1
|
Gu L, Shen Z, Shen S, Wang C, Liu Y, Wei X, Zheng M, Gu J, Chen X, Sun Y, Xu J, Lu Y, Lu W. The INAVA mRNA in Extracellular Vesicles Activates Normal Ovarian Fibroblasts by Phosphorylation-Ubiquitylation Crosstalk of HMGA2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500912. [PMID: 40265981 DOI: 10.1002/advs.202500912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 04/24/2025]
Abstract
Ovarian cancer is an aggressive gynecological tumor usually diagnosed with widespread metastases. Extracellular vesicles (EVs), though recognized as important mediators of tumor metastasis, have received limited attention into their specific functions via the mRNA profiling. Here it is reported elevated expression and selective enrichment of INAVA mRNA in both plasma- and tissue-derived EVs from ovarian cancer patients, which is positively correlated with distant metastasis and poor prognosis. Functionally, INAVA mRNA, upon uptake and translation, activates normal ovarian fibroblasts (NOFs) and drives extensive peritoneum metastasis in the orthotopic xenograft mouse model. Mechanistically, INAVA competitively binds with high mobility group protein A2 (HMGA2) and consequently inhibit its interaction with vaccinia-related kinase 1 (VRK1), leading to reduced HMGA2 phosphorylation on Ser105. Interestingly, this inhibitory phosphorylation stabilizes HMGA2 via blocking tripartite motif-containing 21 (TRIM21) -mediated K48-linked ubiquitylation, and ultimately enhances the transcription of STAT3 to activate NOFs. Lastly, a cell-permeable peptide that disrupts the INAVA-HMGA2 interaction leads to attenuated NOF activation and provides a promising strategy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Lingkai Gu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhangjin Shen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Shizhen Shen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Conghui Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuwan Liu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xinyi Wei
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Mengxia Zheng
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiaxin Gu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaojing Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yan Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Weiguo Lu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, China
| |
Collapse
|
2
|
Hébert-Milette I, Lévesque C, Paquette J, Rivard MÈ, Villeneuve L, Boucher G, Goyette P, Charron G, Rioux JD. Inflammatory bowel disease risk gene C1ORF106 regulates actin dynamics in intestinal epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643205. [PMID: 40161582 PMCID: PMC11952551 DOI: 10.1101/2025.03.14.643205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background and aims C1ORF106 has previously been associated with inflammatory bowel diseases (IBD) via large-scale genetic studies. Increased intestinal permeability is a hallmark of IBD and is observed in at-risk individuals prior to the appearance of clinical symptoms. C1ORF106 was previously shown to regulate intestinal barrier permeability through the regulation of adherens junction stability and through the formation of tight junctions, which impacted actin assembly. However, the downstream impact and molecular mechanisms involved in actin regulation by C1ORF106 haven't been explored. Our study aimed at identifying which pathways involved in intestinal epithelial barrier regulation and F-actin regulation are impacted by C1ORF106 and its IBD-associated variant. Methods We knocked down (KD) the expression of C1ORF106 in human colonic epithelial cells and characterized the function of the 333F variant in intestinal epithelial spheroid cultures obtained from patient-derived human induced pluripotent stem cell (hiPSC). We measured barrier permeability and characterized spheroid formation, actin regulation and cell migration though immunofluorescence, western blots and permeability assays. Results C1ORF106 KD leads to impaired cortical actin belt dynamics and regulation of stress fiber formation, resulting in increased cell constriction, impaired barrier permeability, cell polarity and cell migration. Moreover, we demonstrated that an inhibition of ROCK rescues the actin belt and cell polarity phenotypes in C1ORF106 KD cells, demonstrating that C1ORF106 regulates these phenotypes through a ROCK-dependent mechanism. We also observed an altered nmMYO2-P localization in C1ORF106 KD cells associated with the formation of Vacuolar Apical Compartments (VACs), which are important for 3D epithelial spheroid formation. We observed a similar impact on cell polarity in intestinal epithelial spheroids obtained from hiPSC carrying the 333F variant, providing additional support that this pathway is involved in disease development. Conclusion We provide insights into the molecular mechanisms by which C1ORF106 controls actin dynamics to regulate intestinal epithelial integrity.
