1
|
Ribeiro RP, Null RW, Özpolat BD. Sex-biased gene expression precedes sexual dimorphism in the agonadal annelid Platynereis dumerilii. Development 2025; 152:dev204513. [PMID: 40067261 PMCID: PMC12045600 DOI: 10.1242/dev.204513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Gametogenesis is the process by which germ cells differentiate into mature sperm and oocytes - cells that are essential for sexual reproduction. The sex-specific molecular programs that drive spermatogenesis and oogenesis can also serve as sex identification markers. Platynereis dumerilii is a research organism that has been studied in many areas of developmental biology. However, investigations often disregard sex, as P. dumerilii juveniles lack sexual dimorphism. The molecular mechanisms of gametogenesis in the segmented worm P. dumerilii are also largely unknown. In this study, we used RNA sequencing to investigate the transcriptomic profiles of gametogenesis in P. dumerilii juveniles. Our analysis revealed that sex-biased gene expression becomes increasingly pronounced during the advanced developmental stages, as worms approach maturation. We identified conserved genes associated with spermatogenesis, such as dmrt1, and with oogenesis, such as the previously unidentified gene psmt. Additionally, putative long non-coding RNAs were upregulated in both male and female gametogenic programs. This study provides a foundational resource for germ cell research in P. dumerilii and markers for sex identification, and offers comparative data to enhance our understanding of the evolution of gametogenesis mechanisms across species.
Collapse
Affiliation(s)
- Rannyele P. Ribeiro
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Eugene Bell Center for Regenerative Medicine, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Ryan W. Null
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | - B. Duygu Özpolat
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Eugene Bell Center for Regenerative Medicine, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
2
|
Wang Y, Liu L, Zhao Y, Ren Y, Miao X, Dong Y, Liu L, Li X. Transcriptomic and proteomic analysis reveals the mechanism of chicken cecum response to Salmonella enterica serovar Enteritidis inoculation. iScience 2025; 28:111571. [PMID: 39845417 PMCID: PMC11750581 DOI: 10.1016/j.isci.2024.111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Salmonella enterica serovar Enteritidis (SE) incurs foodborne illnesses and poses a severe threat to poultry industry and human health. However, the molecular mechanisms underlying chicken responding to SE inoculation remain elusive. Here, we characterized the transcriptome and proteome of chicken cecum 3 days post SE inoculation. Totally, there were 332 differentially expressed genes and 563 differentially expressed protein identified. The upregulated genes were enriched in immune-related processes. The downregulated proteins mainly correlated with metabolic process. The correlation coefficient between the transcriptome and proteome was 0.14. Collectively, we characterized the landscape of mRNAs and proteins in chicken cecum following SE inoculation and found SE inoculation induced chicken immune system at transcriptomic level but impaired the metabolism at protein level. The differences may be caused by complex post-transcriptional regulatory mechanisms or time-dependent delays. Our findings would extend the understanding of the molecular mechanisms underlying chicken responding to SE inoculation.
Collapse
Affiliation(s)
- Yuanmei Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Taián 271018, China
| | - Yanan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Yanru Ren
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Xiuxiu Miao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Yaning Dong
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Lewen Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| |
Collapse
|
3
|
Bhatnagar A, Raj G, Das S, Kannihali A, Rajakumara E, Murray G, Ray S. Integrated bioinformatics and interaction analysis to advance chronotherapies for mental disorders. Front Pharmacol 2024; 15:1444342. [PMID: 39703389 PMCID: PMC11655208 DOI: 10.3389/fphar.2024.1444342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Robust connections have been identified between the pathophysiology of mental disorders and the functioning of the circadian system. The overarching objective of this study was to investigate the potential for circadian rhythms to be leveraged for therapeutics in mental disorders. Methods We considered two approaches to chronotherapy-optimal timing of existing medications ("clocking the drugs") and redressing circadian abnormalities with small molecules ("drugging the clock"). We assessed whether circadian rhythm-modulating compounds can interact with the prominent drug targets of mental disorders utilizing computational tools like molecular docking and molecular dynamics simulation analysis. Results Firstly, an analysis of transcript-level rhythmic patterns in recognized drug targets for mental disorders found that 24-hour rhythmic patterns were measurable in 54.4% of targets in mice and 35.2% in humans. We also identified several drug receptors exhibiting 24-hour rhythmicity involved in critical physiological pathways for neural signaling and communication, such as neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, and dopaminergic and cholinergic synapses. These findings advocate that further research into the timing of drug administration in mental disorders is urgently required. We observed that many pharmacological modulators of mammalian circadian rhythms, including KL001, SR8278, SR9009, Nobiletin, and MLN4924, exhibit stable binding with psychotropic drug targets. Discussion These findings suggest that circadian clock-modulating pharmacologically active small molecules could be investigated further for repurposing in the treatment of mood disorders. In summary, the present analyses indicate the potential of chronotherapeutic approaches to mental disorder pharmacotherapy and specify the need for future circadian rhythm-oriented clinical research.
Collapse
Affiliation(s)
- Apoorva Bhatnagar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Gupta Raj
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Arpita Kannihali
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Greg Murray
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
4
|
Metzger BM, Özpolat BD. Developmental stage dependent effects of posterior and germline regeneration on sexual maturation in Platynereis dumerilii. Dev Biol 2024; 513:33-49. [PMID: 38797257 PMCID: PMC11211637 DOI: 10.1016/j.ydbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Regeneration, regrowing lost and injured body parts, is an ability that generally declines with age or developmental transitions (i.e. metamorphosis, sexual maturation). Regeneration is also an energetically costly process, and trade-offs occur between regeneration and other costly processes such as growth, or sexual reproduction. Here we investigate the interplay of regeneration, reproduction, and developmental stage in the segmented worm Platynereis dumerilii. P. dumerilii can regenerate its whole posterior body axis, along with its reproductive cells, thereby having to carry out the two costly processes (somatic and germ cell regeneration) after injury. We specifically examine how developmental stage affects the success of germ cell regeneration and sexual maturation in developmentally young versus developmentally old organisms. We hypothesized that developmentally younger individuals (i.e. with gametes in early mitotic stages) will have higher regeneration success than the individuals at developmentally older stages (i.e. with gametes undergoing meiosis and maturation). Surprisingly, older amputated worms grew faster and matured earlier than younger amputees. To analyze germ cell regeneration during and after posterior regeneration, we used Hybridization Chain Reaction for the germline marker vasa. We found that regenerated worms start repopulating new segments with germ cell clusters as early as 14 days post amputation. In addition, vasa expression is observed in a wide region of newly-regenerated segments, which appears different from expression patterns during normal growth or regeneration in worms before gonial cluster expansion.
