1
|
Poudel S, Hyun J, Hefner Y, Monk J, Nizet V, Palsson BO. Interpreting roles of mutations associated with the emergence of S. aureus USA300 strains using transcriptional regulatory network reconstruction. eLife 2025; 12:RP90668. [PMID: 40305082 PMCID: PMC12043316 DOI: 10.7554/elife.90668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.
Collapse
Affiliation(s)
- Saugat Poudel
- University of California, San DiegoLa JollaUnited States
| | - Jason Hyun
- University of California, San DiegoLa JollaUnited States
| | - Ying Hefner
- University of California, San DiegoLa JollaUnited States
| | - Jon Monk
- Palmona PathogenomicsMenlo ParkUnited States
| | - Victor Nizet
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San DiegoLa JollaUnited States
- Department of Pediatrics, University of California San DiegoLa JollaUnited States
| | - Bernhard O Palsson
- University of California, San DiegoLa JollaUnited States
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San DiegoLa JollaUnited States
- Department of Pediatrics, University of California San DiegoLa JollaUnited States
| |
Collapse
|
2
|
Chen J, Du W, Li Y, Zhou H, Ouyang D, Yao Z, Fu J, Ye X. Genome-based model for differentiating between infection and carriage Staphylococcus aureus. Microbiol Spectr 2024; 12:e0049324. [PMID: 39248515 PMCID: PMC11448440 DOI: 10.1128/spectrum.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a clinically significant opportunistic pathogen, which can colonize multiple body sites in healthy individuals and cause various life-threatening diseases in both children and adults worldwide. The genetic backgrounds of S. aureus that cause infection versus asymptomatic carriage vary widely, but the potential genetic elements (k-mers) associated with S. aureus infection remain unknown, which leads to difficulties in differentiating infection isolates from harmless colonizers. Here, we address the disease-associated k-mers by using a comprehensive genome-wide association study (GWAS) to compare the genetic variation of S. aureus isolates from clinical infection sites (272 isolates) with nasal carriage (240 isolates). This study uncovers consensus evidence that certain k-mers are overrepresented in infection isolates compared with carriage isolates, indicating the presence of specific genetic elements associated with S. aureus infection. Moreover, the random forest (RF) model achieved a classification accuracy of 77% for predicting disease status (infection vs carriage), with 68% accuracy for a single highest-ranked k-mer, providing a simple target for identifying high-risk genotypes. Our findings suggest that the disease-causing S. aureus is a pathogenic subpopulation harboring unique genomic variation that promotes invasion and infection, providing novel targets for clinical interventions. IMPORTANCE Defining the disease-causing isolates is the first step toward disease control. However, the disease-associated genetic elements of Staphylococcus aureus remain unknown, which leads to difficulties in differentiating infection isolates from harmless carriage isolates. Our comprehensive genome-wide association study (GWAS) found consensus evidence that certain genetic elements are overrepresented among infection isolates than carriage isolates, suggesting that the enrichment of disease-associated elements may promote infection. Notably, a single k-mer predictor achieved a high classification accuracy, which forms the basis for early diagnostics and interventions.
Collapse
Affiliation(s)
- Jianyu Chen
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenyin Du
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuehe Li
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiliu Zhou
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dejia Ouyang
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenjiang Yao
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinjian Fu
- Department of Laboratory Science, Maoming Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, China
| | - Xiaohua Ye
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Tam YL, Cameron S, Preston A, Cowley L. GWarrange: a pre- and post- genome-wide association studies pipeline for detecting phenotype-associated genome rearrangement events. Microb Genom 2024; 10:001268. [PMID: 38980151 PMCID: PMC11316554 DOI: 10.1099/mgen.0.001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
The use of k-mers to capture genetic variation in bacterial genome-wide association studies (bGWAS) has demonstrated its effectiveness in overcoming the plasticity of bacterial genomes by providing a comprehensive array of genetic variants in a genome set that is not confined to a single reference genome. However, little attempt has been made to interpret k-mers in the context of genome rearrangements, partly due to challenges in the exhaustive and high-throughput identification of genome structure and individual rearrangement events. Here, we present GWarrange, a pre- and post-bGWAS processing methodology that leverages the unique properties of k-mers to facilitate bGWAS for genome rearrangements. Repeat sequences are common instigators of genome rearrangements through intragenomic homologous recombination, and they are commonly found at rearrangement boundaries. Using whole-genome sequences, repeat sequences are replaced by short placeholder sequences, allowing the regions flanking repeats to be incorporated into relatively short k-mers. Then, locations of flanking regions in significant k-mers are mapped back to complete genome sequences to visualise genome rearrangements. Four case studies based on two bacterial species (Bordetella pertussis and Enterococcus faecium) and a simulated genome set are presented to demonstrate the ability to identify phenotype-associated rearrangements. GWarrange is available at https://github.com/DorothyTamYiLing/GWarrange.
Collapse
Affiliation(s)
- Yi Ling Tam
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Sarah Cameron
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrew Preston
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Lauren Cowley
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
4
|
Sigala RE, Lagou V, Shmeliov A, Atito S, Kouchaki S, Awais M, Prokopenko I, Mahdi A, Demirkan A. Machine Learning to Advance Human Genome-Wide Association Studies. Genes (Basel) 2023; 15:34. [PMID: 38254924 PMCID: PMC10815885 DOI: 10.3390/genes15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Machine learning, including deep learning, reinforcement learning, and generative artificial intelligence are revolutionising every area of our lives when data are made available. With the help of these methods, we can decipher information from larger datasets while addressing the complex nature of biological systems in a more efficient way. Although machine learning methods have been introduced to human genetic epidemiological research as early as 2004, those were never used to their full capacity. In this review, we outline some of the main applications of machine learning to assigning human genetic loci to health outcomes. We summarise widely used methods and discuss their advantages and challenges. We also identify several tools, such as Combi, GenNet, and GMSTool, specifically designed to integrate these methods for hypothesis-free analysis of genetic variation data. We elaborate on the additional value and limitations of these tools from a geneticist's perspective. Finally, we discuss the fast-moving field of foundation models and large multi-modal omics biobank initiatives.
Collapse
Affiliation(s)
- Rafaella E. Sigala
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Guildford GU2 7XH, Surrey, UK; (R.E.S.); (V.L.); (A.S.); (I.P.)
| | - Vasiliki Lagou
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Guildford GU2 7XH, Surrey, UK; (R.E.S.); (V.L.); (A.S.); (I.P.)
| | - Aleksey Shmeliov
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Guildford GU2 7XH, Surrey, UK; (R.E.S.); (V.L.); (A.S.); (I.P.)
| | - Sara Atito
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, Surrey, UK; (S.A.); (S.K.); (M.A.)
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Samaneh Kouchaki
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, Surrey, UK; (S.A.); (S.K.); (M.A.)
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Muhammad Awais
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, Surrey, UK; (S.A.); (S.K.); (M.A.)
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Inga Prokopenko
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Guildford GU2 7XH, Surrey, UK; (R.E.S.); (V.L.); (A.S.); (I.P.)
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, Surrey, UK; (S.A.); (S.K.); (M.A.)
| | - Adam Mahdi
- Oxford Internet Institute, University of Oxford, Oxford OX1 3JS, Oxfordshire, UK;
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Guildford GU2 7XH, Surrey, UK; (R.E.S.); (V.L.); (A.S.); (I.P.)
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, Surrey, UK; (S.A.); (S.K.); (M.A.)
| |
Collapse
|
5
|
Chaguza C, Pöntinen AK, Top J, Arredondo-Alonso S, Freitas AR, Novais C, Torres C, Bentley SD, Peixe L, Coque TM, Willems RJL, Corander J. The population-level impact of Enterococcus faecalis genetics on intestinal colonization and extraintestinal infection. Microbiol Spectr 2023; 11:e0020123. [PMID: 37811975 PMCID: PMC10714801 DOI: 10.1128/spectrum.00201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Enterococcus faecalis causes life-threatening invasive hospital- and community-associated infections that are usually associated with multidrug resistance globally. Although E. faecalis infections cause opportunistic infections typically associated with antibiotic use, immunocompromised immune status, and other factors, they also possess an arsenal of virulence factors crucial for their pathogenicity. Despite this, the relative contribution of these virulence factors and other genetic changes to the pathogenicity of E. faecalis strains remain poorly understood. Here, we investigated whether specific genomic changes in the genome of E. faecalis isolates influence its pathogenicity-infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection and intestinal colonization. Our findings indicate that E. faecalis genetics partially influence the infection of hospitalized and nonhospitalized individuals and the propensity to cause extraintestinal infection, possibly due to gut-to-bloodstream translocation, highlighting the potential substantial role of host and environmental factors, including gut microbiota, on the opportunistic pathogenic lifestyle of this bacterium.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Anna K. Pöntinen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sergio Arredondo-Alonso
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ana R. Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carmen Torres
- Department of Food and Agriculture, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Luisa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jukka Corander
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Dutta A, McDonald BA, Croll D. Combined reference-free and multi-reference based GWAS uncover cryptic variation underlying rapid adaptation in a fungal plant pathogen. PLoS Pathog 2023; 19:e1011801. [PMID: 37972199 PMCID: PMC10688896 DOI: 10.1371/journal.ppat.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Microbial pathogens often harbor substantial functional diversity driven by structural genetic variation. Rapid adaptation from such standing variation threatens global food security and human health. Genome-wide association studies (GWAS) provide a powerful approach to identify genetic variants underlying recent pathogen adaptation. However, the reliance on single reference genomes and single nucleotide polymorphisms (SNPs) obscures the true extent of adaptive genetic variation. Here, we show quantitatively how a combination of multiple reference genomes and reference-free approaches captures substantially more relevant genetic variation compared to single reference mapping. We performed reference-genome based association mapping across 19 reference-quality genomes covering the diversity of the species. We contrasted the results with a reference-free (i.e., k-mer) approach using raw whole-genome sequencing data in a panel of 145 strains collected across the global distribution range of the fungal wheat pathogen Zymoseptoria tritici. We mapped the genetic architecture of 49 life history traits including virulence, reproduction and growth in multiple stressful environments. The inclusion of additional reference genome SNP datasets provides a nearly linear increase in additional loci mapped through GWAS. Variants detected through the k-mer approach explained a higher proportion of phenotypic variation than a reference genome-based approach and revealed functionally confirmed loci that classic GWAS approaches failed to map. The power of GWAS in microbial pathogens can be significantly enhanced by comprehensively capturing structural genetic variation. Our approach is generalizable to a large number of species and will uncover novel mechanisms driving rapid adaptation of pathogens.