Collapse
Affiliation(s)
- Isabelle Hébert-Milette
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Lévesque
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, Montreal, Quebec, Canada
| | - Jean Paquette
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, Montreal, Quebec, Canada
| | - Marie-Ève Rivard
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, Montreal, Quebec, Canada
| | - Louis Villeneuve
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, Montreal, Quebec, Canada
| | - Gabrielle Boucher
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, Montreal, Quebec, Canada
| | - Philippe Goyette
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, Montreal, Quebec, Canada
| | - Guy Charron
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, Montreal, Quebec, Canada
| | - John D. Rioux
- Montreal Heart Institute Research Centre, 5000 rue Bélanger, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Strathearn LS, Spender LC, Schoenherr C, Mason S, Edwards R, Blyth K, Inman GJ. C1orf106 ( INAVA) Is a SMAD3-Dependent TGF-β Target Gene That Promotes Clonogenicity and Correlates with Poor Prognosis in Breast Cancer. Cells 2024; 13:1530. [PMID: 39329715 PMCID: PMC11429573 DOI: 10.3390/cells13181530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Transforming Growth Factor-β (TGF-β) can have both tumour-promoting and tumour-suppressing activity in breast cancer. Elucidating the key downstream mediators of pro-tumorigenic TGF-β signalling in this context could potentially give rise to new therapeutic opportunities and/or identify biomarkers for anti-TGF-β directed therapy. Here, we identify C1orf106 (also known as innate immunity activator INAVA) as a novel TGF-β target gene which is induced in a SMAD3-dependent but SMAD2/SMAD4-independent manner in human and murine cell lines. C1orf106 expression positively correlates with tumourigenic or metastatic potential in human and murine breast cancer cell line models, respectively, and is required for enhanced migration and invasion in response to TGF-β stimulation. C1orf106 promoted self-renewal and colony formation in vitro and may promote tumour-initiating frequency in vivo. High C1orf106 mRNA expression correlates with markers of aggressiveness and poor prognosis in human breast cancer. Taken together, our findings indicate that C1orf106 may act as a tumour promoter in breast cancer.
Collapse
Affiliation(s)
- Lauren S. Strathearn
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Lindsay C. Spender
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Christina Schoenherr
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Susan Mason
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Ruaridh Edwards
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
| | - Karen Blyth
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Gareth J. Inman
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| |
Collapse
|
4
|
Bauer AN, Williams JF, Pokhrel LR, Garcia S, Majumdar N, Eells JB, Cook PP, Akula SM. Evaluating Molecular Mechanism of Viral Inhibition of Aerosolized Smart Nano-Enabled Antiviral Therapeutic (SNAT) on SARS-CoV-2-Infected Hamsters. TOXICS 2024; 12:495. [PMID: 39058147 PMCID: PMC11280845 DOI: 10.3390/toxics12070495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Smart Nano-enabled Antiviral Therapeutic (SNAT) is a promising nanodrug that previously demonstrated efficacy in preclinical studies to alleviate SARS-CoV-2 pathology in hamsters. SNAT comprises taxoid (Tx)-decorated amino (NH2)-functionalized near-atomic size positively charged silver nanoparticles (Tx-[NH2-AgNPs]). Herein, we aimed to elucidate the molecular mechanism of the viral inhibition and safety of aerosolized SNAT treatment in SARS-CoV-2-infected golden Syrian hamsters. High-resolution transmission electron microscopy (HR-TEM) coupled with energy dispersive spectroscopy (EDS) and ELISAs showed SNAT binds directly to the SARS-CoV-2 virus by interacting with intact spike (S) protein, specifically to S2 subunit. SNAT (≥1 µg/mL) treatment significantly lowered SARS-CoV-2 infections of Calu-3 cells. Extraction-free whole transcriptome assay was used to detect changes in circulatory micronome in hamsters treated intranasally with SNAT (two doses of 10 µg/mL of 2 mL each administered 24 h apart). Uninfected hamsters treated with SNAT had altered circulatory concentrations of 18 microRNAs (8 miRNAs upregulated, 10 downregulated) on day 3 post-treatment compared to uninfected controls. SNAT-induced downregulation of miR-141-3p and miR-200b-3p may reduce viral replication and inflammation by targeting Ythdf2 and Slit2, respectively. Further, SNAT treatment significantly lowered IL-6 expression in infected hamster lungs compared to untreated infected hamsters. Taken together, we demonstrate that SNAT binds directly to SARS-CoV-2 via the S protein to prevent viral entry and propose a model by which SNAT alters the cellular miRNA-directed milieu to promote antiviral cellular processes and neutralize infection. Our results provide insights into the use of low-dose intranasally delivered SNAT in treating SARS-CoV-2 infections in a hamster model.
