1
|
Qin X, Han X, Sun Y. Discovery of small molecule inhibitors of neddylation catalyzing enzymes for anticancer therapy. Biomed Pharmacother 2024; 179:117356. [PMID: 39214012 DOI: 10.1016/j.biopha.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Protein neddylation, a type of post-translational modifications, involves the transfer of the ubiquitin-like protein NEDD8 to the lysine residues of a target substrate, which is catalyzed by the NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). Cullin family proteins, core components of Cullin-RING E3 ubiquitin ligases (CRLs), are the most well-known physiological substrates of neddylation. CRLs, activated upon cullin neddylation, promote the ubiquitination of a variety of key signaling proteins for proteasome degradation, thereby regulating many critical biological functions. Abnormal activation of neddylation enzymes as well as CRLs has been frequently observed in various human cancers and is associated with poor prognosis for cancer patients. Consequently, targeting neddylation has emerged as a promising strategy for the development of novel anticancer therapeutics. This review first briefly introduces the properties of protein neddylation and its role in cancer, and then systematically summarizes all reported chemical inhibitors of the three neddylation enzymes, providing a focused, up to date, and comprehensive resource in the discovery and development of these small molecule inhibitors.
Collapse
Affiliation(s)
- Xiangshuo Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Dziubańska-Kusibab PJ, Nevedomskaya E, Haendler B. Preclinical Anticipation of On- and Off-Target Resistance Mechanisms to Anti-Cancer Drugs: A Systematic Review. Int J Mol Sci 2024; 25:705. [PMID: 38255778 PMCID: PMC10815614 DOI: 10.3390/ijms25020705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The advent of targeted therapies has led to tremendous improvements in treatment options and their outcomes in the field of oncology. Yet, many cancers outsmart precision drugs by developing on-target or off-target resistance mechanisms. Gaining the ability to resist treatment is the rule rather than the exception in tumors, and it remains a major healthcare challenge to achieve long-lasting remission in most cancer patients. Here, we discuss emerging strategies that take advantage of innovative high-throughput screening technologies to anticipate on- and off-target resistance mechanisms before they occur in treated cancer patients. We divide the methods into non-systematic approaches, such as random mutagenesis or long-term drug treatment, and systematic approaches, relying on the clustered regularly interspaced short palindromic repeats (CRISPR) system, saturated mutagenesis, or computational methods. All these new developments, especially genome-wide CRISPR-based screening platforms, have significantly accelerated the processes for identification of the mechanisms responsible for cancer drug resistance and opened up new avenues for future treatments.
Collapse
Affiliation(s)
| | | | - Bernard Haendler
- Research and Early Development Oncology, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany; (P.J.D.-K.); (E.N.)
| |
Collapse
|
3
|
Shen W, Hu F, Lei P, Tang Y. Applications of CRISPR screening to lung cancer treatment. Front Cell Dev Biol 2023; 11:1295555. [PMID: 38169973 PMCID: PMC10760454 DOI: 10.3389/fcell.2023.1295555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Lung cancer is an extremely aggressive and highly prevalent disease worldwide, and it is one of the leading causes of cancer death. Deciphering intrinsic genetic mechanism, finding new targets, and overcoming drug resistance are the key to lung cancer treatment. High-throughput CRISPR screening has been extensively used to obtain the genes related to cancers including lung cancer. This review describes CRISPR/Cas9 or CRISPR/dCas9-based technologies for high-throughput screening. We summarize the applications of CRISPR screening technology in exploring the mechanism of lung cancer development in vivo or in vitro, overcoming drug resistance, improving the effect of immunotherapy, and discovering new therapeutic targets. This review highlights the potential of CRISPR screening in combination with tumor barcoding and high-throughput sequencing (Tuba-seq) to precisely quantify the impact of alterations in many tumor suppressor genes on lung cancer.
