1
|
Wang J, Chen M, Jiang J, Wan Y, Li X, Zhang M, Xiao F, Zhong L, Zhong H, Qin Z, Hou J. Targeting deubiquitinase USP7-mediated stabilization of XPO1 contributes to the anti-myeloma effects of selinexor. J Transl Med 2025; 23:62. [PMID: 39806439 PMCID: PMC11731161 DOI: 10.1186/s12967-025-06068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells. Nevertheless, in myeloma, the precise mechanisms underlying SEL-induced XPO1 degradation and its impact on drug responsiveness remain largely undefined. METHODS We assessed XPO1 protein and mRNA levels using western blotting and RT-qPCR. Cycloheximide (CHX) chase assays and degradation blockade assays were used to determine the pathway of XPO1 degradation induced by SEL. The sensitivity of MM cell lines to SEL was evaluated using CCK8-based cell viability assays and AV-PI staining-based cell apoptosis assays. The subcellular localization of the cargo protein RanBP1 was assessed via immunofluorescence staining. Immunoprecipitation coupled with mass spectrometry (IP-MS), bioinformatics analysis and ubiquitination assays, were employed to identify the molecular targets responsible for SEL-induced degradation of XPO1. shRNA-mediated knockdown assays and small molecule inhibitors of USP7 were utilized to disrupt the function of USP7. The role of USP7 in modulating SEL sensitivity was analyzed in MM cell lines, primary CD138+ cells, and xenograft mouse models. RESULTS SEL promotes the degradation of XPO1 in MM cells through the ubiquitin-proteasome pathway. There is a positive correlation between XPO1 degradation and sensitivity to SEL in these cells. Inhibiting XPO1 degradation reduces the functional inhibitory effects of SEL on XPO1, as evidenced by decreased nuclear localization of the cargo protein RanBP1. USP7 stabilizes XPO1 in MM cells via its deubiquitinating activity. SEL accelerates the ubiquitination and subsequent degradation of XPO1 by disrupting the interaction between XPO1 and USP7. The expression of USP7 is negatively correlated with patient prognosis and the sensitivity of MM cells to SEL. Inactivating or knocking down USP7 significantly enhances the anti-myeloma effects of SEL both in vitro and in vivo. CONCLUSION In conclusion, our findings underscore the essential role of XPO1 degradation in the anti-myeloma efficacy of SEL and establish a research foundation for targeting USP7 to improve the effectiveness of SEL-based therapies in MM.
Collapse
Affiliation(s)
- Junying Wang
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Mengping Chen
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jinxing Jiang
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yike Wan
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xin Li
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Minyue Zhang
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fei Xiao
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lu Zhong
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Hematology, Punan Hospital of Pudong New District, Shanghai, 200125, China
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhaoyu Qin
- Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Omaetxebarria MJ, Sendino M, Arrizabalaga L, Mota I, Zubiaga AM, Rodríguez JA. Mutations of Key Functional Residues in CRM1/XPO1 Differently Alter Its Intranuclear Localization and the Nuclear Export of Endogenous Cargos. Biomolecules 2024; 14:1578. [PMID: 39766285 PMCID: PMC11674046 DOI: 10.3390/biom14121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
CRM1 (XPO1) has been well-characterized as a shuttling receptor that mediates the export of protein and RNA cargos to the cytoplasm, and previous analyses have pinpointed several key residues (A541, F572, K568, S1055, and Q742) that modulate CRM1 export activity. CRM1 also has a less studied nuclear function in RNA biogenesis, which is reflected by its localization to the Cajal body and the nucleolus. Here, we have investigated how the mutation of these key residues affects the intranuclear localization of CRM1 and its ability to mediate export of endogenous cargos. We identify A541K as a separation-of-function mutant that reveals the independent nature of the Cajal body and nucleolar localizations of CRM1. We also show that the F572A mutation may have strikingly opposite effects on the export of specific cargos. Importantly, and in contrast to previous claims, our findings indicate that S1055 phosphorylation is not generally required for CRM1 function and that the Q742 is not a function-defining residue in human CRM1. Collectively, our findings provide new insights into an understudied aspect of CRM1 biology and highlight several important issues related to CRM1 function and regulation that need to be re-evaluated and addressed in more detail.