Collapse
Affiliation(s)
- Anais N. Bauer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - John F. Williams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - Lok R. Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Selena Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - Niska Majumdar
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - Jeffrey B. Eells
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
5
|
Parker J, Marten SM, Ó Corcora TC, Rajkov J, Dubin A, Roth O. The effects of primary and secondary bacterial exposure on the seahorse (Hippocampus erectus) immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105136. [PMID: 38185263 DOI: 10.1016/j.dci.2024.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Evolutionary adaptations in the Syngnathidae teleost family (seahorses, pipefish and seadragons) culminated in an array of spectacular morphologies, key immune gene losses, and the enigmatic male pregnancy. In seahorses, genome modifications associated with immunoglobulins, complement, and major histocompatibility complex (MHC II) pathway components raise questions concerning their immunological efficiency and the evolution of compensatory measures that may act in their place. In this investigation heat-killed bacteria (Vibrio aestuarianus and Tenacibaculum maritimum) were used in a two-phased experiment to assess the immune response dynamics of Hippocampus erectus. Gill transcriptomes from double and single-exposed individuals were analysed in order to determine the differentially expressed genes contributing to immune system responses towards immune priming. Double-exposed individuals exhibited a greater adaptive immune response when compared with single-exposed individuals, while single-exposed individuals, particularly with V. aestuarianus replicates, associated more with the innate branch of the immune system. T. maritimum double-exposed replicates exhibited the strongest immune reaction, likely due to their immunological naivety towards the bacterium, while there are also potential signs of innate trained immunity. MHC II upregulated expression was identified in selected V. aestuarianus-exposed seahorses, in the absence of other pathway constituents suggesting a possible alternative or non-classical MHC II immune function in seahorses. Gene Ontology (GO) enrichment analysis highlighted prominent angiogenesis activity following secondary exposure, which could be linked to an adaptive immune process in seahorses. This investigation highlights the prominent role of T-cell mediated adaptive immune responses in seahorses when exposed to sequential foreign bacteria exposures. If classical MHC II pathway function has been lost, innate trained immunity in syngnathids could be a potential compensatory mechanism.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany.
| | - Silke-Mareike Marten
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| | - Tadhg C Ó Corcora
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany
| | - Jelena Rajkov
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany
| | - Arseny Dubin
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| | - Olivia Roth
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| |
Collapse
|
6
|
Andersen V, Bennike TB, Bang C, Rioux JD, Hébert-Milette I, Sato T, Hansen AK, Nielsen OH. Investigating the Crime Scene-Molecular Signatures in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:11217. [PMID: 37446397 PMCID: PMC10342864 DOI: 10.3390/ijms241311217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are without cure and troublesome to manage because of the considerable diversity between patients and the lack of reliable biomarkers. Several studies have demonstrated that diet, gut microbiota, genetics and other patient factors are essential for disease occurrence and progression. Understanding the link between these factors is crucial for identifying molecular signatures that identify biomarkers to advance the management of IBD. Recent technological breakthroughs and data integration have fuelled the intensity of this research. This research demonstrates that the effect of diet depends on patient factors and gut microbial activity. It also identifies a range of potential biomarkers for IBD management, including mucosa-derived cytokines, gasdermins and neutrophil extracellular traps, all of which need further evaluation before clinical translation. This review provides an update on cutting-edge research in IBD that aims to improve disease management and patient quality of life.