Collapse
Affiliation(s)
- Anik Dutta
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
7
|
Burgaya J, Marin J, Royer G, Condamine B, Gachet B, Clermont O, Jaureguy F, Burdet C, Lefort A, de Lastours V, Denamur E, Galardini M, Blanquart F. The bacterial genetic determinants of Escherichia coli capacity to cause bloodstream infections in humans. PLoS Genet 2023; 19:e1010842. [PMID: 37531401 PMCID: PMC10395866 DOI: 10.1371/journal.pgen.1010842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Escherichia coli is both a highly prevalent commensal and a major opportunistic pathogen causing bloodstream infections (BSI). A systematic analysis characterizing the genomic determinants of extra-intestinal pathogenic vs. commensal isolates in human populations, which could inform mechanisms of pathogenesis, diagnostic, prevention and treatment is still lacking. We used a collection of 912 BSI and 370 commensal E. coli isolates collected in France over a 17-year period (2000-2017). We compared their pangenomes, genetic backgrounds (phylogroups, STs, O groups), presence of virulence-associated genes (VAGs) and antimicrobial resistance genes, finding significant differences in all comparisons between commensal and BSI isolates. A machine learning linear model trained on all the genetic variants derived from the pangenome and controlling for population structure reveals similar differences in VAGs, discovers new variants associated with pathogenicity (capacity to cause BSI), and accurately classifies BSI vs. commensal strains. Pathogenicity is a highly heritable trait, with up to 69% of the variance explained by bacterial genetic variants. Lastly, complementing our commensal collection with an older collection from 1980, we predict that pathogenicity continuously increased through 1980, 2000, to 2010. Together our findings imply that E. coli exhibit substantial genetic variation contributing to the transition between commensalism and pathogenicity and that this species evolved towards higher pathogenicity.
Collapse
Affiliation(s)
- Judit Burgaya
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Guilhem Royer
- Université Paris Cité, INSERM, IAME, Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
- Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Institut Pasteur, UMR CNRS 6047, Université Paris-Cité, Paris, France
| | | | | | | | | | | | - Agnès Lefort
- Université Paris Cité, INSERM, IAME, Paris, France
| | | | - Erick Denamur
- Université Paris Cité, INSERM, IAME, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, Paris, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241 / INSERM U1050, PSL Research University, Paris, France
| |
Collapse
|
8
|
Sandmann S, Nunes JV, Grobusch MP, Sesay M, Kriegel MA, Varghese J, Schaumburg F. Research article network analysis of polymicrobial chronic wound infections in Masanga, Sierra Leone. BMC Infect Dis 2023; 23:250. [PMID: 37072717 PMCID: PMC10112320 DOI: 10.1186/s12879-023-08204-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Chronic wounds are frequently colonized or infected with multiple bacterial or fungal species, which can both promote or inhibit each other. Network analyses are helpful to understand the interplay of these species in polymicrobial infections. Our aim was to analyse the network of bacterial and fungal species in chronic wounds. METHODS Swabs (n = 163) from chronic wound infections (Masanga, Sierra Leone, 2019-2020) were screened for bacterial and fungal species using non-selective agars. Some of these wounds were suspected but not confirmed Buruli ulcer. Species identification was done with MALDI-TOF mass spectrometry. Network analysis was performed to investigate co-occurrence of different species within one patient. All species with n ≥ 10 isolates were taken into account. RESULTS Of the 163 patients, 156 had a positive wound culture (median of three different species per patient; range 1-7). Pseudomonas aeruginosa (n = 75) was the dominating species with frequent co-detections of Klebsiella pneumoniae (21 cases; OR = 1.36, 95%CI: 0.63-2.96, p = 0.47), Staphylococcus aureus (14 cases; OR = 1.06, 95%CI: 0.44-2.55, p = 1) and Proteus mirabilis (13 cases; OR = 0.84, 95%CI: 0.35-1.99, p = 0.69). CONCLUSION The culturome of chronic wounds in Sierra Leonean patients is highly diverse and characterized by the co-occurrence of P. aeruginosa, K. pneumoniae and S. aureus.
Collapse
Affiliation(s)
- Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Jonathan Vas Nunes
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
- Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Martin P Grobusch
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
- Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Maxwell Sesay
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
| | - Martin A Kriegel
- Section of Rheumatology and Clinical Immunology, Department of Medicine, University Hospital Münster, Münster, Germany
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
- Department of Immunobiology, Yale University School of Medicine, New Haven, USA
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University of Münster, Münster, Germany.
| |
Collapse
|
9
|
Haag AF, Liljeroos L, Donato P, Pozzi C, Brignoli T, Bottomley MJ, Bagnoli F, Delany I. In Vivo Gene Expression Profiling of Staphylococcus aureus during Infection Informs Design of Stemless Leukocidins LukE and -D as Detoxified Vaccine Candidates. Microbiol Spectr 2023; 11:e0257422. [PMID: 36688711 PMCID: PMC9927290 DOI: 10.1128/spectrum.02574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus is a clinically important bacterial pathogen that has become resistant to treatment with most routinely used antibiotics. Alternative strategies, such as vaccination and phage therapy, are therefore actively being investigated to prevent or combat staphylococcal infections. Vaccination requires that vaccine targets are expressed at sufficient quantities during infection so that they can be targeted by the host's immune system. While our knowledge of in vitro expression levels of putative vaccine candidates is comprehensive, crucial in vivo expression data are scarce and promising vaccine candidates during in vitro assessment often prove ineffective in preventing S. aureus infection. Here, we show how a newly developed high-throughput quantitative reverse transcription-PCR (qRT-PCR) assay monitoring the expression of 84 staphylococcal genes encoding mostly virulence factors can inform the selection and design of effective vaccine candidates against staphylococcal infections. We show that this assay can accurately quantify mRNA expression levels of these genes in several host organs relying only on very limited amounts of bacterial mRNA in each sample. We selected two highly expressed genes, lukE and lukD, encoding pore-forming leukotoxins, to inform the design of detoxified recombinant proteins and showed that immunization with recombinant genetically detoxified LukED antigens conferred protection against staphylococcal skin infection in mice. Consequently, knowledge of in vivo-expressed virulence determinants can be successfully deployed to identify and select promising candidates for optimized design of effective vaccine antigens against S. aureus. Notably, this approach should be broadly applicable to numerous other pathogens. IMPORTANCE Vaccination is an attractive strategy for preventing bacterial infections in an age of increased antimicrobial resistance. However, vaccine development frequently suffers significant setbacks when candidate antigens that show promising results in in vitro experimentation fail to protect from disease. An alluring strategy is to focus resources on developing bacterial virulence factors that are expressed during disease establishment or maintenance and are critical for bacterial in-host survival as vaccine targets. While expression profiles of many virulence factors have been characterized in detail in vitro, our knowledge of their in vivo expression profiles is still scarce. Here, using a high-throughput qRT-PCR approach, we identified two highly expressed leukotoxins in a murine infection model and showed that genetically detoxified derivatives of these elicited a protective immune response in a murine skin infection model. Therefore, in vivo gene expression can inform the selection of promising candidates for the design of effective vaccine antigens.
Collapse
Affiliation(s)
- Andreas F. Haag
- GSK, Siena, Italy
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | | | | | | | - Tarcisio Brignoli
- GSK, Siena, Italy
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
10
|
Hilton B, Wilson DJ, O'Connell AM, Ironmonger D, Rudkin JK, Allen N, Oliver I, Wyllie DH. Laboratory diagnosed microbial infection in English UK Biobank participants in comparison to the general population. Sci Rep 2023; 13:496. [PMID: 36627297 PMCID: PMC9831014 DOI: 10.1038/s41598-022-20635-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/15/2022] [Indexed: 01/11/2023] Open
Abstract
Understanding the genetic and environmental risk factors for serious bacterial infections in ageing populations remains incomplete. Utilising the UK Biobank (UKB), a prospective cohort study of 500,000 adults aged 40-69 years at recruitment (2006-2010), can help address this. Partial implementation of such a system helped groups around the world make rapid progress understanding risk factors for SARS-CoV-2 infection and COVID-19, with insights appearing as early as May 2020. In principle, such approaches could also to be used for bacterial isolations. Here we report feasibility testing of linking an England-wide dataset of microbial reporting to UKB participants, to enable characterisation of microbial infections within the UKB Cohort. These records pertain mainly to bacterial isolations; SARS-CoV-2 isolations were not included. Microbiological infections occurring in patients in England, as recorded in the Public Health England second generation surveillance system (SGSS), were linked to UKB participants using pseudonymised identifiers. By January 2015, ascertainment of laboratory reports from UKB participants by SGSS was estimated at 98%. 4.5% of English UKB participants had a positive microbiological isolate in 2015. Half of UKB isolates came from 12 laboratories, and 70% from 21 laboratories. Incidence rate ratios for microbial isolation, which is indicative of serious infection, from the UKB cohort relative to the comparably aged general population ranged from 0.6 to 1, compatible with the previously described healthy participant bias in UKB. Data on microbial isolations can be linked to UKB participants from January 2015 onwards. This linked data would offer new opportunities for research into the role of bacterial agents on health and disease in middle to-old age.