Collapse
Affiliation(s)
- Wanying Shen
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Fangli Hu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Pan Lei
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yijun Tang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Hu C, Shen L, Zou F, Wu Y, Wang B, Wang A, Wu C, Wang L, Liu J, Wang W, Liu Q. Predicting and overcoming resistance to CDK9 inhibitors for cancer therapy. Acta Pharm Sin B 2023; 13:3694-3707. [PMID: 37719386 PMCID: PMC10502288 DOI: 10.1016/j.apsb.2023.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 09/19/2023] Open
Abstract
Abnormally activated CDK9 participates in the super-enhancer mediated transcription of short-lived proteins required for cancer cell survival. Targeting CDK9 has shown potent anti-tumor activity in clinical trials among different cancers. However, the study and knowledge on drug resistance to CDK9 inhibitors are very limited. In this study, we established an AML cell line with acquired resistance to a highly selective CDK9 inhibitor BAY1251152. Through genomic sequencing, we identified in the kinase domain of CDK9 a mutation L156F, which is also a coding SNP in the CDK9 gene. By knocking in L156F into cancer cells using CRISPR/Cas9, we found that single CDK9 L156F could drive the resistance to CDK9 inhibitors, not only ATP competitive inhibitor but also PROTAC degrader. Mechanistically, CDK9 L156F disrupts the binding with inhibitors due to steric hindrance, further, the mutation affects the thermal stability and catalytic activity of CDK9 protein. To overcome the drug resistance mediated by the CDK9-L156F mutation, we discovered a compound, IHMT-CDK9-36 which showed potent inhibition activity both for CDK9 WT and L156F mutant. Together, we report a novel resistance mechanism for CDK9 inhibitors and provide a novel chemical scaffold for the future development of CDK9 inhibitors.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Lijuan Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yun Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chao Wu
- Tarapeutics Science Inc., Bengbu 233000, China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
- Precision Medicine Research Laboratory of Anhui Province, Hefei 230088, China
| |
Collapse
|
5
|
Zhou L, Lin X, Zhu J, Zhang L, Chen S, Yang H, Jia L, Chen B. NEDD8-conjugating enzyme E2s: critical targets for cancer therapy. Cell Death Dis 2023; 9:23. [PMID: 36690633 PMCID: PMC9871045 DOI: 10.1038/s41420-023-01337-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
NEDD8-conjugating enzymes, E2s, include the well-studied ubiquitin-conjugating enzyme E2 M (UBE2M) and the poorly characterized ubiquitin-conjugating enzyme E2 F (UBE2F). UBE2M and UBE2F have distinct and prominent roles in catalyzing the neddylation of Cullin or non-Cullin substrates. These enzymes are overexpressed in various malignancies, conferring a worse overall survival. Targeting UBE2M to influence tumor growth by either modulating several biological responses of tumor cells (such as DNA-damage response, apoptosis, or senescence) or regulating the anti-tumor immunity holds strong therapeutic potential. Multiple inhibitors that target the interaction between UBE2M and defective cullin neddylation protein 1 (DCN1), a co-E3 for neddylation, exhibit promising anti-tumor effects. By contrast, the potential benefits of targeting UBE2F are still to be explored. It is currently reported to inhibit apoptosis and then induce cell growth; hence, targeting UBE2F serves as an effective chemo-/radiosensitizing strategy by triggering apoptosis. This review highlights the most recent advances in the roles of UBE2M and UBE2F in tumor progression, indicating these E2s as two promising anti-tumor targets.
Collapse
Affiliation(s)
- Lisha Zhou
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| | - Xiongzhi Lin
- grid.412026.30000 0004 1776 2036Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei China
| | - Jin Zhu
- grid.452533.60000 0004 1763 3891Department of Surgical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi China
| | - Luyi Zhang
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| | - Siyuan Chen
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| | - Hui Yang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lijun Jia
- grid.411480.80000 0004 1799 1816Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baofu Chen
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| |
Collapse
|
6
|
Mittler F, Obeïd P, Haguet V, Allier C, Gerbaud S, Rulina AV, Gidrol X, Balakirev MY. Mechanical stress shapes the cancer cell response to neddylation inhibition. J Exp Clin Cancer Res 2022; 41:115. [PMID: 35354476 PMCID: PMC8966269 DOI: 10.1186/s13046-022-02328-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/13/2022] [Indexed: 12/28/2022] Open
Abstract
Background The inhibition of neddylation by the preclinical drug MLN4924 represents a new strategy to combat cancer. However, despite being effective against hematologic malignancies, its success in solid tumors, where cell–cell and cell-ECM interactions play essential roles, remains elusive. Methods Here, we studied the effects of MLN4924 on cell growth, migration and invasion in cultured prostate cancer cells and in disease-relevant prostate tumoroids. Using focused protein profiling, drug and RNAi screening, we analyzed cellular pathways activated by neddylation inhibition. Results We show that mechanical stress induced by MLN4924 in prostate cancer cells significantly affects the therapeutic outcome. The latter depends on the cell type and involves distinct Rho isoforms. In LNCaP and VCaP cells, the stimulation of RhoA and RhoB by MLN4924 markedly upregulates the level of tight junction proteins at cell–cell contacts, which augments the mechanical strain induced by Rho signaling. This “tight junction stress response” (TJSR) causes the collapse of cell monolayers and a characteristic rupture of cancer spheroids. Notably, TJSR is a major cause of drug-induced apoptosis in these cells. On the other hand, in PC3 cells that underwent partial epithelial-to-mesenchymal transition (EMT), the stimulation of RhoC induces an adverse effect by promoting amoeboid cell scattering and invasion. We identified complementary targets and drugs that allow for the induction of TJSR without stimulating RhoC. Conclusions Our finding that MLN4924 acts as a mechanotherapeutic opens new ways to improve the efficacy of neddylation inhibition as an anticancer approach. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02328-y.