Collapse
Affiliation(s)
- Vibeke Andersen
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, Institute of Regional Research, University of Southern Denmark, 5000 Odense, Denmark;
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Tue B. Bennike
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, Institute of Regional Research, University of Southern Denmark, 5000 Odense, Denmark;
- Medical Microbiology and Immunology, Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark
| | - Corinna Bang
- Institute for Clinical Molecular Biology, Christian-Albrecht’s University, 24105 Kiel, Germany;
| | - John D. Rioux
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; (J.D.R.); (I.H.-M.)
- Montreal Heart Institute Research Institute, Montreal, QC H1T 1C8, Canada
| | - Isabelle Hébert-Milette
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; (J.D.R.); (I.H.-M.)
- Montreal Heart Institute Research Institute, Montreal, QC H1T 1C8, Canada
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Axel K. Hansen
- Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
| | - Ole H. Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
7
|
Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00766-3. [PMID: 37186118 PMCID: PMC10127193 DOI: 10.1038/s41575-023-00766-3] [Citation(s) in RCA: 241] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Arie Horowitz
- UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xenia Haest
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Patel A, Mitrea D, Namasivayam V, Murcko MA, Wagner M, Klein IA. Principles and functions of condensate modifying drugs. Front Mol Biosci 2022; 9:1007744. [PMID: 36483537 PMCID: PMC9725174 DOI: 10.3389/fmolb.2022.1007744] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/25/2022] [Indexed: 01/10/2024] Open
Abstract
Biomolecular condensates are compartmentalized communities of biomolecules, which unlike traditional organelles, are not enclosed by membranes. Condensates play roles in diverse cellular processes, are dysfunctional in many disease states, and are often enriched in classically "undruggable" targets. In this review, we provide an overview for how drugs can modulate condensate structure and function by phenotypically classifying them as dissolvers (dissolve condensates), inducers (induce condensates), localizers (alter localization of the specific condensate community members) or morphers (alter the physiochemical properties). We discuss the growing list of bioactive molecules that function as condensate modifiers (c-mods), including small molecules, oligonucleotides, and peptides. We propose that understanding mechanisms of condensate perturbation of known c-mods will accelerate the discovery of a new class of therapies for difficult-to-treat diseases.
Collapse
Affiliation(s)
| | - Diana Mitrea
- Dewpoint Therapeutics, Boston, MA, United States
| | | | | | | | | |
Collapse
|
9
|
Gupta S, Krishnakumar V, Soni N, Rao EP, Banerjee A, Mohanty S. Comparative proteomic profiling of Small Extracellular vesicles derived from iPSCs and tissue specific mesenchymal stem cells. Exp Cell Res 2022; 420:113354. [PMID: 36126717 DOI: 10.1016/j.yexcr.2022.113354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Small Extracellular vesicles (EV) are emerging as crucial intercellular messengers that contribute to the physiological processes. EVs contain numerous functional proteins and nucleic acids derived from their parent cells and have different roles depending on their origin. Functionally, EVs transfer these biological materials from the parent cell to the recipient and thus exhibits a novel therapeutic platform for delivering therapeutics molecules to the target tissue. In this regard, EVs derived from stem cells such as Mesenchymal Stem Cells and iPSCs have demonstrated a higher ability to benefit regenerative medicine. Even though these stem cells share some common properties, due to the differences in their origin (cell sources, the hierarchy of potency, etc) the EVs cargo profiling and functionality may vary. METHOD We used iTRAQ-based proteomic analysis to conduct a comprehensive and quantitative evaluation of EVs derived from iPSCs and various tissue-specific MSCs in this study. Additionally, the data was analyzed using a variety of bioinformatic tools, including ProteinPilot for peptide and protein identification and quantification; Funrich, GO, Reactome, and KEGG (Kyoto Encyclopedia of Genes and Genomes) for pathway enrichment; the STRING database, and the inBio Discover tool for identifying known and predicted Protein-Protein networks. RESULTS Bioinformatics analysis revealed 223 differentially expressed proteins in these EVs; however, Wharton's jelly MSC-EV contained more exclusive proteins with higher protein expression levels. Additionally, 113 proteins were abundant in MSC-EVs, while others were shared between MSC-EVs and iPSC-EVs. Further, based on an in-depth examination of the proteins, their associated pathways, and their interactions with other proteins, it was determined that these proteins are involved in bone regeneration (9.3%), wound healing (4.4%), immune regulation (8.9%), cardiac regeneration (6.6%), neuro regeneration (8.9%), and hepatic regeneration (3.5%). CONCLUSION Overall, the results of our proteomic analysis indicate that EVs derived from MSCs have a more robust profile of proteins with higher expression levels than iPSCs. This is a significant finding, as it demonstrates the critical therapeutic role of EVs in a variety of diseases, as demonstrated by enrichment analysis, their versatility, and broad application potential.