Collapse
Affiliation(s)
| | - Daniel J Wilson
- Nuffield Department of Population Health, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | | | | | - Justine K Rudkin
- Nuffield Department of Population Health, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Naomi Allen
- Nuffield Department of Population Health, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | | | - David H Wyllie
- UK Health Security Agency, London, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Raineri EJM, Maaß S, Wang M, Brushett S, Palma Medina LM, Sampol Escandell N, Altulea D, Raangs E, de Jong A, Vera Murguia E, Feil EJ, Friedrich AW, Buist G, Becher D, García-Cobos S, Couto N, van Dijl JM. Staphylococcus aureus populations from the gut and the blood are not distinguished by virulence traits-a critical role of host barrier integrity. MICROBIOME 2022; 10:239. [PMID: 36567349 PMCID: PMC9791742 DOI: 10.1186/s40168-022-01419-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The opportunistic pathogen Staphylococcus aureus is an asymptomatically carried member of the microbiome of about one third of the human population at any given point in time. Body sites known to harbor S. aureus are the skin, nasopharynx, and gut. In particular, the mechanisms allowing S. aureus to pass the gut epithelial barrier and to invade the bloodstream were so far poorly understood. Therefore, the objective of our present study was to investigate the extent to which genetic differences between enteric S. aureus isolates and isolates that caused serious bloodstream infections contribute to the likelihood of invasive disease. RESULTS Here, we present genome-wide association studies (GWAS) that compare the genome sequences of 69 S. aureus isolates from enteric carriage by healthy volunteers and 95 isolates from bloodstream infections. We complement our GWAS results with a detailed characterization of the cellular and extracellular proteomes of the representative gut and bloodstream isolates, and by assaying the virulence of these isolates with infection models based on human gut epithelial cells, human blood cells, and a small animal infection model. Intriguingly, our results show that enteric and bloodstream isolates with the same sequence type (ST1 or ST5) are very similar to each other at the genomic and proteomic levels. Nonetheless, bloodstream isolates are not necessarily associated with an invasive profile. Furthermore, we show that the main decisive factor preventing infection of gut epithelial cells in vitro is the presence of a tight barrier. CONCLUSIONS Our data show that virulence is a highly variable trait, even within a single clone. Importantly, however, there is no evidence that blood stream isolates possess a higher virulence potential than those from the enteric carriage. In fact, some gut isolates from healthy carriers were more virulent than bloodstream isolates. Based on our present observations, we propose that the integrity of the gut epithelial layer, rather than the pathogenic potential of the investigated enteric S. aureus isolates, determines whether staphylococci from the gut microbiome will become invasive pathogens. Video Abstract.
Collapse
Affiliation(s)
- Elisa J. M. Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Siobhan Brushett
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura M. Palma Medina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Department of Medicine Huddinge, Present Address: Center for Infectious Medicine, Karolinska Institute, Huddinge, Sweden
| | - Neus Sampol Escandell
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erwin Raangs
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward J. Feil
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Alex W. Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Silvia García-Cobos
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Reference and Research Laboratory On Antimicrobial Resistance and Healthcare Associated Infections, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Natacha Couto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Rodrigues Lopes I, Alcantara LM, Silva RJ, Josse J, Vega EP, Cabrerizo AM, Bonhomme M, Lopez D, Laurent F, Vandenesch F, Mano M, Eulalio A. Microscopy-based phenotypic profiling of infection by Staphylococcus aureus clinical isolates reveals intracellular lifestyle as a prevalent feature. Nat Commun 2022; 13:7174. [PMID: 36418309 PMCID: PMC9684519 DOI: 10.1038/s41467-022-34790-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is increasingly recognized as a facultative intracellular pathogen, although the significance and pervasiveness of its intracellular lifestyle remain controversial. Here, we applied fluorescence microscopy-based infection assays and automated image analysis to profile the interaction of 191 S. aureus isolates from patients with bone/joint infections, bacteremia, and infective endocarditis, with four host cell types, at five times post-infection. This multiparametric analysis revealed that almost all isolates are internalized and that a large fraction replicate and persist within host cells, presenting distinct infection profiles in non-professional vs. professional phagocytes. Phenotypic clustering highlighted interesting sub-groups, including one comprising isolates exhibiting high intracellular replication and inducing delayed host death in vitro and in vivo. These isolates are deficient for the cysteine protease staphopain A. This study establishes S. aureus intracellular lifestyle as a prevalent feature of infection, with potential implications for the effective treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Ines Rodrigues Lopes
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Laura Maria Alcantara
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ricardo Jorge Silva
- grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Jerome Josse
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Elena Pedrero Vega
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Ana Marina Cabrerizo
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Melanie Bonhomme
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Daniel Lopez
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Frederic Laurent
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France ,grid.413852.90000 0001 2163 3825Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Francois Vandenesch
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France ,grid.413852.90000 0001 2163 3825Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Miguel Mano
- grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Department of Life Sciences, University of Coimbra, Coimbra, Portugal ,grid.13097.3c0000 0001 2322 6764British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London, United Kingdom
| | - Ana Eulalio
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Chaguza C, Smith JT, Bruce SA, Gibson R, Martin IW, Andam CP. Prophage-encoded immune evasion factors are critical for Staphylococcus aureus host infection, switching, and adaptation. CELL GENOMICS 2022; 2:100194. [PMID: 36465278 PMCID: PMC9718559 DOI: 10.1016/j.xgen.2022.100194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Staphylococcus aureus is a multi-host pathogen that causes infections in animals and humans globally. The specific genetic loci-and the extent to which they drive cross-species switching, transmissibility, and adaptation-are not well understood. Here, we conducted a population genomic study of 437 S. aureus isolates to identify bacterial genetic variation that determines infection of human and animal hosts through a genome-wide association study (GWAS) using linear mixed models. We found genetic variants tagging φSa3 prophage-encoded immune evasion genes associated with human hosts, which contributed ~99.9% of the overall heritability (~88%), highlighting their key role in S. aureus human infection. Furthermore, GWAS of pairs of phylogenetically matched human and animal isolates confirmed and uncovered additional loci not implicated in GWAS of unmatched isolates. Our findings reveal the loci that are critical for S. aureus host transmissibility, infection, switching, and adaptation and how their spread alters the specificity of host-adapted clones.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| | | | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, New York, USA
| | - Robert Gibson
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Isabella W. Martin
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, New York, USA
| |
Collapse
|
14
|
Grebe T, Rudolf V, Gouleu CS, Löffler B, Adegnika AA, Shittu AO, Deinhardt-Emmer S, Niemann S, Schaumburg F. Neutralization of the Staphylococcus aureus Panton-Valentine leukocidin by African and Caucasian sera. BMC Microbiol 2022; 22:219. [PMID: 36115948 PMCID: PMC9482280 DOI: 10.1186/s12866-022-02636-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/12/2022] [Indexed: 05/27/2025] Open
Abstract
Abstract
Background
The prevalence of Staphylococcus aureus isolates carrying the Panton-Valentine leukocidin (PVL) gene is higher in Africa (≈50%) compared to Europe (< 5%). The study aimed to measure anti-PVL-antibodies in Africans and Germans in a multi-center study and to test whether detected antibodies can neutralize the cytotoxic effect of PVL on polymorphonuclear leukocytes (PMNs).
Methods
Sera from asymptomatic Africans (n = 22, Nigeria, Gabon) and Caucasians (n = 22, Germany) were used to quantify antibody titers against PVL and α-hemolysin (in arbitrary units [AU]) by ELISA. PMNs from one African and German donor were exposed to 5 nM recombinant PVL to measure the neutralizing effect of serial dilutions of pooled sera from African and Caucasian participants, or donor sera at 0.625 and 2.5% (v/v).
Results
Anti-PVL-antibodies were significantly higher in Africans than in Germans (1.9 vs. 0.7 AU, p < 0.0001). The pooled sera from the study participants neutralized the cytotoxic effect of PVL on African and German PMNs in a dose dependent manner. Also, neutralization of PVL on PMNs from the African and German donors had a stronger effect with African sera (half-maximal inhibitory concentration (IC50) = 0.27 and 0.47%, respectively) compared to Caucasian sera (IC50 = 3.51 and 3.59% respectively).
Conclusion
Africans have higher levels of neutralizing anti-PVL-antibodies. It remains unclear if or at what level these antibodies protect against PVL-related diseases.
Collapse
|
15
|
Chaguza C, Jamrozy D, Bijlsma MW, Kuijpers TW, van de Beek D, van der Ende A, Bentley SD. Population genomics of Group B Streptococcus reveals the genetics of neonatal disease onset and meningeal invasion. Nat Commun 2022; 13:4215. [PMID: 35864107 PMCID: PMC9304382 DOI: 10.1038/s41467-022-31858-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Group B Streptococcus (GBS), or Streptococcus agalactiae, is a pathogen that causes preterm births, stillbirths, and acute invasive neonatal disease burden and mortality. Here, we investigate bacterial genetic signatures associated with disease onset time and meningeal tissue infection in acute invasive neonatal GBS disease. We carry out a genome-wide association study (GWAS) of 1,338 GBS isolates from newborns with acute invasive disease; the isolates had been collected annually, for 30 years, through a national bacterial surveillance program in the Netherlands. After controlling for the population structure, we identify genetic variation within noncoding and coding regions, particularly the capsule biosynthesis locus, statistically associated with neonatal GBS disease onset time and meningeal invasion. Our findings highlight the impact of integrating microbial population genomics and clinical pathogen surveillance, and demonstrate the effect of GBS genetics on disease pathogenesis in neonates and infants.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA.
