1
|
Fort C, Walker BJ, Baert L, Wheeler RJ. Proteins with proximal-distal asymmetries in axoneme localisation control flagellum beat frequency. Nat Commun 2025; 16:3237. [PMID: 40185731 PMCID: PMC11971395 DOI: 10.1038/s41467-025-58405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
The 9 + 2 microtubule-based axoneme within motile flagella is well known for its symmetry. However, examples of asymmetric structures and proteins asymmetrically positioned within the 9 + 2 axoneme architecture have been identified. These occur in multiple different organisms, particularly involving the inner or outer dynein arms. Here, we comprehensively analyse conserved proximal-distal asymmetries in the uniflagellate trypanosomatid eukaryotic parasites. Building on the genome-wide localisation screen in Trypanosoma brucei we identify conserved proteins with an analogous asymmetric localisation in the related parasite Leishmania mexicana. Using deletion mutants, we find which are necessary for normal cell swimming, flagellum beat parameters and axoneme ultrastructure. Using combinatorial endogenous fluorescent tagging and deletion, we map co-dependencies for assembly into their normal asymmetric localisation. This revealed 15 proteins, 9 known and 6 novel, with a conserved proximal or distal axoneme-specific localisation. Most are outer dynein arm associated and show that there are multiple classes of proximal-distal asymmetry - one which is dependent on the docking complex. Many of these proteins are necessary for retaining the normal frequency of the tip-to-base symmetric flagellar waveform. Our comprehensive mapping reveals unexpected contributions of proximal-specific axoneme components to the frequency of waveforms initiated distally.
Collapse
Affiliation(s)
- Cecile Fort
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Diamond Light Source, Didcot, UK
| | - Benjamin J Walker
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Department of Mathematics, University College London, London, UK
| | - Lore Baert
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Richard J Wheeler
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Paterou A, Sáez Conde J, Týč J, Sunter JD, Vaughan S, Gull K, Dean S. A comprehensive toolkit for protein localization and functional analysis in trypanosomatids. Open Biol 2025; 15:240361. [PMID: 40169015 PMCID: PMC11961264 DOI: 10.1098/rsob.240361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/03/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
African trypanosomes are medically important parasites that cause sleeping sickness in humans and nagana in animals. In addition to their pathogenic role, they have emerged as valuable model organisms for studying fundamental biological processes. Protein tagging is a powerful tool for investigating protein localization and function. In a previous study, we developed two plasmids for rapid and reproducible polymerase chain reaction-based protein tagging in trypanosomes, which enabled the subcellular mapping of 89% of the trypanosome proteome. However, the limited selection of fluorescent protein tags and selectable markers restricted the flexibility of this approach. Here, we present an extended set of >100 plasmids that incorporate universal primer annealing sequences, enabling protein tagging with a range of fluorescent, biochemical and epitope tags, using five different selection markers. We evaluated the suitability of various fluorescent proteins for live and fixed cell imaging, fluorescent movies, and we demonstrate the use of tagging plasmids encoding tandem epitope tags to support expansion microscopy approaches. We show that this series of plasmids is functional in other trypanosomatid parasites, significantly increasing its value. Finally, we developed a new plasmid for tagging glycosylphosphatidylinositol-anchored proteins. We anticipate that this will be an important toolset for investigating trypanosomatid protein localization and function.
Collapse
Affiliation(s)
- Athina Paterou
- Directorate of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Julia Sáez Conde
- Directorate of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jiří Týč
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Keith Gull
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Samuel Dean
- Directorate of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Chen Q, Zhao H, Pan X, Fang C, Qiu B, Guo J, Yan X, Zhu X. A polarized multicomponent foundation upholds ciliary central microtubules. J Mol Cell Biol 2025; 16:mjae031. [PMID: 39165107 PMCID: PMC11781205 DOI: 10.1093/jmcb/mjae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/03/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Cilia's back-and-forth beat pattern requires a central pair (CP) of microtubules. However, the mechanism by which the CP is upheld above the transition zone (TZ) remains unclear. Here, we showed that a rod-like substructure marked by Cep131 and ciliary Centrin serves as a polarized CP-supporting foundation. This CP-foundation (CPF) was assembled independently of the CP during ciliogenesis in mouse ependymal cells. It protruded from the distal end of the basal body out of the TZ to enwrap the proximal end of the CP. Through proximity labeling, we identified 26 potential CPF components, among which Ccdc148 specifically localized at the proximal region of Centrin-decorated CPF and was complementary to the Cep131-enriched distal region. Cep131 deficiency abolished the CPF, resulting in CP penetration into the TZ. Consequently, cilia became prone to ultrastructural abnormality and paralysis, and Cep131-deficient mice were susceptible to late-onset hydrocephalus. In addition to Centrin, phylogenetic analysis also indicated conservations of Ccdc131 and Ccdc148 from protists to mammals, suggesting that the CPF is an evolutionarily conserved multicomponent CP-supporting platform in cilia.