Collapse
Affiliation(s)
- Bria M Metzger
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA; Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - B Duygu Özpolat
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA; Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
5
|
Ribeiro RP, Null RW, Özpolat BD. Sex-biased gene expression precedes sexual dimorphism in the agonadal annelid Platynereis dumerilii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598746. [PMID: 38915681 PMCID: PMC11195272 DOI: 10.1101/2024.06.12.598746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Gametogenesis is the process by which germ cells differentiate into mature sperm and oocytes, cells essential for sexual reproduction. The sex-specific molecular programs that drive spermatogenesis and oogenesis can also serve as sex identification markers. Platynereis dumerilii is a research organism that has been studied in many areas of developmental biology. However investigations often disregard sex, as P. dumerilii juveniles lack sexual dimorphism. The molecular mechanisms of gametogenesis in the segmented worm P. dumerilii are also largely unknown. In this study, we used RNA sequencing to investigate the transcriptomic profiles of gametogenesis in P. dumerilii juveniles. Our analysis revealed that sex-biased gene expression becomes increasingly pronounced during the advanced developmental stages, particularly during the meiotic phases of gametogenesis. We identified conserved genes associated with spermatogenesis, such as dmrt1, and a novel gene psmt, that is associated with oogenesis. Additionally, putative long non-coding RNAs were upregulated in both male and female gametogenic programs. This study provides a foundational resource for germ cell research in P. dumerilii, markers for sex identification, and offers comparative data to enhance our understanding of the evolution of gametogenesis mechanisms across species.
Collapse
Affiliation(s)
- Rannyele P Ribeiro
- Department of Biology. Washington University in St. Louis. St. Louis, MO, USA
- Eugene Bell Center for Regenerative Medicine, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Ryan W Null
- Department of Biology. Washington University in St. Louis. St. Louis, MO, USA
| | - B Duygu Özpolat
- Department of Biology. Washington University in St. Louis. St. Louis, MO, USA
- Eugene Bell Center for Regenerative Medicine, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
6
|
Özpolat BD. Annelids as models of germ cell and gonad regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:126-143. [PMID: 38078561 PMCID: PMC11060932 DOI: 10.1002/jez.b.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Germ cells (reproductive cells and their progenitors) give rise to the next generation in sexually reproducing organisms. The loss or removal of germ cells often leads to sterility in established research organisms such as the fruit fly, nematodes, frog, and mouse. The failure to regenerate germ cells in these organisms reinforced the dogma of germline-soma barrier in which germ cells are set-aside during embryogenesis and cannot be replaced by somatic cells. However, in stark contrast, many animals including segmented worms (annelids), hydrozoans, planaria, sea stars, sea urchins, and tunicates can regenerate germ cells. Here I review germ cell and gonad regeneration in annelids, a rich history of research that dates back to the early 20th century in this highly regenerative group. Examples include annelids from across the annelid phylogeny, across developmental stages, and reproductive strategies. Adult annelids regenerate germ cells as a part of regeneration, grafting, and asexual reproduction. Annelids can also recover germ cells after ablation of germ cell progenitors in the embryos. I present a framework to investigate cellular sources of germ cell regeneration in annelids, and discuss the literature that supports different possibilities within this framework, where germ-soma separation may or may not be preserved. With contemporary genetic-lineage tracing and bioinformatics tools, and several genetically enabled annelid models, we are at the brink of answering the big questions that puzzled many for over more than a century.
Collapse
Affiliation(s)
- B Duygu Özpolat
- Department of Biology, Washington University in St. Louis, St. Louis, United States, United States
| |
Collapse
|
7
|
Häfker NS, Holcik L, Mat AM, Ćorić A, Vadiwala K, Beets I, Stockinger AW, Atria CE, Hammer S, Revilla-i-Domingo R, Schoofs L, Raible F, Tessmar-Raible K. Molecular circadian rhythms are robust in marine annelids lacking rhythmic behavior. PLoS Biol 2024; 22:e3002572. [PMID: 38603542 PMCID: PMC11008795 DOI: 10.1371/journal.pbio.3002572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.
Collapse
Affiliation(s)
- N. Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laurenz Holcik
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Audrey M. Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Aida Ćorić
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karim Vadiwala
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Isabel Beets
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Alexander W. Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Carolina E. Atria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Stefan Hammer
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Roger Revilla-i-Domingo
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Liliane Schoofs
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Metzger B, Özpolat BD. The cost and payout of age on germline regeneration and sexual maturation in Platynereis dumerilii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576726. [PMID: 38328233 PMCID: PMC10849560 DOI: 10.1101/2024.01.22.576726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Regeneration, regrowing lost and injured body parts, is an ability that generally declines with age or developmental transitions (i.e. metamorphosis, sexual maturation) in many organisms. Regeneration is also energetically a costly process, and trade-offs occur between regeneration and other costly processes such as somatic growth, or sexual reproduction. Here we investigate the interplay of regeneration, reproduction, and age in the segmented worm Platynereis dumerilii. P. dumerilii can regenerate its whole posterior body axis, along with its reproductive cells, thereby having to carry out the two costly processes (somatic and germ cell regeneration) after injury. We specifically examine how age affects the success of germ cell regeneration and sexual maturation in developmentally young versus old organisms. We hypothesized that developmentally younger individuals (i.e. lower investment state, with gametes in early mitotic stages) will have higher regeneration success and reach sexual maturation faster than the individuals at developmentally older stages (i.e. higher investment state, with gametes in the process of maturation). Surprisingly, older amputated worms grew faster and matured earlier than younger amputees, even though they had to regenerate more segments and recuperate the more costly germ cells which were already starting to undergo gametogenesis. To analyze germ cell regeneration across stages, we used Hybridization Chain Reaction for the germline marker vasa. We found that regenerated worms start repopulating new segments with germ cell clusters as early as 14 days post amputation. In addition, vasa expression is observed in a wide region of newly-regenerated segments, which appears different from expression patterns during normal growth or regeneration in worms before gonial cluster expansion. Future studies will focus on determining the exact sources of gonial clusters in regeneration.
