1
|
Ellison L, Raiser G, Garrido-Peña A, Kemenes G, Nowotny T. SSSort 2.0: A semi-automated spike detection and sorting system for single sensillum recordings. J Neurosci Methods 2025; 415:110351. [PMID: 39709073 DOI: 10.1016/j.jneumeth.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Single-sensillum recordings are a valuable tool for sensory research which, by their nature, access extra-cellular signals typically reflecting the combined activity of several co-housed sensory neurons. However, isolating the contribution of an individual neuron through spike-sorting has remained a major challenge due to firing rate-dependent changes in spike shape and the overlap of co-occurring spikes from several neurons. These challenges have so far made it close to impossible to investigate the responses to more complex, mixed odour stimuli. NEW METHOD Here we present SSSort 2.0, a method and software addressing both problems through automated and semi-automated signal processing. We have also developed a method for more objective validation of spike sorting methods based on generating surrogate ground truth data and we have tested the practical effectiveness of our software in a user study. RESULTS We find that SSSort 2.0 typically matches or exceeds the performance of expert manual spike sorting. We further demonstrate that, for novices, accuracy is much better with SSSort 2.0 under most conditions. CONCLUSION Overall, we have demonstrated that spike-sorting with SSSort 2.0 software can automate data processing of SSRs with accuracy levels comparable to, or above, expert manual performance.
Collapse
Affiliation(s)
- Lydia Ellison
- Sussex Neuroscience, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | | | - Alicia Garrido-Peña
- Dpto. Ingenieria Informatica, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Madrid, 28049, Spain.
| | - György Kemenes
- Sussex Neuroscience, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | - Thomas Nowotny
- Sussex AI, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.
| |
Collapse
|
2
|
Züfle P, Batista LL, Brandão SC, D’Uva G, Daniel C, Martelli C. Impact of developmental temperature on neural growth, connectivity, and function. SCIENCE ADVANCES 2025; 11:eadp9587. [PMID: 39813340 PMCID: PMC11734716 DOI: 10.1126/sciadv.adp9587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Environmental temperature dictates the developmental pace of poikilothermic animals. In Drosophila, slower development at lower temperatures results in higher brain connectivity, but the generality of such scaling across temperatures and brain regions and its impact on function are unclear. Here, we show that brain connectivity scales continuously across temperatures, in agreement with a first-principle model that postulates different metabolic constraints for the growth of the brain and the organism. The model predicts brain wiring under temperature cycles and the nonuniform temporal scaling of neural development across temperatures. Developmental temperature has notable effects on odor-driven behavior. Dissecting the circuit architecture and function of neurons in the olfactory pathway, we demonstrate that developmental temperature does not alter odor encoding in first- and second-order neurons, but it shifts the specificity of connections onto third-order neurons that mediate innate behaviors. We conclude that while some circuit computations are robust to the effects of developmental temperature on wiring, others exhibit phenotypic plasticity with possible adaptive advantages.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlotta Martelli
- Johannes Gutenberg University, Mainz, Germany
- Institute for Quantitative and Computational Biosciences, Mainz, Germany
| |
Collapse
|
3
|
Zhang R, Ng R, Wu ST, Su CY. Targeted deletion of olfactory receptors in D. melanogaster via CRISPR/Cas9-mediated LexA knock-in. J Neurogenet 2024; 38:122-133. [PMID: 39529229 PMCID: PMC11617259 DOI: 10.1080/01677063.2024.2426014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The study of olfaction in Drosophila melanogaster has greatly benefited from genetic reagents such as olfactory receptor mutant lines and GAL4 reporter lines. The CRISPR/Cas9 gene-editing system has been increasingly used to create null receptor mutants or replace coding regions with GAL4 reporters. To further expand this toolkit for manipulating fly olfactory receptor neurons (ORNs), we generated null alleles for 11 different olfactory receptors by using CRISPR/Cas9 to knock in LexA drivers, including multiple lines for receptors which have thus far lacked knock-in mutants. The targeted neuronal types represent a broad range of antennal ORNs from all four morphological sensillum classes. Additionally, we confirmed their loss-of-function phenotypes, assessed receptor haploinsufficiency, and evaluated the specificity of the LexA knock-in drivers. These receptor mutant lines have been deposited at the Bloomington Drosophila Stock Center for use by the broader scientific community.