Collapse
Affiliation(s)
- Suchi Gupta
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Vishnu Krishnakumar
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Naina Soni
- Department of Virology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - E Pranshu Rao
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Arup Banerjee
- Department of Virology, Regional Centre for Biotechnology, Faridabad, Haryana, India.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
10
|
Abraham C, Abreu MT, Turner JR. Pattern Recognition Receptor Signaling and Cytokine Networks in Microbial Defenses and Regulation of Intestinal Barriers: Implications for Inflammatory Bowel Disease. Gastroenterology 2022; 162:1602-1616.e6. [PMID: 35149024 PMCID: PMC9112237 DOI: 10.1053/j.gastro.2021.12.288] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is characterized by defects in epithelial function and dysregulated inflammatory signaling by lamina propria mononuclear cells including macrophages and dendritic cells in response to microbiota. In this review, we focus on the role of pattern recognition receptors in the inflammatory response as well as epithelial barrier regulation. We explore cytokine networks that increase inflammation, regulate paracellular permeability, cause epithelial damage, up-regulate epithelial proliferation, and trigger restitutive processes. We focus on studies using patient samples as well as speculate on pathways that can be targeted to more holistically treat patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut.
| | - Maria T. Abreu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Wang Y, Çil Ç, Harnett MM, Pineda MA. Cytohesin-2/ARNO: A Novel Bridge Between Cell Migration and Immunoregulation in Synovial Fibroblasts. Front Immunol 2022; 12:809896. [PMID: 35095899 PMCID: PMC8790574 DOI: 10.3389/fimmu.2021.809896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
The guanine nucleotide exchange factor cytohesin-2 (ARNO) is a major activator of the small GTPase ARF6 that has been shown to play an important role(s) in cell adhesion, migration and cytoskeleton reorganization in various cell types and models of disease. Interestingly, dysregulated cell migration, in tandem with hyper-inflammatory responses, is one of the hallmarks associated with activated synovial fibroblasts (SFs) during chronic inflammatory joint diseases, like rheumatoid arthritis. The role of ARNO in this process has previously been unexplored but we hypothesized that the pro-inflammatory milieu of inflamed joints locally induces activation of ARNO-mediated pathways in SFs, promoting an invasive cell phenotype that ultimately leads to bone and cartilage damage. Thus, we used small interference RNA to investigate the impact of ARNO on the pathological migration and inflammatory responses of murine SFs, revealing a fully functional ARNO-ARF6 pathway which can be rapidly activated by IL-1β. Such signalling promotes cell migration and formation of focal adhesions. Unexpectedly, ARNO was also shown to modulate SF-inflammatory responses, dictating their precise cytokine and chemokine expression profile. Our results uncover a novel role for ARNO in SF-dependent inflammation, that potentially links pathogenic migration with initiation of local joint inflammation, offering new approaches for targeting the fibroblast compartment in chronic arthritis and joint disease.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Çağlar Çil
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom
| |
Collapse
|
12
|
Chang D, Luong P, Li Q, LeBarron J, Anderson M, Barrett L, Lencer WI. Small-molecule modulators of INAVA cytosolic condensate and cell-cell junction assemblies. J Cell Biol 2021; 220:212462. [PMID: 34251416 PMCID: PMC8276315 DOI: 10.1083/jcb.202007177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/01/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
Epithelial cells lining mucosal surfaces distinctively express the inflammatory bowel disease risk gene INAVA. We previously found that INAVA has dual and competing functions: one at lateral membranes where it affects mucosal barrier function and the other in the cytosol where INAVA enhances IL-1β signal transduction and protein ubiquitination and forms puncta. We now find that IL-1β–induced INAVA puncta are biomolecular condensates that rapidly assemble and physiologically resolve. The condensates contain ubiquitin and the E3 ligase βTrCP2, and their formation correlates with amplified ubiquitination, suggesting function in regulation of cellular proteostasis. Accordingly, a small-molecule screen identified ROS inducers, proteasome inhibitors, and inhibitors of the protein folding chaperone HSP90 as potent agonists for INAVA condensate formation. Notably, inhibitors of the p38α and mTOR pathways enhanced resolution of the condensates, and inhibitors of the Rho–ROCK pathway induced INAVA’s competing function by recruiting INAVA to newly assembled intercellular junctions in cells where none existed before.