Collapse
Affiliation(s)
- Bria Metzger
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA USA
- Department of Biology, Washington University in Saint Louis, MO, USA
- Currently at University of Washington, Seattle, WA, USA
| | - B Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA USA
- Department of Biology, Washington University in Saint Louis, MO, USA
| |
Collapse
|
9
|
Paré L, Bideau L, Baduel L, Dalle C, Benchouaia M, Schneider SQ, Laplane L, Clément Y, Vervoort M, Gazave E. Transcriptomic landscape of posterior regeneration in the annelid Platynereis dumerilii. BMC Genomics 2023; 24:583. [PMID: 37784028 PMCID: PMC10546743 DOI: 10.1186/s12864-023-09602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Restorative regeneration, the capacity to reform a lost body part following amputation or injury, is an important and still poorly understood process in animals. Annelids, or segmented worms, show amazing regenerative capabilities, and as such are a crucial group to investigate. Elucidating the molecular mechanisms that underpin regeneration in this major group remains a key goal. Among annelids, the nereididae Platynereis dumerilii (re)emerged recently as a front-line regeneration model. Following amputation of its posterior part, Platynereis worms can regenerate both differentiated tissues of their terminal part as well as a growth zone that contains putative stem cells. While this regeneration process follows specific and reproducible stages that have been well characterized, the transcriptomic landscape of these stages remains to be uncovered. RESULTS We generated a high-quality de novo Reference transcriptome for the annelid Platynereis dumerilii. We produced and analyzed three RNA-sequencing datasets, encompassing five stages of posterior regeneration, along with blastema stages and non-amputated tissues as controls. We included two of these regeneration RNA-seq datasets, as well as embryonic and tissue-specific datasets from the literature to produce a Reference transcriptome. We used this Reference transcriptome to perform in depth analyzes of RNA-seq data during the course of regeneration to reveal the important dynamics of the gene expression, process with thousands of genes differentially expressed between stages, as well as unique and specific gene expression at each regeneration stage. The study of these genes highlighted the importance of the nervous system at both early and late stages of regeneration, as well as the enrichment of RNA-binding proteins (RBPs) during almost the entire regeneration process. CONCLUSIONS In this study, we provided a high-quality de novo Reference transcriptome for the annelid Platynereis that is useful for investigating various developmental processes, including regeneration. Our extensive stage-specific transcriptional analysis during the course of posterior regeneration sheds light upon major molecular mechanisms and pathways, and will foster many specific studies in the future.
Collapse
Affiliation(s)
- Louis Paré
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Loïc Bideau
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Loeiza Baduel
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Caroline Dalle
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Médine Benchouaia
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Stephan Q Schneider
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Lucie Laplane
- Université Paris I Panthéon-Sorbonne, CNRS UMR 8590 Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST), Paris, France
- Gustave Roussy, UMR 1287, Villejuif, France
| | - Yves Clément
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Michel Vervoort
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Eve Gazave
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France.
| |
Collapse
|
10
|
Bhatnagar A, Murray G, Ray S. Circadian biology to advance therapeutics for mood disorders. Trends Pharmacol Sci 2023; 44:689-704. [PMID: 37648611 DOI: 10.1016/j.tips.2023.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023]
Abstract
Mood disorders account for a significant global disease burden, and pharmacological innovation is needed as existing medications are suboptimal. A wide range of evidence implicates circadian and sleep dysfunction in the pathogenesis of mood disorders, and there is growing interest in these chronobiological pathways as a focus for treatment innovation. We review contemporary evidence in three promising areas in circadian-clock-based therapeutics in mood disorders: targeting the circadian system informed by mechanistic molecular advances; time-tailoring of medications; and personalizing treatment using circadian parameters. We also consider the limitations and challenges in accelerating the development of new circadian-informed pharmacotherapies for mood disorders.
Collapse
Affiliation(s)
- Apoorva Bhatnagar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India; Centre for Mental Health, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Greg Murray
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
11
|
Ramos-Llorens M, Hontoria F, Navarro JC, Ferrier DEK, Monroig Ó. Functionally diverse front-end desaturases are widespread in the phylum Annelida. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159377. [PMID: 37517549 DOI: 10.1016/j.bbalip.2023.159377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Aquatic single-cell organisms have long been believed to be unique primary producers of omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA). Multiple invertebrates including annelids have been discovered to possess methyl-end desaturases enabling key steps in the de novo synthesis of ω3 LC-PUFA, and thus potentially contributing to their production in the ocean. Along methyl-end desaturases, the repertoire and function of further LC-PUFA biosynthesising enzymes is largely missing in Annelida. In this study we examined the front-end desaturase gene repertoire across the phylum Annelida, from Polychaeta and Clitellata, major classes of annelids comprising most annelid diversity. We further characterised the functions of the encoded enzymes in selected representative species by using a heterologous expression system based in yeast, demonstrating that functions of Annelida front-end desaturases have highly diversified during their expansion in both terrestrial and aquatic ecosystems. We concluded that annelids possess at least two front-end desaturases with Δ5 and Δ6Δ8 desaturase regioselectivities, enabling all the desaturation reactions required to convert the C18 precursors into the physiologically relevant LC-PUFA such as eicosapentaenoic and arachidonic acids, but not docosahexaenoic acid. Such a gene complement is conserved across the different taxonomic groups within Annelida.
Collapse
Affiliation(s)
- Marc Ramos-Llorens
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Francisco Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - David E K Ferrier
- The Scottish Oceans Institute, School of Biology, University of St. Andrews, St Andrews, Fife KY16 8LB, UK
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
12
|
Abdullah K, Wilkins D, Ferrari BC. Utilization of-Omic technologies in cold climate hydrocarbon bioremediation: a text-mining approach. Front Microbiol 2023; 14:1113102. [PMID: 37396353 PMCID: PMC10313077 DOI: 10.3389/fmicb.2023.1113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/02/2023] [Indexed: 07/04/2023] Open
Abstract
Hydrocarbon spills in cold climates are a prominent and enduring form of anthropogenic contamination. Bioremediation is one of a suite of remediation tools that has emerged as a cost-effective strategy for transforming these contaminants in soil, ideally into less harmful products. However, little is understood about the molecular mechanisms driving these complex, microbially mediated processes. The emergence of -omic technologies has led to a revolution within the sphere of environmental microbiology allowing for the identification and study of so called 'unculturable' organisms. In the last decade, -omic technologies have emerged as a powerful tool in filling this gap in our knowledge on the interactions between these organisms and their environment in vivo. Here, we utilize the text mining software Vosviewer to process meta-data and visualize key trends relating to cold climate bioremediation projects. The results of text mining of the literature revealed a shift over time from optimizing bioremediation experiments on the macro/community level to, in more recent years focusing on individual organisms of interest, interactions within the microbiome and the investigation of novel metabolic degradation pathways. This shift in research focus was made possible in large part by the rise of omics studies allowing research to focus not only what organisms/metabolic pathways are present but those which are functional. However, all is not harmonious, as the development of downstream analytical methods and associated processing tools have outpaced sample preparation methods, especially when dealing with the unique challenges posed when analyzing soil-based samples.
