1
|
Ge S, Liu Y, Huang H, Yu J, Li X, Lin Q, Huang P, Mei J. Chr23-miR-200s and Dmrt1 Control Sexually Dimorphic Trade-Off Between Reproduction and Growth in Zebrafish. Int J Mol Sci 2025; 26:1785. [PMID: 40004248 PMCID: PMC11855846 DOI: 10.3390/ijms26041785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
In animals, a trade-off exists between reproduction and growth, which are the most fundamental traits. Males and females exhibit profound differences in reproduction and growth in fish species. However, the precise molecular mechanism governing this phenomenon is still not clear. Here, we uncovered that chr23-miR-200s and dmrt1 knockout specifically caused an impairment in reproduction and an increase in body growth in female and male zebrafish, respectively. Chr23-miR-200s and Dmrt1 directly regulate the stat5b gene by targeting its 3'UTR and promoter. The loss of stat5b completely abolished the elevated growth performance in chr23-miR-200s-KO or dmrt1-/- zebrafish. Moreover, the dmrt1 transgenic zebrafish had significantly lower body length and body weight than the control males, accompanied by a significant reduction in stat5b expression in the liver of transgenic fish. In summary, our study proposes a regulatory model elucidating the roles of chr23-miR-200s and Dmrt1 in controlling the sexually dimorphic trade-off between reproduction and growth.
Collapse
Affiliation(s)
- Si Ge
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.G.); (Y.L.); (J.Y.)
| | - Ying Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.G.); (Y.L.); (J.Y.)
| | - Haoran Huang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Jiawang Yu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.G.); (Y.L.); (J.Y.)
| | - Xiaohui Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries, Wuhan 430223, China;
| | - Qiaohong Lin
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Peipei Huang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Jie Mei
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.G.); (Y.L.); (J.Y.)
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
2
|
Ottocento C, Rojas B, Burdfield-Steel E, Furlanetto M, Nokelainen O, Winters S, Mappes J. Diet influences resource allocation in chemical defence but not melanin synthesis in an aposematic moth. J Exp Biol 2024; 227:jeb245946. [PMID: 38179687 DOI: 10.1242/jeb.245946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
For animals that synthesise their chemical compounds de novo, resources, particularly proteins, can influence investment in chemical defences and nitrogen-based wing colouration such as melanin. Competing for the same resources often leads to trade-offs in resource allocation. We manipulated protein availability in the larval diet of the wood tiger moth, Arctia plantaginis, to test how early life resource availability influences relevant life history traits, melanin production and chemical defences. We expected higher dietary protein to result in more effective chemical defences in adult moths and a higher amount of melanin in the wings. According to the resource allocation hypothesis, we also expected individuals with less melanin to have more resources to allocate to chemical defences. We found that protein-deprived moths had a slower larval development, and their chemical defences were less unpalatable for bird predators, but the expression of melanin in their wings did not differ from that of moths raised on a high-protein diet. The amount of melanin in the wings, however, unexpectedly correlated positively with chemical defences. Our findings demonstrate that the resources available in early life have an important role in the efficacy of chemical defences, but melanin-based warning colours are less sensitive to resource variability than other fitness-related traits.
Collapse
Affiliation(s)
- Cristina Ottocento
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| | - Bibiana Rojas
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Emily Burdfield-Steel
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Miriam Furlanetto
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| | - Ossi Nokelainen
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
- Open Science Centre, PO Box 35, 40014University of Jyväskylä, Finland
| | - Sandra Winters
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
3
|
Zhu M, Wang Q, Mu H, Han F, Wang Y, Dai X. A fitness trade-off between growth and survival governed by Spo0A-mediated proteome allocation constraints in Bacillus subtilis. SCIENCE ADVANCES 2023; 9:eadg9733. [PMID: 37756393 PMCID: PMC10530083 DOI: 10.1126/sciadv.adg9733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Growth and survival are key determinants of bacterial fitness. However, how resource allocation of bacteria could reconcile these two traits to maximize fitness remains poorly understood. Here, we find that the resource allocation strategy of Bacillus subtilis does not lead to growth maximization on various carbon sources. Survival-related pathways impose strong proteome constraints on B. subtilis. Knockout of a master regulator gene, spo0A, triggers a global resource reallocation from survival-related pathways to biosynthesis pathways, further strongly stimulating the growth of B. subtilis. However, the fitness of spo0A-null strain is severely compromised because of various disadvantageous phenotypes (e.g., abolished sporulation and enhanced cell lysis). In particular, it also exhibits a strong defect in peptide utilization, being unable to efficiently recycle nutrients from the lysed cell debris to maintain long-term viability. Our work uncovers a fitness trade-off between growth and survival that governed by Spo0A-mediated proteome allocation constraints in B. subtilis, further shedding light on the fundamental design principle of bacteria.
