Purkinje cells of the mouse cerebellum. Nat Commun 2024; 15:4645. [PMID: 38821918 PMCID: PMC11143328 DOI: 10.1038/s41467-024-48373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/28/2024] [Indexed: 06/02/2024] Open
Abstract
Non-synaptic (intrinsic) plasticity of membrane excitability contributes to aspects of memory formation, but it remains unclear whether it merely facilitates synaptic long-term potentiation or plays a permissive role in determining the impact of synaptic weight increase. We use tactile stimulation and electrical activation of parallel fibers to probe intrinsic and synaptic contributions to receptive field plasticity in awake mice during two-photon calcium imaging of cerebellar Purkinje cells. Repetitive activation of both stimuli induced response potentiation that is impaired in mice with selective deficits in either synaptic or intrinsic plasticity. Spatial analysis of calcium signals demonstrated that intrinsic, but not synaptic plasticity, enhances the spread of dendritic parallel fiber response potentiation. Simultaneous dendrite and axon initial segment recordings confirm these dendritic events affect axonal output. Our findings support the hypothesis that intrinsic plasticity provides an amplification mechanism that exerts a permissive control over the impact of long-term potentiation on neuronal responsiveness.
Collapse
Affiliation(s)
- Ting-Feng Lin
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Silas E Busch
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Zhang K, Yang Z, Gaffield MA, Gross GG, Arnold DB, Christie JM. Molecular layer disinhibition unlocks climbing-fiber-instructed motor learning in the cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552059. [PMID: 38654827 PMCID: PMC11037867 DOI: 10.1101/2023.08.04.552059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Climbing fibers supervise cerebellar learning by providing signals to Purkinje cells (PCs) that instruct adaptive changes to mistakenly performed movements. Yet, climbing fibers are regularly active, even during well performed movements, suggesting that a mechanism dynamically regulates the ability of climbing fibers to induce corrective plasticity in response to motor errors. We found that molecular layer interneurons (MLIs), whose inhibition of PCs powerfully opposes climbing-fiber-mediated excitation, serve this function. Optogenetically suppressing the activity of floccular MLIs in mice during the vestibulo-ocular reflex (VOR) induces a learned increase in gain despite the absence of performance errors. Suppressing MLIs when the VOR is mistakenly underperformed reveled that their inhibitory output is necessary to orchestrate gain-increase learning by conditionally permitting climbing fibers to instruct plasticity induction during ipsiversive head turns. Ablation of an MLI circuit for PC disinhibition prevents gain-increase learning during VOR performance errors which was rescued by re-imposing PC disinhibition through MLI activity suppression. Our findings point to a decisive role for MLIs in gating climbing-fiber-mediated learning through their context-dependent inhibition of PCs.
Collapse
|
6
|
Nashef A, Spindle MS, Calame DJ, Person AL. A dual Purkinje cell rate and synchrony code sculpts reach kinematics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548720. [PMID: 37503038 PMCID: PMC10370034 DOI: 10.1101/2023.07.12.548720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cerebellar Purkinje cells (PCs) encode movement kinematics in their population firing rates. Firing rate suppression is hypothesized to disinhibit neurons in the cerebellar nuclei, promoting adaptive movement adjustments. Debates persist, however, about whether a second disinhibitory mechanism, PC simple spike synchrony, is a relevant population code. We addressed this question by relating PC rate and synchrony patterns recorded with high density probes, to mouse reach kinematics. We discovered behavioral correlates of PC synchrony that align with a known causal relationship between activity in cerebellar output. Reach deceleration was positively correlated with both Purkinje firing rate decreases and synchrony, consistent with both mechanisms disinhibiting target neurons, which are known to adjust reach velocity. Direct tests of the contribution of each coding scheme to nuclear firing using dynamic clamp, combining physiological rate and synchrony patterns ex vivo, confirmed that physiological levels of PC simple spike synchrony are highly facilitatory for nuclear firing. These findings suggest that PC firing rate and synchrony collaborate to exert fine control of movement.