Collapse
Affiliation(s)
- Denis Chang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Phi Luong
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA.,Harvard Digestive Disease Center, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Qian Li
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA.,Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jamie LeBarron
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Michael Anderson
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA.,Harvard Digestive Disease Center, Boston, MA
| | - Lee Barrett
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Wayne I Lencer
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA.,Harvard Digestive Disease Center, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
London NR, Tharakan A, Smith A, Thomas KR, Zhu W, Odelberg SJ, Ramanathan M, Lane AP. Deletion of Arno Reduces Eosinophilic Inflammation and Interleukin-5 Expression in a Murine Model of Rhinitis. EAR, NOSE & THROAT JOURNAL 2021; 101:1S-7S. [PMID: 33393815 DOI: 10.1177/0145561320986055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND ARF nucleotide-binding site opener (ARNO) is a guanine nucleotide-exchange factor for ADP-ribosylation factor proteins. ARF nucleotide-binding site opener also binds MyD88, and small-molecule inhibition of ARNO reduces inflammation in animal models of inflammatory arthritis and acute inflammation. However, whether genetic deletion of Arno in mice reduces pathologic inflammation has not yet been reported. Furthermore, its role in the nasal cavity has yet to be investigated. OBJECTIVE To generate Arno knockout mice and to determine whether genetic loss of ARNO reduces eosinophilic inflammation in the ovalbumin (OVA) murine model of rhinitis. METHODS Arno knockout mice were generated and wild type and knockout littermates were subjected to the OVA-induced mouse model of rhinosinutitis. Eosinophilic inflammation was assessed through immunofluorescent quantification of EMBP+ eosinophils in the septal mucosa and cytokine expression was assessed by quantitative polymerase chain reaction. RESULTS Arno knockout mice are viable and fertile without any noted deficits. Arno wild type and knockout mice subjected to the OVA-induced model of rhinitis demonstrated an average of 314.5 and 153.8 EMBP+ cells per mm2 septal tissue, respectively (P < .05). Goblet cells per mm of basal lamina were assessed via Alcian blue and there was no statistically significant difference between Arno wild type and knockout mice. Ovalbumin-induced expression of interleukin-5 (IL-5) was significantly reduced in Arno knockout mice (P < .05). There was no statistically significant reduction in IL-4, IL-13, or eotaxin-1 expression. CONCLUSIONS These data demonstrate that deletion of Arno reduces eosinophilic inflammation and IL-5 expression in an OVA-induced model of rhinitis.