Collapse
Affiliation(s)
- Qingxia Chen
- Ministry of Education–Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huijie Zhao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xinwen Pan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuyu Fang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benhua Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingting Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiumin Yan
- Ministry of Education–Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Ahmed M, Wheeler R, Týč J, Shafiq S, Sunter J, Vaughan S. Identification of 30 transition fibre proteins in Trypanosoma brucei reveals a complex and dynamic structure. J Cell Sci 2024; 137:jcs261692. [PMID: 38572631 PMCID: PMC11190437 DOI: 10.1242/jcs.261692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Transition fibres and distal appendages surround the distal end of mature basal bodies and are essential for ciliogenesis, but only a few of the proteins involved have been identified and functionally characterised. Here, through genome-wide analysis, we have identified 30 transition fibre proteins (TFPs) and mapped their arrangement in the flagellated eukaryote Trypanosoma brucei. We discovered that TFPs are recruited to the mature basal body before and after basal body duplication, with differential expression of five TFPs observed at the assembling new flagellum compared to the existing fixed-length old flagellum. RNAi-mediated depletion of 17 TFPs revealed six TFPs that are necessary for ciliogenesis and a further three TFPs that are necessary for normal flagellum length. We identified nine TFPs that had a detectable orthologue in at least one basal body-forming eukaryotic organism outside of the kinetoplastid parasites. Our work has tripled the number of known transition fibre components, demonstrating that transition fibres are complex and dynamic in their composition throughout the cell cycle, which relates to their essential roles in ciliogenesis and flagellum length regulation.
Collapse
Affiliation(s)
- Manu Ahmed
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Richard Wheeler
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Jiří Týč
- Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Shahaan Shafiq
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Jack Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
5
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
6
|
Sáez Conde J, Dean S. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol 2022; 237:2654-2667. [PMID: 35616248 PMCID: PMC9323424 DOI: 10.1002/jcp.30778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
African trypanosomes are early branching protists that cause human and animal diseases, termed trypanosomiases. They have been under intensive study for more than 100 years and have contributed significantly to our understanding of eukaryotic biology. The combination of conserved and parasite-specific features mean that their flagellum has gained particular attention. Here, we discuss the different structural features of the flagellum and their role in transmission and virulence. We highlight the possibilities of targeting flagellar function to cure trypanosome infections and help in the fight to eliminate trypanosomiases.
Collapse
Affiliation(s)
- Julia Sáez Conde
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
7
|
Wheeler RJ. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One 2021; 16:e0259871. [PMID: 34762696 PMCID: PMC8584756 DOI: 10.1371/journal.pone.0259871] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
AlphaFold2 and RoseTTAfold represent a transformative advance for predicting protein structure. They are able to make very high-quality predictions given a high-quality alignment of the protein sequence with related proteins. These predictions are now readily available via the AlphaFold database of predicted structures and AlphaFold or RoseTTAfold Colaboratory notebooks for custom predictions. However, predictions for some species tend to be lower confidence than model organisms. Problematic species include Trypanosoma cruzi and Leishmania infantum: important unicellular eukaryotic human parasites in an early-branching eukaryotic lineage. The cause appears to be due to poor sampling of this branch of life (Discoba) in the protein sequences databases used for the AlphaFold database and ColabFold. Here, by comprehensively gathering openly available protein sequence data for Discoba species, significant improvements to AlphaFold2 protein structure prediction over the AlphaFold database and ColabFold are demonstrated. This is made available as an easy-to-use tool for the parasitology community in the form of Colaboratory notebooks for generating multiple sequence alignments and AlphaFold2 predictions of protein structure for Trypanosoma, Leishmania and related species.
Collapse
Affiliation(s)
- Richard John Wheeler
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Saito H, Matsukawa-Usami F, Fujimori T, Kimura T, Ide T, Yamamoto T, Shibata T, Onoue K, Okayama S, Yonemura S, Misaki K, Soba Y, Kakui Y, Sato M, Toya M, Takeichi M. Tracheal motile cilia in mice require CAMSAP3 for formation of central microtubule pair and coordinated beating. Mol Biol Cell 2021; 32:ar12. [PMID: 34319756 PMCID: PMC8684751 DOI: 10.1091/mbc.e21-06-0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Motile cilia of multiciliated epithelial cells undergo synchronized beating to produce fluid flow along the luminal surface of various organs. Each motile cilium consists of an axoneme and a basal body (BB), which are linked by a “transition zone” (TZ). The axoneme exhibits a characteristic 9+2 microtubule arrangement important for ciliary motion, but how this microtubule system is generated is not yet fully understood. Here we show that calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), a protein that can stabilize the minus-end of a microtubule, concentrates at multiple sites of the cilium–BB complex, including the upper region of the TZ or the axonemal basal plate (BP) where the central pair of microtubules (CP) initiates. CAMSAP3 dysfunction resulted in loss of the CP and partial distortion of the BP, as well as the failure of multicilia to undergo synchronized beating. These findings suggest that CAMSAP3 plays pivotal roles in the formation or stabilization of the CP by localizing at the basal region of the axoneme and thereby supports the coordinated motion of multicilia in airway epithelial cells.