Collapse
Affiliation(s)
- Abdulraheem Nashef
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Michael S Spindle
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Dylan J Calame
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Abigail L Person
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| |
Collapse
|
7
|
Expression of a Form of Cerebellar Motor Memory Requires Learned Alterations to the Activity of Inhibitory Molecular Layer Interneurons. J Neurosci 2023; 43:601-612. [PMID: 36639897 PMCID: PMC9888511 DOI: 10.1523/jneurosci.0731-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Procedural memories formed in the cerebellum in response to motor errors depend on changes to Purkinje cell (PC) spiking patterns that correct movement when the erroneous context is repeated. Because molecular layer interneurons (MLIs) inhibit PCs, learning-induced changes to MLI output may participate in reshaping PC spiking patterns. However, it remains unclear whether error-driven learning alters MLI activity and whether such changes are necessary for the memory engram. We addressed this knowledge gap by measuring and manipulating MLI activity in the flocculus of both sexes of mice before and after vestibulo-ocular reflex (VOR) adaptation. We found that MLIs are activated during vestibular stimuli and that their population response exhibits a phase shift after the instantiation of gain-increase VOR adaptation, a type of error-driven learning thought to require climbing-fiber-mediated instructive signaling. Although acute optogenetic suppression of MLI activity did not affect baseline VOR performance, it negated the expression of gain-increase learning, demonstrating a specific role of MLI activity changes in motor memory expression. This effect was transitory; after a multiday consolidation period, the expression of VOR gain-increase learning was no longer sensitive to MLI activity suppression. Together, our results indicate that error-driven alteration of MLI activity is necessary for labile, climbing-fiber-induced motor memory expression.SIGNIFICANCE STATEMENT In the cerebellum, motor learning induces an associative memory of the sensorimotor context of an erroneous movement that, when recalled, results in a new pattern of output that improves subsequent trials of performance. Our study shows that error-driven motor learning induces changes to the activity pattern of cerebellar molecular layer interneurons (MLIs) and that this new pattern of activity is required to express the corrective motor memory.
Collapse
|
8
|
Abstract
The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
9
|
Thornton MA, Futia GL, Stockton ME, Ozbay BN, Kilborn K, Restrepo D, Gibson EA, Hughes EG. Characterization of red fluorescent reporters for dual-color in vivo three-photon microscopy. NEUROPHOTONICS 2022; 9:031912. [PMID: 35496497 PMCID: PMC9047442 DOI: 10.1117/1.nph.9.3.031912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Significance: Three-photon (3P) microscopy significantly increases the depth and resolution of in vivo imaging due to decreased scattering and nonlinear optical sectioning. Simultaneous excitation of multiple fluorescent proteins is essential to studying multicellular interactions and dynamics in the intact brain. Aim: We characterized the excitation laser pulses at a range of wavelengths for 3P microscopy, and then explored the application of tdTomato or mScarlet and EGFP for dual-color single-excitation structural 3P imaging deep in the living mouse brain. Approach: We used frequency-resolved optical gating to measure the spectral intensity, phase, and retrieved pulse widths at a range of wavelengths. Then, we performed in vivo single wavelength-excitation 3P imaging in the 1225- to 1360-nm range deep in the mouse cerebral cortex to evaluate the performance of tdTomato or mScarlet in combination with EGFP. Results: We find that tdTomato and mScarlet, expressed in oligodendrocytes and neurons respectively, have a high signal-to-background ratio in the 1300- to 1360-nm range, consistent with enhanced 3P cross-sections. Conclusions: These results suggest that a single excitation wavelength source is advantageous for multiple applications of dual-color brain imaging and highlight the importance of empirical characterization of individual fluorophores for 3P microscopy.