Collapse
Affiliation(s)
- Kristopher Abdullah
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Wilkins
- Environmental Stewardship Program, Australian Antarctic Division, Department of Climate Change, Energy, Environment and Water, Kingston, TAS, Australia
| | - Belinda C. Ferrari
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Xiang L, Li X, Luo Y, Zhou B, Liu Y, Li Y, Wu D, Jia L, Zhu PW, Zheng MH, Wang H, Lu Y. A multi-omic landscape of steatosis-to-NASH progression. LIFE METABOLISM 2022; 1:242-257. [PMID: 39872077 PMCID: PMC11749464 DOI: 10.1093/lifemeta/loac034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/20/2022] [Accepted: 11/16/2022] [Indexed: 01/29/2025]
Abstract
Nonalcoholic steatohepatitis (NASH) has emerged as a major cause of liver failure and hepatocellular carcinoma. Investigation into the molecular mechanisms that underlie steatosis-to-NASH progression is key to understanding the development of NASH pathophysiology. Here, we present comprehensive multi-omic profiles of preclinical animal models to identify genes, non-coding RNAs, proteins, and plasma metabolites involved in this progression. In particular, by transcriptomics analysis, we identified Growth Differentiation Factor 3 (GDF3) as a candidate noninvasive biomarker in NASH. Plasma GDF3 levels are associated with hepatic pathological features in patients with NASH, and differences in these levels provide a high diagnostic accuracy of NASH diagnosis (AUROC = 0.90; 95% confidence interval: 0.85-0.95) with a good sensitivity (90.7%) and specificity (86.4%). In addition, by developing integrated proteomic-metabolomic datasets and performing a subsequent pharmacological intervention in a mouse model of NASH, we show that ferroptosis may be a potential target to treat NASH. Moreover, by using competing endogenous RNAs network analysis, we found that several miRNAs, including miR-582-5p and miR-292a-3p, and lncRNAs, including XLOC-085738 and XLOC-041531, are associated with steatosis-to-NASH progression. Collectively, our data provide a valuable resource into the molecular characterization of NASH progression, leading to the novel insight that GDF3 may be a potential noninvasive diagnostic biomarker for NASH while further showing that ferroptosis is a therapeutic target for the disease.
Collapse
Affiliation(s)
- Liping Xiang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunchen Luo
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuejun Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duojiao Wu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Lijing Jia
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Andreatta G, Raible F, Tessmar-Raible K. Biological rhythms: Hormones under moon control. Curr Biol 2022; 32:R1269-R1271. [PMID: 36413969 DOI: 10.1016/j.cub.2022.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Grass puffers are fish that engage in mass spawning controlled by the phase of the moon. A new study shows that prostaglandins released by males and females fine tune these events. In addition, regulation of gnrh1 by a transcription factor expressed in a semilunar rhythm suggests a timing signal for the long-term coordination of gonadal maturation.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Vienna, Austria; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Carl-von-Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
15
|
Mohamed AR, Naval-Sanchez M, Menzies M, Evans B, King H, Reverter A, Kijas JW. Leveraging transcriptome and epigenome landscapes to infer regulatory networks during the onset of sexual maturation. BMC Genomics 2022; 23:413. [PMID: 35650521 PMCID: PMC9158274 DOI: 10.1186/s12864-022-08514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background Despite sexual development being ubiquitous to vertebrates, the molecular mechanisms underpinning this fundamental transition remain largely undocumented in many organisms. We designed a time course experiment that successfully sampled the period when Atlantic salmon commence their trajectory towards sexual maturation. Results Through deep RNA sequencing, we discovered key genes and pathways associated with maturation in the pituitary-ovarian axis. Analyzing DNA methylomes revealed a bias towards hypermethylation in ovary that implicated maturation-related genes. Co-analysis of DNA methylome and gene expression changes revealed chromatin remodeling genes and key transcription factors were both significantly hypermethylated and upregulated in the ovary during the onset of maturation. We also observed changes in chromatin state landscapes that were strongly correlated with fundamental remodeling of gene expression in liver. Finally, a multiomic integrated analysis revealed regulatory networks and identified hub genes including TRIM25 gene (encoding the estrogen-responsive finger protein) as a putative key regulator in the pituitary that underwent a 60-fold change in connectivity during the transition to maturation. Conclusion The study successfully documented transcriptome and epigenome changes that involved key genes and pathways acting in the pituitary – ovarian axis. Using a Systems Biology approach, we identified hub genes and their associated networks deemed crucial for onset of maturation. The results provide a comprehensive view of the spatiotemporal changes involved in a complex trait and opens the door to future efforts aiming to manipulate puberty in an economically important aquaculture species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08514-8.
Collapse
|
16
|
Zurl M, Poehn B, Rieger D, Krishnan S, Rokvic D, Veedin Rajan VB, Gerrard E, Schlichting M, Orel L, Ćorić A, Lucas RJ, Wolf E, Helfrich-Förster C, Raible F, Tessmar-Raible K. Two light sensors decode moonlight versus sunlight to adjust a plastic circadian/circalunidian clock to moon phase. Proc Natl Acad Sci U S A 2022; 119:e2115725119. [PMID: 35622889 PMCID: PMC9295771 DOI: 10.1073/pnas.2115725119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Many species synchronize their physiology and behavior to specific hours. It is commonly assumed that sunlight acts as the main entrainment signal for ∼24-h clocks. However, the moon provides similarly regular time information. Consistently, a growing number of studies have reported correlations between diel behavior and lunidian cycles. Yet, mechanistic insight into the possible influences of the moon on ∼24-h timers remains scarce. We have explored the marine bristleworm Platynereis dumerilii to investigate the role of moonlight in the timing of daily behavior. We uncover that moonlight, besides its role in monthly timing, also schedules the exact hour of nocturnal swarming onset to the nights’ darkest times. Our work reveals that extended moonlight impacts on a plastic clock that exhibits <24 h (moonlit) or >24 h (no moon) periodicity. Abundance, light sensitivity, and genetic requirement indicate that the Platynereis light receptor molecule r-Opsin1 serves as a receptor that senses moonrise, whereas the cryptochrome protein L-Cry is required to discriminate the proper valence of nocturnal light as either moonlight or sunlight. Comparative experiments in Drosophila suggest that cryptochrome’s principle requirement for light valence interpretation is conserved. Its exact biochemical properties differ, however, between species with dissimilar timing ecology. Our work advances the molecular understanding of lunar impact on fundamental rhythmic processes, including those of marine mass spawners endangered by anthropogenic change.
Collapse
Affiliation(s)
- Martin Zurl
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Birgit Poehn
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Dirk Rieger
- Department for Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Shruthi Krishnan
- Institute of Molecular Biology, 55128 Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Dunja Rokvic
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Vinoth Babu Veedin Rajan
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Elliot Gerrard
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Lukas Orel
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Aida Ćorić
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Robert J. Lucas
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Eva Wolf
- Institute of Molecular Biology, 55128 Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Charlotte Helfrich-Förster
- Department for Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Florian Raible
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Carl-von-Ossietzky University, 26111 Oldenburg, Germany
| |
Collapse
|
17
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
18
|
McKetney J, Jenkins CC, Minogue C, Mach PM, Hussey EK, Glaros TG, Coon J, Dhummakupt ES. Proteomic and metabolomic profiling of acute and chronic stress events associated with military exercises. Mol Omics 2021; 18:279-295. [PMID: 34860218 DOI: 10.1039/d1mo00271f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By characterizing physiological changes that occur in warfighters during simulated combat, we can start to unravel the key biomolecular components that are linked to physical and cognitive performance. Viable field-based sensors for the warfighter must be rapid and noninvasive. In an effort to facilitate this, we applied a multiomics pipeline to characterize the stress response in the saliva of warfighters to correlate biomolecular changes with overall performance and health. In this study, two different stress models were observed - one of chronic stress and one of acute stress. In both models, significant perturbations in the immune, metabolic, and protein manufacturing/processing systems were observed. However, when differentiating between stress models, specific metabolites associated with the "fight or flight" response and protein folding were seen to be discriminate of the acute stress model.