Collapse
Affiliation(s)
- Runqi Zhang
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Renny Ng
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Shiuan-Tze Wu
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Chih-Ying Su
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| |
Collapse
|
4
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
5
|
Jürgensen AM, Sakagiannis P, Schleyer M, Gerber B, Nawrot MP. Prediction error drives associative learning and conditioned behavior in a spiking model of Drosophila larva. iScience 2024; 27:108640. [PMID: 38292165 PMCID: PMC10824792 DOI: 10.1016/j.isci.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Predicting reinforcement from sensory cues is beneficial for goal-directed behavior. In insect brains, underlying associations between cues and reinforcement, encoded by dopaminergic neurons, are formed in the mushroom body. We propose a spiking model of the Drosophila larva mushroom body. It includes a feedback motif conveying learned reinforcement expectation to dopaminergic neurons, which can compute prediction error as the difference between expected and present reinforcement. We demonstrate that this can serve as a driving force in learning. When combined with synaptic homeostasis, our model accounts for theoretically derived features of acquisition and loss of associations that depend on the intensity of the reinforcement and its temporal proximity to the cue. From modeling olfactory learning over the time course of behavioral experiments and simulating the locomotion of individual larvae toward or away from odor sources in a virtual environment, we conclude that learning driven by prediction errors can explain larval behavior.
Collapse
Affiliation(s)
- Anna-Maria Jürgensen
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Panagiotis Sakagiannis
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology (LIN), Department of Genetics, 39118 Magdeburg, Germany
- Institute for the Advancement of Higher Education, Faculty of Science, Hokkaido University, Sapporo 060-08080, Japan
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN), Department of Genetics, 39118 Magdeburg, Germany
- Institute for Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Brain and Behavioral Sciences (CBBS), Otto-von-Guericke University, 39118 Magdeburg, Germany
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
6
|
Hoffmann A, Couzin-Fuchs E. Active smelling in the American cockroach. J Exp Biol 2023; 226:jeb245337. [PMID: 37750327 PMCID: PMC10651109 DOI: 10.1242/jeb.245337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Motion plays an essential role in sensory acquisition. From changing the position in which information can be acquired to fine-scale probing and active sensing, animals actively control the way they interact with the environment. In olfaction, movement impacts the time and location of odour sampling as well as the flow of odour molecules around the olfactory organs. Employing a detailed spatiotemporal analysis, we investigated how insect antennae interact with the olfactory environment in a species with a well-studied olfactory system - the American cockroach. Cockroaches were tested in a wind-tunnel setup during the presentation of odours with different attractivity levels: colony extract, butanol and linalool. Our analysis revealed significant changes in antennal kinematics when odours were presented, including a shift towards the stream position, an increase in vertical movement and high-frequency local oscillations. Nevertheless, the antennal shifting occurred predominantly in a single antenna while the overall range covered by both antennae was maintained throughout. These findings hold true for both static and moving stimuli and were more pronounced for attractive odours. Furthermore, we found that upon odour encounter, there was an increase in the occurrence of high-frequency antennal sweeps and vertical strokes, which were shown to impact the olfactory environment's statistics directly. Our study lays out a tractable system for exploring the tight coupling between sensing and movement, in which antennal sweeps, in parallel to mammalian sniffing, are actively involved in facilitating odour capture and transport, generating odour intermittency in environments with low air movement where cockroaches dwell.
Collapse
Affiliation(s)
- Antoine Hoffmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- IMPRS for Quantitative Behaviour, Ecology and Evolution, 78315 Radolfzell, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
7
|
Ketkar MD, Shao S, Gjorgjieva J, Silies M. Multifaceted luminance gain control beyond photoreceptors in Drosophila. Curr Biol 2023:S0960-9822(23)00619-X. [PMID: 37285845 DOI: 10.1016/j.cub.2023.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
Animals navigating in natural environments must handle vast changes in their sensory input. Visual systems, for example, handle changes in luminance at many timescales, from slow changes across the day to rapid changes during active behavior. To maintain luminance-invariant perception, visual systems must adapt their sensitivity to changing luminance at different timescales. We demonstrate that luminance gain control in photoreceptors alone is insufficient to explain luminance invariance at both fast and slow timescales and reveal the algorithms that adjust gain past photoreceptors in the fly eye. We combined imaging and behavioral experiments with computational modeling to show that downstream of photoreceptors, circuitry taking input from the single luminance-sensitive neuron type L3 implements gain control at fast and slow timescales. This computation is bidirectional in that it prevents the underestimation of contrasts in low luminance and overestimation in high luminance. An algorithmic model disentangles these multifaceted contributions and shows that the bidirectional gain control occurs at both timescales. The model implements a nonlinear interaction of luminance and contrast to achieve gain correction at fast timescales and a dark-sensitive channel to improve the detection of dim stimuli at slow timescales. Together, our work demonstrates how a single neuronal channel performs diverse computations to implement gain control at multiple timescales that are together important for navigation in natural environments.