Collapse
Affiliation(s)
- Michael A. Thornton
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| | - Gregory L. Futia
- University of Colorado Anschutz Medical Campus, Department of Bioengineering, Aurora, Colorado, United States
| | - Michael E. Stockton
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| | - Baris N. Ozbay
- Intelligent Imaging Innovations (3i), Denver, Colorado, United States
| | - Karl Kilborn
- Intelligent Imaging Innovations (3i), Denver, Colorado, United States
| | - Diego Restrepo
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| | - Emily A. Gibson
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Department of Bioengineering, Aurora, Colorado, United States
| | - Ethan G. Hughes
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| |
Collapse
|
10
|
Tang J, Xue R, Wang Y, Li M, Jia H, Pakan JMP, Li L, Chen X, Li X. Optical Fiber-Based Recording of Climbing Fiber Ca 2+ Signals in Freely Behaving Mice. BIOLOGY 2022; 11:907. [PMID: 35741428 PMCID: PMC9220032 DOI: 10.3390/biology11060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
The olivocerebellar circuitry is important to convey both motor and non-motor information from the inferior olive (IO) to the cerebellar cortex. Several methods are currently established to observe the dynamics of the olivocerebellar circuitry, largely by recording the complex spike activity of cerebellar Purkinje cells; however, these techniques can be technically challenging to apply in vivo and are not always possible in freely behaving animals. Here, we developed a method for the direct, accessible, and robust recording of climbing fiber (CF) Ca2+ signals based on optical fiber photometry. We first verified the IO stereotactic coordinates and the organization of contralateral CF projections using tracing techniques and then injected Ca2+ indicators optimized for axonal labeling, followed by optical fiber-based recordings. We demonstrated this method by recording CF Ca2+ signals in lobule IV/V of the cerebellar vermis, comparing the resulting signals in freely moving mice. We found various movement-evoked CF Ca2+ signals, but the onset of exploratory-like behaviors, including rearing and tiptoe standing, was highly synchronous with recorded CF activity. Thus, we have successfully established a robust and accessible method to record the CF Ca2+ signals in freely behaving mice, which will extend the toolbox for studying cerebellar function and related disorders.
Collapse
Affiliation(s)
- Jiechang Tang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rou Xue
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
| | - Yan Wang
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (M.L.); (H.J.)
| | - Min Li
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (M.L.); (H.J.)
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (M.L.); (H.J.)
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Janelle M. P. Pakan
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Longhui Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China
| | - Xingyi Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
| |
Collapse
|
11
|
Fanning A, Shakhawat A, Raymond JL. Population calcium responses of Purkinje cells in the oculomotor cerebellum driven by non-visual input. J Neurophysiol 2021; 126:1391-1402. [PMID: 34346783 DOI: 10.1152/jn.00715.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The climbing fiber input to the cerebellum conveys instructive signals that can induce synaptic plasticity and learning by triggering complex spikes accompanied by large calcium transients in Purkinje cells. In the cerebellar flocculus, which supports oculomotor learning, complex spikes are driven by image motion on the retina, which could indicate an oculomotor error. In the same neurons, complex spikes also can be driven by non-visual signals. It has been shown that the calcium transients accompanying each complex spike can vary in amplitude, even within a given cell, therefore, we compared the calcium responses associated with the visual and non-visual inputs to floccular Purkinje cells. The calcium indicator GCaMP6f was selectively expressed in Purkinje cells, and fiber photometry was used to record the calcium responses from a population of Purkinje cells in the flocculus of awake behaving mice. During visual (optokinetic) stimuli and pairing of vestibular and visual stimuli, the calcium level increased during contraversive retinal image motion. During performance of the vestibulo-ocular reflex in the dark, calcium increased during contraversive head rotation and the associated ipsiverse eye movements. The amplitude of this non-visual calcium response was comparable to that during conditions with retinal image motion present that induce oculomotor learning. Thus, population calcium responses of Purkinje cells in the cerebellar flocculus to visual and non-visual input are similar to what has been reported previously for complex spikes, suggesting that multimodal instructive signals control the synaptic plasticity supporting oculomotor learning.
Collapse
Affiliation(s)
- Alexander Fanning
- Department of Neurobiology, Stanford University, Stanford, CA, United States
| | - Amin Shakhawat
- Department of Neurobiology, Stanford University, Stanford, CA, United States
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Bonnan A, Rowan MMJ, Baker CA, Bolton MM, Christie JM. Autonomous Purkinje cell activation instructs bidirectional motor learning through evoked dendritic calcium signaling. Nat Commun 2021; 12:2153. [PMID: 33846328 PMCID: PMC8042043 DOI: 10.1038/s41467-021-22405-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 03/01/2021] [Indexed: 01/19/2023] Open
Abstract
The signals in cerebellar Purkinje cells sufficient to instruct motor learning have not been systematically determined. Therefore, we applied optogenetics in mice to autonomously excite Purkinje cells and measured the effect of this activity on plasticity induction and adaptive behavior. Ex vivo, excitation of channelrhodopsin-2-expressing Purkinje cells elicits dendritic Ca2+ transients with high-intensity stimuli initiating dendritic spiking that additionally contributes to the Ca2+ response. Channelrhodopsin-2-evoked Ca2+ transients potentiate co-active parallel fiber synapses; depression occurs when Ca2+ responses were enhanced by dendritic spiking. In vivo, optogenetic Purkinje cell activation drives an adaptive decrease in vestibulo-ocular reflex gain when vestibular stimuli are paired with relatively small-magnitude Purkinje cell Ca2+ responses. In contrast, pairing with large-magnitude Ca2+ responses increases vestibulo-ocular reflex gain. Optogenetically induced plasticity and motor adaptation are dependent on endocannabinoid signaling, indicating engagement of this pathway downstream of Purkinje cell Ca2+ elevation. Our results establish a causal relationship among Purkinje cell Ca2+ signal size, opposite-polarity plasticity induction, and bidirectional motor learning.
