1
|
Formery L, Peluso P, Rank DR, Rokhsar DS, Lowe CJ. Antero-posterior patterning in the brittle star Amphipholis squamata and the evolution of echinoderm body plans. EvoDevo 2025; 16:7. [PMID: 40450286 DOI: 10.1186/s13227-025-00244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/11/2025] [Indexed: 06/03/2025] Open
Abstract
Although the adult pentaradial body plan of echinoderms evolved from a bilateral ancestor, identifying axial homologies between the morphologically divergent echinoderms and their bilaterian relatives has been an enduring problem in zoology. The expression of conserved bilaterian patterning genes in echinoderms provides a molecular framework for resolving this puzzle. Recent studies in juvenile asteroids suggest that the bilaterian antero-posterior axis maps onto the medio-lateral axis of the arms, perpendicular to the proximo-distal axis of each of the five rays of the pentaradial body plan. Here, we test this hypothesis in another echinoderm class, the ophiuroids, using the cosmopolitan brittle star Amphipholis squamata. Our results show that the general principles of axial patterning are similar to those described in asteroids, and comparisons with existing molecular data from other echinoderm taxa support the idea that medio-lateral deployment of the bilaterian AP patterning program across the rays predates the evolution of the asterozoans, and likely the echinoderm crown-group. Our data also reveal expression differences between A. squamata and asteroids, which we attribute to secondary modifications specific to ophiuroids. Together, this work provides important comparative data to reconstruct the evolution of axial properties in echinoderm body plans.
Collapse
Affiliation(s)
- L Formery
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Oceanview Blvd, Pacific Grove, CA, 93950, USA.
- Department of Cell and Molecular Biology, University of California Berkeley, Berkeley, CA, USA.
| | - P Peluso
- Pacific Biosciences, Menlo Park, CA, USA
| | - D R Rank
- Pacific Biosciences, Menlo Park, CA, USA
| | - D S Rokhsar
- Department of Cell and Molecular Biology, University of California Berkeley, Berkeley, CA, USA
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
- Chan Zuckerberg BioHub, San Francisco, CA, USA
| | - C J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Oceanview Blvd, Pacific Grove, CA, 93950, USA.
- Chan Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Klementz BC, Brenneis G, Laumer EM, Neu SM, Harvey MS, Sharma PP. Evolution and homology of leg segments in Chelicerata: Evo-devo solutions to century-old challenges. ARTHROPOD STRUCTURE & DEVELOPMENT 2025; 87:101446. [PMID: 40311600 DOI: 10.1016/j.asd.2025.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 05/03/2025]
Abstract
A major theme in the evolution of Arthropoda is the origin and diversification of jointed appendages. One appealing framework for the evolution of arthropod appendage diversity has long been that a small network of homologous genes in the panarthropod ancestor established and subdivided the proximo-distal (PD) appendage axis, with lineage-specific modifications of these genes' expression domains resulting in novel types of appendages. A corollary of this idea is the inference that each segment in the arthropod leg can be directly homologized to other such segments, based on anatomical or developmental genetic landmarks. Here, we explore the evolution of leg segments in Chelicerata, a group which exhibits marked diversity in leg architecture and number of leg segments, and thereby poses a greater challenge to the exercise of assigning segmental homologies. Focusing on the controversial nomenclature of leg segments in Pycnogonida (sea spiders), we identify potential markers of positional homology in different parts of the sea spider and arachnid PD axis, using comparative gene expression data. Nevertheless, we identify caveats to the use of transcription factor expression domains as landmarks for inference of positional homology, highlighting cases where datasets conflict in homology assignment. We postulate that the utility of gene expression data for inferring homologies is a function of phylogenetic distance.
Collapse
Affiliation(s)
- Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Georg Brenneis
- Unit Integrative Zoologie, Department Evolutionsbiologie, Universität Wien, Vienna, Austria
| | - Ethan M Laumer
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sophie M Neu
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Soule SE, Cabanellas-Reboredo M, González ÁF, Juijn H, Hernández-Urcera J. The Persistence of Memory: Behavioral Analysis and Arm Usage of a Nine-Armed Octopus vulgaris. Animals (Basel) 2025; 15:1034. [PMID: 40218427 PMCID: PMC11987900 DOI: 10.3390/ani15071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Anatomical abnormalities in octopuses, whose behavior is facilitated by flexible, neuron-rich arms, offer insights into life histories and the neurological implications of understudied conditions such as bifurcation. Although documentation is scarce, here we present in situ videos of nine-armed O. vulgaris with a functional bifurcated R1 arm. Analysis using RDAs and GLMs investigated the impact of the bifurcated arm on behavior and examined changes during growth. Analysis revealed a differential usage of between the bifurcated arms in addition to an initial specialization of the bifurcated arms for actions below the body, decreasing over time for only one of the arms as grew. Further, bifurcated and regrown arms were utilized more in safe behaviors than risky ones, with more severely injured arms showing a higher frequency of use in safe behaviors. These findings contribute to the growing knowledge of arm usage in octopuses, suggesting that arm bifurcation may lead to branchial neural differentiation and potentially indicate post-traumatic associated in O. vulgaris.
Collapse
Affiliation(s)
- Sam Ellington Soule
- ECOBIOMAR Research Group, Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Miguel Cabanellas-Reboredo
- Centro Oceanográfico de Illes Balears (COB-IEO), CSIC, Moll de Ponent s/n, 07015 Palma de Mallorca, Spain; (M.C.-R.); (H.J.)
| | - Ángel F. González
- ECOBIOMAR Research Group, Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Hidde Juijn
- Centro Oceanográfico de Illes Balears (COB-IEO), CSIC, Moll de Ponent s/n, 07015 Palma de Mallorca, Spain; (M.C.-R.); (H.J.)
| | - Jorge Hernández-Urcera
- ECOBIOMAR Research Group, Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
4
|
Hale ME. Octopus as a comparative model for understanding the neural control of limb movement and limb-based behaviors. Curr Opin Neurobiol 2025; 91:102982. [PMID: 39986248 DOI: 10.1016/j.conb.2025.102982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Octopuses provide a model system for examining the neural control of limbs. Octopus arms serve in a wide range of limb functions, but their arms' neural anatomy, muscle, and connective tissue structures are strikingly different from those of other model taxa, arthropods, and vertebrates. Unlike those groups, octopus arms contain true nerve cords with diverse neuron populations. Nerve cords of different arms connect to one another at their bases. For the arms' large axial nerve cord, signals pass from one arm to other arms through a connecting nerve ring. While the connection of the arm nervous system to the brain is necessary for behaviors such as locomotion; arm movements can be triggered with naturalistic mechanosensory input to an arm. What we know about biological systems shapes our imagination of the possible; understanding the octopus arm neural control expands how we conceive of limb systems operating in animals and inspires engineered devices.