Collapse
Affiliation(s)
- Madhura D Ketkar
- Institute of Developmental and Neurobiology, Johannes-Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Shuai Shao
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; Department of Neurophysiology, Radboud University, Heyendaalseweg 135, 6525 EN Nijmegen, the Netherlands
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany.
| | - Marion Silies
- Institute of Developmental and Neurobiology, Johannes-Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany.
| |
Collapse
|
8
|
Jayaram V, Sehdev A, Kadakia N, Brown EA, Emonet T. Temporal novelty detection and multiple timescale integration drive Drosophila orientation dynamics in temporally diverse olfactory environments. PLoS Comput Biol 2023; 19:e1010606. [PMID: 37167321 PMCID: PMC10205008 DOI: 10.1371/journal.pcbi.1010606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/23/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
To survive, insects must effectively navigate odor plumes to their source. In natural plumes, turbulent winds break up smooth odor regions into disconnected patches, so navigators encounter brief bursts of odor interrupted by bouts of clean air. The timing of these encounters plays a critical role in navigation, determining the direction, rate, and magnitude of insects' orientation and speed dynamics. Disambiguating the specific role of odor timing from other cues, such as spatial structure, is challenging due to natural correlations between plumes' temporal and spatial features. Here, we use optogenetics to isolate temporal features of odor signals, examining how the frequency and duration of odor encounters shape the navigational decisions of freely-walking Drosophila. We find that fly angular velocity depends on signal frequency and intermittency-the fraction of time signal can be detected-but not directly on durations. Rather than switching strategies when signal statistics change, flies smoothly transition between signal regimes, by combining an odor offset response with a frequency-dependent novelty-like response. In the latter, flies are more likely to turn in response to each odor hit only when the hits are sparse. Finally, the upwind bias of individual turns relies on a filtering scheme with two distinct timescales, allowing rapid and sustained responses in a variety of signal statistics. A quantitative model incorporating these ingredients recapitulates fly orientation dynamics across a wide range of environments and shows that temporal novelty detection, when combined with odor motion detection, enhances odor plume navigation.
Collapse
Affiliation(s)
- Viraaj Jayaram
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Aarti Sehdev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Nirag Kadakia
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Ethan A. Brown
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Yale College, Yale University, New Haven, Connecticut, United States of America
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
9
|
Kim B, Haney S, Milan AP, Joshi S, Aldworth Z, Rulkov N, Kim AT, Bazhenov M, Stopfer MA. Olfactory receptor neurons generate multiple response motifs, increasing coding space dimensionality. eLife 2023; 12:79152. [PMID: 36719272 PMCID: PMC9925048 DOI: 10.7554/elife.79152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/31/2023] [Indexed: 02/01/2023] Open
Abstract
Odorants binding to olfactory receptor neurons (ORNs) trigger bursts of action potentials, providing the brain with its only experience of the olfactory environment. Our recordings made in vivo from locust ORNs showed that odor-elicited firing patterns comprise four distinct response motifs, each defined by a reliable temporal profile. Different odorants could elicit different response motifs from a given ORN, a property we term motif switching. Further, each motif undergoes its own form of sensory adaptation when activated by repeated plume-like odor pulses. A computational model constrained by our recordings revealed that organizing responses into multiple motifs provides substantial benefits for classifying odors and processing complex odor plumes: each motif contributes uniquely to encode the plume's composition and structure. Multiple motifs and motif switching further improve odor classification by expanding coding dimensionality. Our model demonstrated that these response features could provide benefits for olfactory navigation, including determining the distance to an odor source.
Collapse
Affiliation(s)
- Brian Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
- Brown University - National Institutes of Health Graduate Partnership ProgramProvidenceUnited States
| | - Seth Haney
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Ana P Milan
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Shruti Joshi
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Zane Aldworth
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
| | - Nikolai Rulkov
- Biocircuits Institute, University of California, San DiegoLa JollaUnited States
| | - Alexander T Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
| | - Maxim Bazhenov
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Mark A Stopfer
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
| |
Collapse
|
10
|
Calvin-Cejudo L, Martin F, Mendez LR, Coya R, Castañeda-Sampedro A, Gomez-Diaz C, Alcorta E. Neuron-glia interaction at the receptor level affects olfactory perception in adult Drosophila. iScience 2022; 26:105837. [PMID: 36624835 PMCID: PMC9823236 DOI: 10.1016/j.isci.2022.105837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Some types of glia play an active role in neuronal signaling by modifying their activity although little is known about their role in sensory information signaling at the receptor level. In this research, we report a functional role for the glia that surround the soma of the olfactory receptor neurons (OSNs) in adult Drosophila. Specific genetic modifications have been targeted to this cell type to obtain live individuals who are tested for olfactory preference and display changes both increasing and reducing sensitivity. A closer look at the antenna by Ca2+ imaging shows that odor activates the OSNs, which subsequently produce an opposite and smaller effect in the glia that partially counterbalances neuronal activation. Therefore, these glia may play a dual role in preventing excessive activation of the OSNs at high odorant concentrations and tuning the chemosensory window for the individual according to the network structure in the receptor organ.