Collapse
Affiliation(s)
- Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Matthew M J Rowan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | | | - M McLean Bolton
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
- University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
13
|
Arlt C, Häusser M. Microcircuit Rules Governing Impact of Single Interneurons on Purkinje Cell Output In Vivo. Cell Rep 2021; 30:3020-3035.e3. [PMID: 32130904 PMCID: PMC7059114 DOI: 10.1016/j.celrep.2020.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/07/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
The functional impact of single interneurons on neuronal output in vivo and how interneurons are recruited by physiological activity patterns remain poorly understood. In the cerebellar cortex, molecular layer interneurons and their targets, Purkinje cells, receive excitatory inputs from granule cells and climbing fibers. Using dual patch-clamp recordings from interneurons and Purkinje cells in vivo, we probe the spatiotemporal interactions between these circuit elements. We show that single interneuron spikes can potently inhibit Purkinje cell output, depending on interneuron location. Climbing fiber input activates many interneurons via glutamate spillover but results in inhibition of those interneurons that inhibit the same Purkinje cell receiving the climbing fiber input, forming a disinhibitory motif. These interneuron circuits are engaged during sensory processing, creating diverse pathway-specific response functions. These findings demonstrate how the powerful effect of single interneurons on Purkinje cell output can be sculpted by various interneuron circuit motifs to diversify cerebellar computations.
Collapse
Affiliation(s)
- Charlotte Arlt
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
14
|
The Cellular Electrophysiological Properties Underlying Multiplexed Coding in Purkinje Cells. J Neurosci 2021; 41:1850-1863. [PMID: 33452223 PMCID: PMC7939085 DOI: 10.1523/jneurosci.1719-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/01/2022] Open
Abstract
Neuronal firing patterns are crucial to underpin circuit level behaviors. In cerebellar Purkinje cells (PCs), both spike rates and pauses are used for behavioral coding, but the cellular mechanisms causing code transitions remain unknown. We use a well-validated PC model to explore the coding strategy that individual PCs use to process parallel fiber (PF) inputs. We find increasing input intensity shifts PCs from linear rate-coders to burst-pause timing-coders by triggering localized dendritic spikes. We validate dendritic spike properties with experimental data, elucidate spiking mechanisms, and predict spiking thresholds with and without inhibition. Both linear and burst-pause computations use individual branches as computational units, which challenges the traditional view of PCs as linear point neurons. Dendritic spike thresholds can be regulated by voltage state, compartmentalized channel modulation, between-branch interaction and synaptic inhibition to expand the dynamic range of linear computation or burst-pause computation. In addition, co-activated PF inputs between branches can modify somatic maximum spike rates and pause durations to make them carry analog signals. Our results provide new insights into the strategies used by individual neurons to expand their capacity of information processing. SIGNIFICANCE STATEMENT Understanding how neurons process information is a fundamental question in neuroscience. Purkinje cells (PCs) were traditionally regarded as linear point neurons. We used computational modeling to unveil their electrophysiological properties underlying the multiplexed coding strategy that is observed during behaviors. We demonstrate that increasing input intensity triggers localized dendritic spikes, shifting PCs from linear rate-coders to burst-pause timing-coders. Both coding strategies work at the level of individual dendritic branches. Our work suggests that PCs have the ability to implement branch-specific multiplexed coding at the cellular level, thereby increasing the capacity of cerebellar coding and learning.