Collapse
|
7
|
Winder ML, Campbell KJ. MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 2022; 21:1439-1455. [PMID: 35349392 PMCID: PMC9278428 DOI: 10.1080/15384101.2022.2054096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
Pro-survival members of the BCL-2 family, including MCL-1, are emerging as important proteins during the development and therapeutic response of solid tumors. Notably, high levels of MCL-1 occur in breast cancer, where functional dependency has been demonstrated using cell lines and mouse models. The utility of restoring apoptosis in cancer cells through inhibition of pro-survival BCL-2 proteins has been realized in the clinic, where the first specific inhibitor of BCL-2 is approved for use in leukemia. A variety of MCL-1 inhibitors are now undergoing clinical trials for blood cancer treatment and application of this new class of drugs is also being tested in solid cancers. On-target compounds specific to MCL-1 have demonstrated promising efficacy in preclinical models of breast cancer and show potential to enhance the anti-tumor effect of conventional therapies. Taken together, this makes MCL-1 an extremely attractive target for clinical evaluation in the context of breast cancer.Abbreviations: ADC (antibody-drug conjugate); AML (Acute myeloid leukemia); APAF1 (apoptotic protease activating factor 1); bCAFs (breast cancer associated fibroblasts); BCL-2 (B-cell lymphoma 2); BH (BCL-2 homology); CLL (chronic lymphocytic leukemia); EGF (epidermal growth factor); EMT (epithelial to mesenchymal transition); ER (estrogen receptor); FDA (food and drug administration); GEMM (genetically engineered mouse model); HER2 (human epidermal growth factor 2); IL6 (interleukin 6); IMM (inner mitochondrial membrane); IMS (intermembrane space); MCL-1 (myeloid cell leukemia-1); MOMP (mitochondrial outer membrane permeabilisation); MM (multiple myeloma); PDX (patient-derived xenograft); OMM (outer mitochondrial membrane); PROTAC (proteolysis-targeting chimeras) TNBC (triple negative breast cancer); UPS (ubiquitin mediated proteolysis system).
Collapse
Affiliation(s)
- Matthew L Winder
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| |
Collapse
|
8
|
Jiang W, Xie N, Xu C. Characterization of a prognostic model for lung squamous cell carcinoma based on eight stemness index-related genes. BMC Pulm Med 2022; 22:224. [PMID: 35676660 PMCID: PMC9178800 DOI: 10.1186/s12890-022-02011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cancer stem cells (CSCs) are implicated in cancer progression, chemoresistance, and poor prognosis; thus, they may be promising therapeutic targets. In this study, we aimed to investigate the prognostic application of differentially expressed CSC-related genes in lung squamous cell carcinoma (LUSC). Methods The mRNA stemness index (mRNAsi)-related differentially expressed genes (DEGs) in tumors were identified and further categorized by LASSO Cox regression analysis and 1,000-fold cross-validation, followed by the construction of a prognostic score model for risk stratification. The fractions of tumor-infiltrating immune cells and immune checkpoint genes were analyzed in different risk groups. Results We found 404 mRNAsi-related DEGs in LUSC, 77 of which were significantly associated with overall survival. An eight-gene prognostic signature (PPP1R27, TLX2, ANKLE1, TIGD3, AMH, KCNK3, FLRT3, and PPBP) was identified and used to construct a risk score model. The TCGA set was dichotomized into two risk groups that differed significantly (p = 0.00057) in terms of overall survival time (1, 3, 5-year AUC = 0.830, 0.749, and 0.749, respectively). The model performed well in two independent GEO datasets (p = 0.029, 0.033; 1-year AUC = 0747, 0.783; 3-year AUC = 0.746, 0.737; 5-year AUC = 0.706, 0.723). Low-risk patients had markedly increased numbers of CD8+ T cells and M1 macrophages and downregulated immune checkpoint genes compared to the corresponding values in high-risk patients (p < 0.05). Conclusion A stemness-related prognostic model based on eight prognostic genes in LUSC was developed and validated. The results of this study would have prognostic and therapeutic implications. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02011-0.