Collapse
Affiliation(s)
- Justin McKetney
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Conor C Jenkins
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA.
| | - Catie Minogue
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Phillip M Mach
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA.
| | - Erika K Hussey
- DEVCOM Soldier Center, Natick, MA 01760, USA.,Defense Innovation Unit, Mountain View, CA 94043, USA
| | - Trevor G Glaros
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA. .,Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Joshua Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA.,Morgridge Institute for Research, Madison, WI 53515, USA.,Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
19
|
Kuehn E, Clausen DS, Null RW, Metzger BM, Willis AD, Özpolat BD. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:225-240. [PMID: 34793615 PMCID: PMC9114164 DOI: 10.1002/jez.b.23100] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 02/03/2023]
Abstract
Development of sexual characters and generation of gametes are tightly coupled with growth. Platynereis dumerilii is a marine annelid that has been used to study germline development and gametogenesis. P. dumerilii has germ cell clusters found across the body in the juvenile worms, and the clusters eventually form the gametes. Like other segmented worms, P. dumerilii grows by adding new segments at its posterior end. The number of segments reflect the growth state of the worms and therefore is a useful and measurable growth state metric to study the growth‐reproduction crosstalk. To understand how growth correlates with progression of gametogenesis, we investigated germline development across several developmental stages. We discovered a distinct transition period when worms increase the number of germline clusters at a particular segment number threshold. Additionally, we found that keeping worms short in segment number, by manipulating environmental conditions or via amputations, supported a segment number threshold requirement for germline development. Finally, we asked if these clusters in P. dumerilii play a role in regeneration (as similar free‐roaming cells are observed in Hydra and planarian regeneration) and found that the clusters were not required for regeneration in P. dumerilii, suggesting a strictly germline nature. Overall, these molecular analyses suggest a previously unidentified developmental transition dependent on the growth state of juvenile P. dumerilii leading to substantially increased germline expansion. Total segment number predicts the state of germline development and the abundance of germline clusters in Platynereis dumerilii. Changing environmental conditions or amputating worms do not alter the segment number threshold requirement for germline development. The vasa‐expressing germ clusters are not required for regeneration in Platynereis dumerilii.
Collapse
Affiliation(s)
- Emily Kuehn
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - David S Clausen
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Ryan W Null
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Bria M Metzger
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - B Duygu Özpolat
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
20
|
Mullan KA, Bramberger LM, Munday PR, Goncalves G, Revote J, Mifsud NA, Illing PT, Anderson A, Kwan P, Purcell AW, Li C. ggVolcanoR: A Shiny app for customizable visualization of differential expression datasets. Comput Struct Biotechnol J 2021; 19:5735-5740. [PMID: 34745458 PMCID: PMC8551465 DOI: 10.1016/j.csbj.2021.10.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Volcano and other analytical plots (e.g., correlation plots, upset plots, and heatmaps) serve as important data visualization methods for transcriptomic and proteomic analyses. Customizable generation of these plots is fundamentally important for a better understanding of dysregulated expression data and is therefore instrumental for the ensuing pathway analysis and biomarker identification. Here, we present an R-based Shiny application, termed ggVolcanoR, to allow for customizable generation and visualization of volcano plots, correlation plots, upset plots, and heatmaps for differential expression datasets, via a user-friendly interactive interface in both local executable version and web-based application without requiring programming expertise. Compared to currently existing packages, ggVolcanoR offers more practical options to optimize the generation of publication-quality volcano and other analytical plots for analyzing and comparing dysregulated genes/proteins across multiple differential expression datasets. In addition, ggVolcanoR provides an option to download the customized list of the filtered dysregulated expression data, which can be directly used as input for downstream pathway analysis. The source code of ggVolcanoR is available at https://github.com/KerryAM-R/ggVolcanoR and the webserver of ggVolcanoR 1.0 has been deployed and is freely available for academic purposes at https://ggvolcanor.erc.monash.edu/.
Collapse
Affiliation(s)
- Kerry A. Mullan
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Liesl M. Bramberger
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Prithvi Raj Munday
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Gabriel Goncalves
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jerico Revote
- Monash eResearch Centre, Monash University, Melbourne, VIC 3800, Australia
| | - Nicole A. Mifsud
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Patricia T. Illing
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Alison Anderson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Neurology, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Neurology, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anthony W. Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
21
|
Özpolat BD, Randel N, Williams EA, Bezares-Calderón LA, Andreatta G, Balavoine G, Bertucci PY, Ferrier DEK, Gambi MC, Gazave E, Handberg-Thorsager M, Hardege J, Hird C, Hsieh YW, Hui J, Mutemi KN, Schneider SQ, Simakov O, Vergara HM, Vervoort M, Jékely G, Tessmar-Raible K, Raible F, Arendt D. The Nereid on the rise: Platynereis as a model system. EvoDevo 2021; 12:10. [PMID: 34579780 PMCID: PMC8477482 DOI: 10.1186/s13227-021-00180-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.
Collapse
Affiliation(s)
- B. Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Nadine Randel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Elizabeth A. Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Guillaume Balavoine
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Paola Y. Bertucci
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David E. K. Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| | | | - Eve Gazave
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Mette Handberg-Thorsager
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jörg Hardege
- Department of Biological & Marine Sciences, Hull University, Cottingham Road, Hull, HU67RX UK
| | - Cameron Hird
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Yu-Wen Hsieh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Nzumbi Mutemi
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Q. Schneider
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 11529 Taiwan
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Hernando M. Vergara
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, Howland Street 25, London, W1T 4JG UK
| | - Michel Vervoort
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | | | - Florian Raible
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Conservative and Atypical Ferritins of Sponges. Int J Mol Sci 2021; 22:ijms22168635. [PMID: 34445356 PMCID: PMC8395497 DOI: 10.3390/ijms22168635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.
Collapse
|
23
|
Root L, Campo A, MacNiven L, Con P, Cnaani A, Kültz D. Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of Oreochromis niloticus modulate epithelial cell turnover. Genomics 2021; 113:3235-3249. [PMID: 34298068 DOI: 10.1016/j.ygeno.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022]
Abstract
A data-independent acquisition (DIA) assay library for targeted quantitation of thousands of Oreochromis niloticus gill proteins using a label- and gel-free workflow was generated and used to compare protein and mRNA abundances. This approach generated complimentary rather than redundant data for 1899 unique genes in gills of tilapia acclimated to freshwater and brackish water. Functional enrichment analyses identified mitochondrial energy metabolism, serine protease and immunity-related functions, and cytoskeleton/ extracellular matrix organization as major processes controlled by salinity in O. niloticus gills. Non-linearity in salinity-dependent transcriptome versus proteome regulation was revealed for specific functional groups of genes. The relationship was more linear for other molecular functions/ cellular processes, suggesting that the salinity-dependent regulation of O. niloticus gill function relies on post-transcriptional mechanisms for some functions/ processes more than others. This integrative systems biology approach can be adopted for other tissues and organisms to study cellular dynamics for many changing ecological contexts.