Collapse
|
15
|
Roome CJ, Kuhn B. Dendritic coincidence detection in Purkinje neurons of awake mice. eLife 2020; 9:59619. [PMID: 33345779 PMCID: PMC7771959 DOI: 10.7554/elife.59619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Dendritic coincidence detection is fundamental to neuronal processing yet remains largely unexplored in awake animals. Specifically, the underlying dendritic voltage–calcium relationship has not been directly addressed. Here, using simultaneous voltage and calcium two-photon imaging of Purkinje neuron spiny dendrites, we show how coincident synaptic inputs and resulting dendritic spikes modulate dendritic calcium signaling during sensory stimulation in awake mice. Sensory stimulation increased the rate of postsynaptic potentials and dendritic calcium spikes evoked by climbing fiber and parallel fiber synaptic input. These inputs are integrated in a time-dependent and nonlinear fashion to enhance the sensory-evoked dendritic calcium signal. Intrinsic supralinear dendritic mechanisms, including voltage-gated calcium channels and metabotropic glutamate receptors, are recruited cooperatively to expand the dynamic range of sensory-evoked dendritic calcium signals. This establishes how dendrites can use multiple interplaying mechanisms to perform coincidence detection, as a fundamental and ongoing feature of dendritic integration in behaving animals.
Collapse
Affiliation(s)
- Christopher J Roome
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| |
Collapse
|
16
|
Roh SE, Kim SH, Ryu C, Kim CE, Kim YG, Worley PF, Kim SK, Kim SJ. Direct translation of climbing fiber burst-mediated sensory coding into post-synaptic Purkinje cell dendritic calcium. eLife 2020; 9:61593. [PMID: 32985976 PMCID: PMC7581426 DOI: 10.7554/elife.61593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Climbing fibers (CFs) generate complex spikes (CS) and Ca2+ transients in cerebellar Purkinje cells (PCs), serving as instructive signals. The so-called 'all-or-none' character of CSs has been questioned since the CF burst was described. Although recent studies have indicated a sensory-driven enhancement of PC Ca2+ signals, how CF responds to sensory events and contributes to PC dendritic Ca2+ and CS remains unexplored. Here, single or simultaneous Ca2+ imaging of CFs and PCs in awake mice revealed the presynaptic CF Ca2+ amplitude encoded the sensory input's strength and directly influenced post-synaptic PC dendritic Ca2+ amplitude. The sensory-driven variability in CF Ca2+ amplitude depended on the number of spikes in the CF burst. Finally, the spike number of the CF burst determined the PC Ca2+ influx and CS properties. These results reveal the direct translation of sensory information-coding CF inputs into PC Ca2+, suggesting the sophisticated role of CFs as error signals.
Collapse
Affiliation(s)
- Seung-Eon Roh
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Changhyeon Ryu
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Eop Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Physiology, College of Korean Medicine, Gacheon University, Seongnam, Republic of Korea
| | - Yong Gyu Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Paul F Worley
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Ma M, Futia GL, de Souza FMS, Ozbay BN, Llano I, Gibson EA, Restrepo D. Molecular layer interneurons in the cerebellum encode for valence in associative learning. Nat Commun 2020; 11:4217. [PMID: 32868778 PMCID: PMC7459332 DOI: 10.1038/s41467-020-18034-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/31/2020] [Indexed: 11/09/2022] Open
Abstract
The cerebellum plays a crucial role in sensorimotor and associative learning. However, the contribution of molecular layer interneurons (MLIs) to these processes is not well understood. We used two-photon microscopy to study the role of ensembles of cerebellar MLIs in a go-no go task where mice obtain a sugar water reward if they lick a spout in the presence of the rewarded odorant and avoid a timeout when they refrain from licking for the unrewarded odorant. In naive animals the MLI responses did not differ between the odorants. With learning, the rewarded odorant elicited a large increase in MLI calcium responses, and the identity of the odorant could be decoded from the differential response. Importantly, MLIs switched odorant responses when the valence of the stimuli was reversed. Finally, mice took a longer time to refrain from licking in the presence of the unrewarded odorant and had difficulty becoming proficient when MLIs were inhibited by chemogenetic intervention. Our findings support a role for MLIs in learning valence in the cerebellum.