Collapse
Affiliation(s)
| | | | | | - Fei Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| | - Yanling Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| | | |
Collapse
|
4
|
Yamauchi A, Ito K, Shibasaki S, Namba T. Continuous irregular dynamics with multiple neutral trajectories permit species coexistence in competitive communities. Theor Popul Biol 2023; 149:39-47. [PMID: 36620991 DOI: 10.1016/j.tpb.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
The colonization model formulates competition among propagules for habitable sites to colonize, which serves as a mechanism enabling coexistence of multiple species. This model traditionally assumes that encounters between propagules and sites occur as mass action events, under which species distribution can eventually reach an equilibrium state with multiple species in a constant environment. To investigate the effects of encounter mode on species diversity, we analyzed community dynamics in the colonization model by varying encounter processes. The analysis indicated that equilibrium is approximately neutrally-stable under perfect ratio-dependent encounter, resulting in temporally continuous variation of species' frequencies with irregular trajectories even under a constant environment. Although the trajectories significantly depend on initial conditions, they are considered to be "strange nonchaotic attractors" (SNAs) rather than chaos from the asymptotic growth rates of displacement. In addition, trajectories with different initial conditions remain different through time, indicating that the system involves an infinite number of SNAs. This analysis presents a novel mechanism for transient dynamics under competition.
Collapse
Affiliation(s)
- Atsushi Yamauchi
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan.
| | - Koichi Ito
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan; International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Shota Shibasaki
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Toshiyuki Namba
- Graduate School of Science, Osaka Metropolitan University, Japan
| |
Collapse
|
5
|
Fletcher LR, Scoffoni C, Farrell C, Buckley TN, Pellegrini M, Sack L. Testing the association of relative growth rate and adaptation to climate across natural ecotypes of Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:413-432. [PMID: 35811421 DOI: 10.1111/nph.18369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Ecophysiologists have reported a range of relationships, including intrinsic trade-offs across and within species between plant relative growth rate in high resource conditions (RGR) vs adaptation to tolerate cold or arid climates, arising from trait-based mechanisms. Few studies have considered ecotypes within a species, in which the lack of a trade-off would contribute to a wide species range and resilience to climate change. For 15 ecotypes of Arabidopsis thaliana in a common garden we tested for associations between RGR vs adaptation to cold or dry native climates and assessed hypotheses for its mediation by 15 functional traits. Ecotypes native to warmer, drier climates had higher leaf density, leaf mass per area, root mass fraction, nitrogen per leaf area and carbon isotope ratio, and lower osmotic potential at full turgor. Relative growth rate was statistically independent of the climate of the ecotype native range and of individual functional traits. The decoupling of RGR and cold or drought adaptation in Arabidopsis is consistent with multiple stress resistance and avoidance mechanisms for ecotypic climate adaptation and would contribute to the species' wide geographic range and resilience as the climate changes.