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Merijn W Bijlsma
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Paediatric Haematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Netherlands Reference Laboratory for Bacterial Meningitis, Center of Infection and Immunity Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
16
|
Mohamadou M, Essama SR, Ngonde Essome MC, Akwah L, Nadeem N, Gonsu Kamga H, Sattar S, Javed S. High prevalence of Panton-Valentine leukocidin positive, multidrug resistant, Methicillin-resistant Staphylococcus aureus strains circulating among clinical setups in Adamawa and Far North regions of Cameroon. PLoS One 2022; 17:e0265118. [PMID: 35802616 PMCID: PMC9269376 DOI: 10.1371/journal.pone.0265118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the earliest pathogens involved in human infections, responsible for a large variety of pathologies. Methicillin was the first antibiotic used to treat infections due to S. aureus but infections due to Methicillin resistant Staphylococcus aureus (MRSA) originated from hospital settings. Later, severe infections due to MRSA without any contact with the hospital environment or health care workers arose. Prevalence of MRSA has shown an alarming increase worldover including Cameroon. This Cross-sectional study was designed to evaluate the occurrence of MRSA infections in five different, most frequented Hospitals in northern Cameroon. Socio demographic data was recorded through questionnaire and different clinical specimens were collected for bacterial isolation. Identification of S. aureus was confirmed via 16s rRNA amplification using S. aureus specific primers. Molecular characterisation was performed through mecA gene, Luk PV gene screening and SCCmec typing. A total of 380 S. aureus clinical isolates were obtained of which 202 (53.2%) were nonduplicate multidrug resistant isolates containing, 45.5% MRSA. Higher number of MRSA was isolated from pus (30.4%) followed by blood culture (18.5%), and urine (17.4%). Patients aged 15 to 30 years presented high prevalence of MRSA (30.4%). Majority isolates (97.8%) carried the mecA gene, PVL toxin screening indicated 53.3% isolates carried the lukPV gene. Based on PVL detection and clinical history, CA-MRSA represented 53.3% of isolates. SCCmec typing showed that the Type IV was most prevalent (29.3%), followed by type I (23.9%). Amongst MRSA isolates high resistance to penicillin (91.1%), cotrimoxazole (86.7%), tetracycline (72.2%), and ofloxacin (70.0%) was detected. Meanwhile, rifampicin, fusidic acid, lincomycin and minocycline presented high efficacy in bacterial control. This study revealed a high prevalence of MRSA among infections due to S. aureus in Northern Cameroon. All MRSA recorded were multidrug resistant and the prevalence of CA MRSA are subsequently increasing, among population.
Collapse
Affiliation(s)
- Mansour Mohamadou
- Biosciences Department, COMSATS University Islamabad, Islamabad, Pakistan
- Department of Microbiology, Faculty of Science, University of Yaounde 1, Yaoundé, Cameroon
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Sarah Riwom Essama
- Department of Microbiology, Faculty of Science, University of Yaounde 1, Yaoundé, Cameroon
| | - Marie Chantal Ngonde Essome
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Lillian Akwah
- Department of Microbiology, Faculty of Science, University of Yaounde 1, Yaoundé, Cameroon
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Nudrat Nadeem
- Biosciences Department, COMSATS University Islamabad, Islamabad, Pakistan
| | - Hortense Gonsu Kamga
- Department of Microbiology, Haematology and Infectious diseases, Faculty of Medicine and Biomedical Sciences of University of Yaounde 1, Yaoundé, Cameroon
| | - Sadia Sattar
- Biosciences Department, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sundus Javed
- Biosciences Department, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
17
|
Chaguza C, Yang M, Jacques LC, Bentley SD, Kadioglu A. Serotype 1 pneumococcus: epidemiology, genomics, and disease mechanisms. Trends Microbiol 2022; 30:581-592. [PMID: 34949516 PMCID: PMC7613904 DOI: 10.1016/j.tim.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae (the 'pneumococcus') is a significant cause of morbidity and mortality worldwide, causing life-threatening diseases such as pneumonia, bacteraemia, and meningitis, with an annual death burden of over one million. Discovered over a century ago, pneumococcal serotype 1 (S1) is a significant cause of these life-threatening diseases. Our understanding of the epidemiology and biology of pneumococcal S1 has significantly improved over the past two decades, informing the development of preventative and surveillance strategies. However, many questions remain unanswered. Here, we review the current state of knowledge of pneumococcal S1, with a special emphasis on clinical epidemiology, genomics, and disease mechanisms.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Darwin College, University of Cambridge, Silver Street, Cambridge, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK; NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, UK.
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK
| | - Laura C Jacques
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK.
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK
| |
Collapse
|
18
|
Phiri BS, Hang'ombe BM, Mulenga E, Mubanga M, Maurischat S, Wichmann-Schauer H, Schaarschmidt S, Fetsch A. Prevalence and diversity of Staphylococcus aureus in the Zambian dairy value chain: A public health concern. Int J Food Microbiol 2022; 375:109737. [DOI: 10.1016/j.ijfoodmicro.2022.109737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
|
19
|
Chaguza C, Ebruke C, Senghore M, Lo SW, Tientcheu PE, Gladstone RA, Tonkin-Hill G, Cornick JE, Yang M, Worwui A, McGee L, Breiman RF, Klugman KP, Kadioglu A, Everett DB, Mackenzie G, Croucher NJ, Roca A, Kwambana-Adams BA, Antonio M, Bentley SD. Comparative Genomics of Disease and Carriage Serotype 1 Pneumococci. Genome Biol Evol 2022; 14:evac052. [PMID: 35439297 PMCID: PMC9048925 DOI: 10.1093/gbe/evac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
The isolation of Streptococcus pneumoniae serotypes in systemic tissues of patients with invasive disease versus the nasopharynx of healthy individuals with asymptomatic carriage varies widely. Some serotypes are hyper-invasive, particularly serotype 1, but the underlying genetics remain poorly understood due to the rarity of carriage isolates, reducing the power of comparison with invasive isolates. Here, we use a well-controlled genome-wide association study to search for genetic variation associated with invasiveness of serotype 1 pneumococci from a serotype 1 endemic setting in Africa. We found no consensus evidence that certain genomic variation is overrepresented among isolates from patients with invasive disease than asymptomatic carriage. Overall, the genomic variation explained negligible phenotypic variability, suggesting a minimal effect on the disease status. Furthermore, changes in lineage distribution were seen with lineages replacing each other over time, highlighting the importance of continued pathogen surveillance. Our findings suggest that the hyper-invasiveness is an intrinsic property of the serotype 1 strains, not specific for a "disease-associated" subpopulation disproportionately harboring unique genomic variation.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Darwin College, University of Cambridge, Silver Street, Cambridge, UK
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Chinelo Ebruke
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Madikay Senghore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephanie W. Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Peggy-Estelle Tientcheu
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rebecca A. Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Gerry Tonkin-Hill
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jennifer E. Cornick
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Archibald Worwui
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert F. Breiman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Keith P. Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Dean B. Everett
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Grant Mackenzie
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Murdoch Children’s Research Institute, Parkville, Melbourne, VIC, Australia
- London School of Hygiene & Tropical Medicine, London, UK
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Anna Roca
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- London School of Hygiene & Tropical Medicine, London, UK
| | - Brenda A. Kwambana-Adams
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
| | - Martin Antonio
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- London School of Hygiene & Tropical Medicine, London, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
20
|
Vanbiervliet V, Demeyer I, Claus F, Van Vaerenbergh K. A case report: septic shock due to (tropical) pyomyositis and multiple metastatic embolisms caused by Panton Valentine Leukocidin-positive methicillin-sensitive staphylococcus aureus in a 12-year-old boy. Acta Clin Belg 2022; 77:421-424. [PMID: 33629932 DOI: 10.1080/17843286.2021.1890450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CASE REPORT A 12-year-old boy, of Congolese roots and without medical history, first presented to our Emergency Department 3 days after blunt trauma of the left ankle. The boy represented on two more occasions in the next 3 days due to ongoing pain. On the last occasion he presented with severe hypoglycaemia. He was diagnosed with severe septic shock, secondary to subperiosteal abscess formation / osteomyelitis of the ankle. The patient was transferred to the paediatric intensive care unit where appropriate medical care was provided, including broad-spectrum antibiotic therapy, high dose vasopressor / inotropic support, surgical debridement of abscesses and below-knee amputation. PANTON VALENTINE LEUKOCIDIN TOXIN AND PYOMYOSITIS TROPICALIS The causative organism was a methicillin-susceptible S. aureus, which upon further identification was a carrier of the PVL (Panton Valentine leukocidin) toxin. This pathogen is responsible for severe musculoskeletal infections. In children these infections are often associated with more severe clinical course requiring a higher need for surgical intervention and longer hospital stay.Tropical pyomyositis is a disease caused by Staphylococcus aureus, often seen in tropical countries, and classically presented with muscle abscesses. Young males between the ages of 10-40 years old are the most susceptible, and often present with a history of blunt trauma. Treatment generally requires a combination of an anti-staphylococcal agent, and an anti-toxic agent blocking bacterial protein-synthesis of PVL. Source control by surgical debridement also plays a major role in the treatment of PVL-infection. Despite agressive treatment, mortality still varies from 0.5% to 2%.