Collapse
Affiliation(s)
- Melina E Hale
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th St, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Smith FW, Game M, Mapalo MA, Chavarria RA, Harrison TR, Janssen R. Developmental and genomic insight into the origin of the tardigrade body plan. Evol Dev 2024; 26:e12457. [PMID: 37721221 DOI: 10.1111/ede.12457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Tardigrada is an ancient lineage of miniaturized animals. As an outgroup of the well-studied Arthropoda and Onychophora, studies of tardigrades hold the potential to reveal important insights into body plan evolution in Panarthropoda. Previous studies have revealed interesting facets of tardigrade development and genomics that suggest that a highly compact body plan is a derived condition of this lineage, rather than it representing an ancestral state of Panarthropoda. This conclusion was based on studies of several species from Eutardigrada. We review these studies and expand on them by analyzing the publicly available genome and transcriptome assemblies of Echiniscus testudo, a representative of Heterotardigrada. These new analyses allow us to phylogenetically reconstruct important features of genome evolution in Tardigrada. We use available data from tardigrades to interrogate several recent models of body plan evolution in Panarthropoda. Although anterior segments of panarthropods are highly diverse in terms of anatomy and development, both within individuals and between species, we conclude that a simple one-to-one alignment of anterior segments across Panarthropoda is the best available model of segmental homology. In addition to providing important insight into body plan diversification within Panarthropoda, we speculate that studies of tardigrades may reveal generalizable pathways to miniaturization.
Collapse
Affiliation(s)
- Frank W Smith
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Marc A Mapalo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Taylor R Harrison
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Elagoz AM, Van Dijck M, Lassnig M, Seuntjens E. Embryonic development of a centralised brain in coleoid cephalopods. Neural Dev 2024; 19:8. [PMID: 38907272 PMCID: PMC11191162 DOI: 10.1186/s13064-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
The last common ancestor of cephalopods and vertebrates lived about 580 million years ago, yet coleoid cephalopods, comprising squid, cuttlefish and octopus, have evolved an extraordinary behavioural repertoire that includes learned behaviour and tool utilization. These animals also developed innovative advanced defence mechanisms such as camouflage and ink release. They have evolved unique life cycles and possess the largest invertebrate nervous systems. Thus, studying coleoid cephalopods provides a unique opportunity to gain insights into the evolution and development of large centralised nervous systems. As non-model species, molecular and genetic tools are still limited. However, significant insights have already been gained to deconvolve embryonic brain development. Even though coleoid cephalopods possess a typical molluscan circumesophageal bauplan for their central nervous system, aspects of its development are reminiscent of processes observed in vertebrates as well, such as long-distance neuronal migration. This review provides an overview of embryonic coleoid cephalopod research focusing on the cellular and molecular aspects of neurogenesis, migration and patterning. Additionally, we summarize recent work on neural cell type diversity in embryonic and hatchling cephalopod brains. We conclude by highlighting gaps in our knowledge and routes for future research.
Collapse
Affiliation(s)
- Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Marie Van Dijck
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mark Lassnig
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Bayramov AV, Yastrebov SA, Mednikov DN, Araslanova KR, Ermakova GV, Zaraisky AG. Paired fins in vertebrate evolution and ontogeny. Evol Dev 2024; 26:e12478. [PMID: 38650470 DOI: 10.1111/ede.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years. During this time, a number of theories have been proposed, mainly based on morphological data, two of which, the Balfour-Thacher-Mivart lateral fold theory and Gegenbaur's gill arch theory, have not lost their relevance. So far, however, none of the proposed ideas has been supported by decisive evidence. The study of the evolutionary history of the appearance and development of paired appendages lies at the intersection of several disciplines and involves the synthesis of paleontological, morphological, embryological, and genetic data. In this review, we attempt to summarize and discuss the results accumulated in these fields and to analyze the theories put forward regarding the prerequisites and mechanisms that gave rise to paired fins and limbs in vertebrates.
Collapse
Affiliation(s)
- Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Yastrebov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry N Mednikov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Baden T, Briseño J, Coffing G, Cohen-Bodénès S, Courtney A, Dickerson D, Dölen G, Fiorito G, Gestal C, Gustafson T, Heath-Heckman E, Hua Q, Imperadore P, Kimbara R, Król M, Lajbner Z, Lichilín N, Macchi F, McCoy MJ, Nishiguchi MK, Nyholm SV, Otjacques E, Pérez-Ferrer PA, Ponte G, Pungor JR, Rogers TF, Rosenthal JJC, Rouressol L, Rubas N, Sanchez G, Santos CP, Schultz DT, Seuntjens E, Songco-Casey JO, Stewart IE, Styfhals R, Tuanapaya S, Vijayan N, Weissenbacher A, Zifcakova L, Schulz G, Weertman W, Simakov O, Albertin CB. Cephalopod-omics: Emerging Fields and Technologies in Cephalopod Biology. Integr Comp Biol 2023; 63:1226-1239. [PMID: 37370232 PMCID: PMC10755191 DOI: 10.1093/icb/icad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Few animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, and complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single-cell transcriptomics, metagenomics, and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks, and potential solutions. The article highlights the interdisciplinary nature of the cephalopod-omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving field.
Collapse
Affiliation(s)
- Tom Baden
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - John Briseño
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Gabrielle Coffing
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Sophie Cohen-Bodénès
- Laboratoire des Systèmes Perceptifs, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, CNRS, 75005 Paris, France
| | - Amy Courtney
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Dominick Dickerson
- Friday Harbor Laboratory, University of Washington, Seattle, WA 98250, USA
| | - Gül Dölen
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Camino Gestal
- Laboratory of Marine Molecular Pathobiology, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo 36208, Spain
| | | | - Elizabeth Heath-Heckman
- Departments of Integrative Biology and Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaz Hua
- Department of Ecology and Evolution, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Ryosuke Kimbara
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Mirela Król
- Adam Mickiewicz University in Poznań, Poznań 61-712, Poland
| | - Zdeněk Lajbner
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Nicolás Lichilín
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, P.O. Box 129188 Abu Dhabi, United Arab Emirates
| | - Matthew J McCoy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Michele K Nishiguchi
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 N. Lake Blvd., Merced, CA 95343, USA
| | - Spencer V Nyholm
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Eve Otjacques
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Division of Biosphere Sciences and Engineering, Carnegie Institution for Science, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Pedro Antonio Pérez-Ferrer
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 N. Lake Blvd., Merced, CA 95343, USA
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Judit R Pungor
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Thea F Rogers
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Joshua J C Rosenthal
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543-1015, USA
| | - Lisa Rouressol
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Noelle Rubas
- Department of Molecular Biosciences and Bioengineering, University of Hawaii Manoa, Honolulu, HI 96822, USA
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Catarina Pereira Santos
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Darrin T Schultz
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Jeremea O Songco-Casey
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Ian Erik Stewart
- Neural Circuits and Behaviour Lab, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Surangkana Tuanapaya
- Laboratory of genetics and applied breeding of molluscs, Fisheries College, Ocean University of China, Qingdao 266100, China
| | - Nidhi Vijayan
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | | | - Lucia Zifcakova
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | | | - Willem Weertman
- Friday Harbor Laboratory, University of Washington, Seattle, WA 98250, USA
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Caroline B Albertin
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543-1015, USA
| |
Collapse
|
9
|
Hsu JH, Tang NT, Hsu TF, Lin SH, Fang CY, Huang YW, Yang H. Self-Assembly of Hemimyzon Formosanus-Inspired Crescent-Shaped Nanosucker Arrays for Reversible Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56203-56212. [PMID: 38009758 DOI: 10.1021/acsami.3c15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hemimyzon formosanus, a species of ray-finned fish, makes use of crescent-shaped abdominal suckers for adhering to irregular, rough, and slippery gravel in fast-flowing headwaters and minor tributaries. Bioinspired by the adhesion characteristics, two-dimensional non-close-packed colloidal crystals are self-assembled and serve as templates to pattern crescent-shaped shape memory polymer-based nanostructure arrays. By the manipulation of the configuration of nanosuckers through applying common solvent stimulations, the corresponding adhesion performances on glass, sandpaper, or even porcine kidney surfaces can be switched instantaneously and reversibly under ambient conditions. The biomimetic nanostructures indicate possible solutions to a variety of challenges, such as wound nursing, and so on.