Collapse
Affiliation(s)
- Ming Ma
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Gregory L Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Fabio M Simoes de Souza
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, Sao Bernardo do Campo, SP, Brazil
| | - Baris N Ozbay
- Intelligent Imaging Innovations, Denver, CO, 80216, USA
| | - Isabel Llano
- Saints Pères Paris Institute for Neurosciences, Université Paris Descartes, 75006, Paris, France
| | - Emily A Gibson
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Canepari M. Is Purkinje Neuron Hyperpolarisation Important for Cerebellar Synaptic Plasticity? A Retrospective and Prospective Analysis. THE CEREBELLUM 2020; 19:869-878. [PMID: 32654026 DOI: 10.1007/s12311-020-01164-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two recent studies have demonstrated that the dendritic Ca2+ signal associated with a climbing fibre (CF) input to the cerebellar Purkinje neuron (PN) depends on the membrane potential (Vm). Specifically, when the cell is hyperpolarised, this signal is mediated by T-type voltage-gated Ca2+ channels; in contrast, when the cell is firing, the CF-PN signal is mediated by P/Q-type voltage-gated Ca2+ channels. When the CF input is paired with parallel fibre (PF) activity, the signal is locally amplified at the sites of PF-activated synapses according to the Vm at the time of the CF input, suggesting that the standing Vm is a critical parameter for the induction of PF synaptic plasticity. In this review, I analyse how the Vm can potentially play a role in cerebellar learning focussing, in particular, on the hyperpolarised state that appears to occur episodically, since PNs are mostly firing under physiological conditions. By revisiting the recent literature reporting in vivo recordings and synaptic plasticity studies, I speculate on how a putative role of the PN Vm can provide an interpretation for the results of these studies.
Collapse
Affiliation(s)
- Marco Canepari
- University of Grenoble Alpes, CNRS, LIPhy, F-38000, Grenoble, France. .,Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France. .,Institut National de la Santé et Recherche Médicale, Paris, France.
| |
Collapse
|
19
|
Hull C. Prediction signals in the cerebellum: beyond supervised motor learning. eLife 2020; 9:54073. [PMID: 32223891 PMCID: PMC7105376 DOI: 10.7554/elife.54073] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
While classical views of cerebellar learning have suggested that this structure predominantly operates according to an error-based supervised learning rule to refine movements, emerging evidence suggests that the cerebellum may also harness a wider range of learning rules to contribute to a variety of behaviors, including cognitive processes. Together, such evidence points to a broad role for cerebellar circuits in generating and testing predictions about movement, reward, and other non-motor operations. However, this expanded view of cerebellar processing also raises many new questions about how such apparent diversity of function arises from a structure with striking homogeneity. Hence, this review will highlight both current evidence for predictive cerebellar circuit function that extends beyond the classical view of error-driven supervised learning, as well as open questions that must be addressed to unify our understanding cerebellar circuit function.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
20
|
The Origin of Physiological Local mGluR1 Supralinear Ca 2+ Signals in Cerebellar Purkinje Neurons. J Neurosci 2020; 40:1795-1809. [PMID: 31969470 DOI: 10.1523/jneurosci.2406-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 11/21/2022] Open
Abstract
In mouse cerebellar Purkinje neurons (PNs), the climbing fiber (CF) input provides a signal to parallel fiber (PF) synapses, triggering PF synaptic plasticity. This signal is given by supralinear Ca2+ transients, associated with the CF synaptic potential and colocalized with the PF Ca2+ influx, occurring only when PF activity precedes the CF input. Here, we unravel the biophysical determinants of supralinear Ca2+ signals associated with paired PF-CF synaptic activity. We used membrane potential (V m) and Ca2+ imaging to investigate the local CF-associated Ca2+ influx following a train of PF synaptic potentials in two cases: (1) when the dendritic V m is hyperpolarized below the resting V m, and (2) when the dendritic V m is at rest. We found that supralinear Ca2+ signals are mediated by type-1 metabotropic glutamate receptors (mGluR1s) when the CF input is delayed by 100-150 ms from the first PF input in both cases. When the dendrite is hyperpolarized only, however, mGluR1s boost neighboring T-type channels, providing a mechanism for local coincident detection of PF-CF activity. The resulting Ca2+ elevation is locally amplified by saturation of endogenous Ca2+ buffers produced by the PF-associated Ca2+ influx via the mGluR1-mediated nonselective cation conductance. In contrast, when the dendritic V m is at rest, mGluR1s increase dendritic excitability by inactivating A-type K+ channels, but this phenomenon is not restricted to the activated PF synapses. Thus, V m is likely a crucial parameter in determining PF synaptic plasticity, and the occurrence of hyperpolarization episodes is expected to play an important role in motor learning.SIGNIFICANCE STATEMENT In Purkinje neurons, parallel fiber synaptic plasticity, determined by coincident activation of the climbing fiber input, underlies cerebellar learning. We unravel the biophysical mechanisms allowing the CF input to produce a local Ca2+ signal exclusively at the sites of activated parallel fibers. We show that when the membrane potential is hyperpolarized with respect to the resting membrane potential, type-1 metabotropic glutamate receptors locally enhance Ca2+ influx mediated by T-type Ca2+ channels, and that this signal is amplified by saturation of endogenous buffer also mediated by the same receptors. The combination of these two mechanisms is therefore capable of producing a Ca2+ signal at the activated parallel fiber sites, suggesting a role of Purkinje neuron membrane potential in cerebellar learning.