Collapse
Affiliation(s)
- Miren Josu Omaetxebarria
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - Liher Arrizabalaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - Irune Mota
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - Ana Maria Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| | - José Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (M.S.); (L.A.); (I.M.); (A.M.Z.)
| |
Collapse
|
3
|
Kubitscheck U, Siebrasse JP. Pre-ribosomal particles from nucleoli to cytoplasm. Nucleus 2024; 15:2373052. [PMID: 38940456 PMCID: PMC11216097 DOI: 10.1080/19491034.2024.2373052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
The analysis of nucleocytoplasmic transport of proteins and messenger RNA has been the focus of advanced microscopic approaches. Recently, it has been possible to identify and visualize individual pre-ribosomal particles on their way through the nuclear pore complex using both electron and light microscopy. In this review, we focused on the transport of pre-ribosomal particles in the nucleus on their way to and through the pores.
Collapse
Affiliation(s)
- Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Jan Peter Siebrasse
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Miao H, Qin Y, Shao D, Chen Q, Pan Y, Lei M, Wu R, Ye X, Wang X, Zhu Y. Discovery of SZJK-0421: A Novel Potent, Low Toxicity, Selective Second Generation of CRM1 Inhibitor for the Treatment of Both Hematological and Solid Tumors. J Med Chem 2024; 67:20595-20618. [PMID: 39509481 DOI: 10.1021/acs.jmedchem.4c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Nuclear export factor chromosome region maintenance 1 (CRM1) mediated the transport of various growth-regulatory proteins and was frequently overexpressed in many hematologic and solid tumors. Selinexor (KPT-330) was the only approved CRM1 inhibitor, but the severe gastrointestinal and central nervous system toxicities limited its clinical application. In this manuscript, a series of novel second-generation CRM1 inhibitors were designed, in which SZJK-0421 was a more reversible inhibitor than KPT-330. The treatment of various tumor cells with SZJK-0421 significantly inhibited the function of CRM1. SZJK-0421 displayed good liver microsome stabilities and pharmacokinetic properties. Most importantly, SZJK-0421 reduced the direct damage to the gastrointestinal mucosa, and the brain plasma distribution ratio of SZJK-0421 was very low in Sprague-Dawley (SD) rats (3%), which avoided gastrointestinal reactions such as central nausea and vomiting caused by large permeability of blood-brain barrier. In addition, SZJK-0421 exhibited strong anticancer efficacy in xenograft models of both solid and hematological tumors.
Collapse
Affiliation(s)
- Hang Miao
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Yanru Qin
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - DingLu Shao
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Qinghua Chen
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Yupeng Pan
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Meng Lei
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P. R. China
| | - Ruokun Wu
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xinran Ye
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| |
Collapse
|
5
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
6
|
Diaz C, Thankam FG, Agrawal DK. Karyopherins in the Remodeling of Extracellular Matrix: Implications in Tendon Injury. JOURNAL OF ORTHOPAEDICS AND SPORTS MEDICINE 2023; 5:357-374. [PMID: 37829147 PMCID: PMC10569131 DOI: 10.26502/josm.511500122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Rotator Cuff Tendinopathies (RCT) are debilitating conditions characterized by alterations in the extracellular matrix (ECM) of the shoulder tendon, resulting in pain, discomfort, and functional limitations. Specific mediators, including HIF-1α, TGF-β, MMP-9 and others have been implicated in the morphological changes observed in the tendon ECM. These mediators rely on karyopherins, a family of nuclear proteins involved in nucleo-cytoplasmic transport; however, the role of karyopherins in RCT remains understudied despite their potential role in nuclear transport mechanisms. Also, the understanding regarding the precise contributions of karyopherins in RCT holds great promise for deciphering the underlying pathophysiological mechanisms of the disease and potentially fostering the development of targeted therapeutic strategies. This article critically discusses the implications, possibilities, and perspectives of karyopherins in the pathophysiology of RCT.