Collapse
Affiliation(s)
- Laura Calvin-Cejudo
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Fernando Martin
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Luis R. Mendez
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Ruth Coya
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Ana Castañeda-Sampedro
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Carolina Gomez-Diaz
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Esther Alcorta
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Corresponding author
| |
Collapse
|
11
|
Seenivasan P, Narayanan R. Efficient information coding and degeneracy in the nervous system. Curr Opin Neurobiol 2022; 76:102620. [PMID: 35985074 PMCID: PMC7613645 DOI: 10.1016/j.conb.2022.102620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
Efficient information coding (EIC) is a universal biological framework rooted in the fundamental principle that system responses should match their natural stimulus statistics for maximizing environmental information. Quantitatively assessed through information theory, such adaptation to the environment occurs at all biological levels and timescales. The context dependence of environmental stimuli and the need for stable adaptations make EIC a daunting task. We argue that biological complexity is the principal architect that subserves deft execution of stable EIC. Complexity in a system is characterized by several functionally segregated subsystems that show a high degree of functional integration when they interact with each other. Complex biological systems manifest heterogeneities and degeneracy, wherein structurally different subsystems could interact to yield the same functional outcome. We argue that complex systems offer several choices that effectively implement EIC and homeostasis for each of the different contexts encountered by the system.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India. https://twitter.com/PaveeSeeni
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
12
|
Zanon M, Zanini D, Haase A. All-optical manipulation of the Drosophila olfactory system. Sci Rep 2022; 12:8506. [PMID: 35595846 PMCID: PMC9123005 DOI: 10.1038/s41598-022-12237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Thanks to its well-known neuroanatomy, limited brain size, complex behaviour, and the extensive genetic methods, Drosophila has become an indispensable model in neuroscience. A vast number of studies have focused on its olfactory system and the processing of odour information. Optogenetics is one of the recently developed genetic tools that significantly advance this field of research, allowing to replace odour stimuli by direct neuronal activation with light. This becomes a universal all-optical toolkit when spatially selective optogenetic activation is combined with calcium imaging to read out neuronal responses. Initial experiments showed a successful implementation to study the olfactory system in fish and mice, but the olfactory system of Drosophila has been so far precluded from an application. To fill this gap, we present here optogenetic tools to selectively stimulate functional units in the Drosophila olfactory system, combined with two-photon calcium imaging to read out the activity patterns elicited by these stimuli at different levels of the brain. This method allows to study the spatial and temporal features of the information flow and reveals the functional connectivity in the olfactory network.
Collapse
Affiliation(s)
- Mirko Zanon
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| | - Damiano Zanini
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| |
Collapse
|
13
|
Tao L, Bhandawat V. Mechanisms of Variability Underlying Odor-Guided Locomotion. Front Behav Neurosci 2022; 16:871884. [PMID: 35600988 PMCID: PMC9115574 DOI: 10.3389/fnbeh.2022.871884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Changes in locomotion mediated by odors (odor-guided locomotion) are an important mechanism by which animals discover resources important to their survival. Odor-guided locomotion, like most other behaviors, is highly variable. Variability in behavior can arise at many nodes along the circuit that performs sensorimotor transformation. We review these sources of variability in the context of the Drosophila olfactory system. While these sources of variability are important, using a model for locomotion, we show that another important contributor to behavioral variability is the stochastic nature of decision-making during locomotion as well as the persistence of these decisions: Flies choose the speed and curvature stochastically from a distribution and locomote with the same speed and curvature for extended periods. This stochasticity in locomotion will result in variability in behavior even if there is no noise in sensorimotor transformation. Overall, the noise in sensorimotor transformation is amplified by mechanisms of locomotion making odor-guided locomotion in flies highly variable.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering, Science and Health, Drexel University, Philadelphia, PA, United States
| | - Vikas Bhandawat
- School of Biomedical Engineering, Science and Health, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Jayaram V, Kadakia N, Emonet T. Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes. eLife 2022; 11:e72415. [PMID: 35072625 PMCID: PMC8871351 DOI: 10.7554/elife.72415] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
We and others have shown that during odor plume navigation, walking Drosophila melanogaster bias their motion upwind in response to both the frequency of their encounters with the odor (Demir et al., 2020) and the intermittency of the odor signal, which we define to be the fraction of time the signal is above a detection threshold (Alvarez-Salvado et al., 2018). Here, we combine and simplify previous mathematical models that recapitulated these data to investigate the benefits of sensing both of these temporal features and how these benefits depend on the spatiotemporal statistics of the odor plume. Through agent-based simulations, we find that navigators that only use frequency or intermittency perform well in some environments - achieving maximal performance when gains are near those inferred from experiment - but fail in others. Robust performance across diverse environments requires both temporal modalities. However, we also find a steep trade-off when using both sensors simultaneously, suggesting a strong benefit to modulating how much each sensor is weighted, rather than using both in a fixed combination across plumes. Finally, we show that the circuitry of the Drosophila olfactory periphery naturally enables simultaneous intermittency and frequency sensing, enhancing robust navigation through a diversity of odor environments. Together, our results suggest that the first stage of olfactory processing selects and encodes temporal features of odor signals critical to real-world navigation tasks.