Collapse
Affiliation(s)
- Hiroko Saito
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Fumiko Matsukawa-Usami
- Division of Embryology, National Institute for Basic Biology, and Department of Basic Biology, School of Life Science, SOKENDAI, the Graduate University for Advanced Studies, Okazaki, 444-8787 Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, and Department of Basic Biology, School of Life Science, SOKENDAI, the Graduate University for Advanced Studies, Okazaki, 444-8787 Japan
| | - Toshiya Kimura
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takaki Yamamoto
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Satoko Okayama
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kazuyo Misaki
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Yurina Soba
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo 169-0051, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan
| | - Mika Toya
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
9
|
Abstract
Centrioles are microtubule-based cylindrical structures that assemble the centrosome and template the formation of cilia. The proximal part of centrioles is associated with the pericentriolar material, a protein scaffold from which microtubules are nucleated. This activity is mediated by the γ-tubulin ring complex (γTuRC) whose central role in centrosomal microtubule organization has been recognized for decades. However, accumulating evidence suggests that γTuRC activity at this organelle is neither restricted to the pericentriolar material nor limited to microtubule nucleation. Instead, γTuRC is found along the entire centriole cylinder, at subdistal appendages, and inside the centriole lumen, where its canonical function as a microtubule nucleator might be supplemented or replaced by a function in microtubule anchoring and centriole stabilization, respectively. In this Opinion, we discuss recent insights into the expanded repertoire of γTuRC activities at centrioles and how distinct subpopulations of γTuRC might act in concert to ensure centrosome and cilia biogenesis and function, ultimately supporting cell proliferation, differentiation and homeostasis. We propose that the classical view of centrosomal γTuRC as a pericentriolar material-associated microtubule nucleator needs to be revised.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
11
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
12
|
Zhao H, Chen Q, Li F, Cui L, Xie L, Huang Q, Liang X, Zhou J, Yan X, Zhu X. Fibrogranular materials function as organizers to ensure the fidelity of multiciliary assembly. Nat Commun 2021; 12:1273. [PMID: 33627667 PMCID: PMC7904937 DOI: 10.1038/s41467-021-21506-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Multicilia are delicate motile machineries, and how they are accurately assembled is poorly understood. Here, we show that fibrogranular materials (FGMs), large arrays of electron-dense granules specific to multiciliated cells, are essential for their ultrastructural fidelity. Pcm1 forms the granular units that further network into widespread FGMs, which are abundant in spherical FGM cores. FGM cores selectively concentrate multiple important centriole-related proteins as clients, including Cep131 that specifically decorates a foot region of ciliary central pair (CP) microtubules. FGMs also tightly contact deuterosome-procentriole complexes. Disruption of FGMs in mouse cells undergoing multiciliogenesis by Pcm1 RNAi markedly deregulates centriolar targeting of FGM clients, elongates CP-foot, and alters deuterosome size, number, and distribution. Although the multicilia are produced in correct numbers, they display abnormal ultrastructure and motility. Our results suggest that FGMs organize deuterosomes and centriole-related proteins to facilitate the faithful assembly of basal bodies and multiciliary axonemes.
Collapse
Affiliation(s)
- Huijie Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingxia Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Cui
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lele Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiongping Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250014, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
13
|
Butenko A, Hammond M, Field MC, Ginger ML, Yurchenko V, Lukeš J. Reductionist Pathways for Parasitism in Euglenozoans? Expanded Datasets Provide New Insights. Trends Parasitol 2020; 37:100-116. [PMID: 33127331 DOI: 10.1016/j.pt.2020.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
The unicellular trypanosomatids belong to the phylum Euglenozoa and all known species are obligate parasites. Distinct lineages infect plants, invertebrates, and vertebrates, including humans. Genome data for marine diplonemids, together with freshwater euglenids and free-living kinetoplastids, the closest known nonparasitic relatives to trypanosomatids, recently became available. Robust phylogenetic reconstructions across Euglenozoa are now possible and place the results of parasite-focused studies into an evolutionary context. Here we discuss recent advances in identifying the factors shaping the evolution of Euglenozoa, focusing on ancestral features generally considered parasite-specific. Remarkably, most of these predate the transition(s) to parasitism, suggesting that the presence of certain preconditions makes a significant lifestyle change more likely.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Michael Hammond
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Mark C Field
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael L Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Vyacheslav Yurchenko
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
14
|
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 2020; 18:23. [PMID: 32122335 PMCID: PMC7052976 DOI: 10.1186/s12915-020-0754-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. Results We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. Conclusions The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vladimír Hampl
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Patrick Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Denis Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, Canada.,Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Present address: Department of Genetics, Harvard Medical School, Boston, USA.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
15
|
Bertiaux E, Bastin P. Dealing with several flagella in the same cell. Cell Microbiol 2020; 22:e13162. [DOI: 10.1111/cmi.13162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Eloïse Bertiaux
- Trypanosome Cell Biology Unit INSERM U1201, Institut Pasteur Paris France
- École Doctorale Complexité du Vivant Sorbonne Université Paris France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit INSERM U1201, Institut Pasteur Paris France
| |
Collapse
|