Collapse
Affiliation(s)
- Wenfa Jiang
- Thoracic Surgery Department, Ganzhou People's Hospital, 16 MeiGuan Ave, Zhanggong, 341000, Ganzhou, China
| | - Ning Xie
- Thoracic Surgery Department, Ganzhou People's Hospital, 16 MeiGuan Ave, Zhanggong, 341000, Ganzhou, China
| | - Chenyang Xu
- Thoracic Surgery Department, Ganzhou People's Hospital, 16 MeiGuan Ave, Zhanggong, 341000, Ganzhou, China.
| |
Collapse
|
9
|
Xiao C, Zhang W, Hua M, Chen H, Yang B, Wang Y, Yang Q. RNF7 inhibits apoptosis and sunitinib sensitivity and promotes glycolysis in renal cell carcinoma via the SOCS1/JAK/STAT3 feedback loop. Cell Mol Biol Lett 2022; 27:36. [PMID: 35562668 PMCID: PMC9107170 DOI: 10.1186/s11658-022-00337-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background RING finger protein 7 (RNF7) is a highly conserved protein that functions as an E3 ubiquitin ligase. RNF7 overexpression is indicated in multiple human cancers, but its role in renal cell carcinoma (RCC) and the mechanisms underlying how it regulates the initiation and progression of RCC have not been explored. Methods Bioinformatics analysis, quantitative reverse-transcription polymerase chain reaction (RT-PCR), and Western blot were conducted to determine the expression of RNF7 in RCC tissues and cell lines. Knockdown and overexpression experiments were performed to examine the effects of RNF7 on cell viability, apoptosis, and glycolysis in vitro and on tumor growth in nude mice in vivo. Results The elevated RNF7 expression in tumor tissues of patients with RCC was correlated with poor survival. RNF7 overexpression inhibited apoptosis and promoted glycolysis in vitro and increased tumor growth in vivo by activating the JAK/STAT3 signaling pathway by ubiquitination of SOCS1. Moreover, RNF7 overexpression affected the sensitivity of RCC cells to sunitinib. Finally, STAT3 activation was necessary for transcriptional induction of RNF7. Conclusion These results demonstrate that RNF7 inhibited apoptosis, promoted glycolysis, and inhibited sunitinib sensitivity in RCC cells via ubiquitination of SOCS1, thus activating STAT3 signaling. These suggest the potential for targeting the RNF7-SOCS1/JAK/STAT3 pathway for RCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00337-5.
Collapse
Affiliation(s)
- Chengwu Xiao
- Department of Urology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Yangpu, Shanghai, 200433, China
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Yangpu, Shanghai, 200433, China
| | - Meimian Hua
- Department of Urology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Yangpu, Shanghai, 200433, China
| | - Huan Chen
- Department of Urology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Yangpu, Shanghai, 200433, China
| | - Bin Yang
- Department of Urology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Yangpu, Shanghai, 200433, China
| | - Ye Wang
- Department of Urology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Yangpu, Shanghai, 200433, China
| | - Qing Yang
- Department of Urology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Yangpu, Shanghai, 200433, China.
| |
Collapse
|
10
|
Abstract
The past 25 years of genomics research first revealed which genes are encoded by the human genome and then a detailed catalogue of human genome variation associated with many diseases. Despite this, the function of many genes and gene regulatory elements remains poorly characterized, which limits our ability to apply these insights to human disease. The advent of new CRISPR functional genomics tools allows for scalable and multiplexable characterization of genes and gene regulatory elements encoded by the human genome. These approaches promise to reveal mechanisms of gene function and regulation, and to enable exploration of how genes work together to modulate complex phenotypes.