Collapse
Affiliation(s)
- Viraaj Jayaram
- Department of Physics, Yale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Quantitative Biology Institute, Yale UniversityNew HavenUnited States
| | - Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Quantitative Biology Institute, Yale UniversityNew HavenUnited States
| | - Thierry Emonet
- Department of Physics, Yale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Quantitative Biology Institute, Yale UniversityNew HavenUnited States
| |
Collapse
|
15
|
Rozenfeld E, Tauber M, Ben-Chaim Y, Parnas M. GPCR voltage dependence controls neuronal plasticity and behavior. Nat Commun 2021; 12:7252. [PMID: 34903750 PMCID: PMC8668892 DOI: 10.1038/s41467-021-27593-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
G-protein coupled receptors (GPCRs) play a paramount role in diverse brain functions. Almost 20 years ago, GPCR activity was shown to be regulated by membrane potential in vitro, but whether the voltage dependence of GPCRs contributes to neuronal coding and behavioral output under physiological conditions in vivo has never been demonstrated. Here we show that muscarinic GPCR mediated neuronal potentiation in vivo is voltage dependent. This voltage dependent potentiation is abolished in mutant animals expressing a voltage independent receptor. Depolarization alone, without a muscarinic agonist, results in a nicotinic ionotropic receptor potentiation that is mediated by muscarinic receptor voltage dependency. Finally, muscarinic receptor voltage independence causes a strong behavioral effect of increased odor habituation. Together, this study identifies a physiological role for the voltage dependency of GPCRs by demonstrating crucial involvement of GPCR voltage dependence in neuronal plasticity and behavior. Thus, this study suggests that GPCR voltage dependency plays a role in many diverse neuronal functions including learning and memory.
Collapse
Affiliation(s)
- Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Merav Tauber
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Yair Ben-Chaim
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
16
|
Kohn JR, Portes JP, Christenson MP, Abbott LF, Behnia R. Flexible filtering by neural inputs supports motion computation across states and stimuli. Curr Biol 2021; 31:5249-5260.e5. [PMID: 34670114 DOI: 10.1016/j.cub.2021.09.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/10/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023]
Abstract
Sensory systems flexibly adapt their processing properties across a wide range of environmental and behavioral conditions. Such variable processing complicates attempts to extract a mechanistic understanding of sensory computations. This is evident in the highly constrained, canonical Drosophila motion detection circuit, where the core computation underlying direction selectivity is still debated despite extensive studies. Here we measured the filtering properties of neural inputs to the OFF motion-detecting T5 cell in Drosophila. We report state- and stimulus-dependent changes in the shape of these signals, which become more biphasic under specific conditions. Summing these inputs within the framework of a connectomic-constrained model of the circuit demonstrates that these shapes are sufficient to explain T5 responses to various motion stimuli. Thus, our stimulus- and state-dependent measurements reconcile motion computation with the anatomy of the circuit. These findings provide a clear example of how a basic circuit supports flexible sensory computation.
Collapse
Affiliation(s)
- Jessica R Kohn
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Jacob P Portes
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Matthias P Christenson
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - L F Abbott
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Rudy Behnia
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
17
|
Liu Y, Li Q, Tang C, Qin S, Tu Y. Short-Term Plasticity Regulates Both Divisive Normalization and Adaptive Responses in Drosophila Olfactory System. Front Comput Neurosci 2021; 15:730431. [PMID: 34744674 PMCID: PMC8568954 DOI: 10.3389/fncom.2021.730431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
In Drosophila, olfactory information received by olfactory receptor neurons (ORNs) is first processed by an incoherent feed forward neural circuit in the antennal lobe (AL) that consists of ORNs (input), inhibitory local neurons (LNs), and projection neurons (PNs). This “early” olfactory information processing has two important characteristics. First, response of a PN to its cognate ORN is normalized by the overall activity of other ORNs, a phenomenon termed “divisive normalization.” Second, PNs respond strongly to the onset of ORN activities, but they adapt to prolonged or continuously varying inputs. Despite the importance of these characteristics for learning and memory, their underlying mechanisms are not fully understood. Here, we develop a circuit model for describing the ORN-LN-PN dynamics by including key neuron-neuron interactions such as short-term plasticity (STP) and presynaptic inhibition (PI). By fitting our model to experimental data quantitatively, we show that a strong STP balanced between short-term facilitation (STF) and short-term depression (STD) is responsible for the observed nonlinear divisive normalization in Drosophila. Our circuit model suggests that either STP or PI alone can lead to adaptive response. However, by comparing our model results with experimental data, we find that both STP and PI work together to achieve a strong and robust adaptive response. Our model not only helps reveal the mechanisms underlying two main characteristics of the early olfactory process, it can also be used to predict PN responses to arbitrary time-dependent signals and to infer microscopic properties of the circuit (such as the strengths of STF and STD) from the measured input-output relation. Our circuit model may be useful for understanding the role of STP in other sensory systems.