Collapse
Affiliation(s)
- Leila R Fletcher
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - Colin Farrell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Lao Z, Matsui Y, Ijichi S, Ying BW. Global coordination of the mutation and growth rates across the genetic and nutritional variety in Escherichia coli. Front Microbiol 2022; 13:990969. [PMID: 36204613 PMCID: PMC9530902 DOI: 10.3389/fmicb.2022.990969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Fitness and mutability are the primary traits of living organisms for adaptation and evolution. However, their quantitative linkage remained largely deficient. Whether there is any general relationship between the two features and how genetic and environmental variables influence them remained unclear and were addressed here. The mutation and growth rates of an assortment of Escherichia coli strain collections, including the wild-type strains and the genetically disturbed strains of either reduced genomes or deletion of the genes involved in the DNA replication fidelity, were evaluated in various media. The contribution of media to the mutation and growth rates was differentiated depending on the types of genetic disturbance. Nevertheless, the negative correlation between the mutation and growth rates was observed across the genotypes and was common in all media. It indicated the comprehensive association of the correlated mutation and growth rates with the genetic and medium variation. Multiple linear regression and support vector machine successfully predicted the mutation and growth rates and the categories of genotypes and media, respectively. Taken together, the study provided a quantitative dataset linking the mutation and growth rates, genotype, and medium and presented a simple and successful example of predicting bacterial growth and mutability by data-driven approaches.
Collapse
|
7
|
Ress V, Traulsen A, Pichugin Y. Eco-evolutionary dynamics of clonal multicellular life cycles. eLife 2022; 11:e78822. [PMID: 36099169 PMCID: PMC9470158 DOI: 10.7554/elife.78822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
The evolution of multicellular life cycles is a central process in the course of the emergence of multicellularity. The simplest multicellular life cycle is comprised of the growth of the propagule into a colony and its fragmentation to give rise to new propagules. The majority of theoretical models assume selection among life cycles to be driven by internal properties of multicellular groups, resulting in growth competition. At the same time, the influence of interactions between groups on the evolution of life cycles is rarely even considered. Here, we present a model of colonial life cycle evolution taking into account group interactions. Our work shows that the outcome of evolution could be coexistence between multiple life cycles or that the outcome may depend on the initial state of the population - scenarios impossible without group interactions. At the same time, we found that some results of these simpler models remain relevant: evolutionary stable strategies in our model are restricted to binary fragmentation - the same class of life cycles that contains all evolutionarily optimal life cycles in the model without interactions. Our results demonstrate that while models neglecting interactions can capture short-term dynamics, they fall short in predicting the population-scale picture of evolution.
Collapse
Affiliation(s)
- Vanessa Ress
- Max Planck Institute for Evolutionary BiologyPlönGermany
- Hamburg Center for Health Economics, University of HamburgHamburgGermany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Yuriy Pichugin
- Max Planck Institute for Evolutionary BiologyPlönGermany
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
8
|
Kurokawa M, Nishimura I, Ying BW. Experimental Evolution Expands the Breadth of Adaptation to an Environmental Gradient Correlated With Genome Reduction. Front Microbiol 2022; 13:826894. [PMID: 35154062 PMCID: PMC8826082 DOI: 10.3389/fmicb.2022.826894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
Whether and how adaptive evolution adjusts the breadth of adaptation in coordination with the genome are essential issues for connecting evolution with ecology. To address these questions, experimental evolution in five Escherichia coli strains carrying either the wild-type genome or a reduced genome was performed in a defined minimal medium (C0). The ancestral and evolved populations were subsequently subjected to fitness and chemical niche analyses across an environmental gradient with 29 combinations of eight chemical components of the minimal medium. The results showed that adaptation was achieved not only specific to the evolutionary condition (C0), but also generally, to the environmental gradient; that is, the breadth of adaptation to the eight chemical niches was expanded. The magnitudes of the adaptive improvement and the breadth increase were both correlated with genome reduction and were highly significant in two out of eight niches (i.e., glucose and sulfate). The direct adaptation-induced correlated adaptation to the environmental gradient was determined by only a few genome mutations. An additive increase in fitness associated with the stepwise fixation of mutations was consistently observed in the reduced genomes. In summary, this preliminary survey demonstrated that evolution finely tuned the breadth of adaptation correlated with genome reduction.