Collapse
Affiliation(s)
- Larken Root
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Aurora Campo
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Leah MacNiven
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Pazit Con
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Kaiser TS, Neumann J. Circalunar clocks-Old experiments for a new era. Bioessays 2021; 43:e2100074. [PMID: 34050958 DOI: 10.1002/bies.202100074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
Circalunar clocks, which allow organisms to time reproduction to lunar phase, have been experimentally proven but are still not understood at the molecular level. Currently, a new generation of researchers with new tools is setting out to fill this gap. Our essay provides an overview of classic experiments on circalunar clocks. From the unpublished work of the late D. Neumann we also present a novel phase response curve for a circalunar clock. These experiments highlight avenues for molecular work and call for rigor in setting up and analyzing the logistically complex experiments on circalunar clocks. Re-evaluating classic experiments, we propose that (1) circalunar clocks in different organisms will have divergent mechanisms and physiological bases, (2) they may have properties very different from the well-studied circadian clocks and (3) they may have close mechanistic and molecular relations to seasonal rhythms and diapause.
Collapse
Affiliation(s)
- Tobias S Kaiser
- Max Planck Research Group "Biological Clocks", Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jule Neumann
- Max Planck Research Group "Biological Clocks", Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
25
|
Yan X, Wang J, Li H, Gao L, Geng J, Ma Z, Liu J, Zhang J, Xie P, Chen L. Combined transcriptome and proteome analyses reveal differences in the longissimus dorsi muscle between Kazakh cattle and Xinjiang brown cattle. Anim Biosci 2021; 34:1439-1450. [PMID: 33677919 PMCID: PMC8495333 DOI: 10.5713/ab.20.0751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/29/2021] [Indexed: 01/09/2023] Open
Abstract
Objective With the rapid development of proteomics sequencing and RNA sequencing technology, multi-omics analysis has become a current research hotspot. Our previous study indicated that Xinjiang brown cattle have better meat quality than Kazakh cattle. In this study, Xinjiang brown cattle and Kazakh cattle were used as the research objects. Methods Proteome sequencing and RNA sequencing technology were used to analyze the proteome and transcriptome of the longissimus dorsi muscle of the two breeds of adult steers (n = 3). Results In this project, 22,677 transcripts and 1,874 proteins were identified through quantitative analysis of the transcriptome and proteome. By comparing the identified transcriptome and proteome, we found that 1,737 genes were identified at both the transcriptome and proteome levels. The results of the study revealed 12 differentially expressed genes and proteins: troponin I1, crystallin alpha B, cysteine, and glycine rich protein 3, phosphotriesterase-related, myosin-binding protein H, glutathione s-transferase mu 3, myosin light chain 3, nidogen 2, dihydropyrimidinase like 2, glutamate-oxaloacetic transaminase 1, receptor accessory protein 5, and aspartoacylase. We performed functional enrichment of these differentially expressed genes and proteins. The Kyoto encyclopedia of genes and genomes results showed that these differentially expressed genes and proteins are enriched in the fatty acid degradation and histidine metabolism signaling pathways. We performed parallel reaction monitoring (PRM) verification of the differentially expressed proteins, and the PRM results were consistent with the sequencing results. Conclusion Our study provided and identified the differentially expressed genes and proteins. In addition, identifying functional genes and proteins with important breeding value will provide genetic resources and technical support for the breeding and industrialization of new genetically modified beef cattle breeds.
Collapse
Affiliation(s)
- XiangMin Yan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Jia Wang
- College of Geographic Science, Shanxi Normal University, Linfen 041000, China
| | - Hongbo Li
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, 835000, China
| | - Juan Geng
- Xinjiang Animal Husbandry General Station, Urumqi 830057, China
| | - Zhen Ma
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Jianming Liu
- Yili Animal Husbandry General Station, Yili 835000, China
| | - Jinshan Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Penggui Xie
- Yili Vocational and Technical College, Yili, 835000, China
| | - Lei Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
26
|
Veedin Rajan VB, Häfker NS, Arboleda E, Poehn B, Gossenreiter T, Gerrard E, Hofbauer M, Mühlestein C, Bileck A, Gerner C, Ribera d'Alcala M, Buia MC, Hartl M, Lucas RJ, Tessmar-Raible K. Seasonal variation in UVA light drives hormonal and behavioural changes in a marine annelid via a ciliary opsin. Nat Ecol Evol 2021; 5:204-218. [PMID: 33432133 PMCID: PMC7611595 DOI: 10.1038/s41559-020-01356-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
The right timing of animal physiology and behaviour ensures the stability of populations and ecosystems. To predict anthropogenic impacts on these timings, more insight is needed into the interplay between environment and molecular timing mechanisms. This is particularly true in marine environments. Using high-resolution, long-term daylight measurements from a habitat of the marine annelid Platynereis dumerilii, we found that temporal changes in ultraviolet A (UVA)/deep violet intensities, more than longer wavelengths, can provide annual time information, which differs from annual changes in the photoperiod. We developed experimental set-ups that resemble natural daylight illumination conditions, and automated, quantifiable behavioural tracking. Experimental reduction of UVA/deep violet light (approximately 370-430 nm) under a long photoperiod (16 h light and 8 h dark) significantly decreased locomotor activities, comparable to the decrease caused by a short photoperiod (8 h light and 16 h dark). In contrast, altering UVA/deep violet light intensities did not cause differences in locomotor levels under a short photoperiod. This modulation of locomotion by UVA/deep violet light under a long photoperiod requires c-opsin1, a UVA/deep violet sensor employing Gi signalling. C-opsin1 also regulates the levels of rate-limiting enzymes for monogenic amine synthesis and of several neurohormones, including pigment-dispersing factor, vasotocin (vasopressin/oxytocin) and neuropeptide Y. Our analyses indicate a complex inteplay between UVA/deep violet light intensities and photoperiod as indicators of annual time.
Collapse
Affiliation(s)
- Vinoth Babu Veedin Rajan
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
| | - N Sören Häfker
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Enrique Arboleda
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France
| | - Birgit Poehn
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
| | | | - Elliot Gerrard
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Maximillian Hofbauer
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
- loopbio, Vienna, Austria
| | | | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | | | - Markus Hartl
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Kristin Tessmar-Raible
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria.