Collapse
Affiliation(s)
- Jung-Hsuan Hsu
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Nien-Ting Tang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Ting-Fang Hsu
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Shin-Hua Lin
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Cai-Yin Fang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Yun-Wen Huang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| |
Collapse
|
10
|
Formery L, Peluso P, Kohnle I, Malnick J, Thompson JR, Pitel M, Uhlinger KR, Rokhsar DS, Rank DR, Lowe CJ. Molecular evidence of anteroposterior patterning in adult echinoderms. Nature 2023; 623:555-561. [PMID: 37914929 DOI: 10.1038/s41586-023-06669-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
The origin of the pentaradial body plan of echinoderms from a bilateral ancestor is one of the most enduring zoological puzzles1,2. Because echinoderms are defined by morphological novelty, even the most basic axial comparisons with their bilaterian relatives are problematic. To revisit this classical question, we used conserved anteroposterior axial molecular markers to determine whether the highly derived adult body plan of echinoderms masks underlying patterning similarities with other deuterostomes. We investigated the expression of a suite of conserved transcription factors with well-established roles in the establishment of anteroposterior polarity in deuterostomes3-5 and other bilaterians6-8 using RNA tomography and in situ hybridization in the sea star Patiria miniata. The relative spatial expression of these markers in P. miniata ambulacral ectoderm shows similarity with other deuterostomes, with the midline of each ray representing the most anterior territory and the most lateral parts exhibiting a more posterior identity. Strikingly, there is no ectodermal territory in the sea star that expresses the characteristic bilaterian trunk genetic patterning programme. This finding suggests that from the perspective of ectoderm patterning, echinoderms are mostly head-like animals and provides a developmental rationale for the re-evaluation of the events that led to the evolution of the derived adult body plan of echinoderms.
Collapse
Affiliation(s)
- L Formery
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
| | - P Peluso
- Pacific Biosciences, Menlo Park, CA, USA
| | - I Kohnle
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - J Malnick
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - J R Thompson
- School of Biological Sciences, University of Southampton, Southampton, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - M Pitel
- Columbia Equine Hospital, Gresham, OR, USA
| | - K R Uhlinger
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - D S Rokhsar
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Chan Zuckerberg BioHub, San Francisco, CA, USA
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
| | - D R Rank
- Pacific Biosciences, Menlo Park, CA, USA
| | - C J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Chan Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Barrera Grijalba CC, Rodríguez Monje SV, Gestal C, Wollesen T. Octopod Hox genes and cephalopod plesiomorphies. Sci Rep 2023; 13:15492. [PMID: 37726311 PMCID: PMC10509229 DOI: 10.1038/s41598-023-42435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
Few other invertebrates captivate our attention as cephalopods do. Octopods, cuttlefish, and squids amaze with their behavior and sophisticated body plans that belong to the most intriguing among mollusks. Little is, however, known about their body plan formation and the role of Hox genes. The latter homeobox genes pattern the anterior-posterior body axis and have only been studied in a single decapod species so far. Here, we study developmental Hox and ParaHox gene expression in Octopus vulgaris. Hox genes are expressed in a near-to-staggered fashion, among others in homologous organs of cephalopods such as the stellate ganglia, the arms, or funnel. As in other mollusks Hox1 is expressed in the nascent octopod shell rudiment. While ParaHox genes are expressed in an evolutionarily conserved fashion, Hox genes are also expressed in some body regions that are considered homologous among mollusks such as the cephalopod arms and funnel with the molluscan foot. We argue that cephalopod Hox genes are recruited to a lesser extent into the formation of non-related organ systems than previously thought and emphasize that despite all morphological innovations molecular data still reveal the ancestral molluscan heritage of cephalopods.
Collapse
Affiliation(s)
| | - Sonia Victoria Rodríguez Monje
- Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Camino Gestal
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Tim Wollesen
- Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
12
|
Rouressol L, Briseno J, Vijayan N, Chen GY, Ritschard EA, Sanchez G, Nyholm SV, McFall-Ngai MJ, Simakov O. Emergence of novel genomic regulatory regions associated with light-organ development in the bobtail squid. iScience 2023; 26:107091. [PMID: 37426346 PMCID: PMC10329180 DOI: 10.1016/j.isci.2023.107091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/25/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Light organs (LO) with symbiotic bioluminescent bacteria are hallmarks of many bobtail squid species. These organs possess structural and functional features to modulate light, analogous to those found in coleoid eyes. Previous studies identified four transcription factors and modulators (SIX, EYA, PAX6, DAC) associated with both eyes and light organ development, suggesting co-option of a highly conserved gene regulatory network. Using available topological, open chromatin, and transcriptomic data, we explore the regulatory landscape around the four transcription factors as well as genes associated with LO and shared LO/eye expression. This analysis revealed several closely associated and putatively co-regulated genes. Comparative genomic analyses identified distinct evolutionary origins of these putative regulatory associations, with the DAC locus showing a unique topological and evolutionarily recent organization. We discuss different scenarios of modifications to genome topology and how these changes may have contributed to the evolutionary emergence of the light organ.