Collapse
Affiliation(s)
- Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anuj Tharakan
- Department of Otolaryngology-Head and Neck Surgery, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Smith
- Department of Otolaryngology-Head and Neck Surgery, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirk R Thomas
- Department of Internal Medicine, Molecular Medicine Program, 14434University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Weiquan Zhu
- Department of Internal Medicine, Molecular Medicine Program, 14434University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shannon J Odelberg
- Department of Internal Medicine, Molecular Medicine Program, 14434University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Moody L, Chen H, Pan YX. Considerations for feature selection using gene pairs and applications in large-scale dataset integration, novel oncogene discovery, and interpretable cancer screening. BMC Med Genomics 2020; 13:148. [PMID: 33087122 PMCID: PMC7579924 DOI: 10.1186/s12920-020-00778-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Advancements in transcriptomic profiling have led to the emergence of new challenges regarding data integration and interpretability. Variability between measurement platforms makes it difficult to compare between cohorts, and large numbers of gene features have encouraged the use black box methods that are not easily translated into biologically and clinically meaningful findings. We propose that gene rankings and algorithms that rely on relative expression within gene pairs can address such obstacles. Methods We implemented an innovative process to evaluate the performance of five feature selection methods on simulated gene-pair data. Along with TSP, we consider other methods that retain more information in their score calculations, including the magnitude of gene expression change as well as within-class variation. Tree-based rule extraction was also applied to serum microRNA (miRNA) pairs in order to devise a noninvasive screening tool for pancreatic and ovarian cancer. Results Gene pair data were simulated using different types of signal and noise. Pairs were filtered using feature selection approaches, including top-scoring pairs (TSP), absolute differences between gene ranks, and Fisher scores. Methods that retain more information, such as the magnitude of expression change and within-class variance, yielded higher classification accuracy using a random forest model. We then demonstrate two powerful applications of gene pairs by first performing large-scale integration of 52 breast cancer datasets consisting of 10,350 patients. Not only did we confirm known oncogenes, but we also propose novel tumorigenic genes, such as BSDC1 and U2AF1, that could distinguish between tumor subtypes. Finally, circulating miRNA pairs were filtered and salient rules were extracted to build simplified tree ensemble learners (STELs) for four types of cancer. These accessible clinical frameworks detected pancreatic and ovarian cancer with 84.8 and 93.6% accuracy, respectively. Conclusion Rank-based gene pair classification benefits from careful feature selection methods that preserve maximal information. Gene pairs enable dataset integration for greater statistical power and discovery of robust biomarkers as well as facilitate construction of user-friendly clinical screening tools.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, 461 Bevier Hall, 905 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, 461 Bevier Hall, 905 South Goodwin Avenue, Urbana, IL, 61801, USA.,Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, 461 Bevier Hall, 905 South Goodwin Avenue, Urbana, IL, 61801, USA. .,Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA. .,Illinois Informatics Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
15
|
Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenko K, Devanna P, Winkler S, Jermiin LS, Skirmuntt EC, Katzourakis A, Burkitt-Gray L, Ray DA, Sullivan KAM, Roscito JG, Kirilenko BM, Dávalos LM, Corthals AP, Power ML, Jones G, Ransome RD, Dechmann DKN, Locatelli AG, Puechmaille SJ, Fedrigo O, Jarvis ED, Hiller M, Vernes SC, Myers EW, Teeling EC. Six reference-quality genomes reveal evolution of bat adaptations. Nature 2020; 583:578-584. [PMID: 32699395 PMCID: PMC8075899 DOI: 10.1038/s41586-020-2486-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/09/2020] [Indexed: 11/08/2022]
Abstract
Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols1 to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our 'Tool to infer Orthologs from Genome Alignments' (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease1.
Collapse
Affiliation(s)
- David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lars S Jermiin
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Emilia C Skirmuntt
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Aris Katzourakis
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Lucy Burkitt-Gray
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kevin A M Sullivan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | | | - Megan L Power
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Roger D Ransome
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Dina K N Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Andrea G Locatelli
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Sébastien J Puechmaille
- ISEM, University of Montpellier, Montpellier, France
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Olivier Fedrigo
- Vertebrate Genomes Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genomes Laboratory, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Faculty of Computer Science, Technical University Dresden, Dresden, Germany.