Collapse
|
21
|
Eyre DW. Infection prevention and control insights from a decade of pathogen whole-genome sequencing. J Hosp Infect 2022; 122:180-186. [PMID: 35157991 PMCID: PMC8837474 DOI: 10.1016/j.jhin.2022.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Pathogen whole-genome sequencing has become an important tool for understanding the transmission and epidemiology of infectious diseases. It has improved our understanding of sources of infection and transmission routes for important healthcare-associated pathogens, including Clostridioides difficile and Staphylococcus aureus. Transmission from known infected or colonized patients in hospitals may explain fewer cases than previously thought and multiple introductions of these pathogens from the community may play a greater a role. The findings have had important implications for infection prevention and control. Sequencing has identified heterogeneity within pathogen species, with some subtypes transmitting and persisting in hospitals better than others. It has identified sources of infection in healthcare-associated outbreaks of food-borne pathogens, Candida auris and Mycobacterium chimera, as well as individuals or groups involved in transmission and historical sources of infection. SARS-CoV-2 sequencing has been central to tracking variants during the COVID-19 pandemic and has helped understand transmission to and from patients and healthcare workers despite prevention efforts. Metagenomic sequencing is an emerging technology for culture-independent diagnosis of infection and antimicrobial resistance. In future, sequencing is likely to become more accessible and widely available. Real-time use in hospitals may allow infection prevention and control teams to identify transmission and to target interventions. It may also provide surveillance and infection control benchmarking. Attention to ethical and wellbeing issues arising from sequencing identifying individuals involved in transmission is important. Pathogen whole-genome sequencing has provided an incredible new lens to understand the epidemiology of healthcare-associated infection and to better control and prevent these infections.
Collapse
Affiliation(s)
- D W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK; National Institiute for Health Research, Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK; Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
22
|
López Fernández L, Jiménez Escobar V, Sáenz Moreno I, Gallinas Maraña E, Cuadrado Piqueras L. Acute pyomyositis: Diagnosis and treatment of 3 cases in a secondary hospital. An Pediatr (Barc) 2021; 95:467-468. [PMID: 34810155 DOI: 10.1016/j.anpede.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/11/2020] [Indexed: 10/19/2022] Open
|
23
|
Young BC, Wu CH, Charlesworth J, Earle S, Price JR, Gordon NC, Cole K, Dunn L, Liu E, Oakley S, Godwin H, Fung R, Miller R, Knox K, Votintseva A, Quan TP, Tilley R, Scarborough M, Crook DW, Peto TE, Walker AS, Llewelyn MJ, Wilson DJ. Antimicrobial resistance determinants are associated with Staphylococcus aureus bacteraemia and adaptation to the healthcare environment: a bacterial genome-wide association study. Microb Genom 2021; 7:000700. [PMID: 34812717 PMCID: PMC8743558 DOI: 10.1099/mgen.0.000700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is a major bacterial pathogen in humans, and a dominant cause of severe bloodstream infections. Globally, antimicrobial resistance (AMR) in S. aureus remains challenging. While human risk factors for infection have been defined, contradictory evidence exists for the role of bacterial genomic variation in S. aureus disease. To investigate the contribution of bacterial lineage and genomic variation to the development of bloodstream infection, we undertook a genome-wide association study comparing bacteria from 1017 individuals with bacteraemia to 984 adults with asymptomatic S. aureus nasal carriage. Within 984 carriage isolates, we also compared healthcare-associated (HA) carriage with community-associated (CA) carriage. All major global lineages were represented in both bacteraemia and carriage, with no evidence for different infection rates. However, kmers tagging trimethoprim resistance-conferring mutation F99Y in dfrB were significantly associated with bacteraemia-vs-carriage (P=10-8.9-10-9.3). Pooling variation within genes, bacteraemia-vs-carriage was associated with the presence of mecA (HMP=10-5.3) as well as the presence of SCCmec (HMP=10-4.4). Among S. aureus carriers, no lineages were associated with HA-vs-CA carriage. However, we found a novel signal of HA-vs-CA carriage in the foldase protein prsA, where kmers representing conserved sequence allele were associated with CA carriage (P=10-7.1-10-19.4), while in gyrA, a ciprofloxacin resistance-conferring mutation, L84S, was associated with HA carriage (P=10-7.2). In an extensive study of S. aureus bacteraemia and nasal carriage in the UK, we found strong evidence that all S. aureus lineages are equally capable of causing bloodstream infection, and of being carried in the healthcare environment. Genomic variation in the foldase protein prsA is a novel genomic marker of healthcare origin in S. aureus but was not associated with bacteraemia. AMR determinants were associated with both bacteraemia and healthcare-associated carriage, suggesting that AMR increases the propensity not only to survive in healthcare environments, but also to cause invasive disease.
Collapse
Affiliation(s)
- Bernadette C. Young
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Chieh-Hsi Wu
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jane Charlesworth
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sarah Earle
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - James R. Price
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton BN2 5BE, UK
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PS, UK
| | - N. Claire Gordon
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Cole
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton BN2 5BE, UK
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PS, UK
| | - Laura Dunn
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elian Liu
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sarah Oakley
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Heather Godwin
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rowena Fung
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruth Miller
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kyle Knox
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Antonina Votintseva
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - T. Phuong Quan
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Robert Tilley
- Department of Microbiology, University Hospitals Plymouth NHS Trust, Derriford Hospital, Plymouth PL6 8DH, UK
| | - Matthew Scarborough
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Derrick W. Crook
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Timothy E. Peto
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - A. Sarah Walker
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Martin J. Llewelyn
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton BN2 5BE, UK
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PS, UK
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
24
|
Abstract
BACKGROUND Tropical pyomyositis has had a recent increase in the United States, Europe, and other nontropical areas. The purpose of this study was to provide an accurate description of the demographics, presenting features, sites of involvement, microbiology, imaging modalities, medical and surgical management, complications, and predictors of clinical course. METHODS We searched PubMed, Cochrane, Web of Science Collection, Scopus, and Embase databases yielding 156 studies. Of these, 23 articles were selected for statistical analysis. RESULTS The average age at presentation was 8.4±1.9 years with males more commonly affected. Fever, painful limp, and localized pain were the most common presenting symptoms. Pelvis, lower extremity, trunk and spine, in descending order, were the most commonly affected locations. Iliopsoas, obturator musculature, and gluteus musculature were the most commonly affected muscle groups. The mean time to diagnosis was 6.6±3.05 days. Staphylococcus aureus was the most common offending organism. The mean length of hospital stay was 12.0±4.6 days. Medical management alone was successful in 40% of cases (143/361) with an average duration of 9.5±4.0 and 22.7±7.2 days of intravenous and oral antibiotics, respectively. Surgical management consisted of open drainage in 91.3% (199/218) or percutaneous drainage in 8.7% (19/218) of cases. Painful limp, fever, and larger values of white cell count and erythrocyte sedimentation rate were associated with an increased need for surgery. Obturator and calf muscle involvement were strongly associated with multifocal involvement. There were 42 complications in 41 patients (11.3%). Methicillin-resistant S. aureus was associated with an increased risk of complications. The most common complications were osteomyelitis, septicemia, and septic arthritis. CONCLUSIONS Primary pyomyositis should be considered in cases suggesting pediatric infection. Magnetic resonance imaging is the most commonly used imaging modality; however, ultrasound is useful given its accessibility and low cost. Medical management alone can be successful, but surgical treatment is often needed. The prognosis is favorable. Early diagnosis, appropriate medical management, and potential surgical drainage are required for effective treatment. LEVEL OF EVIDENCE Level IV-systematic review.
Collapse
Affiliation(s)
- Neeraj Vij
- University of Arizona College of Medicine
| | - Ashish S Ranade
- Blooming Buds Centre for Pediatric Orthopaedics, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India
| | - Paul Kang
- University of Arizona College of Public Health
| | - Mohan V Belthur
- Department of Orthopedics, Phoenix Children's Hospital Phoenix, AZ
| |
Collapse
|
25
|
Pyomyositis of the Iliopsoas and Piriformis Muscles Caused by Panton-valentine Leukocidin-positive Staphylococcus aureus. Pediatr Infect Dis J 2021; 40:e358-e359. [PMID: 34260496 DOI: 10.1097/inf.0000000000003217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Ngor C, Hall L, Dean JA, Gilks CF. Factors associated with pyomyositis: A systematic review and meta-analysis. Trop Med Int Health 2021; 26:1210-1219. [PMID: 34407271 DOI: 10.1111/tmi.13669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Pyomyositis, an acute bacterial infection of skeletal muscle usually resulting in abscess formation, is well recognised in tropical regions where it can account for up to 4% of adult surgical admissions. It is increasingly being reported from high-income temperate countries. Pyomyositis occurs across all ages and in both sexes. Mortality ranges from 1% to 23%. Many risk factors have been suggested. We aimed to identify factors associated with pyomyositis. METHODS We undertook a systematic review and meta-analysis, using PubMed, EMBASE, Scopus and the Cochran Library and hand-searching published papers. The random-effects model meta-analysis was used to calculate pooled estimated odd ratios with the corresponding 95% confidence interval. RESULTS All studies in the systematic review (n = 25) and the meta-analysis (n = 12) were hospital-based. Seven only included children. Relatively few studies have been published in the last decade, the majority of which are from high-income temperate settings. Staphylococcus aureus was the main organism isolated. Males under the age of 20 predominated, and mortality of up to 20% was reported. Factors associated with pyomyositis were HIV infection (OR = 4.82; 95% CI: 1.67-13.92) and fulfilling an AIDS surveillance definition (OR = 6.08; 95% CI: 2.79-13.23). CONCLUSIONS Our meta-analysis indicated significant associations between pyomyositis infection and HIV/AIDS. Major gaps in our understanding of the epidemiology, pathogenesis, clinical presentation, and outcome remain, highlighting the need for further research and more systematic studies. Pyomyositis merits consideration as a neglected tropical disease.