Collapse
Affiliation(s)
- Lisa Rouressol
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA 91125, USA
| | - John Briseno
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Nidhi Vijayan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Grischa Y. Chen
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA 91125, USA
| | - Elena A. Ritschard
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, NA, Italy
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Margaret J. McFall-Ngai
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA 91125, USA
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
13
|
Imperadore P, Cagnin S, Allegretti V, Millino C, Raffini F, Fiorito G, Ponte G. Transcriptome-wide selection and validation of a solid set of reference genes for gene expression studies in the cephalopod mollusk Octopus vulgaris. Front Mol Neurosci 2023; 16:1091305. [PMID: 37266373 PMCID: PMC10230085 DOI: 10.3389/fnmol.2023.1091305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/20/2023] [Indexed: 06/03/2023] Open
Abstract
Octopus vulgaris is a cephalopod mollusk and an active marine predator that has been at the center of a number of studies focused on the understanding of neural and biological plasticity. Studies on the machinery involved in e.g., learning and memory, regeneration, and neuromodulation are required to shed light on the conserved and/or unique mechanisms that these animals have evolved. Analysis of gene expression is one of the most essential means to expand our understanding of biological machinery, and the selection of an appropriate set of reference genes is the prerequisite for the quantitative real-time polymerase chain reaction (qRT-PCR). Here we selected 77 candidate reference genes (RGs) from a pool of stable and relatively high-expressed transcripts identified from the full-length transcriptome of O. vulgaris, and we evaluated their expression stabilities in different tissues through geNorm, NormFinder, Bestkeeper, Delta-CT method, and RefFinder. Although various algorithms provided different assemblages of the most stable reference genes for the different kinds of tissues tested here, a comprehensive ranking revealed RGs specific to the nervous system (Ov-RNF7 and Ov-RIOK2) and Ov-EIF2A and Ov-CUL1 across all considered tissues. Furthermore, we validated RGs by assessing the expression profiles of nine target genes (Ov-Naa15, Ov-Ltv1, Ov-CG9286, Ov-EIF3M, Ov-NOB1, Ov-CSDE1, Ov-Abi2, Ov-Homer2, and Ov-Snx20) in different areas of the octopus nervous system (gastric ganglion, as control). Our study allowed us to identify the most extensive set of stable reference genes currently available for the nervous system and appendages of adult O. vulgaris.
Collapse
Affiliation(s)
- Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, Italy
- CIR-Myo Myology Center, University of Padova, Padova, Italy
| | - Vittoria Allegretti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | - Francesca Raffini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
14
|
Kimbara R, Kohtsuka H, Miura T. Differences of Sucker Formation Processes Depending on Benthic or Pelagic Posthatching Lifestyles in Two Octopus Species. THE BIOLOGICAL BULLETIN 2023; 244:82-93. [PMID: 37725699 DOI: 10.1086/726772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
AbstractMorphologies of animal appendages are highly diversified depending on animal lifestyles. In cephalopods (Mollusca, Cephalopoda), an individual possesses multiple arms that contribute to elaborate behaviors, and suckers on them enable various arm functions. In octopus hatchlings, arm and sucker morphologies can be divided into two different types due to alternative posthatching lifestyles, that is, pelagic or benthic lifestyles, although the underlying developmental differences have yet to be elucidated. In this study, therefore, detailed developmental processes of arms and suckers were observed during embryogenesis in two different octopus species, Octopus parvus and Amphioctopus fangsiao, showing pelagic and benthic posthatching lifestyles, respectively. In O. parvus, sucker formation stopped at a relatively early stage in which three suckers on an arm were produced. In addition, at late embryonic stages, cell proliferation was hardly detected in whole arms, while in A. fangsiao, sucker production continued throughout embryogenesis and cell proliferation also remained active in whole arms even in the late stages. Therefore, although further investigations in other octopus species are required, it is suggested that in octopus evolution, the developmental program of suckers has been modified in accordance with the acquisition of a novel lifestyle.
Collapse
|
15
|
De Sio F, Imperadore P. Deciphering regeneration through non-model animals: A century of experiments on cephalopod mollusks and an outlook at the future. Front Cell Dev Biol 2023; 10:1072382. [PMID: 36699008 PMCID: PMC9868252 DOI: 10.3389/fcell.2022.1072382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The advent of marine stations in the last quarter of the 19th Century has given biologists the possibility of observing and experimenting upon myriad marine organisms. Among them, cephalopod mollusks have attracted great attention from the onset, thanks to their remarkable adaptability to captivity and a great number of biologically unique features including a sophisticate behavioral repertoire, remarkable body patterning capacities under direct neural control and the complexity of nervous system rivalling vertebrates. Surprisingly, the capacity to regenerate tissues and complex structures, such as appendages, albeit been known for centuries, has been understudied over the decades. Here, we will first review the limited in number, but fundamental studies on the subject published between 1920 and 1970 and discuss what they added to our knowledge of regeneration as a biological phenomenon. We will also speculate on how these relate to their epistemic and disciplinary context, setting the base for the study of regeneration in the taxon. We will then frame the peripherality of cephalopods in regeneration studies in relation with their experimental accessibility, and in comparison, with established models, either simpler (such as planarians), or more promising in terms of translation (urodeles). Last, we will explore the potential and growing relevance of cephalopods as prospective models of regeneration today, in the light of the novel opportunities provided by technological and methodological advances, to reconsider old problems and explore new ones. The recent development of cutting-edge technologies made available for cephalopods, like genome editing, is allowing for a number of important findings and opening the way toward new promising avenues. The contribution offered by cephalopods will increase our knowledge on regenerative mechanisms through cross-species comparison and will lead to a better understanding of the complex cellular and molecular machinery involved, shedding a light on the common pathways but also on the novel strategies different taxa evolved to promote regeneration of tissues and organs. Through the dialogue between biological/experimental and historical/contextual perspectives, this article will stimulate a discussion around the changing relations between availability of animal models and their specificity, technical and methodological developments and scientific trends in contemporary biology and medicine.
Collapse
Affiliation(s)
- Fabio De Sio
- Heinrich Heine Universität, Institut für Geschichte, Theorie und Ethik der Medizin, Centre for Health and Society, Medizinische Fakultät, Düsseldorf, Germany,*Correspondence: Fabio De Sio, ; Pamela Imperadore, ,
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy,Association for Cephalopod Research—CephRes, Napoli, Italy,*Correspondence: Fabio De Sio, ; Pamela Imperadore, ,
| |
Collapse
|
16
|
Cavallo A, Clark MS, Peck LS, Harper EM, Sleight VA. Evolutionary conservation and divergence of the transcriptional regulation of bivalve shell secretion across life-history stages. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221022. [PMID: 36569229 PMCID: PMC9768464 DOI: 10.1098/rsos.221022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Adult molluscs produce shells with diverse morphologies and ornamentations, different colour patterns and microstructures. The larval shell, however, is a phenotypically more conserved structure. How do developmental and evolutionary processes generate varying diversity at different life-history stages within a species? Using live imaging, histology, scanning electron microscopy and transcriptomic profiling, we have described shell development in a heteroconchian bivalve, the Antarctic clam, Laternula elliptica, and compared it to adult shell secretion processes in the same species. Adult downstream shell genes, such as those encoding extracellular matrix proteins and biomineralization enzymes, were largely not expressed during shell development. Instead, a development-specific downstream gene repertoire was expressed. Upstream regulatory genes such as transcription factors and signalling molecules were largely conserved between developmental and adult shell secretion. Comparing heteroconchian data with recently reported pteriomorphian larval shell development data suggests that, despite being phenotypically more conserved, the downstream effectors constituting the larval shell 'tool-kit' may be as diverse as that of adults. Overall, our new data suggest that a larval shell formed using development-specific downstream effector genes is a conserved and ancestral feature of the bivalve lineage, and possibly more broadly across the molluscs.