Collapse
Affiliation(s)
- Masaomi Kurokawa
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Issei Nishimura
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Zapién-Campos R, Sieber M, Traulsen A. The effect of microbial selection on the occurrence-abundance patterns of microbiomes. J R Soc Interface 2022; 19:20210717. [PMID: 35135298 PMCID: PMC8826141 DOI: 10.1098/rsif.2021.0717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Theoretical models are useful to investigate the drivers of community dynamics. In the simplest case of neutral models, the events of death, birth and immigration of individuals are assumed to only depend on their abundance-thus, all types share the same parameters. The community level expectations arising from these simple models and their agreement to empirical data have been discussed extensively, often suggesting that in nature, rates might indeed be neutral or their differences might not be important. However, how robust are these model predictions to type-specific rates? Also, what are the consequences at the level of types? Here, we address these questions moving from simple neutral communities to heterogeneous communities. For this, we build a model where types are differently adapted to the environment. We compute the equilibrium distribution of the abundances. Then, we look into the occurrence-abundance pattern often reported in microbial communities. We observe that large immigration and biodiversity-common in microbial systems-lead to such patterns, regardless of whether the rates are neutral or non-neutral. We conclude by discussing the implications to interpret and test empirical data.
Collapse
Affiliation(s)
| | - Michael Sieber
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
10
|
Cropp R, Norbury J. The eco-evolutionary modelling of populations and their traits using a measure of trait differentiation. J Theor Biol 2021; 531:110893. [PMID: 34481861 DOI: 10.1016/j.jtbi.2021.110893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
We develop new equations for the eco-evolutionary dynamics of populations and their traits. These equations resolve the change in the phenotypic differentiation within a population, which better estimates how the variance of the trait distribution changes. We note that traits may be bounded, assume they may be described by beta distributions with small variances, and develop a coupled ordinary differential equation system to describe the dynamics of the total population, the mean trait value, and a measure of phenotype differentiation. The variance of the trait in the population is calculated from its mean and the population's phenotype differentiation. We consider an example of two competing plant populations to demonstrate the efficacy of the new approach. Each population may trade-off its growth rate against its susceptibility to direct competition from the other population. We create two models of this system: a population model based on our new eco-evolutionary equations; and a phenotype model, in which the growth or demise of each fraction of each population with a defined phenotype is simulated as it interacts with a shared limiting resource and its competing phenotypes and populations. Comparison of four simulation scenarios reveals excellent agreement between the predicted quantities from both models: total populations, the average trait values, the trait variances, and the degree of phenotypic differentiation within each population. In each of the four scenarios simulated, three of which are initially subject to competitive exclusion in the absence of evolution, the populations adapt to coexist. One population maximises growth and dominates, while the other minimises competitive losses. These simulations suggest that our new eco-evolutionary equations may provide an excellent approximation to phenotype changes in populations.
Collapse
Affiliation(s)
- Roger Cropp
- School of Environment and Science, Griffith University, Gold Coast, Qld 4215, Australia; Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, The University of Queensland, St Lucia, Qld 4072, Australia.
| | - John Norbury
- Mathematical Institute, University of Oxford, Andrew Wiles Building, ROQ, Woodstock Road, Oxford OX2 6GG, UK
| |
Collapse
|
11
|
Abram F, Arcari T, Guerreiro D, O'Byrne CP. Evolutionary trade-offs between growth and survival: The delicate balance between reproductive success and longevity in bacteria. Adv Microb Physiol 2021; 79:133-162. [PMID: 34836610 DOI: 10.1016/bs.ampbs.2021.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All living cells strive to allocate cellular resources in a way that promotes maximal evolutionary fitness. While there are many competing demands for resources the main decision making process centres on whether to proceed with growth and reproduction or to "hunker down" and invest in protection and survival (or to strike an optimal balance between these two processes). The transcriptional programme active at any given time largely determines which of these competing processes is dominant. At the top of the regulatory hierarchy are the sigma factors that commandeer the transcriptional machinery and determine which set of promoters are active at any given time. The regulatory inputs controlling their activity are therefore often highly complex, with multiple layers of regulation, allowing relevant environmental information to produce the most beneficial response. The tension between growth and survival is also evident in the developmental programme necessary to promote biofilm formation, which is typically associated with low growth rates and enhanced long-term survival. Nucleotide second messengers and energy pools (ATP/ADP levels) play critical roles in determining the fate of individual cells. Regulatory small RNAs frequently play important roles in the decision making processes too. In this review we discuss the trade-off that exists between reproduction and persistence in bacteria and discuss some of the recent advances in this fascinating field.