Collapse
|
11
|
Li Z, Hu N, Dai L, Hou X, Hu W, Liang W, Wang X. Cullin-5 (CUL5) as a potential prognostic marker in a pan-cancer analysis of human tumors. Bioengineered 2021; 12:5348-5360. [PMID: 34415831 PMCID: PMC8806887 DOI: 10.1080/21655979.2021.1940042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is some evidence supporting an association between Cullin-5 (CUL5) and cancer, but no research using pan-cancer analysis has been conducted previously. We therefore investigated the oncogenic role of CUL5 in 33 tumors from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Many cancers reduce CUL5 levels, and the prognosis of certain cancers is vitally linked with CUL5 expression. CUL5 expression is associated with CD8 + T-cell infiltration levels in uveal melanomas and head and neck squamous cell carcinomas, and we observed a positive relationship between CUL5 and Tcm (T central memory) cells, and a negative relationship between T helper (Th) cells and pDC (plasmacytoid DC). CUL5 had negative associations with NK cells, NK CD56bright cells, NK CD56dim cells, Tregs, cytotoxic cells, and Th17 cells. Functions relating to protein processing and ubiquitin were included in the CUL5 functional mechanisms. The top 100 genes that are most strongly related to CUL5 were identified, and enrichment analysis indicated that the biological process with the closest relationship was neddylation, related pathways included the TGF-beta signaling pathway and intracellular receptor signaling pathway. CUL5 is related to biological cell behaviors such as chromosome segregation and positive regulation of chromosome organization. As the first study to perform a pan-cancer analysis of CUL5, the present findings will improve the understanding of the oncogenic role of CUL5 in different tumors.
Collapse
Affiliation(s)
- Zian Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Nan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Lirui Dai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Xuelei Hou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Weihua Hu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Wulong Liang
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Martini R, Chen Y, Jenkins BD, Elhussin IA, Cheng E, Hoda SA, Ginter PS, Hanover J, Zeidan RB, Oppong JK, Adjei EK, Jibril A, Chitale D, Bensenhaver JM, Awuah B, Bekele M, Abebe E, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Nathansan SD, Jackson L, Jiagge E, Petersen LF, Proctor E, Nikolinakos P, Gyan KK, Yates C, Kittles R, Newman LA, Davis MB. Investigation of triple-negative breast cancer risk alleles in an International African-enriched cohort. Sci Rep 2021; 11:9247. [PMID: 33927264 PMCID: PMC8085076 DOI: 10.1038/s41598-021-88613-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Large-scale efforts to identify breast cancer (BC) risk alleles have historically taken place among women of European ancestry. Recently, there are new efforts to verify if these alleles increase risk in African American (AA) women as well. We investigated the effect of previously reported AA breast cancer and triple-negative breast cancer (TNBC) risk alleles in our African-enriched International Center for the Study of Breast Cancer Subtypes (ICSBCS) cohort. Using case-control, case-series and race-nested approaches, we report that the Duffy-null allele (rs2814778) is associated with TNBC risk (OR = 3.814, p = 0.001), specifically among AA individuals, after adjusting for self-indicated race and west African ancestry (OR = 3.368, p = 0.007). We have also validated the protective effect of the minor allele of the ANKLE1 missense variant rs2363956 among AA for TNBC (OR = 0.420, p = 0.005). Our results suggest that an ancestry-specific Duffy-null allele and differential prevalence of a polymorphic gene variant of ANKLE1 may play a role in TNBC breast cancer outcomes. These findings present opportunities for therapeutic potential and future studies to address race-specific differences in TNBC risk and disease outcome.