Collapse
Affiliation(s)
- Alessandro Cavallo
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Melody S. Clark
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Lloyd S. Peck
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Elizabeth M. Harper
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Victoria A. Sleight
- Biodiversity, Evolution and Adaptation Team, British Antarctic Survey, Cambridge CB3 0ET, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| |
Collapse
|
17
|
Platova S, Poliushkevich L, Kulakova M, Nesterenko M, Starunov V, Novikova E. Gotta Go Slow: Two Evolutionarily Distinct Annelids Retain a Common Hedgehog Pathway Composition, Outlining Its Pan-Bilaterian Core. Int J Mol Sci 2022; 23:ijms232214312. [PMID: 36430788 PMCID: PMC9695228 DOI: 10.3390/ijms232214312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.
Collapse
Affiliation(s)
- Sofia Platova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | | | - Milana Kulakova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| | | | - Viktor Starunov
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Elena Novikova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| |
Collapse
|
18
|
Brachiopod and mollusc biomineralisation is a conserved process that was lost in the phoronid-bryozoan stem lineage. EvoDevo 2022; 13:17. [PMID: 36123753 PMCID: PMC9484238 DOI: 10.1186/s13227-022-00202-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brachiopods and molluscs are lophotrochozoans with hard external shells which are often believed to have evolved convergently. While palaeontological data indicate that both groups are descended from biomineralising Cambrian ancestors, the closest relatives of brachiopods, phoronids and bryozoans, are mineralised to a much lower extent and are comparatively poorly represented in the Palaeozoic fossil record. Although brachiopod and mollusc shells are structurally analogous, genomic and proteomic evidence indicates that their formation involves a complement of conserved, orthologous genes. Here, we study a set of genes comprised of 3 homeodomain transcription factors, one signalling molecule and 6 structural proteins which are implicated in mollusc and brachiopod shell formation, search for their orthologs in transcriptomes or genomes of brachiopods, phoronids and bryozoans, and present expression patterns of 8 of the genes in postmetamorphic juveniles of the rhynchonelliform brachiopod T. transversa. RESULTS Transcriptome and genome searches for the 10 target genes in the brachiopods Terebratalia transversa, Lingula anatina, Novocrania anomala, the bryozoans Bugula neritina and Membranipora membranacea, and the phoronids Phoronis australis and Phoronopsis harmeri resulted in the recovery of orthologs of the majority of the genes in all taxa. While the full complement of genes was present in all brachiopods with a single exception in L. anatina, a bloc of four genes could consistently not be retrieved from bryozoans and phoronids. The genes engrailed, distal-less, ferritin, perlucin, sp1 and sp2 were shown to be expressed in the biomineralising mantle margin of T. transversa juveniles. CONCLUSIONS The gene expression patterns we recovered indicate that while mineralised shells in brachiopods and molluscs are structurally analogous, their formation builds on a homologous process that involves a conserved complement of orthologous genes. Losses of some of the genes related to biomineralisation in bryozoans and phoronids indicate that loss of the capacity to form mineralised structures occurred already in the phoronid-bryozoan stem group and supports the idea that mineralised skeletons evolved secondarily in some of the bryozoan subclades.
Collapse
|
19
|
Rallis J, Pavlopoulos A. Cellular basis of limb morphogenesis. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100887. [PMID: 35150918 DOI: 10.1016/j.cois.2022.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
How the size and shape of developing tissues is encoded in the genome has been a longstanding riddle for biologists. Constituent cells integrate several genetic and mechanical signals to decide whether to divide, die, change shape or position. We review here how morphogenetic cell behaviors contribute to leg formation from imaginal disc epithelia in the insect Drosophila melanogaster, as well as to direct embryonic limb outgrowths in the non-insect pancrustacean Parhyale hawaiensis. Considering the deep conservation of developmental programs for limb patterning among arthropods and other bilaterians, moving forward, it will be exciting to see how these genetic similarities reflect at the cellular and tissue mechanics level.
Collapse
Affiliation(s)
- John Rallis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece; Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Anastasios Pavlopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
20
|
Neal S, McCulloch KJ, Napoli FR, Daly CM, Coleman JH, Koenig KM. Co-option of the limb patterning program in cephalopod eye development. BMC Biol 2022; 20:1. [PMID: 34983491 PMCID: PMC8728989 DOI: 10.1186/s12915-021-01182-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/02/2021] [Indexed: 12/01/2022] Open
Abstract
Background Across the Metazoa, similar genetic programs are found in the development of analogous, independently evolved, morphological features. The functional significance of this reuse and the underlying mechanisms of co-option remain unclear. Cephalopods have evolved a highly acute visual system with a cup-shaped retina and a novel refractive lens in the anterior, important for a number of sophisticated behaviors including predation, mating, and camouflage. Almost nothing is known about the molecular-genetics of lens development in the cephalopod. Results Here we identify the co-option of the canonical bilaterian limb patterning program during cephalopod lens development, a functionally unrelated structure. We show radial expression of transcription factors SP6-9/sp1, Dlx/dll, Pbx/exd, Meis/hth, and a Prdl homolog in the squid Doryteuthis pealeii, similar to expression required in Drosophila limb development. We assess the role of Wnt signaling in the cephalopod lens, a positive regulator in the developing Drosophila limb, and find the regulatory relationship reversed, with ectopic Wnt signaling leading to lens loss. Conclusion This regulatory divergence suggests that duplication of SP6-9 in cephalopods may mediate the co-option of the limb patterning program. Thus, our study suggests that this program could perform a more universal developmental function in radial patterning and highlights how canonical genetic programs are repurposed in novel structures. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01182-2.