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Sharma S, Sharma M, Rana AK, Joshi R, Swarnkar MK, Acharya V, Singh D. Deciphering key regulators involved in epilepsy-induced cardiac damage through whole transcriptome and proteome analysis in a rat model. Epilepsia 2020; 62:504-516. [PMID: 33341939 DOI: 10.1111/epi.16794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is a major outcome of cardiac dysfunction in patients with epilepsy. In continuation of our previous work, the present study was envisaged to explore the key regulators responsible for cardiac damage associated with chronic seizures using whole transcriptome and proteome analysis in a rat model of temporal lobe epilepsy. METHODS A standard lithium-pilocarpine protocol was used to induce recurrent seizures in rats. The isolated rat heart tissue was subjected to transcriptomic and proteomic analysis. An integrated approach of RNA-Seq, proteomics, and system biology analysis was used to identify key regulators involved in seizure-linked cardiac changes. The analyzed differential expression patterns and network interactions were supported by gene and protein expression studies. RESULTS Altogether, 1157 differentially expressed genes and 1264 proteins were identified in the cardiac tissue of epileptic animals through RNA-Seq and liquid chromatography with tandem mass spectrometry-based proteomic analysis, respectively. The network analysis revealed seven critical genes-STAT3, Myc, Fos, Erbb2, Erbb3, Notch1, and Mapk8-that could play a role in seizure-mediated cardiac changes. The LC-MS/MS analysis supported the activation of the transforming growth factor β (TGF-β) pathway in the heart of epileptic animals. Furthermore, our gene and protein expression studies established a key role of STAT3, Erbb, and Mapk8 to develop cardiac changes linked with recurrent seizures. SIGNIFICANCE The present multi-omics study identified STAT3, Mapk8, and Erbb as key regulators involved in seizure-associated cardiac changes. It provided a deeper understanding of molecular, cellular, and network-level operations of the identified regulators that lead to cardiac changes in epilepsy.
Collapse
Affiliation(s)
- Supriya Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Meetal Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Functional Genomics and Complex System Laboratory, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Mohit Kumar Swarnkar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vishal Acharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Functional Genomics and Complex System Laboratory, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
28
|
Effects of gonadotropin-releasing hormone analog (GnRHa) immunization on the gonadal transcriptome and proteome of tilapia (Oreochromis niloticus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100780. [PMID: 33296765 DOI: 10.1016/j.cbd.2020.100780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin releasing hormone (GnRH) plays an important role in the regulation of vertebrate reproduction. Studies have shown that immunization against GnRHa can induce sexually sterile tilapia. To explore the mechanism behind this, in this study, RNA-seq and data-independent acquisition (DIA) techniques were used to study the transcriptome and proteome of the gonad of tilapia immunized with GnRHa. 644 differentially expressed genes (80 upregulated and 564 downregulated) and 1150 differentially expressed proteins (351 upregulated and 799 downregulated) were identified. There were 209 genes with consistent differential expression patterns in the transcriptomic and proteomic analyses, of which 9 were upregulated and 200 downregulated, indicating that the gonad gene expression was inhibited by GnRHa immunization. The downregulated genes were particularly involved in the functions of single-organism process, binding, cellular process, metabolic process and catalytic activity, and associated with the pathways including ECM-receptor interaction, focal adhesion, cardiac muscle contraction and oxidative phosphorylation. The expression of six differentially expressed genes involved in the GnRH signaling pathway was all downregulated. In addition, several important functional genes related to gonadal development after GnRHa immunization were screened. This study confirmed the expression of corresponding genes was affected by GnRHa on the gonad development in tilapia at the molecular level, and laid a foundation for elucidating the mechanism of GnRHa immunization.
Collapse
|
29
|
Abstract
The extraordinary diversity, variability, and complexity of cell types in the vertebrate brain is overwhelming and far exceeds that of any other organ. This complexity is the result of multiple cell divisions and intricate gene regulation and cell movements that take place during embryonic development. Understanding the cellular and molecular mechanisms underlying these complicated developmental processes requires the ability to obtain a complete registry of interconnected events often taking place far apart from each other. To assist with this challenging task, developmental neuroscientists take advantage of a broad set of methods and technologies, often adopted from other fields of research. Here, we review some of the methods developed in recent years whose use has rapidly spread for application in the field of developmental neuroscience. We also provide several considerations regarding the promise that these techniques hold for the near future and share some ideas on how existing methods from other research fields could help with the analysis of how neural circuits emerge.
Collapse
Affiliation(s)
- Augusto Escalante
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Rocío González-Martínez
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Eloísa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| |
Collapse
|
30
|
Andreatta G, Tessmar-Raible K. The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks. J Mol Biol 2020; 432:3525-3546. [PMID: 32198116 PMCID: PMC7322537 DOI: 10.1016/j.jmb.2020.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented "lunar-rhythmic" terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings that start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads toward pathways, as well as molecular markers. However, for each interpretation, it is important to carefully consider the, partly substantially differing, conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| |
Collapse
|
31
|
Schneck DT, Barreto FS. Phenotypic Variation in Growth and Gene Expression Under Different Photoperiods in Allopatric Populations of the Copepod Tigriopus californicus. THE BIOLOGICAL BULLETIN 2020; 238:106-118. [PMID: 32412840 DOI: 10.1086/708678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Daylength is a major environmental condition that varies seasonally and predictably along a latitudinal cline, where higher latitudes exhibit greater ranges in total daylengths. Generally, the circadian clock acts as a network of genes whose expression dynamics are known to control daily rhythms in response to daylength, and it enables the control of many physiological processes such as growth and development. While well studied in many model animals, the influence of daylength variation on phenotypic evolution is poorly examined in marine species. In this study we demonstrate that two allopatric populations of the intertidal crustacean Tigriopus californicus exhibit plastic and divergent phenotypic responses to changes in daylength. Using common-garden experiments, we discovered that shorter daylengths promoted decreased adult body size and faster growth rates in the two divergent populations, suggesting a plastic response to shortened days. In addition, the higher-latitude population exhibited a faster growth rate at any daylength condition, indicating a fixed response, possibly as a result of adaptation to respective natural light regimes. Gene expression profiles of several circadian clock genes, monitored throughout the day by quantitative polymerase chain reaction, revealed that the key core clock genes reach higher daily transcription maxima in the southern population compared to the northern population, pointing to divergent strategies used to respond to changes in daylength. Many modifier genes to the circadian clock showed similar plastic responses to the different daylengths, supporting the existence of at least some conserved gene expression across both populations. Ultimately, our results suggest that photoperiod and daylength exert a potent selective pressure underexplored in marine systems and warranting further future research.
Collapse
|
32
|
Häfker NS, Tessmar-Raible K. Rhythms of behavior: are the times changin’? Curr Opin Neurobiol 2020; 60:55-66. [DOI: 10.1016/j.conb.2019.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
|
33
|
Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis. Proc Natl Acad Sci U S A 2019; 117:1097-1106. [PMID: 31843923 PMCID: PMC6969523 DOI: 10.1073/pnas.1910262116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gonadotropin Releasing Hormone (GnRH) acts as a key regulator of sexual maturation in vertebrates, and is required for the integration of environmental stimuli to orchestrate breeding cycles. Whether this integrative function is conserved across phyla remains unclear. We characterized GnRH-type signaling systems in the marine worm Platynereis dumerilii, in which both metabolic state and lunar cycle regulate reproduction. We find gnrh-like (gnrhl) genes upregulated in sexually mature animals, after feeding, and in specific lunar phases. Animals in which the corazonin1/gnrhl1 gene has been disabled exhibit delays in growth, regeneration, and maturation. Molecular analyses reveal glycoprotein turnover/energy homeostasis as targets of CRZ1/GnRHL1. These findings point at an ancestral role of GnRH superfamily signaling in coordinating energy demands dictated by environmental and developmental cues. The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand–receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm’s monthly cycle.