Collapse
Affiliation(s)
- Chamnab Ngor
- School of Public Health, The University of Queensland, Brisbane, Qld, Australia.,School of Public Health, The National Institute of Public Health, Phnom Penh, Cambodia
| | - Lisa Hall
- School of Public Health, The University of Queensland, Brisbane, Qld, Australia
| | - Judith A Dean
- School of Public Health, The University of Queensland, Brisbane, Qld, Australia
| | - Charles F Gilks
- School of Public Health, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
27
|
Pedoto D, Diana A, Pennacchio ML, Paciello F, Quarantiello F, Della Casa R. Primary Pyomyositis in Children is No More a Rare Condition: Presentation of 2 Clinical Cases. Pediatr Infect Dis J 2021; 40:e276-e278. [PMID: 33657602 DOI: 10.1097/inf.0000000000003113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primary pyomyositis is a bacterial muscle infection which may lead to abscess formation and severe complications. Although this condition has long been considered "tropical" and rare, mostly affecting immunocompromised patients, cases of pyomyositis have recently raised significantly among healthy children in temperate climates. With these 2 cases we highlight the importance of an early recognition of this condition, allowing an immediate treatment and reducing complications.
Collapse
Affiliation(s)
- Deianira Pedoto
- From the Department of Translational Medical Sciences, University Federico II, Naples, Italy
- Section of Pediatrics, A.O. San Pio, Benevento, Italy
| | - Alfredo Diana
- From the Department of Translational Medical Sciences, University Federico II, Naples, Italy
- Section of Pediatrics, A.O. San Pio, Benevento, Italy
| | - Maria Laura Pennacchio
- From the Department of Translational Medical Sciences, University Federico II, Naples, Italy
- Section of Pediatrics, A.O. San Pio, Benevento, Italy
| | - Francesca Paciello
- From the Department of Translational Medical Sciences, University Federico II, Naples, Italy
- Section of Pediatrics, A.O. San Pio, Benevento, Italy
| | | | - Roberto Della Casa
- From the Department of Translational Medical Sciences, University Federico II, Naples, Italy
- Section of Pediatrics, A.O. San Pio, Benevento, Italy
| |
Collapse
|
28
|
Allen JP, Snitkin E, Pincus NB, Hauser AR. Forest and Trees: Exploring Bacterial Virulence with Genome-wide Association Studies and Machine Learning. Trends Microbiol 2021; 29:621-633. [PMID: 33455849 PMCID: PMC8187264 DOI: 10.1016/j.tim.2020.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
The advent of inexpensive and rapid sequencing technologies has allowed bacterial whole-genome sequences to be generated at an unprecedented pace. This wealth of information has revealed an unanticipated degree of strain-to-strain genetic diversity within many bacterial species. Awareness of this genetic heterogeneity has corresponded with a greater appreciation of intraspecies variation in virulence. A number of comparative genomic strategies have been developed to link these genotypic and pathogenic differences with the aim of discovering novel virulence factors. Here, we review recent advances in comparative genomic approaches to identify bacterial virulence determinants, with a focus on genome-wide association studies and machine learning.
Collapse
Affiliation(s)
- Jonathan P Allen
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA.
| | - Evan Snitkin
- Department of Microbiology and Immunology, Department of Internal Medicine/Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nathan B Pincus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Medicine/Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
29
|
Liu X, Ma Y, Wang J. Genetic variation and function: revealing potential factors associated with microbial phenotypes. BIOPHYSICS REPORTS 2021; 7:111-126. [PMID: 37288143 PMCID: PMC10235906 DOI: 10.52601/bpr.2021.200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/09/2021] [Indexed: 06/09/2023] Open
Abstract
Innovations in sequencing technology have generated voluminous microbial and host genomic data, making it possible to detect these genetic variations and analyze the function influenced by them. Recently, many studies have linked such genetic variations to phenotypes through association or comparative analysis, which have further advanced our understanding of multiple microbial functions. In this review, we summarized the application of association analysis in microbes like Mycobacterium tuberculosis, focusing on screening of microbial genetic variants potentially associated with phenotypes such as drug resistance, pathogenesis and novel drug targets etc.; reviewed the application of additional comparative genomic or transcriptomic methods to identify genetic factors associated with functions in microbes; expanded the scope of our study to focus on host genetic factors associated with certain microbes or microbiome and summarized the recent host genetic variations associated with microbial phenotypes, including susceptibility and load after infection of HIV, presence/absence of different taxa, and quantitative traits of microbiome, and lastly, discussed the challenges that may be encountered and the apparent or potential viable solutions. Gene-function analysis of microbe and microbiome is still in its infancy, and in order to unleash its full potential, it is necessary to understand its history, current status, and the challenges hindering its development.
Collapse
Affiliation(s)
- Xiaolin Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Weber RE, Fuchs S, Layer F, Sommer A, Bender JK, Thürmer A, Werner G, Strommenger B. Genome-Wide Association Studies for the Detection of Genetic Variants Associated With Daptomycin and Ceftaroline Resistance in Staphylococcus aureus. Front Microbiol 2021; 12:639660. [PMID: 33658988 PMCID: PMC7917082 DOI: 10.3389/fmicb.2021.639660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background As next generation sequencing (NGS) technologies have experienced a rapid development over the last decade, the investigation of the bacterial genetic architecture reveals a high potential to dissect causal loci of antibiotic resistance phenotypes. Although genome-wide association studies (GWAS) have been successfully applied for investigating the basis of resistance traits, complex resistance phenotypes have been omitted so far. For S. aureus this especially refers to antibiotics of last resort like daptomycin and ceftaroline. Therefore, we aimed to perform GWAS for the identification of genetic variants associated with DAP and CPT resistance in clinical S. aureus isolates. Materials/methods To conduct microbial GWAS, we selected cases and controls according to their clonal background, date of isolation, and geographical origin. Association testing was performed with PLINK and SEER analysis. By using in silico analysis, we also searched for rare genetic variants in candidate loci that have previously been described to be involved in the development of corresponding resistance phenotypes. Results GWAS revealed MprF P314L and L826F to be significantly associated with DAP resistance. These mutations were found to be homogenously distributed among clonal lineages suggesting convergent evolution. Additionally, rare and yet undescribed single nucleotide polymorphisms could be identified within mprF and putative candidate genes. Finally, we could show that each DAP resistant isolate exhibited at least one amino acid substitution within the open reading frame of mprF. Due to the presence of strong population stratification, no genetic variants could be associated with CPT resistance. However, the investigation of the staphylococcal cassette chromosome mec (SCCmec) revealed various mecA SNPs to be putatively linked with CPT resistance. Additionally, some CPT resistant isolates revealed no mecA mutations, supporting the hypothesis that further and still unknown resistance determinants are crucial for the development of CPT resistance in S. aureus. Conclusion We hereby confirmed the potential of GWAS to identify genetic variants that are associated with antibiotic resistance traits in S. aureus. However, precautions need to be taken to prevent the detection of spurious associations. In addition, the implementation of different approaches is still essential to detect multiple forms of variations and mutations that occur with a low frequency.
Collapse
Affiliation(s)
- Robert E Weber
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Stephan Fuchs
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch-Institute, Berlin, Germany
| | - Franziska Layer
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Anna Sommer
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Jennifer K Bender
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Andrea Thürmer
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch-Institute, Berlin, Germany
| | - Guido Werner
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Birgit Strommenger
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
31
|
López Fernández L, Jiménez Escobar V, Sáenz Moreno I, Gallinas Maraña E, Cuadrado Piqueras L. [Acute pyomyositis: diagnosis and treatment of 3 cases in a secondary hospital]. An Pediatr (Barc) 2021; 95:S1695-4033(20)30493-8. [PMID: 33483242 DOI: 10.1016/j.anpedi.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 11/15/2022] Open
|
32
|
Kwapisz E, Garbacz K, Kosecka-Strojek M, Schubert J, Bania J, Międzobrodzki J. Presence of egc-positive major clones ST 45, 30 and 22 among methicillin-resistant and methicillin-susceptible oral Staphylococcus aureus strains. Sci Rep 2020; 10:18889. [PMID: 33144661 PMCID: PMC7609576 DOI: 10.1038/s41598-020-76009-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
The oral cavity may comprise a significant reservoir for Staphylococcus aureus but the data on molecular epidemiology and clonal distribution of oral strains are really scarce. This study aimed to evaluate the clonal relatedness in S. aureus isolated from oral cavity and their relationship with carriage of virulence genes, and antimicrobial resistance profiles. A total of 139 oral S. aureus isolates were obtained from 2327 analysed oral samples of dental patients. Antimicrobial susceptibility testing was performed. Isolates were characterized using protein A gene (spa) typing, spa-CC clonal complexes, toxin genes and SCCmec typing for MRSA. High resistance rates for penicillin, tetracycline and gentamicin were detected, respectively 58.3%, 42.4%, and 35.2%. Twelve (8.6%) S. aureus isolates were identified as MRSA. All of MRSA isolates were mecA-positive and mecC-negative. SCCmec IV was the most common type (66.7%), which was typical for community-acquired MRSA (CA-MRSA). Overall, the enterotoxin gene cluster (egc) was the most frequent detected virulence factor (44.9%), both in MSSA and MRSA isolates. Presence of genes encoding for the enterotoxins (sea, seb, sec, seh, sek), exfoliative toxin A (eta), and toxic shock syndrome toxin-1 (tst) was also observed. Strains carrying lukS-PV/lukF-PV genes belonged to SCCmecV- spa type t437. The most prevalent spa types were t091, t015, t084, t002, t571, and t026 among all 57 identified. Spa types, including 3 new ones, grouped in 6 different spa-CC clonal complexes, with four major dominated; CC45, CC30, CC5, and CC15. This study demonstrated that both methicillin-susceptible and methicillin-resistant major European clones of S. aureus could be isolated from the oral cavity of dental patients, with the emergence of PVL-positive CA-MRSA strains. The oral cavity should be considered as a possible source of toxigenic egc-positive S. aureus strains, in terms of potential risk of cross-infection and dissemination to other body sites.