Collapse
Affiliation(s)
- Florence Abram
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Talia Arcari
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Duarte Guerreiro
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Conor P O'Byrne
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
12
|
Amicone M, Gordo I. Molecular signatures of resource competition: Clonal interference favors ecological diversification and can lead to incipient speciation. Evolution 2021; 75:2641-2657. [PMID: 34341983 PMCID: PMC9292366 DOI: 10.1111/evo.14315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/08/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Microbial ecosystems harbor an astonishing diversity that can persist for long times. To understand how such diversity is structured and maintained, ecological and evolutionary processes need to be integrated at similar timescales. Here, we study a model of resource competition that allows for evolution via de novo mutation, and focus on rapidly adapting asexual populations with large mutational inputs, as typical of many bacteria species. We characterize the adaptation and diversification of an initially maladapted population and show how the eco-evolutionary dynamics are shaped by the interaction between simultaneously emerging lineages - clonal interference. We find that in large populations, more intense clonal interference can foster diversification under sympatry, increasing the probability that phenotypically and genetically distinct clusters coexist. In smaller populations, the accumulation of deleterious and compensatory mutations can push further the diversification process and kick-start speciation. Our findings have implications beyond microbial populations, providing novel insights about the interplay between ecology and evolution in clonal populations.
Collapse
Affiliation(s)
- Massimo Amicone
- Evolutionary Biology, Instituto Gulbenkian de Ciência (IGC)OeirasPortugal
| | - Isabel Gordo
- Evolutionary Biology, Instituto Gulbenkian de Ciência (IGC)OeirasPortugal
| |
Collapse
|
13
|
Alcaide C, Sardanyés J, Elena SF, Gómez P. Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evol 2021; 7:veab017. [PMID: 33815829 PMCID: PMC8007957 DOI: 10.1093/ve/veab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Environmental conditions can affect viral accumulation, virulence and adaptation, which have implications in the disease outcomes and efficiency of control measures. Concurrently, mixed viral infections are relevant in plants, being their epidemiology shaped by within-host virus–virus interactions. However, the extent in which the combined effect of variations in abiotic components of the plant ecological niche and the prevalence of mixed infections affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections and show that isolates of two strains of Pepino mosaic potexvirus coexisted in tomato plants in a temperature-dependent continuum between neutral and antagonistic interactions. After a long-term infection, the mutational analysis of the evolved viral genomes revealed strain-specific single-nucleotide polymorphisms that were modulated by the interaction between the type of infection and temperature. These results suggest that the temperature is an ecological driver of virus-virus interactions, with an effect on the genetic diversity of individual viruses that are co-infecting an individual host. This research provides insights into the effect that changes in host growth temperatures might have on the evolutionary dynamics of viral populations in mixed infections.