Collapse
Affiliation(s)
- Yuxuan Liu
- School of Physics, Peking University, Beijing, China
| | - Qianyi Li
- Integrated Science Program, Yuanpei College, Peking University, Beijing, China.,Biophysics Graduate Program, Harvard University, Cambridge, MA, United States
| | - Chao Tang
- School of Physics, Peking University, Beijing, China.,Center for Quantitative Biology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shanshan Qin
- Center for Quantitative Biology, Peking University, Beijing, China.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Yuhai Tu
- Physical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, NY, United States
| |
Collapse
|
18
|
Martelli C, Storace DA. Stimulus Driven Functional Transformations in the Early Olfactory System. Front Cell Neurosci 2021; 15:684742. [PMID: 34413724 PMCID: PMC8369031 DOI: 10.3389/fncel.2021.684742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Olfactory stimuli are encountered across a wide range of odor concentrations in natural environments. Defining the neural computations that support concentration invariant odor perception, odor discrimination, and odor-background segmentation across a wide range of stimulus intensities remains an open question in the field. In principle, adaptation could allow the olfactory system to adjust sensory representations to the current stimulus conditions, a well-known process in other sensory systems. However, surprisingly little is known about how adaptation changes olfactory representations and affects perception. Here we review the current understanding of how adaptation impacts processing in the first two stages of the vertebrate olfactory system, olfactory receptor neurons (ORNs), and mitral/tufted cells.
Collapse
Affiliation(s)
- Carlotta Martelli
- Institute of Developmental Biology and Neurobiology, University of Mainz, Mainz, Germany
| | - Douglas Anthony Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
19
|
Breugel FV. Correlated decision making across multiple phases of olfactory guided search in Drosophila improves search efficiency. J Exp Biol 2021; 224:271881. [PMID: 34286337 DOI: 10.1242/jeb.242267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
Nearly all motile organisms must search for food, often requiring multiple phases of exploration across heterogeneous environments. The fruit fly, Drosophila, has emerged as an effective model system for studying this behavior, however, little is known about the extent to which experiences at one point in their search might influence decisions in another. To investigate whether prior experiences impact flies' search behavior after landing, I tracked individually labelled fruit flies as they explored three odor emitting but food-barren objects. I found two features of their behavior that are correlated with the distance they travel on foot. First, flies walked larger distances when they approached the odor source, which they were almost twice as likely to do when landing on the patch farthest downwind. Computational fluid dynamics simulations suggest this patch may have had a stronger baseline odor, but only ∼15% higher than the other two. This small increase, together with flies' high olfactory sensitivity, suggests that perhaps their flight trajectory used to approach the patches plays a role. Second, flies also walked larger distances when the time elapsed since their last visit was longer. However, the correlation is subtle and subject to a large degree of variability. Using agent-based models, I show that this small correlation can increase search efficiency by 25-50% across many scenarios. Furthermore, my models provide mechanistic hypotheses explaining the variability through either a noisy or straightforward decision-making process. Surprisingly, these stochastic decision-making algorithms enhance search efficiency in challenging but realistic search scenarios compared to deterministic strategies.
Collapse
|
20
|
Dolzer J, Schröder K, Stengl M. Cyclic nucleotide-dependent ionic currents in olfactory receptor neurons of the hawkmoth Manduca sexta suggest pull-push sensitivity modulation. Eur J Neurosci 2021; 54:4804-4826. [PMID: 34128265 DOI: 10.1111/ejn.15346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
Olfactory receptor neurons (ORNs) of the hawkmoth Manduca sexta sensitize via cAMP- and adapt via cGMP-dependent mechanisms. Perforated patch clamp recordings distinguished 11 currents in these ORNs. Derivatives of cAMP and/or cGMP antagonistically affected three of five K+ currents and two non-specific cation currents. The Ca2+ -dependent K+ current IK(Ca 2+ ) and the sensitive pheromone-dependent K+ current IK(cGMP-) , which both express fast kinetics, were inhibited by 8bcGMP, while a slow K+ current, IK(cGMP+) , was activated by 8bcGMP. Furthermore, application of 8bcAMP blocked slowly activating, zero mV-reversing, non-specific cation currents, ILL and Icat(PKC?) , which remained activated in the presence of 8bcGMP. Their activations pull the membrane potential towards their 0-mV reversal potentials, in addition to increasing intracellular Ca2+ levels voltage- and ILL -dependently. Twenty minutes after application, 8bcGMP blocked a TEA-independent K+ current, IK(noTEA) , and a fast cation current, Icat(nRP) , which both shift the membrane potential to negative values. We conclude that conditions of sensitization are maintained at high levels of cAMP, via specific opening/closure of ion channels that allow for fast kinetics, hyperpolarized membrane potentials, and low intracellular Ca2+ levels. In contrast, adaptation is supported via cGMP, which antagonizes cAMP, opening Ca2+ -permeable channels with slow kinetics that stabilize depolarized resting potentials. The antagonistic modulation of peripheral sensory neurons by cAMP or cGMP is reminiscent of pull-push mechanisms of neuromodulation at central synapses underlying metaplasticity.