Collapse
Affiliation(s)
- Ewa Kwapisz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland.
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
33
|
Chaguza C, Yang M, Cornick JE, du Plessis M, Gladstone RA, Kwambana-Adams BA, Lo SW, Ebruke C, Tonkin-Hill G, Peno C, Senghore M, Obaro SK, Ousmane S, Pluschke G, Collard JM, Sigaùque B, French N, Klugman KP, Heyderman RS, McGee L, Antonio M, Breiman RF, von Gottberg A, Everett DB, Kadioglu A, Bentley SD. Bacterial genome-wide association study of hyper-virulent pneumococcal serotype 1 identifies genetic variation associated with neurotropism. Commun Biol 2020; 3:559. [PMID: 33033372 PMCID: PMC7545184 DOI: 10.1038/s42003-020-01290-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hyper-virulent Streptococcus pneumoniae serotype 1 strains are endemic in Sub-Saharan Africa and frequently cause lethal meningitis outbreaks. It remains unknown whether genetic variation in serotype 1 strains modulates tropism into cerebrospinal fluid to cause central nervous system (CNS) infections, particularly meningitis. Here, we address this question through a large-scale linear mixed model genome-wide association study of 909 African pneumococcal serotype 1 isolates collected from CNS and non-CNS human samples. By controlling for host age, geography, and strain population structure, we identify genome-wide statistically significant genotype-phenotype associations in surface-exposed choline-binding (P = 5.00 × 10-08) and helicase proteins (P = 1.32 × 10-06) important for invasion, immune evasion and pneumococcal tropism to CNS. The small effect sizes and negligible heritability indicated that causation of CNS infection requires multiple genetic and other factors reflecting a complex and polygenic aetiology. Our findings suggest that certain pathogen genetic variation modulate pneumococcal survival and tropism to CNS tissue, and therefore, virulence for meningitis.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Darwin College, University of Cambridge, Silver Street, Cambridge, UK.
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jennifer E Cornick
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca A Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Brenda A Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chinelo Ebruke
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Gerry Tonkin-Hill
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chikondi Peno
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Madikay Senghore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Stephen K Obaro
- Division of Pediatric Infectious Disease, University of Nebraska Medical Center Omaha, Omaha, NE, USA
- International Foundation against Infectious Diseases in Nigeria, Abuja, Nigeria
| | - Sani Ousmane
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Betuel Sigaùque
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martin Antonio
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Robert F Breiman
- Emory Global Health Institute, Emory University, Atlanta, GA, USA
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dean B Everett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
35
|
Roe C, Stegger M, Lilje B, Johannesen TB, Ng KL, Sieber RN, Driebe E, Engelthaler DM, Andersen PS. Genomic analyses of Staphylococcus aureus clonal complex 45 isolates does not distinguish nasal carriage from bacteraemia. Microb Genom 2020; 6:mgen000403. [PMID: 32667872 PMCID: PMC7641415 DOI: 10.1099/mgen.0.000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a colonizing opportunistic pathogen and a leading cause of bloodstream infection with high morbidity and mortality. S. aureus carriage frequency is reportedly between 20 and 40 % among healthy adults, with S. aureus colonization considered to be a risk factor for S. aureus bacteraemia. It is unknown whether a genetic component of the bacterium is associated with S. aureus bacteraemia in comparison to nasal carriage strains. Previous association studies primarily focusing on the clinical outcome of an S. aureus infection have produced conflicting results, often limited by study design challenged by sample collections and the clonal diversity of S. aureus. To date, no study has investigated whether genomic features separate nasal carriage isolates from S. aureus bacteraemia isolates within a single clonal lineage. Here we have investigated whether genomic features, including single-nucleotide polymorphisms (SNPs), genes, or kmers, distinguish S. aureus nasal carriage isolates from bacteraemia isolates that all belong to the same clonal lineage [clonal complex 45 (CC45)] using whole-genome sequencing (WGS) and a genome-wide association (GWA) approach. From CC45, 100 isolates (50 bacteraemia and 50 nasal carriage, geographically and temporally matched) from Denmark were whole-genome sequenced and subjected to GWA analyses involving gene copy number variation, SNPs, gene content, kmers and gene combinations, while correcting for lineage effects. No statistically significant association involving SNPs, specific genes, gene variants, gene copy number variation, or a combination of genes was identified that could distinguish bacteraemia isolates from nasal carriage isolates. The presented results suggest that all S. aureus nasal CC45 isolates carry the potential to cause invasive disease, as no core or accessory genome content or variations were statistically associated with invasiveness.
Collapse
Affiliation(s)
- Chandler Roe
- Translational Genomics Research Institute, Flagstaff, AZ, USA
- Northern Arizona University, Flagstaff, AZ, USA
| | - Marc Stegger
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Berit Lilje
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Kim Lee Ng
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Raphael N. Sieber
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | - Paal Skytt Andersen
- Translational Genomics Research Institute, Flagstaff, AZ, USA
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
36
|
Lees JA, Mai TT, Galardini M, Wheeler NE, Horsfield ST, Parkhill J, Corander J. Improved Prediction of Bacterial Genotype-Phenotype Associations Using Interpretable Pangenome-Spanning Regressions. mBio 2020; 11:e01344-20. [PMID: 32636251 PMCID: PMC7343994 DOI: 10.1128/mbio.01344-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Discovery of genetic variants underlying bacterial phenotypes and the prediction of phenotypes such as antibiotic resistance are fundamental tasks in bacterial genomics. Genome-wide association study (GWAS) methods have been applied to study these relations, but the plastic nature of bacterial genomes and the clonal structure of bacterial populations creates challenges. We introduce an alignment-free method which finds sets of loci associated with bacterial phenotypes, quantifies the total effect of genetics on the phenotype, and allows accurate phenotype prediction, all within a single computationally scalable joint modeling framework. Genetic variants covering the entire pangenome are compactly represented by extended DNA sequence words known as unitigs, and model fitting is achieved using elastic net penalization, an extension of standard multiple regression. Using an extensive set of state-of-the-art bacterial population genomic data sets, we demonstrate that our approach performs accurate phenotype prediction, comparable to popular machine learning methods, while retaining both interpretability and computational efficiency. Compared to those of previous approaches, which test each genotype-phenotype association separately for each variant and apply a significance threshold, the variants selected by our joint modeling approach overlap substantially.IMPORTANCE Being able to identify the genetic variants responsible for specific bacterial phenotypes has been the goal of bacterial genetics since its inception and is fundamental to our current level of understanding of bacteria. This identification has been based primarily on painstaking experimentation, but the availability of large data sets of whole genomes with associated phenotype metadata promises to revolutionize this approach, not least for important clinical phenotypes that are not amenable to laboratory analysis. These models of phenotype-genotype association can in the future be used for rapid prediction of clinically important phenotypes such as antibiotic resistance and virulence by rapid-turnaround or point-of-care tests. However, despite much effort being put into adapting genome-wide association study (GWAS) approaches to cope with bacterium-specific problems, such as strong population structure and horizontal gene exchange, current approaches are not yet optimal. We describe a method that advances methodology for both association and generation of portable prediction models.
Collapse
Affiliation(s)
- John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - T Tien Mai
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Marco Galardini
- Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Nicole E Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Samuel T Horsfield
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jukka Corander
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, University of Oslo, Oslo, Norway
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Shittu A, Deinhardt‐Emmer S, Vas Nunes J, Niemann S, Grobusch MP, Schaumburg F. Tropical pyomyositis: an update. Trop Med Int Health 2020; 25:660-665. [DOI: 10.1111/tmi.13395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adebayo Shittu
- Department of Microbiology Obafemi Awolowo University Ile‐Ife Nigeria
- Institute of Medical Microbiology University Hospital Münster Münster Germany
| | | | - Jonathan Vas Nunes
- Masanga Hospital Masanga Sierra Leone
- Masanga Medical Research Unit Masanga Sierra Leone
| | - Silke Niemann
- Institute of Medical Microbiology University Hospital Münster Münster Germany
| | - Martin P. Grobusch
- Masanga Medical Research Unit Masanga Sierra Leone
- Center of Tropical Medicine University of Amsterdam Amsterdam The Netherlands
| | - Frieder Schaumburg
- Institute of Medical Microbiology University Hospital Münster Münster Germany
| |
Collapse
|
38
|
Dilthey AT, Meyer SA, Kaasch AJ. Ultraplexing: increasing the efficiency of long-read sequencing for hybrid assembly with k-mer-based multiplexing. Genome Biol 2020; 21:68. [PMID: 32171299 PMCID: PMC7071681 DOI: 10.1186/s13059-020-01974-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/24/2020] [Indexed: 01/10/2023] Open
Abstract
Hybrid genome assembly has emerged as an important technique in bacterial genomics, but cost and labor requirements limit large-scale application. We present Ultraplexing, a method to improve per-sample sequencing cost and hands-on time of Nanopore sequencing for hybrid assembly by at least 50% compared to molecular barcoding while maintaining high assembly quality. Ultraplexing requires the availability of Illumina data and uses inter-sample genetic variability to assign reads to isolates, which obviates the need for molecular barcoding. Thus, Ultraplexing can enable significant sequencing and labor cost reductions in large-scale bacterial genome projects.