Collapse
|
34
|
Kuehn E, Stockinger AW, Girard J, Raible F, Özpolat BD. A scalable culturing system for the marine annelid Platynereis dumerilii. PLoS One 2019; 14:e0226156. [PMID: 31805142 PMCID: PMC6894799 DOI: 10.1371/journal.pone.0226156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Platynereis dumerilii is a marine segmented worm (annelid) with externally fertilized embryos and it can be cultured for the full life cycle in the laboratory. The accessibility of embryos and larvae combined with the breadth of the established molecular and functional techniques has made P. dumerilii an attractive model for studying development, cell lineages, cell type evolution, reproduction, regeneration, the nervous system, and behavior. Traditionally, these worms have been kept in rooms dedicated for their culture. This allows for the regulation of temperature and light cycles, which is critical to synchronizing sexual maturation. However, regulating the conditions of a whole room has limitations, especially if experiments require being able to change culturing conditions. Here we present scalable and flexible culture methods that provide ability to control the environmental conditions, and have a multi-purpose culture space. We provide a closed setup shelving design with proper light conditions necessary for P. dumerilii to mature. We also implemented a standardized method of feeding P. dumerilii cultures with powdered spirulina which relieves the ambiguity associated with using frozen spinach, and helps standardize nutrition conditions across experiments and across different labs. By using these methods, we were able to raise mature P. dumerilii, capable of spawning and producing viable embryos for experimentation and replenishing culture populations. These methods will allow for the further accessibility of P. dumerilii as a model system, and they can be adapted for other aquatic organisms.
Collapse
Affiliation(s)
- Emily Kuehn
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | | | - Jerome Girard
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | | | - B. Duygu Özpolat
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
35
|
Arboleda E, Zurl M, Waldherr M, Tessmar-Raible K. Differential Impacts of the Head on Platynereis dumerilii Peripheral Circadian Rhythms. Front Physiol 2019; 10:900. [PMID: 31354531 PMCID: PMC6638195 DOI: 10.3389/fphys.2019.00900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The marine bristle worm Platynereis dumerilii is a useful functional model system for the study of the circadian clock and its interplay with others, e.g., circalunar clocks. The focus has so far been on the worm's head. However, behavioral and physiological cycles in other animals typically arise from the coordination of circadian clocks located in the brain and in peripheral tissues. Here, we focus on peripheral circadian rhythms and clocks, revisit and expand classical circadian work on the worm's chromatophores, investigate locomotion as read-out and include molecular analyses. We establish that different pieces of the trunk exhibit synchronized, robust oscillations of core circadian clock genes. These circadian core clock transcripts are under strong control of the light-dark cycle, quickly losing synchronized oscillation under constant darkness, irrespective of the absence or presence of heads. Different wavelengths are differently effective in controlling the peripheral molecular synchronization. We have previously shown that locomotor activity is under circadian clock control. Here, we show that upon decapitation worms exhibit strongly reduced activity levels. While still following the light-dark cycle, locomotor rhythmicity under constant darkness is less clear. We also observe the rhythmicity of pigments in the worm's individual chromatophores, confirming their circadian pattern. These size changes continue under constant darkness, but cannot be re-entrained by light upon decapitation. Our works thus provides the first basic characterization of the peripheral circadian clock of P. dumerilii. In the absence of the head, light is essential as a major synchronization cue for peripheral molecular and locomotor circadian rhythms, while circadian changes in chromatophore size can continue for several days in the absence of light/dark changes and the head. Thus, in Platynereis the dependence on the head depends on the type of peripheral rhythm studied. These data show that peripheral circadian rhythms and clocks should also be considered in "non-conventional" molecular model systems, i.e., outside Drosophila melanogaster, Danio rerio, and Mus musculus, and build a basic foundation for future investigations of interactions of clocks with different period lengths in marine organisms.
Collapse
Affiliation(s)
- Enrique Arboleda
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Martin Zurl
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Monika Waldherr
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Abstract
In mammals, genetic influences of circadian rhythms occur at many levels. A set of core "clock genes" have been identified that form a feedback loop of gene transcription and translation. The core genetic clockwork generates circadian rhythms in cells throughout the body. Polymorphisms in both core clock genes and interacting genes contribute to individual differences in the expression and properties of circadian rhythms. The circadian clock profoundly influences the patterns of gene expression and cellular functions, providing a mechanistic basis for the impact of the genetic circadian system on normal physiological processes as well as the development of diseases.
Collapse
Affiliation(s)
- Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
| | - Kazuhiro Shimomura
- Center for Sleep and Circadian Biology; Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, 420 East Superior Street, Chicago, IL 60611, USA
| | - Peng Jiang
- Center for Sleep and Circadian Biology; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
37
|
Schenk S, Bannister SC, Sedlazeck FJ, Anrather D, Minh BQ, Bileck A, Hartl M, von Haeseler A, Gerner C, Raible F, Tessmar-Raible K. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. eLife 2019; 8:e41556. [PMID: 30767890 PMCID: PMC6377233 DOI: 10.7554/elife.41556] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Many marine animals, ranging from corals to fishes, synchronise reproduction to lunar cycles. In the annelid Platynereis dumerilii, this timing is orchestrated by an endogenous monthly (circalunar) clock entrained by moonlight. Whereas daily (circadian) clocks cause extensive transcriptomic and proteomic changes, the quality and quantity of regulations by circalunar clocks have remained largely elusive. By establishing a combined transcriptomic and proteomic profiling approach, we provide first systematic insight into the molecular changes in Platynereis heads between circalunar phases, and across sexual differentiation and maturation. Whereas maturation elicits large transcriptomic and proteomic changes, the circalunar clock exhibits only minor transcriptomic, but strong proteomic regulation. Our study provides a versatile extraction technique and comprehensive resources. It corroborates that circadian and circalunar clock effects are likely distinct and identifies key molecular brain signatures for reproduction, sex and circalunar clock phase. Examples include prepro-whitnin/proctolin and ependymin-related proteins as circalunar clock targets.
Collapse
Affiliation(s)
- Sven Schenk
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Stephanie C Bannister
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Fritz J Sedlazeck
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Dorothea Anrather
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F Perutz Laboratories, Vienna, Austria
| | - Bui Quang Minh
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Andrea Bileck
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Markus Hartl
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F Perutz Laboratories, Vienna, Austria
| | - Arndt von Haeseler
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Florian Raible
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|