Collapse
Affiliation(s)
- Rachel Martini
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
- Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA
| | - Brittany D Jenkins
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Isra A Elhussin
- Department of Biology & Center for Cancer Research, Tuskegee University, Tuskegee, AL, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Syed A Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paula S Ginter
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Rozina B Zeidan
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA
| | - Joseph K Oppong
- Department of Surgery, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Ernest K Adjei
- Department of Pathology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Aisha Jibril
- Department of Pathology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | | | | | - Baffour Awuah
- Directorate of Oncology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Mahteme Bekele
- Department of Surgery, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Engida Abebe
- Department of Surgery, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Ishmael Kyei
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frances S Aitpillah
- Department of Surgery, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael O Adinku
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwasi Ankomah
- Directorate of Radiology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | | | | | - LaToya Jackson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Evelyn Jiagge
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | | | - Erica Proctor
- Department of Surgery, Henry Ford Health System, Detroit, MI, USA
| | | | - Kofi K Gyan
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA
| | - Clayton Yates
- Department of Biology & Center for Cancer Research, Tuskegee University, Tuskegee, AL, USA
| | - Rick Kittles
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lisa A Newman
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA.
| |
Collapse
|
13
|
Osborne HC, Irving E, Forment JV, Schmidt CK. E2 enzymes in genome stability: pulling the strings behind the scenes. Trends Cell Biol 2021; 31:628-643. [PMID: 33685796 DOI: 10.1016/j.tcb.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Ubiquitin and ubiquitin-like proteins (UBLs) function as critical post-translational modifiers in the maintenance of genome stability. Ubiquitin/UBL-conjugating enzymes (E2s) are responsible, as part of a wider enzymatic cascade, for transferring single moieties or polychains of ubiquitin/UBLs to one or multiple residues on substrate proteins. Recent advances in structural and mechanistic understanding of how ubiquitin/UBL substrate attachment is orchestrated indicate that E2s can exert control over chain topology, substrate-site specificity, and downstream physiological effects to help maintain genome stability. Drug discovery efforts have typically focussed on modulating other members of the ubiquitin/UBL cascades or the ubiquitin-proteasome system. Here, we review the current standing of E2s in genome stability and revisit their potential as pharmacological targets for developing novel anti-cancer therapies.
Collapse
Affiliation(s)
- Hugh C Osborne
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Elsa Irving
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Josep V Forment
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Christine K Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK.
| |
Collapse
|
14
|
Kostrhon S, Prabu JR, Baek K, Horn-Ghetko D, von Gronau S, Klügel M, Basquin J, Alpi AF, Schulman BA. CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation. Nat Chem Biol 2021; 17:1075-1083. [PMID: 34518685 PMCID: PMC8460447 DOI: 10.1038/s41589-021-00858-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023]
Abstract
An emerging mechanism of ubiquitylation involves partnering of two distinct E3 ligases. In the best-characterized E3-E3 pathways, ARIH-family RING-between-RING (RBR) E3s ligate ubiquitin to substrates of neddylated cullin-RING E3s. The E3 ARIH2 has been implicated in ubiquitylation of substrates of neddylated CUL5-RBX2-based E3s, including APOBEC3-family substrates of the host E3 hijacked by HIV-1 virion infectivity factor (Vif). However, the structural mechanisms remained elusive. Here structural and biochemical analyses reveal distinctive ARIH2 autoinhibition, and activation on assembly with neddylated CUL5-RBX2. Comparison to structures of E3-E3 assemblies comprising ARIH1 and neddylated CUL1-RBX1-based E3s shows cullin-specific regulation by NEDD8. Whereas CUL1-linked NEDD8 directly recruits ARIH1, CUL5-linked NEDD8 does not bind ARIH2. Instead, the data reveal an allosteric mechanism. NEDD8 uniquely contacts covalently linked CUL5, and elicits structural rearrangements that unveil cryptic ARIH2-binding sites. The data reveal how a ubiquitin-like protein induces protein-protein interactions indirectly, through allostery. Allosteric specificity of ubiquitin-like protein modifications may offer opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Sebastian Kostrhon
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J. Rajan Prabu
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kheewoong Baek
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Horn-Ghetko
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne von Gronau
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maren Klügel
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jérôme Basquin
- grid.418615.f0000 0004 0491 845XDepartment of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Arno F. Alpi
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A. Schulman
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
15
|
Zhao Y, Xiong X, Sun Y. Cullin-RING Ligase 5: Functional characterization and its role in human cancers. Semin Cancer Biol 2020; 67:61-79. [PMID: 32334051 DOI: 10.1016/j.semcancer.2020.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Cullin-RING ligase 5 (CRL5) is a multi-protein complex and consists of a scaffold protien cullin 5, a RING protein RBX2 (also known as ROC2 or SAG), adaptor proteins Elongin B/C, and a substrate receptor protein SOCS. Through targeting a variety of substrates for proteasomal degradation or modulating various protein-protein interactions, CRL5 is involved in regulation of many biological processes, such as cytokine signal transduction, inflammation, viral infection, and oncogenesis. As many substrates of CRL5 are well-known oncoproteins or tumor suppressors, abnormal regulation of CRL5 is commonly found in human cancers. In this review, we first briefly introduce each of CRL5 components, and then discuss the biological processes regulated by four members of SOCS-box-containing substrate receptor family through substrate degradation. We next describe how CRL5 is hijacked by a variety of viral proteins to degrade host anti-viral proteins, which facilitates virus infection. We further discuss the regulation of CUL5 and its various roles in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose novel insights for future perspectives on the validation of cullin5 and other CRL5 components as potential targets, and possible targeting strategies to discover CRL5 inhibitors for anti-cancer and anti-virus therapies.