Collapse
Affiliation(s)
- Alexander T Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany. .,Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA.
| | - Sebastian A Meyer
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Achim J Kaasch
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany. .,Institute of Medical Microbiology and Hospital Hygiene, University Hospital, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
39
|
Maravelas R, Melgar TA, Vos D, Lima N, Sadarangani S. Pyomyositis in the United States 2002-2014. J Infect 2020; 80:497-503. [PMID: 32147332 DOI: 10.1016/j.jinf.2020.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Primary pyomyositis is a bacterial infection of skeletal muscle first recognized in tropical regions of the world but needing characterization in temperate climates. METHODS This population-based study used the Healthcare Utilization Project/Nationwide Inpatient Sample database to characterize the trends of pyomyositis admissions in the United States from 2002-2014 using ICD-9 diagnostic codes. RESULTS We found a concerning more than three-fold increase in the incident pyomyositis admissions over our study period. The median length of stay was over twice as long compared to other hospitalized patients. Patients with pyomyositis were younger and more likely to be male and Black. There were more cases in the West and South compared to Midwest and Northeast. Age-adjusted odds ratios revealed significant association of pyomyositis with HIV, types 1 and 2 diabetes mellitus, hematologic malignancy, organ transplant, malnutrition, chronic kidney disease, obesity, and rheumatoid arthritis. The most commonly identified bacterial diagnosis was Staphylococcus aureus. Pseudomonas species were the most commonly identified gram-negative bacteria. CONCLUSION This nationwide review of pyomyositis in the United States suggests a concerning increase in incidence and provides information on the trends, demographics, risk factors, and causative organisms for pyomyositis in the United States.
Collapse
Affiliation(s)
- Rheanne Maravelas
- Departments of Pediatrics, Adolescent and Internal Medicine, Western Michigan University Homer Stryker School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008, USA.
| | - Thomas A Melgar
- Departments of Pediatrics, Adolescent and Internal Medicine, Western Michigan University Homer Stryker School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008, USA.
| | - Duncan Vos
- Department of Epidemiology and Biostatistics, Western Michigan University Homer Stryker MD School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008, USA.
| | - Neiberg Lima
- Department of Internal Medicine, Western Michigan University Homer Stryker School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008, USA.
| | - Sapna Sadarangani
- National Centre for Infectious Diseases, 16 Jln Tan Tock Seng, 308442, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, 308433, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Dr, Experimental Medicine Building, 636921, Singapore.
| |
Collapse
|
40
|
San JE, Baichoo S, Kanzi A, Moosa Y, Lessells R, Fonseca V, Mogaka J, Power R, de Oliveira T. Current Affairs of Microbial Genome-Wide Association Studies: Approaches, Bottlenecks and Analytical Pitfalls. Front Microbiol 2020; 10:3119. [PMID: 32082269 PMCID: PMC7002396 DOI: 10.3389/fmicb.2019.03119] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial genome-wide association studies (mGWAS) are a new and exciting research field that is adapting human GWAS methods to understand how variations in microbial genomes affect host or pathogen phenotypes, such as drug resistance, virulence, host specificity and prognosis. Several computational tools and methods have been developed or adapted from human GWAS to facilitate the discovery of novel mutations and structural variations that are associated with the phenotypes of interest. However, no comprehensive, end-to-end, user-friendly tool is currently available. The development of a broadly applicable pipeline presents a real opportunity among computational biologists. Here, (i) we review the prominent and promising tools, (ii) discuss analytical pitfalls and bottlenecks in mGWAS, (iii) provide insights into the selection of appropriate tools, (iv) highlight the gaps that still need to be filled and how users and developers can work together to overcome these bottlenecks. Use of mGWAS research can inform drug repositioning decisions as well as accelerate the discovery and development of more effective vaccines and antimicrobials for pressing infectious diseases of global health significance, such as HIV, TB, influenza, and malaria.
Collapse
Affiliation(s)
- James Emmanuel San
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Shakuntala Baichoo
- Department of Digital Technologies, FoICDT, University of Mauritius, Réduit, Mauritius
| | - Aquillah Kanzi
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Yumna Moosa
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Richard Lessells
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Vagner Fonseca
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Laboratório de Genética Celular e Molecular, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - John Mogaka
- Discipline of Public Health, University of Kwazulu-Natal, Durban, South Africa
| | - Robert Power
- St Edmund Hall, Oxford University, Oxford, United Kingdom
| | - Tulio de Oliveira
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
41
|
Giulieri SG, Tong SYC, Williamson DA. Using genomics to understand meticillin- and vancomycin-resistant Staphylococcus aureus infections. Microb Genom 2020; 6:e000324. [PMID: 31913111 PMCID: PMC7067033 DOI: 10.1099/mgen.0.000324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Resistance to meticillin and vancomycin in Staphylococcus aureus significantly complicates the management of severe infections like bacteraemia, endocarditis or osteomyelitis. Here, we review the molecular mechanisms and genomic epidemiology of resistance to these agents, with a focus on how genomics has provided insights into the emergence and evolution of major meticillin-resistant S. aureus clones. We also provide insights on the use of bacterial whole-genome sequencing to inform management of S. aureus infections and for control of transmission at the hospital and in the community.
Collapse
Affiliation(s)
- Stefano G. Giulieri
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Infectious Disease Department, Austin Health, Melbourne, Australia
| | - Steven Y. C. Tong
- Victorian Infectious Disease Service, Royal Melbourne Hospital, and Doherty Department University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
- Menzies School of Health Research, Darwin, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
- Microbiology, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
42
|
Jauneikaite E, Ferguson T, Mosavie M, Fallowfield JL, Davey T, Thorpe N, Allsopp A, Shaw AM, Fudge D, O'Shea MK, Wilson D, Morgan M, Pichon B, Kearns AM, Sriskandan S, Lamb LE. Staphylococcus aureus colonization and acquisition of skin and soft tissue infection among Royal Marines recruits: a prospective cohort study. Clin Microbiol Infect 2019; 26:381.e1-381.e6. [PMID: 31357012 DOI: 10.1016/j.cmi.2019.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/03/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Skin and soft tissue infections (SSTIs) are a serious health issue for military personnel. Of particular importance are those caused by methicillin-resistant Staphylococcus aureus and Panton-Valentine leucocidin (PVL)-positive S. aureus (PVL-SA), as they have been associated with outbreaks of SSTIs. A prospective observational study was conducted in Royal Marine (RM) recruits to investigate the prevalence of PVL-SA carriage and any association with SSTIs. METHODS A total of 1012 RM recruits were followed through a 32-week training programme, with nose and throat swabs obtained at weeks 1, 6, 15 and 32. S. aureus isolates were characterized by antibiotic susceptibility testing, spa typing, presence of mecA/C and PVL genes. Retrospective review of the clinical notes for SSTI acquisition was conducted. RESULTS S. aureus colonization decreased from Week 1 to Week 32 (41% to 26%, p < 0.0001). Of 1168 S. aureus isolates, three out of 1168 (0.3%) were MRSA and ten out of 1168 (0.9%) PVL-positive (all MSSA) and 169 out of 1168 (14.5%) were resistant to clindamycin. Isolates showed genetic diversity with 238 different spa types associated with 25 multi-locus sequence type (MLST) clonal complexes. SSTIs were seen in 35% (351/989) of recruits with 3 training days lost per recruit. SSTI acquisition rate was reduced amongst persistent carriers (p < 0.0283). CONCLUSIONS Nose and throat carriage of MRSA and PVL-SA was low among recruits, despite a high incidence of SSTIs being reported, particularly cellulitis. Carriage strains were predominantly MSSA with a marked diversity of genotypes. Persistent nose and/or throat carriage was not associated with SSTI acquisition. Putative person-to-person transmission within troops was identified based on spa typing requiring further research to confirm and explore potential transmission routes.
Collapse
Affiliation(s)
- E Jauneikaite
- Department of Medicine, Imperial College London, London, UK; NIHR Health Protection Research Unit in Antimicrobial Resistance and Healthcare-associated Infections, Imperial College London, London, UK; Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - T Ferguson
- Department of Medicine, Imperial College London, London, UK
| | - M Mosavie
- Department of Medicine, Imperial College London, London, UK; NIHR Health Protection Research Unit in Antimicrobial Resistance and Healthcare-associated Infections, Imperial College London, London, UK
| | | | - T Davey
- Institute of Naval Medicine, Alverstoke, UK
| | - N Thorpe
- Institute of Naval Medicine, Alverstoke, UK
| | - A Allsopp
- Institute of Naval Medicine, Alverstoke, UK
| | - A M Shaw
- Institute of Naval Medicine, Alverstoke, UK
| | - D Fudge
- Academic Department of Military Medicine, Royal Centre for Defence Medicine (Research and Academia), Birmingham, UK
| | - M K O'Shea
- Academic Department of Military Medicine, Royal Centre for Defence Medicine (Research and Academia), Birmingham, UK; Institute of Microbiology and Infection, The University of Birmingham, Birmingham, UK
| | - D Wilson
- Academic Department of Military Medicine, Royal Centre for Defence Medicine (Research and Academia), Birmingham, UK
| | - M Morgan
- Department of Microbiology, Royal Devon and Exeter Hospital, Exeter, UK
| | - B Pichon
- Healthcare Associated Infections and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
| | - A M Kearns
- Healthcare Associated Infections and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
| | - S Sriskandan
- Department of Medicine, Imperial College London, London, UK; NIHR Health Protection Research Unit in Antimicrobial Resistance and Healthcare-associated Infections, Imperial College London, London, UK
| | - L E Lamb
- Department of Medicine, Imperial College London, London, UK; Academic Department of Military Medicine, Royal Centre for Defence Medicine (Research and Academia), Birmingham, UK; Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|