Collapse
Affiliation(s)
- Stephanie Neal
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kyle J McCulloch
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Francesca R Napoli
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Christina M Daly
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - James H Coleman
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kristen M Koenig
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA. .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
21
|
Laurichesse Q, Moucaud B, Laddada L, Renaud Y, Jagla K, Soler C. Transcriptomic and Genetic Analyses Identify the Krüppel-Like Factor Dar1 as a New Regulator of Tube-Shaped Long Tendon Development. Front Cell Dev Biol 2021; 9:747563. [PMID: 34977007 PMCID: PMC8716952 DOI: 10.3389/fcell.2021.747563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
To ensure locomotion and body stability, the active role of muscle contractions relies on a stereotyped muscle pattern set in place during development. This muscle patterning requires a precise assembly of the muscle fibers with the skeleton via a specialized connective tissue, the tendon. Like in vertebrate limbs, Drosophila leg muscles make connections with specific long tendons that extend through different segments. During the leg disc development, cell precursors of long tendons rearrange and collectively migrate to form a tube-shaped structure. A specific developmental program underlies this unique feature of tendon-like cells in the Drosophila model. We provide for the first time a transcriptomic profile of leg tendon precursors through fluorescence-based cell sorting. From promising candidates, we identified the Krüppel-like factor Dar1 as a critical actor of leg tendon development. Specifically expressed in the leg tendon precursors, loss of dar1 disrupts actin-rich filopodia formation and tendon elongation. Our findings show that Dar1 acts downstream of Stripe and is required to set up the correct number of tendon progenitors.
Collapse
|
22
|
Temereva E, Rimskaya-Korsakova N, Dyachuk V. Detailed morphology of tentacular apparatus and central nervous system in Owenia borealis (Annelida, Oweniidae). ZOOLOGICAL LETTERS 2021; 7:15. [PMID: 34865650 PMCID: PMC8647411 DOI: 10.1186/s40851-021-00182-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The Oweniidae are marine annelids with many unusual features of organ system, development, morphology, and ultrastructure. Together with magelonids, oweniids have been placed within the Palaeoannelida, a sister group to all remaining annelids. The study of this group may increase our understanding of the early evolution of annelids (including their radiation and diversification). In the current research, the morphology and ulta-anatomy of the head region of Owenia borealis is studied by scanning electron microscopy (SEM), 3D reconstructions, transmission electron microscopy (TEM), and whole-mount immunostaining with confocal laser scanning microscopy. According to SEM, the tentacle apparatus consists of 8-14 branched arms, which are covered by monociliary cells that form a ciliary groove extending along the oral side of the arm base. Each tentacle contains a coelomic cavity with a network of blood capillaries. Monociliary myoepithelial cells of the tentacle coelomic cavity form both the longitudinal and the transverse muscles. The structure of this myoepithelium is intermediate between a simple and pseudo-stratified myoepithelium. Overall, tentacles lack prominent zonality, i.e., co-localization of ciliary zones, neurite bundles, and muscles. This organization, which indicates a non-specialized tentacle crown in O. borealis and other oweniids with tentacles, may be ancestral for annelids. TEM, light, and confocal laser scanning microscopy revealed that the head region contains the anterior nerve center comprising of outer and inner (=circumoral) nerve rings. Both nerve rings are organized as concentrated nerve plexus, which contains perikarya and neurites extending between basal projections of epithelial cells (radial glia). The outer nerve ring gives rise to several thick neurite bundles, which branch and extend along aboral side of each tentacle. Accordingly to their immunoreactivity, both rings of the anterior nerve center could be homologized with the dorsal roots of circumesophageal connectives of the typical annelids. Accordingly to its ultrastructure, the outer nerve ring of O. borealis and so-called brain of other oweniids can not be regarded as a typical brain, i.e. the most anterior ganglion, because it lacks ganglionic structure.
Collapse
Affiliation(s)
- Elena Temereva
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Lomonosov State University, Leninskie Gory 1, bld. 12, Moscow, 119992 Russia
| | - Nadezhda Rimskaya-Korsakova
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Lomonosov State University, Leninskie Gory 1, bld. 12, Moscow, 119992 Russia
| | - Vyacheslav Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| |
Collapse
|
23
|
Kimbara R, Kohtsuka H, Abe S, Oguchi K, Miura T. Sucker formation in a bigfin reef squid: Comparison between arms and tentacles. J Morphol 2021; 283:149-163. [PMID: 34860433 DOI: 10.1002/jmor.21434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022]
Abstract
Cephalopods have acquired numerous novelties and expanded their habitats to various marine environments as highly agile predators. Among cephalopod novelties, multiple arms are used for complex behaviors, including prey capture. Suckers on arms are innovative features for realizing these arm functions. In addition, tentacles in Decapodiformes (squids and cuttlefishes) are arms specialized in prey capture and tentacular suckers show unique morphologies. However, little is known about the developmental process of sucker formation that should differ between tentacles and other arms. In this study, therefore, sucker formation processes on second arms and tentacles were observed and compared in a bigfin reef squid, Sepioteuthis lessoniana, to reveal the developmental processes forming the unique sucker morphologies, especially in tentacles. Morphological and histological observations of suckers during embryogenesis showed that, in second arms, the sucker-producing area appeared at the most distal part. At the most proximal side of the sucker-producing area, new sucker buds were isolated by invagination of the epithelial tissue. At the proximal arm parts, suckers with functional structures were observed. In tentacles, although the basic sucker formation pattern was similar to that in second arms, sucker formation started at earlier embryonic stages and the number of suckers was drastically increased compared to that in second arms. In addition, although four sucker rows were observed at the tentacular club, that is, the thickest part of a tentacle, our observations suggested that two sets of two sucker rows are compressed to form the four rows. Therefore, the sucker-formation processes are temporally and spatially different between arms and tentacles. In addition, S. lessoniana shows conserved and unique patterns of sucker formation in comparison with previously described species, suggesting that sucker formation patterns were diversified among Decapodiformes lineages.
Collapse
Affiliation(s)
- Ryosuke Kimbara
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Japan
| | - Hisanori Kohtsuka
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Japan
| | - Sou Abe
- Yokohama Hakkeijima Sea Paradise, Yokohama, Japan
| | - Kohei Oguchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Japan.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Japan
| |
Collapse
|
24
|
Conserved Mechanisms, Novel Anatomies: The Developmental Basis of Fin Evolution and the Origin of Limbs. DIVERSITY 2021. [DOI: 10.3390/d13080384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transformation of paired fins into tetrapod limbs is one of the most intensively scrutinized events in animal evolution. Early anatomical and embryological datasets identified distinctive morphological regions within the appendage and posed hypotheses about how the loss, gain, and transformation of these regions could explain the observed patterns of both extant and fossil appendage diversity. These hypotheses have been put to the test by our growing understanding of patterning mechanisms that regulate formation of the appendage axes, comparisons of gene expression data from an array of phylogenetically informative taxa, and increasingly sophisticated and elegant experiments leveraging the latest molecular approaches. Together, these data demonstrate the remarkable conservation of developmental mechanisms, even across phylogenetically and morphologically disparate taxa, as well as raising new questions about the way we view homology, evolutionary novelty, and the often non-linear connection between morphology and gene expression. In this review, we present historical hypotheses regarding paired fin evolution and limb origins, summarize key aspects of central appendage patterning mechanisms in model and non-model species, address how modern comparative developmental data interface with our understanding of appendage anatomy, and highlight new approaches that promise to provide new insight into these well-traveled questions.