Collapse
Affiliation(s)
- Cristina Alcaide
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
- Dynamical Systems and Computational Virology Associated Unit Instituto de Biología Integrativa de Sistemas (I2SysBio) - CRM, Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Santiago F Elena
- I2SysBio, CSIC-Universitat de València, Paterna, 46980 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
- Corresponding author: E-mail:
| |
Collapse
|
14
|
Ilan Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front Digit Health 2020; 2:569178. [PMID: 34713042 PMCID: PMC8521820 DOI: 10.3389/fdgth.2020.569178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) digital health systems have drawn much attention over the last decade. However, their implementation into medical practice occurs at a much slower pace than expected. This paper reviews some of the achievements of first-generation AI systems, and the barriers facing their implementation into medical practice. The development of second-generation AI systems is discussed with a focus on overcoming some of these obstacles. Second-generation systems are aimed at focusing on a single subject and on improving patients' clinical outcomes. A personalized closed-loop system designed to improve end-organ function and the patient's response to chronic therapies is presented. The system introduces a platform which implements a personalized therapeutic regimen and introduces quantifiable individualized-variability patterns into its algorithm. The platform is designed to achieve a clinically meaningful endpoint by ensuring that chronic therapies will have sustainable effect while overcoming compensatory mechanisms associated with disease progression and drug resistance. Second-generation systems are expected to assist patients and providers in adopting and implementing of these systems into everyday care.
Collapse
|
15
|
Park HJ, Pichugin Y, Traulsen A. Why is cyclic dominance so rare? eLife 2020; 9:57857. [PMID: 32886604 PMCID: PMC7473768 DOI: 10.7554/elife.57857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
Natural populations can contain multiple types of coexisting individuals. How does natural selection maintain such diversity within and across populations? A popular theoretical basis for the maintenance of diversity is cyclic dominance, illustrated by the rock-paper-scissor game. However, it appears difficult to find cyclic dominance in nature. Why is this the case? Focusing on continuously produced novel mutations, we theoretically addressed the rareness of cyclic dominance. We developed a model of an evolving population and studied the formation of cyclic dominance. Our results showed that the chance for cyclic dominance to emerge is lower when the newly introduced type is similar to existing types compared to the introduction of an unrelated type. This suggests that cyclic dominance is more likely to evolve through the assembly of unrelated types whereas it rarely evolves within a community of similar types.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Asia Pacific Center for Theoretical Physics, Pohang, Republic of Korea
| | - Yuriy Pichugin
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
16
|
de Oliveira VM, Mendes BB, Roque M, Campos PR. Extinction-colonization dynamics upon a survival-dispersal trade-off. ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2020.100856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Ilan Y. Order Through Disorder: The Characteristic Variability of Systems. Front Cell Dev Biol 2020; 8:186. [PMID: 32266266 PMCID: PMC7098948 DOI: 10.3389/fcell.2020.00186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Randomness characterizes many processes in nature, and therefore its importance cannot be overstated. In the present study, we investigate examples of randomness found in various fields, to underlie its fundamental processes. The fields we address include physics, chemistry, biology (biological systems from genes to whole organs), medicine, and environmental science. Through the chosen examples, we explore the seemingly paradoxical nature of life and demonstrate that randomness is preferred under specific conditions. Furthermore, under certain conditions, promoting or making use of variability-associated parameters may be necessary for improving the function of processes and systems.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
18
|
Chavhan Y, Malusare S, Dey S. Larger bacterial populations evolve heavier fitness trade-offs and undergo greater ecological specialization. Heredity (Edinb) 2020; 124:726-736. [PMID: 32203249 DOI: 10.1038/s41437-020-0308-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
Evolutionary studies over the last several decades have invoked fitness trade-offs to explain why species prefer some environments to others. However, the effects of population size on trade-offs and ecological specialization remain largely unknown. To complicate matters, trade-offs themselves have been visualized in multiple ways in the literature. Thus, it is not clear how population size can affect the various aspects of trade-offs. To address these issues, we conducted experimental evolution with Escherichia coli populations of two different sizes in two nutritionally limited environments, and studied fitness trade-offs from three different perspectives. We found that larger populations evolved greater fitness trade-offs, regardless of how trade-offs are conceptualized. Moreover, although larger populations adapted more to their selection conditions, they also became more maladapted to other environments, ultimately paying heavier costs of adaptation. To enhance the generalizability of our results, we further investigated the evolution of ecological specialization across six different environmental pairs, and found that larger populations specialized more frequently and evolved consistently steeper reaction norms of fitness. This is the first study to demonstrate a relationship between population size and fitness trade-offs, and the results are important in understanding the population genetics of ecological specialization and vulnerability to environmental changes.