Collapse
Affiliation(s)
- Jan Dolzer
- Biologie, Tierphysiologie, Philipps-Universität Marburg, Marburg, Germany.,Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Katrin Schröder
- Animal Physiology/Neuroethology, Biology, FB 10, University of Kassel, Kassel, Germany
| | - Monika Stengl
- Biologie, Tierphysiologie, Philipps-Universität Marburg, Marburg, Germany.,Institut für Zoologie, Universität Regensburg, Regensburg, Germany.,Animal Physiology/Neuroethology, Biology, FB 10, University of Kassel, Kassel, Germany
| |
Collapse
|
21
|
PKC98E Regulates Odorant Responses in Drosophila melanogaster. J Neurosci 2021; 41:3948-3957. [PMID: 33789918 DOI: 10.1523/jneurosci.3019-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
Drosophila odorant receptors (Ors) are ligand gated ion channels composed of a common receptor subunit Or co-receptor (ORCO) and one of 62 "tuning" receptor subunits that confer odorant specificity to olfactory neuron responses. Like other sensory systems studied to date, exposing Drosophila olfactory neurons to activating ligands results in reduced responses to subsequent exposures through a process called desensitization. We recently showed that phosphorylation of serine 289 on the common Or subunit ORCO is required for normal peak olfactory neuron responses. Dephosphorylation of this residue occurs on prolonged odorant exposure, and underlies the slow modulation of olfactory neuron responses we term "slow desensitization." Slow desensitization results in the reduction of peak olfactory neuron responses and flattening of dose-response curves, implicating changes in ORCOS289 phosphorylation state as an important modulator of olfactory neuron responses. Here, we report the identification of the primary kinase responsible for ORCOS289 phosphorylation, PKC98E. Antiserum localizes the kinase to the dendrites of the olfactory neurons. Deletion of the kinase from olfactory neurons in the naive state (the absence of prolonged odor exposure) reduces ORCOS289 phosphorylation and reduces peak odorant responses without altering receptor localization or expression levels. Genetic rescue with a PKC98E predicted to be constitutively active restores ORCO S289 phosphorylation and olfactory neuron sensitivity to the PKC98E mutants in the naive state. However, the dominant kinase is defective for slow desensitization. Together, these findings reveal that PKC98E is an important regulator of ORCO receptors and olfactory neuron function.SIGNIFICANCE STATEMENT We have identified PKC98E as the kinase responsible for phosphorylation of the odorant receptor co-receptor (ORCO) at S289 that is required for normal odorant response kinetics of olfactory neurons. This is a significant step toward revealing the enzymology underlying the regulation of odorant response regulation in insects.
Collapse
|
22
|
Abstract
The olfactory system translates chemical signals into neuronal signals that inform behavioral decisions of the animal. Odors are cues for source identity, but if monitored long enough, they can also be used to localize the source. Odor representations should therefore be robust to changing conditions and flexible in order to drive an appropriate behavior. In this review, we aim at discussing the main computations that allow robust and flexible encoding of odor information in the olfactory neural pathway.
Collapse
|
23
|
Jafari S, Alenius M. Odor response adaptation in Drosophila-a continuous individualization process. Cell Tissue Res 2021; 383:143-148. [PMID: 33492517 PMCID: PMC7873105 DOI: 10.1007/s00441-020-03384-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/06/2020] [Indexed: 01/26/2023]
Abstract
Olfactory perception is very individualized in humans and also in Drosophila. The process that individualize olfaction is adaptation that across multiple time scales and mechanisms shape perception and olfactory-guided behaviors. Olfactory adaptation occurs both in the central nervous system and in the periphery. Central adaptation occurs at the level of the circuits that process olfactory inputs from the periphery where it can integrate inputs from other senses, metabolic states, and stress. We will here focus on the periphery and how the fast, slow, and persistent (lifelong) adaptation mechanisms in the olfactory sensory neurons individualize the Drosophila olfactory system.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Biology, New York University, New York, NY, USA
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, 901 87, Umeå, SE, Sweden.