Collapse
|
25
|
Cotoras DD, Castanheira PDS, Sharma PP. Implications of a cheliceral axial duplication in Tetragnatha versicolor (Araneae: Tetragnathidae) for arachnid deuterocerebral appendage development. Dev Genes Evol 2021; 231:131-139. [PMID: 34125284 DOI: 10.1007/s00427-021-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
The homology of the arachnid chelicera with respect to other head appendages in Panarthropoda has long been debated. Gene expression data and the re-interpretation of early transitional fossils have supported the homology of the deutocerebrum and its associated appendages, implying a homology between primary antennae (mandibulates), chelicerae (euchelicerates), and chelifores (sea spiders). Nevertheless, comparatively little is known about the mechanistic basis of proximo-distal (PD) axis induction in chelicerates, much less the basis for cheliceral fate specification. Here, we describe a new cheliceral teratology in the spider Tetragnatha versicolor Walckenaer, 1841, which consists on a duplication of the PD axis of the left chelicera associated with a terminal secondary schistomely on the fang of the lower axis. This duplication offers clues as to potential shared mechanisms of PD axis formation in the chelicera. We review the state of knowledge on PD axis induction mechanisms in arthropods and identify elements of gene regulatory networks that are key for future functional experiments of appendage development in non-insect model systems. Such investigations would allow a better understanding of PD axis induction of modified and poorly studied arthropod limbs (e.g., chelicerae, chelifores, and ovigers).
Collapse
Affiliation(s)
- Darko D Cotoras
- Entomology Department, California Academy of Sciences, 55 Music Concourse Dr., Golden Gate Park, San Francisco, CA, 94118, USA.
| | - Pedro de S Castanheira
- Laboratório de Diversidade de Aracnídeos, Universidade do Brasil/Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Ilha do Fundão, Rio de Janeiro, Brazil.,Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Western Australia, 6150, Australia
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 441 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
26
|
Montague TG, Rieth IJ, Axel R. Embryonic development of the camouflaging dwarf cuttlefish, Sepia bandensis. Dev Dyn 2021; 250:1688-1703. [PMID: 34028136 DOI: 10.1002/dvdy.375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The dwarf cuttlefish Sepia bandensis, a camouflaging cephalopod from the Indo-Pacific, is a promising new model organism for neuroscience, developmental biology, and evolutionary studies. Cuttlefish dynamically camouflage to their surroundings by altering the color, pattern, and texture of their skin. The skin's "pixels" (chromatophores) are controlled by motor neurons projecting from the brain. Thus, camouflage is a visible representation of neural activity. In addition to camouflage, the dwarf cuttlefish uses dynamic skin patterns for social communication. Despite more than 500 million years of evolutionary separation, cuttlefish and vertebrates converged to form limbs, camera-type eyes and a closed circulatory system. Moreover, cuttlefish have a striking ability to regenerate their limbs. Interrogation of these unique biological features will benefit from the development of a new set of tools. Dwarf cuttlefish reach sexual maturity in 4 months, they lay dozens of eggs over their 9-month lifespan, and the embryos develop to hatching in 1 month. RESULTS Here, we describe methods to culture dwarf cuttlefish embryos in vitro and define 25 stages of cuttlefish development. CONCLUSION This staging series serves as a foundation for future technologies that can be used to address a myriad of developmental, neurobiological, and evolutionary questions.
Collapse
Affiliation(s)
- Tessa G Montague
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, USA.,Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | - Isabelle J Rieth
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, USA
| | - Richard Axel
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, USA.,Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| |
Collapse
|
27
|
McCulloch KJ, Koenig KM. Krüppel-like factor/specificity protein evolution in the Spiralia and the implications for cephalopod visual system novelties. Proc Biol Sci 2020; 287:20202055. [PMID: 33081641 PMCID: PMC7661307 DOI: 10.1098/rspb.2020.2055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cephalopod visual system is an exquisite example of convergence in biological complexity. However, we have little understanding of the genetic and molecular mechanisms underpinning its elaboration. The generation of new genetic material is considered a significant contributor to the evolution of biological novelty. We sought to understand if this mechanism may be contributing to cephalopod-specific visual system novelties. Specifically, we identified duplications in the Krüppel-like factor/specificity protein (KLF/SP) sub-family of C2H2 zinc-finger transcription factors in the squid Doryteuthis pealeii. We cloned and analysed gene expression of the KLF/SP family, including two paralogs of the DpSP6-9 gene. These duplicates showed overlapping expression domains but one paralog showed unique expression in the developing squid lens, suggesting a neofunctionalization of DpSP6-9a. To better understand this neofunctionalization, we performed a thorough phylogenetic analysis of SP6-9 orthologues in the Spiralia. We find multiple duplications and losses of the SP6-9 gene throughout spiralian lineages and at least one cephalopod-specific duplication. This work supports the hypothesis that gene duplication and neofunctionalization contribute to novel traits like the cephalopod image-forming eye and to the diversity found within Spiralia.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA 02138, USA.,John Harvard Distinguished Science Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA 02138, USA.,John Harvard Distinguished Science Fellows, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Abstract
Background Morphological novelties have been acquired through evolutionary processes and related to the adaptation of new life-history strategies with new functions of the bodyparts. Cephalopod molluscs such as octopuses, squids and cuttlefishes possess unique morphological characteristics. Among those novel morphologies, in particular, suckers arranged along the oral side of each arm possess multiple functions, such as capturing prey and locomotion, so that the sucker morphology is diversified among species, depending on their ecological niche. However, the detailed developmental process of sucker formation has remained unclear, although it is known that new suckers are formed or added during both embryonic and postembryonic development. In the present study, therefore, focusing on two cuttlefish species, Sepia esculenta and S. lycidas, in which the sucker morphology is relatively simple, morphological and histological observations were carried out during embryonic and postembryonic development to elucidate the developmental process of sucker formation and to compare them among other cephalopod species. Results The observations in both species clearly showed that the newly formed suckers were added on the oral side of the most distal tip of each arm during embryonic and postembryonic development. On the oral side of the arm tip, the epithelial tissue became swollen to form a ridge along the proximal-distal axis (sucker field ridge). Next to the sucker field ridge, there were small dome-shaped bulges that are presumed to be the sucker buds. Toward the proximal direction, the buds became functional suckers, in which the inner tissues differentiated to form the complex sucker structures. During postembryonic development, on both sides of the sucker field ridge, epithelial tissues extended to form a sheath, covering the ridge for protection of undifferentiated suckers. Conclusions The developmental process of sucker formation, in which sucker buds are generated from a ridge structure (sucker field ridge) on the oral side at the distal-most arm tip, was shared in both cuttlefish species, although some minor heterochronic shifts of the developmental events were detected between the two species. (325 words)
Collapse
|
29
|
Game M, Smith FW. Loss of intermediate regions of perpendicular body axes contributed to miniaturization of tardigrades. Proc Biol Sci 2020; 287:20201135. [PMID: 33043863 DOI: 10.1098/rspb.2020.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tardigrades have a miniaturized body plan. Miniaturization in tardigrades is associated with the loss of several organ systems and an intermediate region of their anteroposterior (AP) axis. However, how miniaturization has affected tardigrade legs is unclear. In arthropods and in onychophorans, the leg gap genes are expressed in regionalized proximodistal (PD) patterns in the legs. Functional studies indicate that these genes regulate growth in their respective expression domains and establish PD identities, partly through mutually antagonistic regulatory interactions. Here, we investigated the expression patterns of tardigrade orthologs of the leg gap genes. Rather than being restricted to a proximal leg region, as in arthropods and onychophorans, we detected coexpression of orthologues of homothorax and extradenticle broadly across the legs of the first three trunk segments in the tardigrade Hypsibius exemplaris. We could not identify a dachshund orthologue in tardigrade genomes, a gene that is expressed in an intermediate region of developing legs in arthropods and onychophorans, suggesting that this gene was lost in the tardigrade lineage. We detected Distal-less expression broadly across all developing leg buds in H. exemplaris embryos, unlike in arthropods and onychophorans, in which it exhibits a distally restricted expression domain. The broad expression patterns of the remaining leg gap genes in H. exemplaris legs may reflect the loss of dachshund and the accompanying loss of an intermediate region of the legs in the tardigrade lineage. We propose that the loss of intermediate regions of both the AP and PD body axes contributed to miniaturization of Tardigrada.