Collapse
Affiliation(s)
- Connor Diaz
- University of Missouri School of Medicine, Springfield Clinical Campus, Springfield, MO 65807, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
7
|
Scheliga I, Baston-Buest DM, Poschmann G, Stuehler K, Kruessel JS, Bielfeld AP. Closer to the Reality-Proteome Changes Evoked by Endometrial Scratching in Fertile Females. Int J Mol Sci 2023; 24:13577. [PMID: 37686380 PMCID: PMC10488085 DOI: 10.3390/ijms241713577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Endometrial scratching (ES) has been widely used in assisted reproductive technology to possibly improve pregnancy rates, but its exact mechanism is still not understood or investigated, and its benefits are controversially discussed. Hypothetically, ES may trigger a local immune response, leading to an improved endometrial receptivity. So far, it has been shown that ES affects the gene expression of cytokines, growth factors, and adhesive proteins, potentially modulating inflammatory pathways and adhesion molecule expression. Our pilot study applying proteomic analysis reveals that ES probably has an impact on the proteins involved in immune response pathways and cytoskeleton formation, which could potentially increase endometrial receptivity. Specifically, proteins that are involved in the immune response and cytoskeleton regulation showed a trend toward higher abundance after the first ES. On the other hand, proteins with a decreasing abundance after the first ES play roles in the regulation of the actin cytoskeleton and cellular processes such as intracellular transport, apoptosis, and autophagy. These trends in protein changes suggest that ES may affect endometrial tissue stiffness and extracellular matrix remodeling, potentially enhancing the embryos' implantation. To our knowledge, this pilot study provides, for the first time, data investigating potential changes in the endometrium due to the scratching procedure that might explain its possible benefit for patients in infertility treatment. Furthermore, the proteome of a group of patients suffering from repeated implantation failure was compared to that of the fertile group in order to transfer the basic science to clinical routine and application.
Collapse
Affiliation(s)
- Iwona Scheliga
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Dunja M Baston-Buest
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Kai Stuehler
- Institute for Molecular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Universitätsstrasse 1, 40225 Duesseldorf, Germany
| | - Jan-Steffen Kruessel
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Alexandra P Bielfeld
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| |
Collapse
|
8
|
Audia S, Brescia C, Dattilo V, D’Antona L, Calvano P, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers (Basel) 2023; 15:cancers15020486. [PMID: 36672435 PMCID: PMC9857238 DOI: 10.3390/cancers15020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus-cytoplasmic gradient, thus making nuclear import-export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest.
Collapse
Affiliation(s)
- Salvatore Audia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Lucia D’Antona
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Pierluigi Calvano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694084
| |
Collapse
|
9
|
Qu B, Xu Y, Lu Y, Zhuang W, Jin X, Shi Q, Yan S, Guo Y, Shen Z, Che J, Wu Y, Tong L, Dong X, Yang H. Design, synthesis and biological evaluation of sulfonamides inhibitors of XPO1 displaying activity against multiple myeloma cells. Eur J Med Chem 2022; 235:114257. [DOI: 10.1016/j.ejmech.2022.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
10
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
11
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
12
|
Lei Y, Li Y, Tan Y, Qian Z, Zhou Q, Jia D, Sun Q. Novel Mechanistic Observations and NES-Binding Groove Features Revealed by the CRM1 Inhibitors Plumbagin and Oridonin. JOURNAL OF NATURAL PRODUCTS 2021; 84:1478-1488. [PMID: 33890470 DOI: 10.1021/acs.jnatprod.0c01231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The protein chromosome region maintenance 1 (CRM1) is an important nuclear export factor and drug target in diseases such as cancer and viral infections. Several plant-derived CRM1 inhibitors including plumbagin and oridonin possess potent antitumor activities. However, their modes of CRM1 inhibition remain unclear. Here, a multimutant CRM1 was engineered to enable crystallization of these two small molecules in its NES groove. Plumbagin and oridonin share the same three conjugation sites in CRM1. In solution, these two inhibitors targeted more CRM1 sites and inhibited its activity through promoting its aggregation, in addition to directly targeting the NES groove. While the plumbagin-bound NES groove resembles the NES-bound groove state, the oridonin complex reveals for the first time a more open NES groove. The observed greater NES groove dynamics may improve cargo loading through a "capture-and-tighten" mechanism. This work thus provides new insights on the mechanism of CRM1 inhibition by two natural products and a structural basis for further development of these or other CRM1 inhibitors.