| |
Collapse
|
24
|
Muscarinic Modulation of Antennal Lobe GABAergic Local Neurons Shapes Odor Coding and Behavior. Cell Rep 2020; 29:3253-3265.e4. [PMID: 31801087 PMCID: PMC6900217 DOI: 10.1016/j.celrep.2019.10.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/18/2019] [Accepted: 10/29/2019] [Indexed: 11/21/2022] Open
Abstract
In the antennal lobe (AL), the first olfactory relay of Drosophila, excitatory neurons are predominantly cholinergic. Ionotropic nicotinic receptors play a vital role in the effects of acetylcholine in the AL. However, the AL also has a high expression level of metabotropic muscarinic acetylcholine receptors type A (mAChRs-A). Nevertheless, the neurons expressing them and their role in the AL are unknown. Elucidating their function may reveal principles in olfactory modulation. Here, we show that mAChRs-A shape AL output and affect behavior. We localized mAChRs-A effects to a sub-population of GABAergic local neurons (iLNs), where they play a dual role: direct excitation of iLNs and stabilization of the synapse between receptor neurons and iLNs, which undergoes strong short-term depression. Our results reveal modulatory functions of the AL main excitatory neurotransmitter. Striking similarities to the mammalian olfactory system predict that mammalian glutamatergic metabotropic receptors could be associated with similar modulations.
Collapse
|
25
|
Warth Pérez Arias CC, Frosch P, Fiala A, Riemensperger TD. Stochastic and Arbitrarily Generated Input Patterns to the Mushroom Bodies Can Serve as Conditioned Stimuli in Drosophila. Front Physiol 2020; 11:53. [PMID: 32116764 PMCID: PMC7027390 DOI: 10.3389/fphys.2020.00053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 11/18/2022] Open
Abstract
Single neurons in the brains of insects often have individual genetic identities and can be unambiguously identified between animals. The overall neuronal connectivity is also genetically determined and hard-wired to a large degree. Experience-dependent structural and functional plasticity is believed to be superimposed onto this more-or-less fixed connectome. However, in Drosophila melanogaster, it has been shown that the connectivity between the olfactory projection neurons (OPNs) and Kenyon cells, the intrinsic neurons of the mushroom body, is highly stochastic and idiosyncratic between individuals. Ensembles of distinctly and sparsely activated Kenyon cells represent information about the identity of the olfactory input, and behavioral relevance can be assigned to this representation in the course of associative olfactory learning. Previously, we showed that in the absence of any direct sensory input, artificially and stochastically activated groups of Kenyon cells could be trained to encode aversive cues when their activation coincided with aversive stimuli. Here, we have tested the hypothesis that the mushroom body can learn any stochastic neuronal input pattern as behaviorally relevant, independent of its exact origin. We show that fruit flies can learn thermogenetically generated, stochastic activity patterns of OPNs as conditioned stimuli, irrespective of glomerular identity, the innate valence that the projection neurons carry, or inter-hemispheric symmetry.
Collapse
Affiliation(s)
- Carmina Carelia Warth Pérez Arias
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Patrizia Frosch
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Thomas D Riemensperger
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Odor-Induced Multi-Level Inhibitory Maps in Drosophila. eNeuro 2020; 7:ENEURO.0213-19.2019. [PMID: 31888962 PMCID: PMC6957311 DOI: 10.1523/eneuro.0213-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/04/2022] Open
Abstract
Optical imaging of intracellular Ca2+ influx as a correlate of neuronal excitation represents a standard technique for visualizing spatiotemporal activity of neuronal networks. However, the information-processing properties of single neurons and neuronal circuits likewise involve inhibition of neuronal membrane potential. Here, we report spatially resolved optical imaging of odor-evoked inhibitory patterns in the olfactory circuitry of Drosophila using a genetically encoded fluorescent Cl- sensor. In combination with the excitatory component reflected by intracellular Ca2+ dynamics, we present a comprehensive functional map of both odor-evoked neuronal activation and inhibition at different levels of olfactory processing. We demonstrate that odor-evoked inhibition carried by Cl- influx is present both in sensory neurons and second-order projection neurons (PNs), and is characterized by stereotypic, odor-specific patterns. Cl--mediated inhibition features distinct dynamics in different neuronal populations. Our data support a dual role of inhibitory neurons in the olfactory system: global gain control across the neuronal circuitry and glomerulus-specific inhibition to enhance neuronal information processing.
Collapse
|
27
|
Pannunzi M, Nowotny T. Odor Stimuli: Not Just Chemical Identity. Front Physiol 2019; 10:1428. [PMID: 31827441 PMCID: PMC6890726 DOI: 10.3389/fphys.2019.01428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023] Open
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals’ physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|
28
|
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals' physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|