Collapse
Affiliation(s)
- Mandy Game
- Biology Department, University of North Florida, USA
| | - Frank W Smith
- Biology Department, University of North Florida, USA
| |
Collapse
|
30
|
Batson PB, Tamberg Y, Taylor PD, Gordon DP, Smith AM. Skeletal resorption in bryozoans: occurrence, function and recognition. Biol Rev Camb Philos Soc 2020; 95:1341-1371. [PMID: 32558290 DOI: 10.1111/brv.12613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/30/2022]
Abstract
Skeletal resorption - the physiological removal of mineralised parts by an organism - is an important morphogenetic process in bryozoans. Reports of its occurrence and function across the phylum are patchy, however, and have not previously been synthesised. Here we show that resorption occurs routinely across a wide range of bryozoan clades, colony sizes, growth forms, ontogenetic stages, body wall types, skeletal ultrastructures and mineralogies. Beginning in the early Paleozoic, different modes and functions of resorption have evolved convergently among disparate groups, highlighting its utility as a morphogenetic mode in this phylum. Its functions include branch renovation, formation of branch articulations, excavation of reproductive chambers, part-shedding, and creation of access portals for budding beyond previously formed skeletal walls. Bryozoan skeletons can be altered by resorption at microscopic, zooidal and colony-wide scales, typically with a fine degree of control and coordination. We classified resorption patterns in bryozoans according to the morphology and function of the resorption zone (window formation, abscission or excavation), timing within the life of the skeletal element resorbed (primary or secondary), and scale of operation (zooidal or multizooidal). Skeletal resorption is probably greatly underestimated in terms of its utility and role in bryozoan life history, and its prevalence across taxa, especially in fossil forms. It is reported proportionally more frequently in stenolaemates than in gymnolaemates. Some modes of resorption potentially alter or remove the spatial-temporal record of calcification preserved within a skeleton. Consequently, knowledge that resorption has occurred can be relevant for some common applications of skeletal analysis, such as palaeoenvironmental interpretation, or growth and ageing studies. To aid recognition we provide scanning electron microscopy, backscattered electron scanning electron microscopy and transmission electron microscopy examples of skeletal ultrastuctures modified by resorption.
Collapse
Affiliation(s)
- Peter B Batson
- Department of Marine Science, University of Otago, 310 Castle Street, Dunedin, 9054, New Zealand
| | - Yuta Tamberg
- Department of Marine Science, University of Otago, 310 Castle Street, Dunedin, 9054, New Zealand
| | - Paul D Taylor
- Departments of Earth & Life Sciences , Natural History Museum, Cromwell Road, London, SW7 5BD, U.K
| | - Dennis P Gordon
- NIWA, Private Bag 14901, Kilbirnie, Wellington, 6241, New Zealand
| | - Abigail M Smith
- Department of Marine Science, University of Otago, 310 Castle Street, Dunedin, 9054, New Zealand
| |
Collapse
|
31
|
Abstract
Snails, earthworms and flatworms are remarkably different animals, but they all exhibit a very similar mode of early embryogenesis: spiral cleavage. This is one of the most widespread developmental programs in animals, probably ancestral to almost half of the animal phyla, and therefore its study is essential for understanding animal development and evolution. However, our knowledge of spiral cleavage is still in its infancy. Recent technical and conceptual advances, such as the establishment of genome editing and improved phylogenetic resolution, are paving the way for a fresher and deeper look into this fascinating early cleavage mode.
Collapse
Affiliation(s)
- José M Martín-Durán
- Queen Mary, University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1, Tancha, Onna 904-0495, Japan
| |
Collapse
|
32
|
Teng CS, Cavin L, Maxson RE, Sánchez-Villagra MR, Crump JG. Resolving homology in the face of shifting germ layer origins: Lessons from a major skull vault boundary. eLife 2019; 8:e52814. [PMID: 31869306 PMCID: PMC6927740 DOI: 10.7554/elife.52814] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
The vertebrate skull varies widely in shape, accommodating diverse strategies of feeding and predation. The braincase is composed of several flat bones that meet at flexible joints called sutures. Nearly all vertebrates have a prominent 'coronal' suture that separates the front and back of the skull. This suture can develop entirely within mesoderm-derived tissue, neural crest-derived tissue, or at the boundary of the two. Recent paleontological findings and genetic insights in non-mammalian model organisms serve to revise fundamental knowledge on the development and evolution of this suture. Growing evidence supports a decoupling of the germ layer origins of the mesenchyme that forms the calvarial bones from inductive signaling that establishes discrete bone centers. Changes in these relationships facilitate skull evolution and may create susceptibility to disease. These concepts provide a general framework for approaching issues of homology in cases where germ layer origins have shifted during evolution.
Collapse
Affiliation(s)
- Camilla S Teng
- Department of Stem Cell Biology and Regenerative MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Lionel Cavin
- Department of Earth SciencesNatural History Museum of GenevaGenevaSwitzerland
| | - Robert E Maxson
- Department of Biochemistry, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | | | - J Gage Crump
- Department of Stem Cell Biology and Regenerative MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
33
|
Held LI, Sessions SK. Reflections on Bateson's rule: Solving an old riddle about why extra legs are mirror‐symmetric. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:219-237. [DOI: 10.1002/jez.b.22910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Lewis I. Held
- Department of Biological SciencesTexas Tech University Lubbock Texas
| | | |
Collapse
|
34
|
Abstract
The same genes and signaling pathways control the formation of limbs in vertebrates, arthropods and cuttlefish.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|