Collapse
Affiliation(s)
- Yashraj Chavhan
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Sarthak Malusare
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.,Gaia Doctoral School, Institut des Sciences de l'Evolution (ISEM), 1093-1317 Route de Mende, 34090, Montpellier, France
| | - Sutirth Dey
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
19
|
|
20
|
Park HJ, Pichugin Y, Huang W, Traulsen A. Population size changes and extinction risk of populations driven by mutant interactors. Phys Rev E 2019; 99:022305. [PMID: 30934279 DOI: 10.1103/physreve.99.022305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 11/07/2022]
Abstract
Spontaneous random mutations are an important source of variation in populations. Many evolutionary models consider mutants with a fixed fitness, chosen from a fitness distribution without considering microscopic interactions among the residents and mutants. Here, we go beyond this and consider "mutant interactors," which lead to new interactions between the residents and invading mutants that can affect the population size and the extinction risk of populations. We model microscopic interactions between individuals by using a dynamic interaction matrix, the dimension of which increases with the emergence of a new mutant and decreases with extinction. The new interaction parameters of the mutant follow a probability distribution around the payoff entries of its ancestor. These new interactions can drive the population away from the previous equilibrium and lead to changes in the population size. Thus, the population size is an evolving property rather than an externally controlled variable. We calculate the average population size of our stochastic system over time and quantify the extinction risk of the population by the mean time to extinction.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Yuriy Pichugin
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Weini Huang
- Complex Systems and Networks Research Group, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.,Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
21
|
Marsland R, Cui W, Goldford J, Sanchez A, Korolev K, Mehta P. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput Biol 2019; 15:e1006793. [PMID: 30721227 PMCID: PMC6386421 DOI: 10.1371/journal.pcbi.1006793] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/22/2019] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
A fundamental goal of microbial ecology is to understand what determines the diversity, stability, and structure of microbial ecosystems. The microbial context poses special conceptual challenges because of the strong mutual influences between the microbes and their chemical environment through the consumption and production of metabolites. By analyzing a generalized consumer resource model that explicitly includes cross-feeding, stochastic colonization, and thermodynamics, we show that complex microbial communities generically exhibit a transition as a function of available energy fluxes from a "resource-limited" regime where community structure and stability is shaped by energetic and metabolic considerations to a diverse regime where the dominant force shaping microbial communities is the overlap between species' consumption preferences. These two regimes have distinct species abundance patterns, different functional profiles, and respond differently to environmental perturbations. Our model reproduces large-scale ecological patterns observed across multiple experimental settings such as nestedness and differential beta diversity patterns along energy gradients. We discuss the experimental implications of our results and possible connections with disorder-induced phase transitions in statistical physics.
Collapse
Affiliation(s)
| | - Wenping Cui
- Department of Physics, Boston University, Boston, MA, USA
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | | | - Alvaro Sanchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Kirill Korolev
- Department of Physics, Boston University, Boston, MA, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
| |
Collapse
|
22
|
Abstract
Purpose In this paper, we provide an overview of a life history theory and how it applies to cancer evolution. Recent Findings We review the literature on trade-offs in tumors, focusing on the trade-offs among cellular proliferation, survival, and motility. Trade-offs are critical natural constraints for almost all evolutionary processes. Many ecological studies show that trade-offs among these cellular functions maintain a genetic diversity. In addition, these trade-offs are not fixed, but rather can shift depending on the ecological circumstances in the microenvironment. This can lead to selection for the cellular capacity to respond to these differing microenvironments in ways that promote the fitness of the cancer cell. We relate these life history trade-offs to the recently developed Evo-Eco indexes and discuss how life history theory can help refine our measures of tumor evolution and ecology. Summary Life history theory provides a framework for understanding how the spatial and temporal variability in the tumor microenvironment—in particular resources and threats—affect trade-offs among cell survival, cell proliferation, and cell migration. We discuss how these trade-offs can potentially be leveraged in cancer therapy to increase the effectiveness of treatment.
Collapse
|