Collapse
|
21
|
Heffley W, Hull C. Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. eLife 2019; 8:46764. [PMID: 31509108 PMCID: PMC6845228 DOI: 10.7554/elife.46764] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023] Open
Abstract
Classical models of cerebellar learning posit that climbing fibers operate according to a supervised learning rule to instruct changes in motor output by signaling the occurrence of movement errors. However, cerebellar output is also associated with non-motor behaviors, and recently with modulating reward association pathways in the VTA. To test how the cerebellum processes reward related signals in the same type of classical conditioning behavior typically studied to evaluate reward processing in the VTA and striatum, we have used calcium imaging to visualize instructional signals carried by climbing fibers across the lateral cerebellum in mice before and after learning. We find distinct climbing fiber responses in three lateral cerebellar regions that can each signal reward prediction. These instructional signals are well suited to guide cerebellar learning based on reward expectation and enable a cerebellar contribution to reward driven behaviors, suggesting a broad role for the lateral cerebellum in reward-based learning.
Collapse
Affiliation(s)
- William Heffley
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
22
|
Gaffield MA, Bonnan A, Christie JM. Conversion of Graded Presynaptic Climbing Fiber Activity into Graded Postsynaptic Ca 2+ Signals by Purkinje Cell Dendrites. Neuron 2019; 102:762-769.e4. [PMID: 30928170 DOI: 10.1016/j.neuron.2019.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 11/29/2022]
Abstract
The brain must make sense of external stimuli to generate relevant behavior. We used a combination of in vivo approaches to investigate how the cerebellum processes sensory-related information. We found that the inferior olive encodes contexts of sensory-associated external cues in a graded manner, apparent in the presynaptic activity of their axonal projections (climbing fibers) in the cerebellar cortex. Individual climbing fibers were broadly responsive to different sensory modalities but relayed sensory-related information to the cortex in a lobule-dependent manner. Purkinje cell dendrites faithfully transformed this climbing fiber activity into dendrite-wide Ca2+ signals without a direct contribution from the mossy fiber pathway. These results demonstrate that the size of climbing-fiber-evoked Ca2+ signals in Purkinje cell dendrites is largely determined by the firing level of climbing fibers. This coding scheme emphasizes the overwhelming role of the inferior olive in generating salient signals useful for instructing plasticity and learning.
Collapse
Affiliation(s)
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
23
|
Brown AM, Arancillo M, Lin T, Catt DR, Zhou J, Lackey EP, Stay TL, Zuo Z, White JJ, Sillitoe RV. Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells. Sci Rep 2019; 9:1742. [PMID: 30742002 PMCID: PMC6370775 DOI: 10.1038/s41598-018-38264-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/14/2018] [Indexed: 12/03/2022] Open
Abstract
Purkinje cells receive synaptic input from several classes of interneurons. Here, we address the roles of inhibitory molecular layer interneurons in establishing Purkinje cell function in vivo. Using conditional genetics approaches in mice, we compare how the lack of stellate cell versus basket cell GABAergic neurotransmission sculpts the firing properties of Purkinje cells. We take advantage of an inducible Ascl1CreER allele to spatially and temporally target the deletion of the vesicular GABA transporter, Vgat, in developing neurons. Selective depletion of basket cell GABAergic neurotransmission increases the frequency of Purkinje cell simple spike firing and decreases the frequency of complex spike firing in adult behaving mice. In contrast, lack of stellate cell communication increases the regularity of Purkinje cell simple spike firing while increasing the frequency of complex spike firing. Our data uncover complementary roles for molecular layer interneurons in shaping the rate and pattern of Purkinje cell activity in vivo.
Collapse
Affiliation(s)
- Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Marife Arancillo
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Daniel R Catt
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Trace L Stay
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Zhongyuan Zuo
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA.
| |
Collapse
|