Collapse
Affiliation(s)
- Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Gao F, Yu X, Li M, Zhou L, Liu W, Li W, Liu H. Deguelin suppresses non-small cell lung cancer by inhibiting EGFR signaling and promoting GSK3β/FBW7-mediated Mcl-1 destabilization. Cell Death Dis 2020; 11:143. [PMID: 32081857 PMCID: PMC7035355 DOI: 10.1038/s41419-020-2344-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Activating mutations of epidermal growth factor receptor (EGFR) play crucial roles in the oncogenesis of human non-small cell lung cancer (NSCLC). By screening 79 commercially available natural products, we found that the natural compound deguelin exhibited a profound anti-tumor effect on NSCLC via directly down-regulating of EGFR-signaling pathway. Deguelin potently inhibited in vitro EGFR kinase activity of wild type (WT), exon 19 deletion, and L858R/T790M-mutated EGFR. The in silico docking study indicated that deguelin was docked into the ATP-binding pocket of EGFRs. By suppression of EGFR signaling, deguelin inhibited anchorage-dependent, and independent growth of NSCLC cell lines, and significantly delayed tumorigenesis in vivo. Further study showed that deguelin inhibited EGFR and downstream kinase Akt, which resulted in the activation of GSK3β and eventually enhanced Mcl-1 phosphorylation at S159. Moreover, deguelin promoted the interaction between Mcl-1 and E3 ligase SCFFBW7, which enhanced FBW7-mediated Mcl-1 ubiquitination and degradation. Additionally, phosphorylation of Mcl-1 by GSK3β is a prerequisite for FBW7-mediated Mcl-1 destruction. Depletion or pharmacological inactivation of GSK3β compromised deguelin-induced Mcl-1 ubiquitination and reduction. Taken together, our data indicate that enhancement of ubiquitination-dependent Mcl-1 turnover might be a promising approach for cancer treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ming Li
- Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, 410013, Changsha, Hunan, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China. .,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.
| |
Collapse
|
17
|
DeWeirdt PC, Sangree AK, Hanna RE, Sanson KR, Hegde M, Strand C, Persky NS, Doench JG. Genetic screens in isogenic mammalian cell lines without single cell cloning. Nat Commun 2020; 11:752. [PMID: 32029722 PMCID: PMC7005275 DOI: 10.1038/s41467-020-14620-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Isogenic pairs of cell lines, which differ by a single genetic modification, are powerful tools for understanding gene function. Generating such pairs of mammalian cells, however, is labor-intensive, time-consuming, and, in some cell types, essentially impossible. Here, we present an approach to create isogenic pairs of cells that avoids single cell cloning, and screen these pairs with genome-wide CRISPR-Cas9 libraries to generate genetic interaction maps. We query the anti-apoptotic genes BCL2L1 and MCL1, and the DNA damage repair gene PARP1, identifying both expected and uncharacterized buffering and synthetic lethal interactions. Additionally, we compare acute CRISPR-based knockout, single cell clones, and small-molecule inhibition. We observe that, while the approaches provide largely overlapping information, differences emerge, highlighting an important consideration when employing genetic screens to identify and characterize potential drug targets. We anticipate that this methodology will be broadly useful to comprehensively study gene function across many contexts.
Collapse
Affiliation(s)
- Peter C DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Annabel K Sangree
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Ruth E Hanna
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Kendall R Sanson
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Mudra Hegde
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Christine Strand
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Nicole S Persky
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA.
| |
Collapse
|