Collapse
Affiliation(s)
- Yuqin Lei
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Yuling Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Yuping Tan
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Zhiyong Qian
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| |
Collapse
|
13
|
Sui M, Xiong M, Li Y, Zhou Q, Shen X, Jia D, Gou M, Sun Q. Cancer Therapy with Nanoparticle-Medicated Intracellular Expression of Peptide CRM1-Inhibitor. Int J Nanomedicine 2021; 16:2833-2847. [PMID: 33883894 PMCID: PMC8054660 DOI: 10.2147/ijn.s266398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Peptides can be rationally designed as non-covalent inhibitors for molecularly targeted therapy. However, it remains challenging to efficiently deliver the peptides into the targeted cells, which often severely affects their therapeutic efficiency. METHODS Herein, we created a novel non-covalent peptide inhibitor against nuclear export factor CRM1 by a structure-guided drug design method and targetedly delivered the peptide into cancer cells by a nanoparticle-mediated gene expression system for use as a cancer therapy. RESULTS The nuclear export signal (NES)-optimized CRM1 peptide inhibitor colocalized with CRM1 to the nuclear envelope and inhibited nuclear export in cancer cell lines in vitro. The crystal structures of the inhibitors complexed with CRM1 were solved. In contrast to the covalent inhibitors, the peptides were similarly effective against cells harboring the CRM1 C528S mutation. Moreover, a plasmid encoding the peptides was delivered by a iRGD-modified nanoparticle to efficiently target and transfect the cancer cells in vivo after intravenous administration. The peptides could be selectively expressed in the tumor, resulting in the efficient inhibition of subcutaneous melanoma xenografts without obvious systemic toxicity. DISCUSSION This work provides an effective strategy to design peptide-based molecularly targeted therapeutics, which could lead to the development of future targeted therapy.
Collapse
Affiliation(s)
- Min Sui
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Meimei Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Yuling Li
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Qiao Zhou
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Qingxiang Sun
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
14
|
Song Z, Zhang C, Chen L, Jin P, Tetteh C, Zhou X, Gao Z, Zhang H. The Arabidopsis small G-protein AtRAN1 is a positive regulator in chitin-induced stomatal closure and disease resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:92-107. [PMID: 33191557 PMCID: PMC7749754 DOI: 10.1111/mpp.13010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 05/05/2023]
Abstract
Chitin, a fungal microbial-associated molecular pattern, triggers various defence responses in several plant systems. Although it induces stomatal closure, the molecular mechanisms of its interactions with guard cell signalling pathways are unclear. Based on screening of public microarray data obtained from the ATH1 Affymetrix and Arabidopsis eFP browser, we isolated a cDNA encoding a Ras-related nuclear protein 1 AtRAN1. AtRAN1 expression was enriched in guard cells in a manner consistent with involvement in the control of the stomatal movement. AtRAN1 mutation impaired chitin-induced stomatal closure and accumulation of reactive oxygen species and nitric oxide in guard cells. In addition, Atran1 mutant plants exhibited compromised chitin-enhanced plant resistance to both bacterial and fungal pathogens due to changes in defence-related genes. Furthermore, Atran1 mutant plants were hypersensitive to drought stress compared to Col-0 plants, and had lower levels of stress-responsive genes. These data demonstrate a previously uncharacterized signalling role for AtRAN1, mediating chitin-induced signalling.
Collapse
Affiliation(s)
- Zhiqiang Song
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Cheng Zhang
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Ling Chen
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Pinyuan Jin
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Charles Tetteh
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Xiuhong Zhou
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Zhimou Gao
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Huajian Zhang
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| |
Collapse
|
15
|
Lei Y, An Q, Zhang Y, Luo P, Luo Y, Shen X, Jia D, Sun Q. Engineering chromosome region maintenance 1 fragments that bind to nuclear export signals. Protein Sci 2020; 29:1366-1372. [PMID: 31495993 PMCID: PMC7255508 DOI: 10.1002/pro.3724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/05/2023]
Abstract
Chromosome region maintenance 1 (CRM1) exports nuclear export signal (NES) containing cargos from nucleus to cytoplasm and plays critical roles in cancer and viral infections. Biochemical and biophysical studies on this protein were often obstructed by its low purification yield and stability. With the help of PROSS server and NES protection strategy, we successfully designed three small fragments of CRM1, each made of four HEAT repeats and capable of binding to NESs in the absence of RanGTP. One of the fragments, C7, showed dramatically improved purification yield, thermostability, mechanostability, and resistance to protease digestion. We showed by isothermal titration that the protein kinase inhibitor NES binds to C7 at 1.18 μM affinity. Direct binding to C7 by several reported CRM1 inhibitors derived from plants were verified using pull-down assays. These fragments might be useful for the development of CRM1 inhibitors towards treatment of related diseases. The strategy applied here might help to tackle similar problems encountered in different fields.
Collapse
Affiliation(s)
- Yuqin Lei
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| | - Qi An
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| | - Yuqing Zhang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| | - Ping Luo
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| | - Youfu Luo
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| |
Collapse
|