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
Lechuga S, Ivanov AI. Actin cytoskeleton dynamics during mucosal inflammation: a view from broken epithelial barriers. CURRENT OPINION IN PHYSIOLOGY 2020; 19:10-16. [PMID: 32728653 DOI: 10.1016/j.cophys.2020.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Disruption of epithelial barriers is a key pathogenic event of mucosal inflammation: It ignites the exaggerated immune response and accelerates tissue damage. Loss of barrier function is attributed to the abnormal structure and permeability of epithelial adherens junctions and tight junctions, driven by inflammatory stimuli through a variety of cellular mechanisms. This review focuses on roles of the actin cytoskeleton in mediating disruption of epithelial junctions and creation of leaky barriers in inflamed tissues. We summarize recent advances in understanding the role of cytoskeletal remodeling driven by actin filament turnover and myosin II-dependent contractility in the homeostatic regulation of epithelial barriers and barrier disruption during mucosal inflammation. We also discuss how the altered biochemical and physical environment of the inflamed tissues could affect the dynamics of the junction-associated actomyosin cytoskeleton, leading to the disruption of epithelial barriers.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
17
|
C1orf106, an innate immunity activator, is amplified in breast cancer and is required for basal-like/luminal progenitor fate decision. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1229-1242. [PMID: 31376015 DOI: 10.1007/s11427-019-9570-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/03/2019] [Indexed: 01/29/2023]
Abstract
Basal-like breast cancer with a luminal progenitor gene expression profile is an aggressive subtype of breast cancer with a poorer prognosis compared with other subtypes. However, genes that specifically promote basal-like breast cancer development remain largely unknown. Here, we report that a novel gene C1orf106 plays an important role in maintaining the feature of basal-like/luminal progenitors. C1orf106 is frequently amplified and overexpressed in basal-like breast cancer and is associated with a poor outcome in patients. In human TCGA database, C1orf106 expression was correlated with upregulation of ELF5 and downregulation of GATA3, two transcription factors that regulate mammary gland stem cell fate. Enhanced expression of C1orf106 promotes tumor progression and expression of basal-like/luminal progenitor marker ELF5; depletion of C1orf106 suppresses tumorigenesis and expression of basal-like/luminal progenitor marker GATA3. These findings suggest that C1orf106 maintains the basal-like/luminal progenitor character through balancing the expression of ELF5 and GATA3. Taken together, we demonstrated that C1orf106 is an important regulator for basal-like/luminal progenitors and targeting C1orf106 is of therapeutic value for breast cancer.
Collapse
|
18
|
Wang YC, Westcott NP, Griffin ME, Hang HC. Peptidoglycan Metabolite Photoaffinity Reporters Reveal Direct Binding to Intracellular Pattern Recognition Receptors and Arf GTPases. ACS Chem Biol 2019; 14:405-414. [PMID: 30735346 DOI: 10.1021/acschembio.8b01038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The peptidoglycan fragments γ-d-glutamyl- meso-diaminopimelic acid (iE-DAP) and muramyl-dipeptide (MDP) are microbial-specific metabolites that activate intracellular pattern recognition receptors and stimulate immune signaling pathways. While extensive structure-activity studies have demonstrated that these bacterial cell wall metabolites trigger NOD1- and NOD2-dependent signaling, their direct binding to these innate immune receptors or other proteins in mammalian cells has not been established. To characterize these fundamental microbial metabolite-host interactions, we synthesized a series of peptidoglycan metabolite photoaffinity reporters and evaluated their cross-linking to NOD1 and NOD2 in mammalian cells. We show that active iE-DAP and MDP photoaffinity reporters selectively cross-linked NOD1 and NOD2, respectively, and not their inactive mutants. We also discovered MDP reporter cross-linking to Arf GTPases, which interacted most prominently with GTP-bound Arf6 and coimmunoprecipitated with NOD2 upon MDP stimulation. Notably, MDP binding to NOD2 and Arf6 was abrogated with loss-of-function NOD2 mutants associated with Crohn's disease. Our studies demonstrate peptidoglycan metabolite photoaffinity reporters can capture their cognate immune receptors in cells and reveal unpredicted ligand-induced interactions with other cellular cofactors. These photoaffinity reporters should afford useful tools to discover and characterize other peptidoglycan metabolite-interacting proteins.
Collapse
Affiliation(s)
- Yen-Chih Wang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Nathan P. Westcott
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Matthew E. Griffin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|